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Constraint Satisfaction Problems
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Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language τ .

Definition
CSP(Γ) is the following decision problem:

INPUT: variables x1, . . . , xn and atomic τ -statements about them.
QUESTION: is there a satisfying assignment with values in Γ?

Γ is called the template of the CSP.
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Examples

Digraph acyclicity
Input: A finite directed graph (D; E)

Question: Is (D; E) acyclic?
Is CSP: template is (Q;<)

Betweenness
Input: A finite set of triples of variables (x , y , z)

Question: Is there a weak linear order on the variables such that
for each triple either x < y < z or z < y < x?

Is a CSP: template is (Q; {(x , y , z) | (x < y < z) ∨ (z < y < x)})
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Examples

Diophantine
Input: A finite system of equations using =,+, ·,1

Question: Is there a solution in Z?
Is a CSP: template is Γ := (Z; 1,+, ·,=)

Kn-freeness
Input: A finite undirected graph

Question: Is the graph Kn-free?
Is a CSP: template is the homogeneous universal Kn-free graph

n-colorability
Input: A finite undirected graph

Question: Is it n-colorable?
Is a CSP: template is Kn
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CSPs of reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

(ultra-)homogeneous

universal.

Let Γ = (V ; R1, . . . ,Rn) be a reduct of G,
i.e., Γ is first-order definable in G without parameters.

CSP(Γ) is called a Graph-SAT problem.

Theorem (Bodirsky + MP ’10)
Graph-SAT problems are always in P or NP-complete.
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Graph-SAT: Examples

Example. Let Γ have precisely the relation

R(x , y , z) :↔(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

CSP(Γ) is NP-complete.

Example. Let Γ′ have precisely the relation

R′(x , y , z) :↔(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

CSP(Γ′) is in P.
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CSPs of reducts of homogeneous structures

Let C be a Fraïssé class and ∆ be its limit.

Let Γ = (V ; R1, . . . ,Rn) be a reduct of ∆.

CSP(Γ) is called a ∆-SAT problem.

It asks whether elements in members of C
can satisfy a given conjunction of properties from {R1, . . . ,Rn}.

Note: This type of CSP cannot be modeled by finite templates.
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Polymorphism clones
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Primitive positive definitions

A τ -formula is primitive positive (pp) iff it is of the form

∃x1 · · · ∃xn ψ1 ∧ · · · ∧ ψm,

where ψi are atomic.

Note: the input of a CSP really is a pp sentence;
the question is whether the sentence holds in the template.

Example. The relation y = 2x is pp definable in (Z; +, ·,1)
(Matyasevich + Robinson).

Observation
Expanding Γ by pp definable relations
increases the complexity of the CSP only by polynomial-time.
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Polymorphism clones

Let Γ be a structure.

Pol(Γ) is the set of all homomorphisms f : Γn → Γ, where 1 ≤ n < ω.

The elements of Pol(Γ) are called polymorphisms of Γ.

Pol(Γ) is a function clone:

closed under composition
contains projections.

Observe: Pol(Γ) ⊇ End(Γ) ⊇ Aut(Γ).
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Function clones and pp definitions

Theorem (Bodirsky + Nešetřil ’03)
Let Γ be ω-categorical.
A relation is pp definable over Γ iff
it is preserved by all polymorphisms of Γ.

Hence, the complexity of CSP(Γ) only depends on Pol(Γ):

Corollary
Let Γ be ω-categorical.
If Pol(Γ) = Pol(Γ′),
then CSP(Γ) and CSP(Γ′) are polynomial-time equivalent.
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Finite structures and abstract clones

Theorem (Bulatov + Jeavons + Krokhin ’05)
Let Γ be finite. The complexity of CSP(Γ)
only depends on the algebraic structure of Pol(Γ),
i.e., on Pol(Γ) viewed as an abstract clone.

Let C,D be function clones.
ξ : C→ D is a (clone) homomorphism iff

it preserves arities;
sends every projection in C to the corresponding projection in D;
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)) for all f ,g1, . . . ,gn ∈ C.

Reason: combination of
Birkhoff’s HSPfin theorem
the fact that when Γ′ has a pp interpretation in Γ,
then CSP(Γ′) is polynomial-time reducible to CSP(Γ).
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Topological clones

Function clones carry:

algebraic structure: multi-sorted algebra
topological structure (pointwise convergence)

Topological clones can be formalized like topological groups.

Theorem (Bodirsky + MP ’12)

Let Γ, Γ′ be ω-categorical.
If there exists a continuous homomorphism from Pol(Γ) onto Pol(Γ′),
then CSP(Γ′) is polynomial-time reducible to CSP(Γ).

For countable ω-categorical Γ, the complexity of CSP(Γ)
only depends on Pol(Γ) viewed as an topological clone.
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A hardness criterion

Let 1 be the clone of projections on any set of size ≥ 2.

Corollary
Let Γ be ω-categorical.

If Pol(Γ) has a continuous homomorphism to 1,
then CSP(Γ) is NP-hard.
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Model-complete cores
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Model-complete cores

Def: Γ is called a core iff Emb(Γ) = End(Γ).

A structure is model-complete iff embeddings between models of its
theory preserve first-order formulas.

Fact: Let Γ be a countable ω-categorical relational structure.
Then Γ is model-complete iff Aut(Γ) = Emb(Γ).

So an ω-categorical model-complete core Γ satisfies Aut(Γ) = End(Γ).

This is a property of the topological clone Pol(Γ).
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Model-complete cores, continued

Def: τ -structures Γ, Γ′ are homomorphically equivalent iff
Γ maps homomorphically into Γ′ and vice-versa.

Note: Homomorphically equivalent structures have equal CSPs.

Theorem (Bodirsky + Hils + Martin ’10)
Every finite or ω-categorical structure is homomorphically equivalent to
a model complete core ∆.

∆ is unique up to isomorphism and ω-categorical.

Example: The model-complete core of the random graph is a
countably infinite clique.

We are interested in topological clones
whose unary invertible elements are dense in the unary sort.
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The tractability conjecture

Fact: When Γ is a model-complete core and c ∈ Γ, then adding the
relation {c} to Γ does not increase the complexity of the CSP.

Consequence: For finite Γ, one can assume that Pol(Γ) is idempotent.

Conjecture (Bulatov + Jeavons + Krokhin ’05; Barto + Kozik ’10)

Let Γ be finite, and Pol(Γ) be idempotent. Then
either Pol(Γ) has a homomorphism to 1
(and CSP(Γ) is NP-hard),
or Pol(Γ) contains a cyclic operation f of arity n > 1, i.e.,

f (x1, . . . , xn) = f (x2, . . . , xn, x1)

and CSP(Γ) is in P.
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Reducts of (Q;<)

Theorem (Bodirsky + Kara ’08, reformulated)

Let Γ be a reduct of (Q;<). Then one of the following holds.

there is an expansion Γ′ of the model-complete core of Γ
by finitely many constants
such that Pol(Γ′) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

there are f (x1, x2) ∈ Pol(Γ) and α, β ∈ Aut(Q;<) such that

f (x1, x2) = α(f (βx2, βx1))

and CSP(Γ) is in P.
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Reducts of the random graph G

Theorem (Bodirsky + Pinsker ’11, reformulated)
Let Γ be a reduct of G. Then one of the following holds.

Pol(Γ) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

there are f (x1, x2, x3) ∈ Pol(Γ) and α ∈ Aut(G) such that

f (x1, x2, x3) = α(f (x3, x1, x2))

and CSP(Γ) is in P.
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Proof method

Identify relations R such that Pol(V ; R) has a continuous
homomorphism to 1.

If none of those hard relations is pp definable in Γ,
then there are functions in Pol(Γ) witnessing this.

Using Ramsey theory we find canonical (=‘nice’) such
polymorphisms.

These canonical polymorphisms are essentially finite functions.

So they allow for combinatorial analysis and algorithmic use, and
“should” satisfy equations.
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Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
for all tuples t1, . . . , tn of the same length
the type of f (t1, . . . , tn) only depends on
the types of the tuples t1, . . . , tn.

Examples on the random graph

self-embeddings;
flipping edges and non-edges;
injections onto a clique;
binary edge-max or edge-min.
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Ramsey structures

Definition (Ramsey structure ∆)
For all finite substructures P,H of ∆:
Whenever we color the copies of P in ∆ with 2 colors
then there is a monochromatic copy of H in ∆.

P

P

Δ

H

P

P

P

P

P

P

P P

Theorem (Nešetřil-Rödl)
The random ordered graph is Ramsey.
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Canonizing functions on Ramsey structures

Proposition (Bodirsky + MP + Tsankov ’11)
Let

∆ be ordered Ramsey homogeneous finite language
f : ∆n → ∆

c1, . . . , ck ∈ ∆.

Then
{β(f (α1(x1), . . . , αn(xn))) | β, αi ∈ Aut(∆)}

contains a function which
is canonical as a function on (∆, c1, . . . , ck )

is identical with f on {c1, . . . , ck}n.

Proof: Via topological dynamics (Kechris + Pestov + Todorcevic ’05).
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Using canonical functions

Two canonical functions f ,g have the same behavior iff
f (t1, . . . , tn) and g(t1, . . . , tn) have equal type for all tuples t1, . . . , tn.

If ∆ is homogeneous in a finite language, there are only finitely many
behaviors of n-ary canonical functions.

Canonical functions of same behavior generate one another.

Conclusion: Violation of hard relations
(and thus non-existence of a continuous homomorphism to 1)
is witnessed by canonical functions.
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The infinite tractability conjecture
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Finitely bounded homogeneous structures

Fact: There are homogeneous digraphs with undecidable CSP.

Definition
A structure with finite relational signature is finitely bounded iff
its age is determined by finitely many forbidden substructures.

Examples: (Q;<) and the random graph.

Fact: The CSP of any reduct of a finitely bounded structure is in NP.

Conjecture (Bodirsky + MP ’11)
Let Γ be a reduct of a finitely bounded homogeneous structure.
Then CSP(Γ) is in P or NP-complete.
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Infinite tractability conjecture

Let Γ be a reduct of a finitely bounded homogeneous structure.
Assume Γ is a model-complete core.

Conjecture (Bodirsky + MP ’13)
One of the following holds.

there is an expansion Γ′ of Γ by finitely many constants such that
Pol(Γ′) has a continuous homomorphism to 1
(and CSP(Γ) is NP-hard);

Pol(Γ) satisfies a non-trivial equation, and CSP(Γ) is tractable.
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Open problems

Does every homogeneous structure in a finite relational language
have a homogeneous Ramsey expansion
by finitely many relation symbols?

When Γ is the reduct of a finitely bounded homogeneous
structure, is the model-complete core of Γ also the reduct of a
finitely bounded homogeneous structure?

If Pol(Γ) has a homomorphism to 1, does it also have a continuous
homomorphism?
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