Permutations on the random permutation

Julie Linman ¹ Michael Pinsker ²

¹University of Colorado at Boulder
²Université Diderot, Paris 7

BLAST 2015
Table of Contents

1. Preliminaries
2. The random permutation
3. Ramsey structures and canonical functions
4. Constraint satisfaction problems
Homogeneous structures

A relational structure Δ is homogeneous iff every isomorphism between finite substructures of Δ extends to an automorphism of Δ.

Examples

- $(\mathbb{Q}; <)$
- random graph
- random poset
Homogeneous structures

Definition

A relational structure Δ is homogeneous iff every isomorphism between finite substructures of Δ extends to an automorphism of Δ.
Definition

A relational structure Δ is homogeneous iff every isomorphism between finite substructures of Δ extends to an automorphism of Δ.

Examples
Homogeneous structures

Definition
A relational structure Δ is homogeneous iff every isomorphism between finite substructures of Δ extends to an automorphism of Δ.

Examples
- $(\mathbb{Q}; <)$
Homogeneous structures

Definition

A relational structure Δ is **homogeneous** iff every isomorphism between finite substructures of Δ extends to an automorphism of Δ.

Examples

- $(\mathbb{Q}; <)$
- random graph
Homogeneous structures

Definition
A relational structure Δ is homogeneous iff every isomorphism between finite substructures of Δ extends to an automorphism of Δ.

Examples
- $(\mathbb{Q}; <)$
- random graph
- random poset
Fraïssé’s Theorem

Theorem (Fraïssé)

Let C be a class of finite relational structures which
▶ is closed under isomorphism
▶ is closed under taking induced substructures
▶ has countably many members up to isomorphism
▶ has the amalgamation property: for all $A, B, C \in C$ and embeddings $f: A \to B$, $g: A \to C$ there exist $D \in C$ and embeddings $f': B \to D$, $g': C \to D$ such that $f' \circ f = g' \circ g$.

Then there exists a unique (up to isomorphism) countable homogeneous structure Δ whose age is C.

Such a structure is called the Fraïssé limit of C.

Fraïssé’s Theorem

Theorem (Fraïssé)

Let C be a class of finite relational structures which
Fraïssé’s Theorem

Theorem (Fraïssé)
Let C be a class of finite relational structures which
- is closed under isomorphism
Fraïssé’s Theorem

Theorem (Fraïssé)

Let C be a class of finite relational structures which
- is closed under isomorphism
- is closed under taking induced substructures
Fraïssé’s Theorem

Theorem (Fraïssé)

Let \mathcal{C} be a class of finite relational structures which

- is closed under isomorphism
- is closed under taking induced substructures
- has countably many members up to isomorphism
Fraïssé’s Theorem

Theorem (Fraïssé)

Let C be a class of finite relational structures which

- is closed under isomorphism
- is closed under taking induced substructures
- has countably many members up to isomorphism
- has the amalgamation property: for all $A, B, C \in C$ and embeddings $f : A \to B$, $g : A \to C$ there exist $D \in C$ and embeddings $f' : B \to D$, $g' : C \to D$ such that $f' \circ f = g' \circ g$.
Fraïssé’s Theorem

Theorem (Fraïssé)

Let \mathcal{C} be a class of finite relational structures which

- is closed under isomorphism
- is closed under taking induced substructures
- has countably many members up to isomorphism
- has the amalgamation property: for all $A, B, C \in \mathcal{C}$ and embeddings $f : A \to B$, $g : A \to C$ there exist $D \in \mathcal{C}$ and embeddings $f' : B \to D$, $g' : C \to D$ such that $f' \circ f = g' \circ g$.

Then there exists a unique (up to isomorphism) countable homogeneous structure Δ whose age is \mathcal{C}.

Such a structure is called the Fraïssé limit of \mathcal{C}.
Reducts

| Preliminaries | The random permutation | Ramsey structures and canonical functions | Constraint satisfaction problems |

Definition
A reduct of a relational structure \mathcal{R} is a structure on the same domain whose relations are first-order definable in \mathcal{R} without parameters.

Example: reducts of $(\mathbb{Q}; <)$
- $(\mathbb{Q}; =)$
- $(\mathbb{Q}; \text{Btw})$
- $(\mathbb{Q}; \text{Cyc})$
- $(\mathbb{Q}; \text{Sep})$

Problem
Classify the reducts of a homogeneous structure up to first-order interdefinability, existential-positive interdefinability, etc.
Reducts

Definition

A **reduct** of a relational structure Δ is a structure on the same domain whose relations are first-order definable in Δ without parameters.
Definition

A **reduct** of a relational structure Δ is a structure on the same domain whose relations are first-order definable in Δ without parameters.

Example: *reducts of* $(\mathbb{Q}; <)$
Reducts

Definition

A reduct of a relational structure Δ is a structure on the same domain whose relations are first-order definable in Δ without parameters.

Example: reducts of $(\mathbb{Q}; <)$

► $(\mathbb{Q}; =)$
Reducts

Definition

A reduct of a relational structure Δ is a structure on the same domain whose relations are first-order definable in Δ without parameters.

Example: reducts of $(\mathbb{Q}; <)$

- $(\mathbb{Q}; =)$
- $(\mathbb{Q}; \text{Btw})$
Definition

A **reduct** of a relational structure Δ is a structure on the same domain whose relations are first-order definable in Δ without parameters.

Example: reducts of $(\mathbb{Q}; <)$

- $(\mathbb{Q}; =)$
- $(\mathbb{Q}; \text{Btw})$
- $(\mathbb{Q}; \text{Cyc})$
Reducts

Definition

A reduct of a relational structure Δ is a structure on the same domain whose relations are first-order definable in Δ without parameters.

Example: reducts of $(\mathbb{Q}; <)$

- $(\mathbb{Q}; =)$
- $(\mathbb{Q}; \text{Btw})$
- $(\mathbb{Q}; \text{Cyc})$
- $(\mathbb{Q}; \text{Sep})$
Reducts

Definition

A reduct of a relational structure Δ is a structure on the same domain whose relations are first-order definable in Δ without parameters.

Example: reducts of $(\mathbb{Q}; <)$

- $(\mathbb{Q}; =)$
- $(\mathbb{Q}; \text{Btw})$
- $(\mathbb{Q}; \text{Cyc})$
- $(\mathbb{Q}; \text{Sep})$

Problem

Classify the reducts of a homogeneous structure up to first-order interdefinability, existential-positive interdefinability, etc.
Motivation
Motivation

Why look at reducts?
Motivation

Why look at reducts?

- understand first-order theory and symmetries of a structure
Motivation

Why look at reducts?

- understand first-order theory and symmetries of a structure
- Conjecture (Simon Thomas, 1991): If Δ is a countable relational structure which is homogeneous in a finite language, then Δ has only finitely many reducts, up to first-order interdefinability.
Motivation

Why look at reducts?

- understand first-order theory and symmetries of a structure

- Conjecture (Simon Thomas, 1991): If Δ is a countable relational structure which is homogeneous in a finite language, then Δ has only finitely many reducts, up to first-order interdefinability.

- classifying computational complexity of constraint satisfaction problems
Closed groups
A permutation group $G \leq \text{Sym}(X)$ is **closed** iff $h \in G$ whenever for all finite $A \subseteq X$ there exists $g \in G$ which agrees with h on A.

Theorem (Corollary of Ryll-Nardzewski, Engeler, Svenonius)

If Δ is homogeneous in a finite relational language, then

\[
\{\text{reducts of } \Delta\} / \sim \rightarrow \{\text{closed supergroups of } \text{Aut}(\Delta)\}
\]

\[
\Gamma / \sim \rightarrow \text{Aut}(\Gamma)
\]

is an antiisomorphism.
A permutation group \(G \leq \text{Sym}(X) \) is \textit{closed} iff \(h \in G \) whenever for all finite \(A \subseteq X \) there exists \(g \in G \) which agrees with \(h \) on \(A \).

Theorem (Corollary of Ryll-Nardzewski, Engeler, Svenonius)

If \(\Delta \) is homogeneous in a finite relational language, then

\[
\{\text{reducts of } \Delta\}/\sim \rightarrow \{\text{closed supergroups of } \text{Aut}(\Delta)\}
\]

\[\Gamma/\sim \mapsto \text{Aut}(\Gamma)\]

is an antiisomorphism.
Examples

Let \rightarrow be a permutation of \mathbb{Q} which reverses $<$. Let \leftrightarrow be a permutation of \mathbb{Q} which reverses $<$ between $(-\infty, \pi)$ and (π, ∞), for some irrational π, and preserves $<$ otherwise.

Then $\overset{\rightarrow}{\text{Aut}}(\mathbb{Q}; \text{Btw}) = \langle \text{Aut}(\mathbb{Q}; <) \cup \{\rightarrow\} \rangle$

$\overset{\rightarrow}{\text{Aut}}(\mathbb{Q}; \text{Cyc}) = \langle \text{Aut}(\mathbb{Q}; <) \cup \{\leftrightarrow\} \rangle$

$\overset{\rightarrow}{\text{Aut}}(\mathbb{Q}; \text{Sep}) = \langle \text{Aut}(\mathbb{Q}; <) \cup \{\leftrightarrow, \leftrightarrow\} \rangle$
Examples

Let \leftrightarrow be a permutation of \mathbb{Q} which reverses \lt.
Examples

Let \leftrightarrow be a permutation of \mathbb{Q} which reverses $<$. Let \circlearrowleft be a permutation of \mathbb{Q} which reverses $<$ between $(-\infty, \pi)$ and (π, ∞), for some irrational π, and preserves $<$ otherwise.
Examples

Let \leftrightarrow be a permutation of \mathbb{Q} which reverses $<$. Let \circlearrowleft be a permutation of \mathbb{Q} which reverses $<$ between $(-\infty, \pi)$ and (π, ∞), for some irrational π, and preserves $<$ otherwise.

Then

- $\text{Aut}(\mathbb{Q}; \text{Btw}) = \langle \text{Aut}(\mathbb{Q}; <) \cup \{\leftrightarrow\} \rangle$
Examples

Let \leftrightarrow be a permutation of \mathbb{Q} which reverses \lt.

Let \circlearrowleft be a permutation of \mathbb{Q} which reverses \lt between $(-\infty, \pi)$ and (π, ∞), for some irrational π, and preserves \lt otherwise.

Then

- $\text{Aut}(\mathbb{Q}; \text{Btw}) = \langle \text{Aut}(\mathbb{Q}; \lt) \cup \{\leftrightarrow\} \rangle$
- $\text{Aut}(\mathbb{Q}; \text{Cyc}) = \langle \text{Aut}(\mathbb{Q}; \lt) \cup \{\circlearrowleft\} \rangle$
Examples

Let \leftrightarrow be a permutation of \mathbb{Q} which reverses \lt.

Let \circlearrowleft be a permutation of \mathbb{Q} which reverses \lt between $(-\infty, \pi)$ and (π, ∞), for some irrational π, and preserves \lt otherwise.

Then

- $\text{Aut}(\mathbb{Q}; \text{Btw}) = \langle \text{Aut}(\mathbb{Q}; \lt) \cup \{\leftrightarrow\} \rangle$
- $\text{Aut}(\mathbb{Q}; \text{Cyc}) = \langle \text{Aut}(\mathbb{Q}; \lt) \cup \{\circlearrowleft\} \rangle$
- $\text{Aut}(\mathbb{Q}; \text{Sep}) = \langle \text{Aut}(\mathbb{Q}; \lt) \cup \{\leftrightarrow, \circlearrowleft\} \rangle$
Closed supergroups of $\text{Aut}(\mathbb{Q}; <)$
Closed supergroups of $\text{Aut}(\mathbb{Q}; <)$

Theorem (Cameron, 1976)

The closed supergroups of $\text{Aut}(\mathbb{Q}; <)$ are

- $\text{Aut}(\mathbb{Q}; <)$
- $\langle \text{Aut}(\mathbb{Q}; <) \cup \{\leftrightarrow\} \rangle$
- $\langle \text{Aut}(\mathbb{Q}; <) \cup \{\bowtie\} \rangle$
- $\langle \text{Aut}(\mathbb{Q}; <) \cup \{\leftrightarrow, \bowtie\} \rangle$
- $\text{Sym}(\mathbb{Q})$
Closed supergroups of $\text{Aut}(\mathbb{Q}; <)$

Theorem (Cameron, 1976)

The closed supergroups of $\text{Aut}(\mathbb{Q}; <)$ are

- $\text{Aut}(\mathbb{Q}; <)$
- $\langle \text{Aut}(\mathbb{Q}; <) \cup \{ \leftrightarrow \} \rangle$
- $\langle \text{Aut}(\mathbb{Q}; <) \cup \{ \circlearrowright \} \rangle$
- $\langle \text{Aut}(\mathbb{Q}; <) \cup \{ \leftrightarrow, \circlearrowright \} \rangle$
- $\text{Sym}(\mathbb{Q})$
Another way to view permutations
Another way to view permutations

Any permutation on a finite set A may be regarded as
Another way to view permutations

Any permutation on a finite set A may be regarded as

- a bijection $A \rightarrow A$
Another way to view permutations

Any permutation on a finite set A may be regarded as

- a bijection $A \rightarrow A$
- a relational structure $(A; <_1, <_2)$
The random permutation

Definition

The random permutation, \(\Pi = (D; \leq_1, \leq_2)\), is the Fraïssé limit of the class of all finite permutations.

Equivalently, \(\Pi\) is the unique (up to isomorphism) countable structure with two linear orders which is homogeneous and contains all finite permutations. \(\Pi\) appears with probability 1 in the random process that constructs both orders independently.

Question (Cameron, 2002)

What are the closed supergroups of \(\text{Aut}(\Pi)\)?
The random permutation

Definition

The random permutation, $\Pi = (D; <_1, <_2)$, is the Fraïssé limit of the class of all finite permutations.
The random permutation

Definition

The *random permutation*, $\Pi = (D; <_1, <_2)$, is the Fraïssé limit of the class of all finite permutations.

Equivalently,
The random permutation

Definition

The *random permutation*, $\Pi = (D; <_1, <_2)$, is the Fraïssé limit of the class of all finite permutations.

Equivalently,

- Π is the unique (up to isomorphism) countable structure with two linear orders which is homogeneous and contains all finite permutations.
The random permutation

Definition

The random permutation, $\Pi = (D; <_1, <_2)$, is the Fraïssé limit of the class of all finite permutations.

Equivalently,

- Π is the unique (up to isomorphism) countable structure with two linear orders which is homogeneous and contains all finite permutations
- Π appears with probability 1 in the random process that constructs both orders independently
The random permutation

Definition
The random permutation, $\Pi = (D; <_1, <_2)$, is the Fraïssé limit of the class of all finite permutations.

Equivalently,
- Π is the unique (up to isomorphism) countable structure with two linear orders which is homogeneous and contains all finite permutations
- Π appears with probability 1 in the random process that constructs both orders independently

Question (Cameron, 2002)
What are the closed supergroups of $\text{Aut}(\Pi)$?
A model of Th(Π)
Definition

Let $D \subseteq \mathbb{Q}^2$ be
A model of Th(Π)

Definition

Let \(D \subseteq \mathbb{Q}^2 \) be

- dense
A model of Th(Π)

Definition

Let $D \subseteq \mathbb{Q}^2$ be

- dense
- independent: for distinct $(x_1, x_2), (y_1, y_2) \in D, x_i \neq y_i$
A model of Th(Π)

Definition

Let $D \subseteq \mathbb{Q}^2$ be
- dense
- independent: for distinct $(x_1, x_2), (y_1, y_2) \in D$, $x_i \neq y_i$

For $i = 1, 2$ define linear orders on D:
A model of Th(Π)

Definition

Let $D \subseteq \mathbb{Q}^2$ be

- dense
- independent: for distinct $(x_1, x_2), (y_1, y_2) \in D$, $x_i \neq y_i$

For $i = 1, 2$ define linear orders on D:

$$(x_1, x_2) <_i (y_1, y_2) \iff x_i < y_i$$
A model of Th(Π)

Definition

Let $D \subseteq \mathbb{Q}^2$ be

- **dense**
- **independent**: for distinct $(x_1, x_2), (y_1, y_2) \in D$, $x_i \neq y_i$

For $i = 1, 2$ define linear orders on D:

$$(x_1, x_2) <_i (y_1, y_2) \iff x_i < y_i$$

Then $(D; <_1, <_2) \cong \Pi$.

Preliminaries

- The random permutation
- Ramsey structures and canonical functions
- Constraint satisfaction problems
The closed supergroups of Aut(Π)
The closed supergroups of Aut(Π)

Theorem (Linman and Pinsker, 2014)
There are precisely 39 closed supergroups of Aut(Π).
The closed supergroups of Aut(Π)

Theorem (Linman and Pinsker, 2014)
There are precisely 39 closed supergroups of Aut(Π).

Each closed supergroup either contains Aut(D; <ι) for some \(i \in \{1, 2\} \), or is generated by permutations which are compositions of the following:
The closed supergroups of $\text{Aut}(\Pi)$

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of $\text{Aut}(\Pi)$.

Each closed supergroup either contains $\text{Aut}(D; <_i)$ for some $i \in \{1, 2\}$, or is generated by permutations which are compositions of the following:

- (id_{rev}): reverses $<_2$ and preserves $<_1$
The closed supergroups of $\text{Aut}(\Pi)$

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of $\text{Aut}(\Pi)$.

Each closed supergroup either contains $\text{Aut}(D; <_i)$ for some $i \in \{1, 2\}$, or is generated by permutations which are compositions of the following:

- (id_{rev}): reverses $<_2$ and preserves $<_1$
- (id_t): turns $<_2$ about some irrational π and preserves $<_1$
The closed supergroups of Aut(Π)

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of Aut(Π).

Each closed supergroup either contains Aut(D; <_i) for some i ∈ {1, 2}, or is generated by permutations which are compositions of the following:

- (id) _{\text{rev}}: reverses <_2 and preserves <_1
- (id) _{\text{t}}: turns <_2 about some irrational π and preserves <_1
- sw: switches the orders <_1 and <_2
The closed supergroups of $\text{Aut}(\Pi)$

Theorem (Linman and Pinsker, 2014)

There are precisely 39 closed supergroups of $\text{Aut}(\Pi)$.

Each closed supergroup either contains $\text{Aut}(D; <_i)$ for some $i \in \{1, 2\}$, or is generated by permutations which are compositions of the following:

- (id_{rev}): reverses $<_2$ and preserves $<_1$
- (id_t): turns $<_2$ about some irrational π and preserves $<_1$
- sw: switches the orders $<_1$ and $<_2$
- (rev_{id})
- (id_t)
- (id)
The random permutation
 Ramsey structures and canonical functions
 Constraint satisfaction problems

Aut(\(\Pi\))
\langle (\text{revrev}) \rangle
\langle \text{sw} \rangle
\langle (\text{idrev}) \rangle
\langle (\text{idt}) \rangle
\langle \text{sw} \circ (\text{idrev}) \rangle
\langle (\text{revid}) \rangle
\langle (\text{t} \circ \text{id}) \rangle
\langle (\text{id}) \rangle

Aut(D; \langle 1 \rangle)

Aut(D; \langle 2 \rangle)

Sym(D)
Asymmetry in the roles of \((\text{id}_{\text{rev}})\) and \((\text{id}_t)\)

While \(\leftrightarrow\) and \(\circlearrowright\) appear to play symmetric roles as generators of closed supergroups of \(\text{Aut}(\mathbb{Q}; <)\), the corresponding permutations \((\text{id}_{\text{rev}})\) and \((\text{id}_t)\) of \(D\) do not.
Asymmetry in the roles of \((\text{id}_{\text{rev}})\) and \((\text{id}_t)\)

While \(\leftrightarrow\) and \(\circ\) appear to play symmetric roles as generators of closed supergroups of \(\text{Aut}(\mathbb{Q}; <)\), the corresponding permutations \((\text{id}_{\text{rev}})\) and \((\text{id}_t)\) of \(D\) do not.

There is a group consisting of all permutations which either preserve or reverse both orders simultaneously, but no corresponding simultaneous action of turns:
Asymmetry in the roles of \((\text{id}_{\text{rev}})\) and \((\text{id}_{t})\)

While \(\leftrightarrow\) and \(\circ\) appear to play symmetric roles as generators of closed supergroups of \(\text{Aut}(\mathbb{Q}; <)\), the corresponding permutations \((\text{id}_{\text{rev}})\) and \((\text{id}_{t})\) of \(D\) do not.

There is a group consisting of all permutations which either preserve or reverse both orders simultaneously, but no corresponding simultaneous action of turns:

\[
\langle (\text{rev}) \rangle = \langle (\text{id}) \circ (\text{rev}) \rangle \subsetneq \langle (\text{id}) , (\text{rev}) \rangle
\]

\[
\langle (\text{id}_{t}) \circ (\text{id}) \rangle = \langle (\text{id}_{t}) , (\text{id}) \rangle
\]
Closed transformation monoids
A first-order formula is called **existential-positive** iff it is of the form

$$\exists x_1, \ldots, x_n \psi_1 \land \cdots \land \psi_m,$$

where each $$\psi_i$$ is a disjunction of atomic formulas.
Closed transformation monoids

Definition
A first-order formula is called existential-positive iff it is of the form

$$\exists x_1, \ldots, x_n \psi_1 \land \cdots \land \psi_m,$$

where each ψ_i is a disjunction of atomic formulas.

Theorem (Bodirsky and Pinsker, 2012)
If Δ is countable and ω-categorical, then

$$\{\text{reducts of } \Delta\}/\sim \rightarrow \{\text{closed monoids containing } \text{Aut}(\Delta)\}$$

$$\Gamma/\sim \mapsto \text{End}(\Gamma)$$

is an antiisomorphism.
Closed transformation monoids containing $\text{Aut}(\Pi)$
Theorem (Linman, 2014)

Let \mathcal{M} be a closed transformation monoid containing $\text{Aut}(\Pi)$. Then one of the following holds.
Closed transformation monoids containing $\text{Aut}(\Pi)$

Theorem (Linman, 2014)

Let \mathcal{M} be a closed transformation monoid containing $\text{Aut}(\Pi)$. Then one of the following holds.

- \mathcal{M} has a constant operation.
Closed transformation monoids containing $\text{Aut}(\Pi)$

Theorem (Linman, 2014)

Let \mathcal{M} be a closed transformation monoid containing $\text{Aut}(\Pi)$. Then one of the following holds.

- \mathcal{M} has a constant operation.
- The permutations in \mathcal{M} form a group which is a dense subset of \mathcal{M} in D^D.

In other words, if Γ is a reduct of Π, either Γ has a constant endomorphism or all endomorphisms of Γ can be interpolated on finite sets by automorphisms of Γ.
Closed transformation monoids containing Aut(Π)

Theorem (Linman, 2014)

Let \(M \) be a closed transformation monoid containing Aut(Π). Then one of the following holds.

- \(M \) has a constant operation.
- The permutations in \(M \) form a group which is a dense subset of \(M \) in \(D^D \).

In other words, if \(Γ \) is a reduct of \(Π \), either \(Γ \) has a constant endomorphism or all endomorphisms of \(Γ \) can be interpolated on finite sets by automorphisms of \(Γ \).
Definition
A structure is model-complete iff every embedding between models of its theory preserves all first-order formulas.

Lemma (Bodirsky and Pinsker, 2012)
A countable ω-categorical structure Δ is model-complete iff $\text{Aut}(\Delta)$ is dense in $\text{Emb}(\Delta)$.

Corollary (Linman, 2014)
All reducts of Π are model-complete.
Model-completeness

Definition

A structure is **model-complete** iff every embedding between models of its theory preserves all first-order formulas.
Definition

A structure is **model-complete** iff every embedding between models of its theory preserves all first-order formulas.

Lemma (Bodirsky and Pinsker, 2012)

A countable \(\omega \)-categorical structure \(\Delta \) is model-complete iff \(\text{Aut}(\Delta) \) is dense in \(\text{Emb}(\Delta) \).
Model-completeness

Definition
A structure is **model-complete** iff every embedding between models of its theory preserves all first-order formulas.

Lemma (Bodirsky and Pinsker, 2012)
A countable ω-categorical structure Δ is model-complete iff $\text{Aut}(\Delta)$ is dense in $\text{Emb}(\Delta)$.

Corollary (Linman, 2014)
All reducts of Π are model-complete.
Ramsey structures

A structure Δ is a Ramsey structure iff for all finite P, $H \subseteq \Delta$ and all colorings of the copies of P in Δ with finitely many colors, there is a copy of H in Δ on which the coloring is constant.

Theorem (Böttcher and Foniok, 2011)
The random permutation is a Ramsey structure.
Ramsey structures

A structure Δ is a Ramsey structure iff for all finite $P, H \subseteq \Delta$ and all colorings of the copies of P in Δ with finitely many colors, there is a copy of H in Δ on which the coloring is constant.

Theorem (Böttcher and Foniok, 2011)
The random permutation is a Ramsey structure.
Ramsey structures

A structure Δ is a **Ramsey structure** iff for all finite $P, H \subseteq \Delta$ and all colorings of the copies of P in Δ with finitely many colors, there is a copy of H in Δ on which the coloring is constant.
A structure Δ is a Ramsey structure iff for all finite $P, H \subseteq \Delta$ and all colorings of the copies of P in Δ with finitely many colors, there is a copy of H in Δ on which the coloring is constant.

Theorem (Böttcher and Foniok, 2011)
The random permutation is a Ramsey structure.
Definition
Let \(a \) be an \(n \)-tuple of elements in a structure \(\Delta \). The type of \(a \) in \(\Delta \) is the set of first-order formulas with free variables \(x_1, \ldots, x_n \) that hold for \(a \) in \(\Delta \).

Definition
Let \(\Delta, \Gamma \) be structures. A function \(f : \Delta \rightarrow \Gamma \) is canonical iff it sends \(n \)-tuples of the same type in \(\Delta \) to \(n \)-tuples of the same type in \(\Gamma \).

Examples
▶ embeddings
▶ constant functions
▶ \((\text{id}, \text{rev})\) and \((\text{id}, \text{sw})\) are canonical from \(\Pi \) to \(\Pi \)
▶ \((\text{id}, \text{t})\) is canonical from \((\Pi, c) \) to \(\Pi \)
Canonical functions

Definition
Let a be an n-tuple of elements in a structure Δ. The type of a in Δ is the set of first-order formulas with free variables x_1, \ldots, x_n that hold for a in Δ.
Canonical functions

Definition
Let a be an n-tuple of elements in a structure Δ. The *type* of a in Δ is the set of first-order formulas with free variables x_1, \ldots, x_n that hold for a in Δ.

Definition
Let Δ, Γ be structures. A function $f : \Delta \rightarrow \Gamma$ is *canonical* iff it sends n-tuples of the same type in Δ to n-tuples of the same type in Γ.
Canonical functions

Definition
Let a be an n-tuple of elements in a structure Δ. The type of a in Δ is the set of first-order formulas with free variables x_1, \ldots, x_n that hold for a in Δ.

Definition
Let Δ, Γ be structures. A function $f : \Delta \rightarrow \Gamma$ is canonical iff it sends n-tuples of the same type in Δ to n-tuples of the same type in Γ.

Examples
Canonical functions

Definition
Let a be an n-tuple of elements in a structure Δ. The type of a in Δ is the set of first-order formulas with free variables x_1, \ldots, x_n that hold for a in Δ.

Definition
Let Δ, Γ be structures. A function $f : \Delta \rightarrow \Gamma$ is canonical iff it sends n-tuples of the same type in Δ to n-tuples of the same type in Γ.

Examples
- embeddings
Canonical functions

Definition
Let a be an n-tuple of elements in a structure Δ. The **type** of a in Δ is the set of first-order formulas with free variables x_1, \ldots, x_n that hold for a in Δ.

Definition
Let Δ, Γ be structures. A function $f : \Delta \to \Gamma$ is **canonical** iff it sends n-tuples of the same type in Δ to n-tuples of the same type in Γ.

Examples
- embeddings
- constant functions
Canonical functions

Definition
Let a be an n-tuple of elements in a structure Δ. The type of a in Δ is the set of first-order formulas with free variables x_1, \ldots, x_n that hold for a in Δ.

Definition
Let Δ, Γ be structures. A function $f : \Delta \to \Gamma$ is canonical iff it sends n-tuples of the same type in Δ to n-tuples of the same type in Γ.

Examples
- embeddings
- constant functions
- (id_{rev}) and sw are canonical from Π to Π
Canonical functions

Definition

Let a be an n-tuple of elements in a structure Δ. The **type** of a in Δ is the set of first-order formulas with free variables x_1, \ldots, x_n that hold for a in Δ.

Definition

Let Δ, Γ be structures. A function $f : \Delta \rightarrow \Gamma$ is **canonical** iff it sends n-tuples of the same type in Δ to n-tuples of the same type in Γ.

Examples

- embeddings
- constant functions
- (id_{rev}) and sw are canonical from Π to Π
- (id_t) is canonical from (Π, c) to Π
We say that \(F \subseteq D \) generates a function \(g : D \rightarrow D \) iff for all finite \(A \subseteq D \) there exist \(f_1, \ldots, f_n \in F \) such that \(f_1 \circ \cdots \circ f_n \) agrees with \(g \) on \(A \).

Theorem (Bodirsky, Pinsker, Tsankov, 2011)

Let \(\Delta \) be a structure which is ordered Ramsey and homogeneous in a finite relational language. Let \(c_1, \ldots, c_n \in \Delta \) and \(f : \Delta \rightarrow \Delta \) be a function. Then \(\{f\} \cup \text{Aut}(\Delta) \) generates a function which is canonical as a function \((\Delta, c_1, \ldots, c_n) \rightarrow \Delta\) agrees with \(f \) on \(\{c_1, \ldots, c_n\} \).
We say that $\mathcal{F} \subseteq D^D$ generates a function $g : D \to D$ iff for all finite $A \subseteq D$ there exist $f_1, \ldots, f_n \in \mathcal{F}$ such that $f_1 \circ \cdots \circ f_n$ agrees with g on A.
Canonical functions

We say that $\mathcal{F} \subseteq D^D$ generates a function $g : D \to D$ iff for all finite $A \subseteq D$ there exist $f_1, \ldots, f_n \in \mathcal{F}$ such that $f_1 \circ \cdots \circ f_n$ agrees with g on A.

Theorem (Bodirsky, Pinsker, Tsankov, 2011)

Let Δ be a structure which is ordered Ramsey and homogeneous in a finite relational language. Let $c_1, \ldots, c_n \in \Delta$ and $f : \Delta \to \Delta$ be a function. Then $\{f\} \cup \text{Aut}(\Delta)$ generates a function which
Canonical functions

We say that $\mathcal{F} \subseteq D^D$ **generates** a function $g : D \rightarrow D$ iff for all finite $A \subseteq D$ there exist $f_1, \ldots, f_n \in \mathcal{F}$ such that $f_1 \circ \cdots \circ f_n$ agrees with g on A.

Theorem (Bodirsky, Pinsker, Tsankov, 2011)

Let Δ be a structure which is ordered Ramsey and homogeneous in a finite relational language. Let $c_1, \ldots, c_n \in \Delta$ and $f : \Delta \rightarrow \Delta$ be a function. Then $\{f\} \cup \text{Aut}(\Delta)$ generates a function which

- is canonical as a function $(\Delta, c_1, \ldots, c_n) \rightarrow \Delta$
Canonical functions

We say that $\mathcal{F} \subseteq D^D$ generates a function $g : D \to D$ iff for all finite $A \subseteq D$ there exist $f_1, \ldots, f_n \in \mathcal{F}$ such that $f_1 \circ \cdots \circ f_n$ agrees with g on A.

Theorem (Bodirsky, Pinsker, Tsankov, 2011)

Let Δ be a structure which is ordered Ramsey and homogeneous in a finite relational language. Let $c_1, \ldots, c_n \in \Delta$ and $f : \Delta \to \Delta$ be a function. Then $\{f\} \cup \text{Aut}(\Delta)$ generates a function which

- is canonical as a function $(\Delta, c_1, \ldots, c_n) \to \Delta$
- agrees with f on $\{c_1, \ldots, c_n\}$
Clones

- **Definition**
 - Let A be a set. A clone on A is a set of finitary operations on A which is closed under composition and contains all projections.

- **Examples**
 - The projection clone
 - The polymorphism clone of a structure Δ: the set of homomorphisms $\Delta_n \to \Delta$, for all $n \geq 1$.

Clones

Definition

Let A be a set. A **clone** on A is a set of finitary operations on A which...
Clones

Definition

Let A be a set. A **clone** on A is a set of finitary operations on A which

- is closed under composition
Clones

Definition

Let A be a set. A **clone** on A is a set of finitary operations on A which

- is closed under composition
- contains all projections
Clones

Definition

Let A be a set. A **clone** on A is a set of finitary operations on A which

- is closed under composition
- contains all projections

Examples
Clones

Definition

Let A be a set. A clone on A is a set of finitary operations on A which
- is closed under composition
- contains all projections

Examples
- the projection clone
Clones

Definition

Let A be a set. A clone on A is a set of finitary operations on A which

- is closed under composition
- contains all projections

Examples

- the projection clone
- the polymorphism clone of a structure Δ: the set of homomorphisms $\Delta^n \to \Delta$, for all $n \geq 1$
Closed clones

Definition

A first-order formula is called primitive-positive iff it is of the form

\[\exists x_1, \ldots, x_n \psi_1 \land \cdots \land \psi_m, \]

where each \(\psi_i \) is an atomic formula.

Theorem (Bodirsky and Nešetřil, 2006)

If \(\Delta \) is countable and \(\omega \)-categorical, then

\[\{ \text{reducts of } \Delta \} / \sim \mapsto \{ \text{closed clones containing } \text{Aut}(\Delta) \} \]

\[\Gamma / \sim \mapsto \text{Pol}(\Gamma) \]

is an antiisomorphism.
Definition

A first-order formula is called **primitive-positive** iff it is of the form

$$\exists x_1, \ldots, x_n \psi_1 \land \cdots \land \psi_m,$$

where each ψ_i is an atomic formula.
Closed clones

Definition

A first-order formula is called **primitive-positive** iff it is of the form

$$\exists x_1, \ldots, x_n \psi_1 \land \cdots \land \psi_m,$$

where each ψ_i is an atomic formula.

Theorem (Bodirsky and Nešetřil, 2006)

If Δ is countable and ω-categorical, then

$$\{\text{reducts of } \Delta\}/\sim \rightarrow \{\text{closed clones containing } \text{Aut}(\Delta)\}$$

$$\Gamma/\sim \mapsto \text{Pol}(\Gamma)$$

is an antiisomorphism.
Constraint satisfaction problems

Definition

Let Γ be a structure in a finite relational language τ. $\text{CSP}(\Gamma)$ is the computational problem of deciding whether a given primitive-positive τ-sentence holds in Γ.

Theorem (Bulatov, Krokhin, Jeavons, 2000)

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a structure and let R be a relation with a primitive-positive definition in Γ. Then $\text{CSP}(D; R_1, \ldots, R_n)$ and $\text{CSP}(D; R_1, \ldots, R_n, R)$ are polynomial-time equivalent. Therefore, the complexity of $\text{CSP}(\Gamma)$ depends only on $\text{Pol}(\Gamma)$.

Problem

Classify the computational complexity of $\text{CSP}(\Gamma)$ for all reducts Γ of Π.
Constraint satisfaction problems

Definition

Let Γ be a structure in a finite relational language τ. $\text{CSP}(\Gamma)$ is the computational problem of deciding whether a given primitive-positive τ-sentence holds in Γ.

Theorem (Bulatov, Krokhin, Jeavons, 2000)

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a structure and let R be a relation with a primitive-positive definition in Γ. Then $\text{CSP}(D; R_1, \ldots, R_n)$ and $\text{CSP}(D; R_1, \ldots, R_n, R)$ are polynomial-time equivalent. Therefore, the complexity of $\text{CSP}(\Gamma)$ depends only on $\text{Pol}(\Gamma)$.

Problem

Classify the computational complexity of $\text{CSP}(\Gamma)$ for all reducts Γ of Π.

Constraint satisfaction problems

Definition

Let Γ be a structure in a finite relational language τ. CSP(Γ) is the computational problem of deciding whether a given primitive-positive τ-sentence holds in Γ.

Theorem (Bulatov, Krokhin, Jeavons, 2000)

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a structure and let R be a relation with a primitive-positive definition in Γ. Then CSP($D; R_1, \ldots, R_n$) and CSP($D; R_1, \ldots, R_n, R$) are polynomial-time equivalent.
Definition

Let \(\Gamma \) be a structure in a finite relational language \(\tau \). CSP(\(\Gamma \)) is the computational problem of deciding whether a given primitive-positive \(\tau \)-sentence holds in \(\Gamma \).

Theorem (Bulatov, Krokhin, Jeavons, 2000)

Let \(\Gamma = (D; R_1, \ldots, R_n) \) be a structure and let \(R \) be a relation with a primitive-positive definition in \(\Gamma \). Then CSP(\(D; R_1, \ldots, R_n \)) and CSP(\(D; R_1, \ldots, R_n, R \)) are polynomial-time equivalent.

Therefore, the complexity of CSP(\(\Gamma \)) depends only on Pol(\(\Gamma \)).
Definition
Let Γ be a structure in a finite relational language τ. CSP(Γ) is the computational problem of deciding whether a given primitive-positive τ-sentence holds in Γ.

Theorem (Bulatov, Krokhin, Jeavons, 2000)
Let $\Gamma = (D; R_1, \ldots, R_n)$ be a structure and let R be a relation with a primitive-positive definition in Γ. Then CSP($D; R_1, \ldots, R_n$) and CSP($D; R_1, \ldots, R_n, R$) are polynomial-time equivalent.

Therefore, the complexity of CSP(Γ) depends only on Pol(Γ).

Problem
Classify the computational complexity of CSP(Γ) for all reducts Γ of Π.
Related problems

- Can these results be extended to structures with n linear orders, for $n \geq 3$?
- Does Thomas's conjecture hold for Ramsey structures?
- Does every structure which is homogeneous in a finite relational language have a homogeneous Ramsey expansion?
Can these results be extended to structures with \(n \) linear orders, for \(n \geq 3 \)?
Related problems

- Can these results be extended to structures with n linear orders, for $n \geq 3$?
- Does Thomas’s conjecture hold for Ramsey structures?
Related problems

- Can these results be extended to structures with n linear orders, for $n \geq 3$?
- Does Thomas’s conjecture hold for Ramsey structures?
- Does every structure which is homogeneous in a finite relational language have a homogeneous Ramsey expansion?
Thank you!