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I: Two CSP conjectures

Clone conjectures Michael Pinsker



Constraint Satisfaction Problems (CSPs)

Let Γ be a structure in a finite relational language.

Definition
CSP(Γ) is the decision problem:
INPUT: primitive positive (pp-) sentence ϕ

(existentially quantified conjunction).
QUESTION: does ϕ hold in Γ?

Conjecture
For reducts Γ of finitely bounded homogeneous structures,
CSP(Γ) is either in P or NP-complete.

Examples:
order of the rationals;
random graph;
binary branching homogeneous C-relation.
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CSP reductions

Let ∆, Γ be relational structures in finite languages σ, τ .

CSP(∆) reduces to CSP(Γ) when:

(i) ∆ has a primitive positive (pp-) interpretation in Γ, or
(h) ∆ and Γ are homomorphically equivalent, or
(c) ∆ = (Γ, c), i.e., is the expansion of Γ by a constant (for certain Γ).

Explanations:

(i): a pp-interpretation is a first-order-interpretation where
all involved formulas are pp.

(h): σ = τ , and there exist homomorphisms ∆→ Γ and Γ→ ∆.
Then in fact CSP(Γ) = CSP(∆).

(c): for ω-categorical cores Γ, i.e.,
Aut(Γ) is oligomorphic and dense in End(Γ).
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Applying the three reductions

Idea for determining NP-hardness of CSP(Γ):

Apply (i), (h), (c).
If you obtain a known NP-hard ∆, then CSP(Γ) is NP-hard.
Otherwise, it is in P.

Example:
∆ = ({0,1}; {(0,0,1), (0,1,0), (1,0,0)}) aka positive 1-in-3-SAT.

Radical idea:

The only source of NP-hardness is pos. 1-in-3-SAT.

Conjecture (Bulatov + Krokhin + Jeavons ’00; Feder + Vardi ’93)
Let Γ be finite.
Either pos. 1-in-3-SAT can be obtained using (i), (h), (c),
or CSP(Γ) is in P.
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The three reductions, systematically

Approach for finite Γ: use the following order.

1 (h): Homomorphic equivalence, until obtain core.
2 (c): Add constants, until it is idempotent

(i.e., has only the trivial endomorphism).
3 (i): pp-interpretations.

Proposition
Let Γ be finite. Then:

There exists an idempotent ∆ obtained from Γ by (h), then (c).
If pos. 1-in-3-SAT can be obtained from Γ by {(i), (h), (c)},
then it can be obtained from ∆ by (i).

Conjecture (Bulatov + Krokhin + Jeavons ’00; Feder + Vardi ’93)
Let ∆ be finite and idempotent.
Then pos. 1-in-3-SAT is pp-interpretable in ∆, or CSP(∆) is in P.
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The infinite case, systematically

There is also a nicest structure obtained by (h):

Theorem (Bodirsky ’06)
Every ω-categorical structure is homomorphically equivalent
to a unique ω-categorical core.

Conjecture (direct analogue of the finite CSP conjecture)

Let Γ be a reduct of a finitely bounded homogeneous structure. Then:

Some expansion (∆, c̄) of its core ∆ by finitely many constants
pp-interprets pos. 1-in-3-SAT,
or CSP(Γ) is in P.

Follows the (h) then (c) then (i) idea.

However: don’t know if this is ideal!
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The infinite case, chaotically

Conjecture (less audacious)
Let Γ be a reduct of a finitely bounded homogeneous structure. Then:

Either pos. 1-in-3-SAT can be obtained from Γ by {(i), (h), (c)},

or CSP(Γ) is in P.
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II: Clone conjectures
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Polymorphism clones

Let Γ be a relational structure.

Pol(Γ). . . set of all homomorphisms f : Γn → Γ, where 1 ≤ n < ω.

Elements of Pol(Γ) are called polymorphisms of Γ.

Pol(Γ) is a function clone:

closed under composition
contains projections πn

i (x1, . . . , xn) = xi .

Theorem (Bulatov + Jeavons + Krokhin ’00; Bodirsky + Nešetřil ’03)

For ω-categorical Γ, the complexity of CSP(Γ) only depends on Pol(Γ).
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Clone homomorphisms

Function clones carry algebraic structure via equations.

Let C,D be function clones.
ξ : C→ D clone homomorphism if it preserves composition.

Write C→ D if there exists a clone homomorphism from C into D.

Functions clones carry also topological structure:

Pointwise convergence on functions f : Dn → D.
D. . . discrete; DDn

product topology.
Set of all finitary functions

⋃
n DDn

. . . sum space.

If D countable: complete metric.
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pp interpretations and topological clones

Theorem (Bodirsky + MP ’11)
Let Γ be ω-categorical, and ∆ be finite. TFAE:

Pol(Γ)→ Pol(∆) continuously;
∆ has a pp interpretation in Γ.

Let 1 be the clone of projections on a 2-element set.

Fact: It is the polymorphism clone of pos. 1-in-3-SAT.

Corollary
Let Γ be ω-categorical. TFAE:

Pol(Γ)→ 1 continuously;
pos. 1-in-3-SAT has a pp interpretation in Γ;
All finite structures have a pp interpretation in Γ.
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The ambitious conjecture, reformulated

Conjecture (Bodirsky + MP ’11)
Let Γ be a reduct of a finitely bounded homogeneous structure.
Let ∆ be its core. Then:

there exists a finite tuple c̄ such that Pol(∆, c̄)→ 1 continuously, or

CSP(Γ) is in P.

Problems:

Does not use full power of reductions (i), (h), (c).
Is criterion about structure of Pol(∆, c̄), rather than Pol(Γ).
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h1 clone homomorphisms

Let C,D be function clones.

Function ξ from C to D is an h1 clone homomorphism if
it preserves height 1 equations: ξ(f (xi1 , . . . , xin )) = ξ(f )(xi1 , . . . , xin ).

If there exists such a function, we write C D.

Theorem (Barto + Opršal + MP ’15)
Let Γ be ω-categorical, let ∆ be finite. TFAE:

∆ can be obtained from Γ by {(i), (h), (c)}.
Pol(Γ) Pol(∆) uniformly continuously.
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The new conjecture

New Conjecture

Let Γ be a reduct of a finitely bounded homogeneous structure. Then:
Pol(Γ) 1 uniformly continuously, or
CSP(Γ) is in P.

Old Conjecture
Let Γ be a reduct of a finitely bounded homogeneous structure.
Let ∆ be its core. Then:

there exists a finite tuple c̄ such that Pol(∆, c̄)→ 1 continuously, or

CSP(Γ) is in P.
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Conjecture comparison

Achievement:
Truer conjecture
Easier conjecture: avoids core (loss of properties, etc.)
Easier conjecture: height 1 equations
Criterion in terms of Pol(Γ).

Possibilities:
Both false: we do not understand homogeneous structures.
Old false, new true: method for disproving old conjecture.
Both true: structural insight on clones of ω-categorical structures.
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Disproving the old conjecture?

Problem (Conjectures equivalent?)
Let Γ be an ω-categorical core such that
Pol(Γ) 1 uniformly continuously.
Then Pol(Γ, c̄)→ 1 continuously for some c̄?

Observe: Pol(Γ, c̄) ⊆ Pol(Γ) (“stabilizer”).

Proposition
There is an ω-categorical core Γ
with a uniformly continuous h1 clone homomorphism ξ : Pol(Γ) 1
such that no restriction of ξ to any Pol(Γ, c̄) is a clone homomorphism.
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III: Breakdown and decomposition of the talk
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Proving the conjectures

Old conjecture:

Let Γ be an ω-categorical core.

Suppose for no expansion (Γ, c̄)
the clone Pol(Γ, c̄) has a continuous clone homomorphism to 1.

Problem
Are there non-trivial equations that hold in Pol(Γ), i.e., Pol(Γ) 9 1?

Then: apply Ramsey method to turn equations into an algorithm.

New conjecture:

Problem
Let Pol(Γ) have no uniformly continuously h1 homomorphism to 1.
Then ¬(Pol(Γ) 1)?
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Ternary h1 equations

Proposition

If ¬(Pol(Γ) 1), then there are finitely many ternary h1 equations
holding in Pol(Γ) that are unsatisfiable in 1.

ternary h1 equations: of the form

f (x , x , y) = g(y , x , y)

Proposition

If ¬(Pol(Γ)→ 1), then there are finitely many ternary h1 equations
modulo unaries holding in Pol(Γ) that are unsatisfiable in 1.

Example:
αf (βx , γy) = δf (εy , x)
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Known CSP classifications

Theorem (Bodirsky + Kára ’08)

Let Γ be a reduct of (Q;<), and ∆ be its core.
Then (∆, c̄)→ 1 continuously for some c̄,
or Pol(∆) satisfies αf (x , x , y) = βf (x , y , x) = γf (y , x , x).

Random graph: αf (x , y , z) = f (z, x , y)

(Bodirsky + MP ’11)

Kn-free graph: αf (x , y , z) = f (z, x , y)

(Bodirsky + Martin + MP + Pongrácz ’15)

Binary branching homogeneous C-relation: αf (x , y) = βf (y , x).

(Bodirsky + Jonsson + Van Pham ’15)
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Siggers polymorphisms

Any f satisfying

f (x , y , x , z, y , z) = f (y , x , z, x , z, y)

Theorem (Siggers ’09)

Every finite idempotent Γ with Γ 9 1 has a Siggers polymorphism.

Theorem / Claim (Barto + ? + MP)
Let Γ be an ω-categorical core. Then:

Either Pol(Γ, c̄)→ 1 continuously for some c̄,
or Pol(Γ) satisfies

αf (x , y , x , z, y , z) = βf (y , x , z, x , z, y)

(and Pol(Γ) 9 1).
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Thank you!
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Thanks to the organizers!
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Thanks to Norbert!
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