Algebraic and model-theoretic methods in constraint satisfaction

Michael Pinsker

Technische Universität Wien / Université Diderot - Paris 7 Funded by FWF grant I836-N23

Doc-Course, Charles University Prague 2014

Part I: CSPs / dividing the world / pp definitions, polymorphism clones, ω -categoricity

Part I: CSPs / dividing the world /

pp definitions, polymorphism clones, ω -categoricity

Part II: pp interpretations / topological clones

Part I: CSPs / dividing the world /

pp definitions, polymorphism clones, ω -categoricity

Part II: pp interpretations / topological clones

Part III: Homogeneous structures / Ramsey / canonical functions

Part I: CSPs / dividing the world /

pp definitions, polymorphism clones, ω -categoricity

Part II: pp interpretations / topological clones

Part III: Homogeneous structures / Ramsey / canonical functions

Part IV: The infinite tractability conjecture

Part I: CSPs / dividing the world /

pp definitions, polymorphism clones, ω -categoricity

Part II: pp interpretations / topological clones

Part III: Homogeneous structures / Ramsey / canonical functions

Part IV: The infinite tractability conjecture

Model theory, Universal algebra, Ramsey theory, Topological dynamics

→ Theoretical computer science

Part I: CSPs / dividing the world /

pp definitions, polymorphism clones, ω -categoricity

Part II: pp interpretations / topological clones

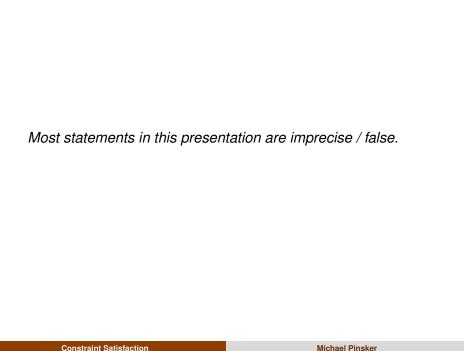
Part III: Homogeneous structures / Ramsey / canonical functions

Part IV: The infinite tractability conjecture

Model theory, Universal algebra, Ramsey theory, Topological dynamics

→ Theoretical computer science

Building new dimension out of two smaller





Part I:

CSPs / pp definitions / polymorphism clones / $\omega\text{-categoricity}$

Let Γ be a structure in a finite relational language τ .

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \dots, x_n\} \to \Gamma$?

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \dots, x_n\} \to \Gamma$?

 Γ is called the template of the CSP.

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \dots, x_n\} \to \Gamma$?

 Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \dots, x_n\} \to \Gamma$?

 Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or can see it as pp sentence (existentially quantified conjunction).

Let Γ be a structure in a finite relational language τ .

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: variables x_1, \ldots, x_n and atomic τ -statements about them.

QUESTION: is there a satisfying assignment $h: \{x_1, \dots, x_n\} \to \Gamma$?

 Γ is called the template of the CSP.

Can see input as conjunction of atomic formulas.

Or can see it as pp sentence (existentially quantified conjunction).

Irrelevant whether Γ is finite or infinite. But language finite.

Let Γ be a structure in a finite relational language τ .

Let Γ be a structure in a finite relational language τ .

Definition

 $HOM(\Gamma)$ is the decision problem:

Let Γ be a structure in a finite relational language τ .

Definition

 $HOM(\Gamma)$ is the decision problem:

INPUT: a *finite* τ -structure Δ .

Let Γ be a structure in a finite relational language τ .

Definition

 $HOM(\Gamma)$ is the decision problem:

INPUT: a *finite* τ -structure Δ .

QUESTION: is there a homomorphism $h: \Delta \to \Gamma$?

Let Γ be a structure in a finite relational language τ .

Definition

 $HOM(\Gamma)$ is the decision problem:

INPUT: a *finite* τ -structure Δ .

QUESTION: is there a homomorphism $h: \Delta \to \Gamma$?

Finite τ -structures \leftrightarrow pp τ -sentences.

Let Γ be a structure in a finite relational language τ .

Definition

 $HOM(\Gamma)$ is the decision problem:

INPUT: a *finite* τ -structure Δ .

QUESTION: is there a homomorphism $h: \Delta \to \Gamma$?

Finite τ -structures \leftrightarrow pp τ -sentences.

 $HOM(\Gamma)$ and $CSP(\Gamma)$ are equivalent.

Digraph acyclicity

Input: A finite directed graph (D; E)

Question: Is (D; E) acyclic?

Digraph acyclicity

Input: A finite directed graph (D; E)

Question: Is (D; E) acyclic?

Is CSP: template $(\mathbb{Q}; <)$

Digraph acyclicity

Input: A finite directed graph (D; E)

Question: Is (D; E) acyclic? Is CSP: template $(\mathbb{Q}; <)$

Betweenness

Input: A finite set of triples of variables

Question: Is there a linear order on the variables such that

for each triple (x, y, z) either x < y < z or z < y < x?

Digraph acyclicity

Input: A finite directed graph (D; E)

Question: Is (D; E) acyclic? Is CSP: template $(\mathbb{Q}; <)$

Betweenness

Input: A finite set of triples of variables

Question: Is there a linear order on the variables such that

for each triple (x, y, z) either x < y < z or z < y < x?

Is CSP: template $(\mathbb{Q}; \{(x, y, z) \mid (x < y < z) \lor (z < y < x)\})$

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$

Question: Is there a solution in \mathbb{Z} ?

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$

Question: Is there a solution in \mathbb{Z} ?

Is CSP: template (\mathbb{Z} ; 1, +, ·, =)

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$

Question: Is there a solution in \mathbb{Z} ?

Is CSP: template (\mathbb{Z} ; 1, +, ·, =)

n-colorability

Input: A finite undirected graph

Question: Is it *n*-colorable?

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$

Question: Is there a solution in \mathbb{Z} ?

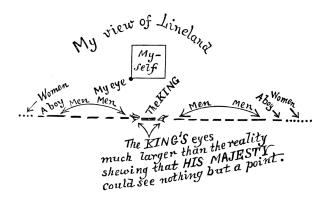
Is CSP: template (\mathbb{Z} ; 1, +, ·, =)

n-colorability

Input: A finite undirected graph

Question: Is it *n*-colorable?

Is a CSP: template K_n



Dividing the world

Let *E* be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free $\{E\}$ -formulas.

Let *E* be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free $\{E\}$ -formulas.

Computational problem: Graph-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \dots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a graph?

Let *E* be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free $\{E\}$ -formulas.

Computational problem: Graph-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \dots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a graph?

Computational complexity depends on Ψ . Always in NP.

Let *E* be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free $\{E\}$ -formulas.

Computational problem: Graph-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \dots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a graph?

Computational complexity depends on Ψ . Always in NP.

Question

For which Ψ is Graph-SAT(Ψ) tractable?

Example 1 Let Ψ_1 only contain

$$\psi_{1}(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)).$$

Example 1 Let Ψ_1 only contain

$$\psi_{1}(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)).$$

Graph-SAT(Ψ_1) is NP-complete.

Example 1 Let Ψ_1 only contain

$$\psi_{1}(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)).$$

Graph-SAT(Ψ_1) is NP-complete.

Example 2 Let Ψ_2 only contain

$$\psi_{2}(x,y,z) := (E(x,y) \land \neg E(y,z) \land \neg E(x,z))$$

$$\lor (\neg E(x,y) \land E(y,z) \land \neg E(x,z))$$

$$\lor (\neg E(x,y) \land \neg E(y,z) \land E(x,z))$$

$$\lor (E(x,y) \land E(y,z) \land E(x,z)).$$

Example 1 Let Ψ_1 only contain

$$\psi_{1}(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)).$$

Graph-SAT(Ψ_1) is NP-complete.

Example 2 Let Ψ_2 only contain

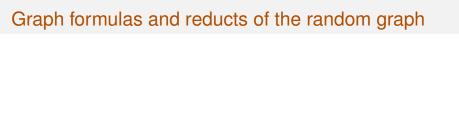
$$\psi_{2}(x,y,z) := (E(x,y) \land \neg E(y,z) \land \neg E(x,z))$$

$$\lor (\neg E(x,y) \land E(y,z) \land \neg E(x,z))$$

$$\lor (\neg E(x,y) \land \neg E(y,z) \land E(x,z))$$

$$\lor (E(x,y) \land E(y,z) \land E(x,z)).$$

Graph-SAT(Ψ_2) is in P.



Let G = (V; E) be the random graph: the unique countably infinite graph which is

Let G = (V; E) be the random graph: the unique countably infinite graph which is

■ (ultra-)homogeneous:

For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in Aut(G)$ extending i.

Let G = (V; E) be the random graph: the unique countably infinite graph which is

- (ultra-)homogeneous: For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in \operatorname{Aut}(G)$ extending i.
- universal: contains all finite (even countable) graphs.

Let G = (V; E) be the random graph: the unique countably infinite graph which is

- (ultra-)homogeneous: For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in \text{Aut}(G)$ extending i.
- universal: contains all finite (even countable) graphs.

For a graph formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in V^n : \psi(a_1, \ldots, a_n)\}.$$

Let G = (V; E) be the random graph: the unique countably infinite graph which is

- (ultra-)homogeneous: For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in \text{Aut}(G)$ extending i.
- universal: contains all finite (even countable) graphs.

For a graph formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in V^n : \psi(a_1, \ldots, a_n)\}.$$

For a set Ψ of graph formulas, define a structure

$$\Gamma_{\Psi} := (V; (R_{\psi} : \psi \in \Psi)).$$

Let G = (V; E) be the random graph: the unique countably infinite graph which is

- (ultra-)homogeneous: For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in \text{Aut}(G)$ extending i.
- universal: contains all finite (even countable) graphs.

For a graph formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in V^n : \psi(a_1, \ldots, a_n)\}.$$

For a set Ψ of graph formulas, define a structure

$$\Gamma_{\Psi} := (V; (R_{\psi} : \psi \in \Psi)).$$

 Γ_{Ψ} is a *reduct of* the random graph, i.e., a structure with a first-order definition in *G*.

An instance

- $W = \{w_1, ..., w_m\}$
- \blacksquare ϕ_1, \ldots, ϕ_n

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \dots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

An instance

- $W = \{w_1, ..., w_m\}$
- \blacksquare ϕ_1, \ldots, ϕ_n

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \dots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

Graph-SAT(Ψ) = CSP(Γ_{Ψ}).

An instance

- $W = \{w_1, ..., w_m\}$
- \blacksquare ϕ_1, \ldots, ϕ_n

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \dots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

Graph-SAT(Ψ) = CSP(Γ_{Ψ}).

Could have used any universal graph?

An instance

- $W = \{w_1, ..., w_m\}$
- $\blacksquare \phi_1, \ldots, \phi_n$

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \dots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

Graph-SAT(Ψ) = CSP(Γ_{Ψ}).

Could have used any universal graph?

Graph-SAT problems \leftrightarrow CSPs of reducts of the random graph.

Let Ψ be a finite set of propositional formulas.

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)

INPUT:

- A finite set W of propositional variables, and
- statements ϕ_1, \dots, ϕ_n about the variables in W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable?

Constraint Satisfaction

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)

INPUT:

- A finite set *W* of propositional variables, and
- statements ϕ_1, \dots, ϕ_n about the variables in W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable?

Computational complexity depends on Ψ . Always in NP.

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)

INPUT:

- A finite set *W* of propositional variables, and
- statements ϕ_1, \ldots, ϕ_n about the variables in W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable?

Computational complexity depends on Ψ . Always in NP.

Question

For which Ψ is Boolean-SAT(Ψ) tractable?

For a Boolean formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in \{0, 1\}^n : \psi(a_1, \ldots, a_n)\}.$$

For a Boolean formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in \{0, 1\}^n : \psi(a_1, \ldots, a_n)\}.$$

For a set Ψ of Boolean formulas, define a structure

$$\Gamma_{\Psi}:=(\{0,1\};(R_{\psi}:\psi\in\Psi)).$$

For a Boolean formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1, \dots, a_n) \in \{0, 1\}^n : \psi(a_1, \dots, a_n)\}.$$

For a set Ψ of Boolean formulas, define a structure

$$\Gamma_{\Psi} := (\{0,1\}; (R_{\psi} : \psi \in \Psi)).$$

An instance

- $\blacksquare W = \{w_1, \ldots, w_m\}$
- $\blacksquare \phi_1, \ldots, \phi_n$

of Boolean-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m. \bigwedge_i \phi_i$ holds in Γ_{Ψ} .

For a Boolean formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in \{0, 1\}^n : \psi(a_1, \ldots, a_n)\}.$$

For a set Ψ of Boolean formulas, define a structure

$$\Gamma_{\Psi} := (\{0,1\}; (R_{\psi} : \psi \in \Psi)).$$

An instance

- $\blacksquare W = \{w_1, \ldots, w_m\}$
- $\blacksquare \phi_1, \ldots, \phi_n$

of Boolean-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m . \bigwedge_i \phi_i$ holds in Γ_{Ψ} .

Boolean-SAT(Ψ) = CSP(Γ_{Ψ}).

Boolean-SAT: Example

$$\Gamma = (\{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\})$$

Temporal constraints

Temporal constraints

Let < be a binary relation symbol.

(Imagine: linear order relation.)

Let Ψ be a finite set of quantifier-free $\{<\}$ -formulas.

Temporal constraints

Let < be a binary relation symbol.

(Imagine: linear order relation.)

Let Ψ be a finite set of quantifier-free $\{<\}$ -formulas.

Computational problem: Temp-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \dots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 < i < n} \phi_i$ satisfiable in a linear order?

Temporal constraints

Let < be a binary relation symbol.

(Imagine: linear order relation.)

Let Ψ be a finite set of quantifier-free $\{<\}$ -formulas.

Computational problem: Temp-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \dots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 < i < n} \phi_i$ satisfiable in a linear order?

Computational complexity depends on Ψ . Always in NP.

Temporal constraints

Let < be a binary relation symbol.

(Imagine: linear order relation.)

Let Ψ be a finite set of quantifier-free $\{<\}$ -formulas.

Computational problem: Temp-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \dots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 < i < n} \phi_i$ satisfiable in a linear order?

Computational complexity depends on Ψ . Always in NP.

Question

For which Ψ is Temp-SAT(Ψ) tractable?

Let $(\mathbb{Q}; <)$ denote the order of the rationals.

Let $(\mathbb{Q}; <)$ denote the order of the rationals.

Every $\{<\}$ -formula $\psi(x_1,\ldots,x_n)$ defines relation R_{ψ} on \mathbb{Q} .

Let $(\mathbb{Q}; <)$ denote the order of the rationals.

Every $\{<\}$ -formula $\psi(x_1,\ldots,x_n)$ defines relation R_{ψ} on \mathbb{Q} .

Every set Ψ of $\{<\}$ -formulas defines a reduct Γ_{Ψ} of $(\mathbb{Q};<)$.

Let $(\mathbb{Q}; <)$ denote the order of the rationals.

Every $\{<\}$ -formula $\psi(x_1,\ldots,x_n)$ defines relation R_{ψ} on \mathbb{Q} .

Every set Ψ of $\{<\}$ -formulas defines a reduct Γ_{Ψ} of $(\mathbb{Q};<)$.

Temp-SAT(Ψ) = CSP(Γ_{Ψ}).

Let $(\mathbb{Q}; <)$ denote the order of the rationals.

Every $\{<\}$ -formula $\psi(x_1,\ldots,x_n)$ defines relation R_{ψ} on \mathbb{Q} .

Every set Ψ of $\{<\}$ -formulas defines a reduct Γ_{Ψ} of $(\mathbb{Q};<)$.

Temp-SAT(Ψ) = CSP(Γ_{Ψ}).

Could have used any infinite linear order?

Boolean-SAT(Ψ), Graph-SAT(Ψ), and Temp-SAT(Ψ) are either in P or NP-complete, for all Ψ .

Boolean-SAT(Ψ), Graph-SAT(Ψ), and Temp-SAT(Ψ) are either in P or NP-complete, for all Ψ .

Given Ψ , we can decide in which class the problem falls.

Boolean-SAT(Ψ), Graph-SAT(Ψ), and Temp-SAT(Ψ) are either in P or NP-complete, for all Ψ .

Given Ψ , we can decide in which class the problem falls.

- Boolean-SAT: Schaefer ('78)
- Temp-SAT: Bodirsky+Kára ('07)
- **Graph-SAT:** Bodirsky+MP ('10) (*Schaefer's theorem for graphs*)

Graph-SAT(\Psi): Is there a finite graph such that... (constraints)

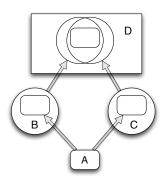
Graph-SAT(Ψ): Is there a finite graph such that... (constraints)

Temp-SAT(\Psi): Is there a linear order such that...

Graph-SAT(\Psi): Is there a finite graph such that... (constraints)

Temp-SAT(\Psi): Is there a linear order such that...

The classes of finite graphs and linear orders are amalgamation classes.



Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

Further amalgamation classes.

Partial orders

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce),
 Trivial lattices (Day, Ježek)

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce),
 Trivial lattices (Day, Ježek)
- Boolean algebras

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce),
 Trivial lattices (Day, Ježek)
- Boolean algebras
- Metric spaces with rational distances

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce),
 Trivial lattices (Day, Ježek)
- Boolean algebras
- Metric spaces with rational distances
- Tournaments

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce),
 Trivial lattices (Day, Ježek)
- Boolean algebras
- Metric spaces with rational distances
- Tournaments
- Henson digraphs (forbidden tournaments)

Theorem (Fraïssé)

TFAE:

- Classes of relational structures closed under substructures which have amalgamation.
- Homogeneous relational structures.

Further amalgamation classes.

- Partial orders
- Lattices (Jónsson), Distributive lattices (Pierce),
 Trivial lattices (Day, Ježek)
- Boolean algebras
- Metric spaces with rational distances
- Tournaments
- Henson digraphs (forbidden tournaments)

Homogeneous digraphs classified by Cherlin.

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \dots, R_{\psi_n})$ be a reduct of Δ .

Let C be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \dots, R_{\psi_n})$ be a reduct of Δ .

 $CSP(\Gamma)$ is called a Δ -SAT problem.

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \dots, R_{\psi_n})$ be a reduct of Δ .

 $CSP(\Gamma)$ is called a Δ -SAT problem.

It asks whether a given conjunction using ψ_1, \dots, ψ_n is satisfiable in some member of \mathfrak{C} .

Let \mathcal{C} be a Fraïssé class of structures in finite language.

Let Δ be its Fraïssé limit.

Let $\Gamma = (D; R_{\psi_1}, \dots, R_{\psi_n})$ be a reduct of Δ .

 $CSP(\Gamma)$ is called a Δ -SAT problem.

It asks whether a given conjunction using ψ_1, \dots, ψ_n is satisfiable in some member of \mathcal{C} .

Note: This type of CSP cannot be modeled by finite templates.

Classifications

Classifications

■ All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

■ Finite template: in NP. Dichotomy conjecture (Feder+Vardi '93)

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

- Finite template: in NP. Dichotomy conjecture (Feder+Vardi '93)
- *Infinite template:* can be undecidable

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

- Finite template: in NP. Dichotomy conjecture (Feder+Vardi '93)
- Infinite template: can be undecidable
 Up to polyn. time, all complexities appear (Grohe+Bodirsky '08)

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

- Finite template: in NP. Dichotomy conjecture (Feder+Vardi '93)
- Infinite template: can be undecidable
 Up to polyn. time, all complexities appear (Grohe+Bodirsky '08)
 If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

Complexity?

- Finite template: in NP. Dichotomy conjecture (Feder+Vardi '93)
- Infinite template: can be undecidable
 Up to polyn. time, all complexities appear (Grohe+Bodirsky '08)
 If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky+MP '11)

Let \mathcal{C} be a Fraïssé class which is finitely bounded (i.e., given by finitely many forbidden substructures).

Classifications

- All CSPs of structures on set of fixed finite size (e.g., 2, 3, 4)
- All CSPs of reducts of a base structure (e.g., graphs, linear orders)

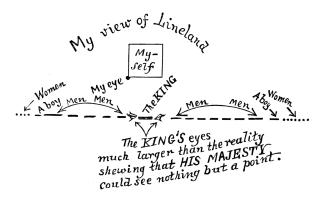
Complexity?

- Finite template: in NP. Dichotomy conjecture (Feder+Vardi '93)
- Infinite template: can be undecidable
 Up to polyn. time, all complexities appear (Grohe+Bodirsky '08)
 If Fraïssé class is decidable (in NP), then CSP decidable (in NP)

Conjecture (Bodirsky+MP '11)

Let \mathcal{C} be a Fraïssé class which is finitely bounded (i.e., given by finitely many forbidden substructures).

Then C-SAT is always in P or NP-complete.



pp definitions, polymorphism clones, ω -categoricity

A τ -formula is primitive positive (pp) iff it is of the form

$$\exists x_1 \cdots \exists x_n \ \psi_1 \wedge \cdots \wedge \psi_m,$$

where ψ_i are atomic.

A τ -formula is primitive positive (pp) iff it is of the form

$$\exists x_1 \cdots \exists x_n \ \psi_1 \wedge \cdots \wedge \psi_m,$$

where ψ_i are atomic.

Note: the input of a CSP really is a pp sentence.

A τ -formula is primitive positive (pp) iff it is of the form

$$\exists x_1 \cdots \exists x_n \ \psi_1 \wedge \cdots \wedge \psi_m,$$

where ψ_i are atomic.

Note: the input of a CSP really is a pp sentence.

Example. The relation $y = 2^x$ is pp definable in $(\mathbb{Z}; +, \cdot, 1)$ (Matiyasevich+Robinson).

A τ -formula is primitive positive (pp) iff it is of the form

$$\exists x_1 \cdots \exists x_n \ \psi_1 \wedge \cdots \wedge \psi_m,$$

where ψ_i are atomic.

Note: the input of a CSP really is a pp sentence.

Example. The relation $y = 2^x$ is pp definable in $(\mathbb{Z}; +, \cdot, 1)$ (Matiyasevich+Robinson).

Observation (Bulatov+Krokhin+Jeavons '00)

Expanding Γ by pp definable relations increases the complexity of the CSP by at most polynomial-time.

Let Γ be a structure.

Let Γ be a structure.

Pol(Γ) is the set of all homomorphisms $f: \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

Let Γ be a structure.

 $Pol(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

So
$$f(x_1,...,x_n) \in Pol(\Gamma)$$
 iff $f(r_1,...,r_n) \in R$ for all $r_1,...,r_n \in R$ and all relations R of Γ .

Let Γ be a structure.

 $Pol(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

So $f(x_1,...,x_n) \in Pol(\Gamma)$ iff $f(r_1,...,r_n) \in R$ for all $r_1,...,r_n \in R$ and all relations R of Γ .

The elements of $Pol(\Gamma)$ are called polymorphisms of Γ .

Let Γ be a structure.

 $Pol(\Gamma)$ is the set of all homomorphisms $f : \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

So
$$f(x_1, ..., x_n) \in Pol(\Gamma)$$
 iff $f(r_1, ..., r_n) \in R$ for all $r_1, ..., r_n \in R$ and all relations R of Γ .

The elements of $Pol(\Gamma)$ are called polymorphisms of Γ .

 $Pol(\Gamma)$ is a function clone:

- closed under composition
- contains projections.

Let Γ be a structure.

 $\mathsf{Pol}(\Gamma)$ is the set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

So
$$f(x_1, ..., x_n) \in Pol(\Gamma)$$
 iff $f(r_1, ..., r_n) \in R$ for all $r_1, ..., r_n \in R$ and all relations R of Γ .

The elements of $Pol(\Gamma)$ are called polymorphisms of Γ .

 $Pol(\Gamma)$ is a function clone:

- closed under composition
- contains projections.

Observe: $Pol(\Gamma) \supseteq End(\Gamma) \supseteq Aut(\Gamma)$.

Theorem (Bodirsky+Nešetřil '03)

Let Γ be a countable ω -categorical structure.

A relation is pp definable over Γ iff it is preserved by all polymorphisms of Γ .

Theorem (Bodirsky+Nešetřil '03)

Let Γ be a countable ω -categorical structure.

A relation is pp definable over Γ iff it is preserved by all polymorphisms of Γ .

Hence, the complexity of $CSP(\Gamma)$ only depends on $Pol(\Gamma)$:

Theorem (Bodirsky+Nešetřil '03)

Let Γ be a countable ω -categorical structure.

A relation is pp definable over Γ iff it is preserved by all polymorphisms of Γ .

Hence, the complexity of $CSP(\Gamma)$ only depends on $Pol(\Gamma)$:

Corollary

Let Γ be ω -categorical.

If $Pol(\Gamma) \subseteq Pol(\Gamma')$,

then $CSP(\Gamma')$ is polynomial-time reducible to $CSP(\Gamma)$.

$\omega\text{-categoricity}$

Let g be a permutation group acting on a countable set D.

Let \mathcal{G} be a permutation group acting on a countable set D. For all $n \geq 1$, \mathcal{G} acts on D^n componentwise.

Let \mathcal{G} be a permutation group acting on a countable set D. For all $n \geq 1$, \mathcal{G} acts on D^n componentwise.

Definition

Let \mathcal{G} be a permutation group acting on a countable set D. For all $n \geq 1$, \mathcal{G} acts on D^n componentwise.

Definition

g is oligomorphic iff its action on D^n has finitely many orbits for all n.

■ Aut(N; <)?

Let \mathcal{G} be a permutation group acting on a countable set D. For all $n \geq 1$, \mathcal{G} acts on D^n componentwise.

Definition

- Aut(N; <)?
- Aut(Z; <)?</p>

Let \mathcal{G} be a permutation group acting on a countable set D. For all $n \geq 1$, \mathcal{G} acts on D^n componentwise.

Definition

- Aut(N; <)?
- Aut(ℤ; <)?
- Aut(Q; <)?</p>

Let \mathcal{G} be a permutation group acting on a countable set D. For all $n \geq 1$, \mathcal{G} acts on D^n componentwise.

Definition

- Aut(N; <)?
- Aut(Z; <)?
- Aut(Q; <)?</p>
- Homogeneous structures?

Let \mathcal{G} be a permutation group acting on a countable set D. For all $n \geq 1$, \mathcal{G} acts on D^n componentwise.

Definition

g is oligomorphic iff its action on D^n has finitely many orbits for all n.

- Aut(N; <)?
- Aut(Z; <)?</p>
- Aut(Q; <)?</p>
- Homogeneous structures?

Theorem (Ryll-Nardzewski, Engeler, Svenonius)

Let Γ be countable. TFAE:

Let \mathcal{G} be a permutation group acting on a countable set D. For all $n \geq 1$, \mathcal{G} acts on D^n componentwise.

Definition

g is oligomorphic iff its action on D^n has finitely many orbits for all n.

- Aut(N; <)?
- Aut(ℤ; <)?
- Aut(Q; <)?</p>
- Homogeneous structures?

Theorem (Ryll-Nardzewski, Engeler, Svenonius)

Let Γ be countable. TFAE:

Aut(Γ) is oligomorphic;

Let \mathcal{G} be a permutation group acting on a countable set D. For all $n \geq 1$, \mathcal{G} acts on D^n componentwise.

Definition

g is oligomorphic iff its action on D^n has finitely many orbits for all n.

- Aut(N; <)?
- Aut(Z; <)?</p>
- Aut(Q; <)?</p>
- Homogeneous structures?

Theorem (Ryll-Nardzewski, Engeler, Svenonius)

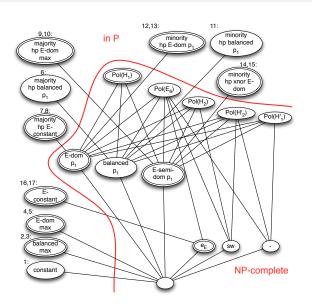
Let Γ be countable. TFAE:

- Aut(Γ) is oligomorphic;
- \blacksquare Γ is ω -categorical: the only countable model of its theory.

Proof of the preservation theorem

Blackboard

Graph-SAT classification



Until the moment when I placed my mouth in his World, he had not heard anything except confused sounds beating against — what I called his side, but what he called his INSIDE or STOMACH.

Part II: November 3rd