Conjectures for clones over homogenous structures

Michael Pinsker

Univerzita Karlova v Praze / Technische Universität Wien Funded by Austrian Science Fund (FWF) grant P27600

BIRS Workshop on Homogeneous Structures November 2015

CO DI	0.00	1011	IFOC
UIII		 -0.00	11 C S

Michael Pinsker

I Two CSP conjectures

- I Two CSP conjectures
- II Two clone conjectures

- I Two CSP conjectures
- II Two clone conjectures
- III Breakdown and decomposition of the talk

I: Two CSP conjectures

Clone conjectures

Michael Pinsker

Let Γ be a structure in a finite relational language.

Let Γ be a structure in a finite relational language.

Definition

 $CSP(\Gamma)$ is the decision problem:

Let Γ be a structure in a finite relational language.

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: primitive positive (pp-) sentence φ (existentially quantified conjunction).

Let Γ be a structure in a finite relational language.

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: primitive positive (pp-) sentence φ (existentially quantified conjunction).

QUESTION: does φ hold in Γ ?

Let Γ be a structure in a finite relational language.

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: primitive positive (pp-) sentence φ (existentially quantified conjunction).

QUESTION: does φ hold in Γ ?

Conjecture

For reducts Γ of finitely bounded homogeneous structures, $CSP(\Gamma)$ is either in P or NP-complete.

Let Γ be a structure in a finite relational language.

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: primitive positive (pp-) sentence φ (existentially quantified conjunction).

QUESTION: does φ hold in Γ ?

Conjecture

For reducts Γ of finitely bounded homogeneous structures, $CSP(\Gamma)$ is either in P or NP-complete.

Examples:

Let Γ be a structure in a finite relational language.

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: primitive positive (pp-) sentence φ (existentially quantified conjunction).

QUESTION: does φ hold in Γ ?

Conjecture

For reducts Γ of finitely bounded homogeneous structures, $CSP(\Gamma)$ is either in P or NP-complete.

Examples:

order of the rationals;

Let Γ be a structure in a finite relational language.

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: primitive positive (pp-) sentence φ (existentially quantified conjunction).

QUESTION: does φ hold in Γ ?

Conjecture

For reducts Γ of finitely bounded homogeneous structures, $CSP(\Gamma)$ is either in P or NP-complete.

Examples:

- order of the rationals;
- random graph;

Let Γ be a structure in a finite relational language.

Definition

 $CSP(\Gamma)$ is the decision problem:

INPUT: primitive positive (pp-) sentence φ (existentially quantified conjunction).

QUESTION: does φ hold in Γ ?

Conjecture

For reducts Γ of finitely bounded homogeneous structures, $CSP(\Gamma)$ is either in P or NP-complete.

Examples:

- order of the rationals;
- random graph;
- binary branching homogeneous C-relation.

Clone conjectures

Michael Pinsker

Clone conjectures

Michael Pinsker

Let Δ , Γ be relational structures in finite languages σ , τ .

Let Δ , Γ be relational structures in finite languages σ , τ . CSP(Δ) reduces to CSP(Γ) when:

Let Δ , Γ be relational structures in finite languages σ , τ . CSP(Δ) reduces to CSP(Γ) when:

(i) Δ has a primitive positive (pp-) interpretation in Γ , or

Let Δ , Γ be relational structures in finite languages σ , τ . CSP(Δ) reduces to CSP(Γ) when:

- (i) Δ has a primitive positive (pp-) interpretation in Γ , or
- (h) Δ and Γ are homomorphically equivalent, or

Let Δ , Γ be relational structures in finite languages σ , τ . CSP(Δ) reduces to CSP(Γ) when:

- (i) Δ has a primitive positive (pp-) interpretation in Γ , or
- (h) Δ and Γ are homomorphically equivalent, or
- (c) $\Delta = (\Gamma, c)$, i.e., is the expansion of Γ by a constant (for certain Γ).

Let Δ , Γ be relational structures in finite languages σ , τ . CSP(Δ) reduces to CSP(Γ) when:

- (i) Δ has a primitive positive (pp-) interpretation in Γ , or
- (h) Δ and Γ are homomorphically equivalent, or
- (c) $\Delta = (\Gamma, c)$, i.e., is the expansion of Γ by a constant (for certain Γ).

Explanations:

Let Δ , Γ be relational structures in finite languages σ , τ . CSP(Δ) reduces to CSP(Γ) when:

- (i) Δ has a primitive positive (pp-) interpretation in Γ , or
- (h) Δ and Γ are homomorphically equivalent, or
- (c) $\Delta = (\Gamma, c)$, i.e., is the expansion of Γ by a constant (for certain Γ).

Explanations:

(i): a pp-interpretation is a first-order-interpretation where all involved formulas are pp.

Let Δ , Γ be relational structures in finite languages σ , τ . CSP(Δ) reduces to CSP(Γ) when:

- (i) Δ has a primitive positive (pp-) interpretation in Γ , or
- (h) Δ and Γ are homomorphically equivalent, or
- (c) $\Delta = (\Gamma, c)$, i.e., is the expansion of Γ by a constant (for certain Γ).

Explanations:

(i): a pp-interpretation is a first-order-interpretation where all involved formulas are pp.

(h): $\sigma = \tau$, and there exist homomorphisms $\Delta \to \Gamma$ and $\Gamma \to \Delta$. Then in fact $CSP(\Gamma) = CSP(\Delta)$.

Let Δ , Γ be relational structures in finite languages σ , τ . CSP(Δ) reduces to CSP(Γ) when:

- (i) Δ has a primitive positive (pp-) interpretation in Γ , or
- (h) Δ and Γ are homomorphically equivalent, or
- (c) $\Delta = (\Gamma, c)$, i.e., is the expansion of Γ by a constant (for certain Γ).

Explanations:

(i): a pp-interpretation is a first-order-interpretation where all involved formulas are pp.

(h): $\sigma = \tau$, and there exist homomorphisms $\Delta \to \Gamma$ and $\Gamma \to \Delta$. Then in fact $CSP(\Gamma) = CSP(\Delta)$.

(c): for ω -categorical cores Γ , i.e.,

Aut(Γ) is oligomorphic and dense in End(Γ).

Idea for determining NP-hardness of $CSP(\Gamma)$:

Idea for determining NP-hardness of $CSP(\Gamma)$:

Apply (i), (h), (c). If you obtain a known NP-hard Δ , then CSP(Γ) is NP-hard. Otherwise, it is in P.

Idea for determining NP-hardness of $CSP(\Gamma)$:

Apply (i), (h), (c). If you obtain a known NP-hard Δ , then CSP(Γ) is NP-hard. Otherwise, it is in P.

Example:

 $\Delta = (\{0,1\}; \{(0,0,1), (0,1,0), (1,0,0)\}) \text{ aka positive 1-in-3-SAT}.$

Idea for determining NP-hardness of $CSP(\Gamma)$:

Apply (i), (h), (c). If you obtain a known NP-hard Δ , then CSP(Γ) is NP-hard. Otherwise, it is in P.

Example:

 $\Delta = (\{0, 1\}; \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\})$ aka positive 1-in-3-SAT.

Radical idea:

Idea for determining NP-hardness of $CSP(\Gamma)$:

Apply (i), (h), (c). If you obtain a known NP-hard Δ , then CSP(Γ) is NP-hard. Otherwise, it is in P.

Example:

 $\Delta = (\{0, 1\}; \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\})$ aka positive 1-in-3-SAT.

Radical idea:

The only source of NP-hardness is pos. 1-in-3-SAT.

Idea for determining NP-hardness of $CSP(\Gamma)$:

Apply (i), (h), (c). If you obtain a known NP-hard Δ , then CSP(Γ) is NP-hard. Otherwise, it is in P.

Example:

 $\Delta = (\{0,1\}; \{(0,0,1), (0,1,0), (1,0,0)\}) \text{ aka positive 1-in-3-SAT}.$

Radical idea:

The only source of NP-hardness is pos. 1-in-3-SAT.

Conjecture (Bulatov + Krokhin + Jeavons '00; Feder + Vardi '93) Let Γ be finite. Either pos. 1-in-3-SAT can be obtained using (i), (h), (c), or CSP(Γ) is in P.

Clone conjectures

Michael Pinsker

The three reductions, systematically

The three reductions, systematically

Approach for finite Γ : use the following order.

The three reductions, systematically

Approach for finite Γ : use the following order.

1 (h): Homomorphic equivalence, until obtain core.
Approach for finite Γ : use the following order.

- **1** (h): Homomorphic equivalence, until obtain core.
- 2 (c): Add constants, until it is idempotent (i.e., has only the trivial endomorphism).

Approach for finite Γ : use the following order.

- **1** (h): Homomorphic equivalence, until obtain core.
- 2 (c): Add constants, until it is idempotent (i.e., has only the trivial endomorphism).
- 3 (i): pp-interpretations.

Approach for finite Γ : use the following order.

- 1 (h): Homomorphic equivalence, until obtain core.
- 2 (c): Add constants, until it is idempotent (i.e., has only the trivial endomorphism).
- 3 (i): pp-interpretations.

Proposition

Let Γ be finite. Then:

Approach for finite Γ : use the following order.

- **1** (h): Homomorphic equivalence, until obtain core.
- 2 (c): Add constants, until it is idempotent (i.e., has only the trivial endomorphism).
- 3 (i): pp-interpretations.

Proposition

Let Γ be finite. Then:

There exists an idempotent Δ obtained from Γ by (h), then (c).

Approach for finite Γ : use the following order.

- **1** (h): Homomorphic equivalence, until obtain core.
- (c): Add constants, until it is idempotent (i.e., has only the trivial endomorphism).
- 3 (i): pp-interpretations.

Proposition

Let Γ be finite. Then:

- There exists an idempotent Δ obtained from Γ by (h), then (c).
- If pos. 1-in-3-SAT can be obtained from Γ by {(i), (h), (c)}, then it can be obtained from △ by (*i*).

Approach for finite Γ : use the following order.

- 1 (h): Homomorphic equivalence, until obtain core.
- (c): Add constants, until it is idempotent (i.e., has only the trivial endomorphism).
- 3 (i): pp-interpretations.

Proposition

Let Γ be finite. Then:

There exists an idempotent Δ obtained from Γ by (h), then (c).

If pos. 1-in-3-SAT can be obtained from Γ by {(i), (h), (c)}, then it can be obtained from Δ by (*i*).

Conjecture (Bulatov + Krokhin + Jeavons '00; Feder + Vardi '93) Let Δ be finite and idempotent. Then pos. 1-in-3-SAT is pp-interpretable in Δ , or CSP(Δ) is in P.

Clone conjectures

Michael Pinsker

Clone conjectures

Michael Pinsker

There is also a nicest structure obtained by (h):

There is also a nicest structure obtained by (h):

Theorem (Bodirsky '06)

Every ω -categorical structure is homomorphically equivalent to a unique ω -categorical core.

There is also a nicest structure obtained by (h):

Theorem (Bodirsky '06)

Every ω -categorical structure is homomorphically equivalent to a unique ω -categorical core.

Conjecture (direct analogue of the finite CSP conjecture)

Let Γ be a reduct of a finitely bounded homogeneous structure. Then:

Some expansion (Δ, \bar{c}) of its core Δ by finitely many constants pp-interprets pos. 1-in-3-SAT,

or $CSP(\Gamma)$ is in P.

There is also a nicest structure obtained by (h):

Theorem (Bodirsky '06)

Every ω -categorical structure is homomorphically equivalent to a unique ω -categorical core.

Conjecture (direct analogue of the finite CSP conjecture)

Let Γ be a reduct of a finitely bounded homogeneous structure. Then:

Some expansion (Δ, \bar{c}) of its core Δ by finitely many constants pp-interprets pos. 1-in-3-SAT, or CSP(Γ) is in P.

Follows the (h) then (c) then (i) idea.

There is also a nicest structure obtained by (h):

Theorem (Bodirsky '06)

Every ω -categorical structure is homomorphically equivalent to a unique ω -categorical core.

Conjecture (direct analogue of the finite CSP conjecture)

Let Γ be a reduct of a finitely bounded homogeneous structure. Then:

Some expansion (Δ, \bar{c}) of its core Δ by finitely many constants pp-interprets pos. 1-in-3-SAT, or CSP(Γ) is in P.

Follows the (h) then (c) then (i) idea.

However: don't know if this is ideal!

The infinite case, chaotically

Clone conjectures

Michael Pinsker

The infinite case, chaotically

Conjecture (less audacious)

Let Γ be a reduct of a finitely bounded homogeneous structure. Then:

- Either pos. 1-in-3-SAT can be obtained from Γ by $\{(i), (h), (c)\},\$
- or $CSP(\Gamma)$ is in P.

II: Clone conjectures

Clone conjectures

Michael Pinsker

Let Γ be a relational structure.

Let Γ be a relational structure.

Pol(Γ)... set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

Let Γ be a relational structure.

Pol(Γ)... set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

Elements of $Pol(\Gamma)$ are called polymorphisms of Γ .

Let Γ be a relational structure.

 $\mathsf{Pol}(\Gamma)$... set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

Elements of $Pol(\Gamma)$ are called polymorphisms of Γ .

 $Pol(\Gamma)$ is a function clone:

- closed under composition
- contains projections $\pi_i^n(x_1, \ldots, x_n) = x_i$.

Let Γ be a relational structure.

 $Pol(\Gamma)$... set of all homomorphisms $f \colon \Gamma^n \to \Gamma$, where $1 \le n < \omega$.

Elements of $Pol(\Gamma)$ are called polymorphisms of Γ .

 $Pol(\Gamma)$ is a function clone:

- closed under composition
- contains projections $\pi_i^n(x_1, \ldots, x_n) = x_i$.

Theorem (Bulatov + Jeavons + Krokhin '00; Bodirsky + Nešetřil '03) For ω -categorical Γ , the complexity of CSP(Γ) only depends on Pol(Γ).

_				
	ono	oon	oot	IFOR
	UILE			
			the state of the s	

Clone conjectures

Function clones carry algebraic structure via equations.

Function clones carry algebraic structure via equations.

- Let ${\mathfrak C}, {\mathfrak D}$ be function clones.
- $\xi \colon \mathfrak{C} \to \mathfrak{D}$ clone homomorphism if it preserves composition.

Function clones carry algebraic structure via equations.

- Let ${\mathfrak C}, {\mathfrak D}$ be function clones.
- $\xi \colon \mathfrak{C} \to \mathfrak{D}$ clone homomorphism if it preserves composition.
- Write $\mathfrak{C} \to \mathfrak{D}$ if there exists a clone homomorphism from \mathfrak{C} into \mathfrak{D} .

Function clones carry algebraic structure via equations.

Let ${\mathfrak C}, {\mathfrak D}$ be function clones.

 $\xi \colon \mathfrak{C} \to \mathfrak{D}$ clone homomorphism if it preserves composition.

Write $\mathfrak{C} \to \mathfrak{D}$ if there exists a clone homomorphism from \mathfrak{C} into \mathfrak{D} .

Functions clones carry also topological structure:

Function clones carry algebraic structure via equations.

Let $\mathfrak{C}, \mathfrak{D}$ be function clones.

 $\xi \colon \mathfrak{C} \to \mathfrak{D}$ clone homomorphism if it preserves composition.

Write $\mathfrak{C} \to \mathfrak{D}$ if there exists a clone homomorphism from \mathfrak{C} into \mathfrak{D} .

Functions clones carry also topological structure:

Pointwise convergence on functions $f: D^n \to D$.

Function clones carry algebraic structure via equations.

Let ${\mathfrak C}, {\mathfrak D}$ be function clones.

 $\xi \colon \mathfrak{C} \to \mathfrak{D}$ clone homomorphism if it preserves composition.

Write $\mathcal{C} \to \mathcal{D}$ if there exists a clone homomorphism from \mathcal{C} into \mathcal{D} .

Functions clones carry also topological structure:

Pointwise convergence on functions $f: D^n \to D$. D...discrete; D^{D^n} product topology.

Function clones carry algebraic structure via equations.

Let ${\mathfrak C}, {\mathfrak D}$ be function clones.

 $\xi \colon \mathfrak{C} \to \mathfrak{D}$ clone homomorphism if it preserves composition.

Write $\mathfrak{C} \to \mathfrak{D}$ if there exists a clone homomorphism from \mathfrak{C} into \mathfrak{D} .

Functions clones carry also topological structure:

Pointwise convergence on functions $f: D^n \to D$. D... discrete; D^{D^n} product topology. Set of all finitary functions $\bigcup_n D^{D^n}...$ sum space.

Function clones carry algebraic structure via equations.

Let ${\mathfrak C}, {\mathfrak D}$ be function clones.

 $\xi \colon \mathfrak{C} \to \mathfrak{D}$ clone homomorphism if it preserves composition.

Write $\mathcal{C} \to \mathcal{D}$ if there exists a clone homomorphism from \mathcal{C} into \mathcal{D} .

Functions clones carry also topological structure:

Pointwise convergence on functions $f: D^n \to D$. D... discrete; D^{D^n} product topology. Set of all finitary functions $\bigcup_n D^{D^n}...$ sum space. If D countable: complete metric.

Clone conjectures

Michael Pinsker

Theorem (Bodirsky + MP '11)

Let Γ be ω -categorical, and Δ be finite. TFAE:

Theorem (Bodirsky + MP '11)

Let Γ be ω -categorical, and Δ be finite. TFAE:

■ $Pol(\Gamma) \rightarrow Pol(\Delta)$ continuously;

Theorem (Bodirsky + MP '11)

Let Γ be ω -categorical, and Δ be finite. TFAE:

- $Pol(\Gamma) \rightarrow Pol(\Delta)$ continuously;
- Δ has a pp interpretation in Γ .

Theorem (Bodirsky + MP '11)

Let Γ be ω -categorical, and Δ be finite. TFAE:

- $Pol(\Gamma) \rightarrow Pol(\Delta)$ continuously;
- Δ has a pp interpretation in Γ .

Let **1** be the clone of projections on a 2-element set.

Theorem (Bodirsky + MP '11)

Let Γ be ω -categorical, and Δ be finite. TFAE:

- $Pol(\Gamma) \rightarrow Pol(\Delta)$ continuously;
- Δ has a pp interpretation in Γ .

Let **1** be the clone of projections on a 2-element set.

Fact: It is the polymorphism clone of pos. 1-in-3-SAT.
Theorem (Bodirsky + MP '11)

Let Γ be ω -categorical, and Δ be finite. TFAE:

- $Pol(\Gamma) \rightarrow Pol(\Delta)$ continuously;
- Δ has a pp interpretation in Γ .

Let **1** be the clone of projections on a 2-element set.

Fact: It is the polymorphism clone of pos. 1-in-3-SAT.

Corollary Let Γ be ω -categorical. TFAE:

Theorem (Bodirsky + MP '11)

Let Γ be ω -categorical, and Δ be finite. TFAE:

- $Pol(\Gamma) \rightarrow Pol(\Delta)$ continuously;
- Δ has a pp interpretation in Γ .

Let **1** be the clone of projections on a 2-element set.

Fact: It is the polymorphism clone of pos. 1-in-3-SAT.

Corollary

Let Γ be ω -categorical. TFAE:

Pol(Γ) \rightarrow **1** continuously;

Theorem (Bodirsky + MP '11)

Let Γ be ω -categorical, and Δ be finite. TFAE:

- $Pol(\Gamma) \rightarrow Pol(\Delta)$ continuously;
- Δ has a pp interpretation in Γ .

Let **1** be the clone of projections on a 2-element set.

Fact: It is the polymorphism clone of pos. 1-in-3-SAT.

Corollary

Let Γ be ω -categorical. TFAE:

- **Pol**(Γ) \rightarrow **1** continuously;
- pos. 1-in-3-SAT has a pp interpretation in Γ;

Theorem (Bodirsky + MP '11)

Let Γ be ω -categorical, and Δ be finite. TFAE:

- $Pol(\Gamma) \rightarrow Pol(\Delta)$ continuously;
- Δ has a pp interpretation in Γ .

Let **1** be the clone of projections on a 2-element set.

Fact: It is the polymorphism clone of pos. 1-in-3-SAT.

Corollary

Let Γ be ω -categorical. TFAE:

- **Pol**(Γ) \rightarrow **1** continuously;
- pos. 1-in-3-SAT has a pp interpretation in Γ;
- All finite structures have a pp interpretation in Γ.

Clone conjectures

Michael Pinsker

Conjecture (Bodirsky + MP '11)

Let Γ be a reduct of a finitely bounded homogeneous structure. Let Δ be its core. Then:

Conjecture (Bodirsky + MP '11)

Let Γ be a reduct of a finitely bounded homogeneous structure. Let Δ be its core. Then:

• there exists a finite tuple \bar{c} such that $\mathsf{Pol}(\Delta, \bar{c}) \to \mathbf{1}$ continuously, or

Conjecture (Bodirsky + MP '11)

Let Γ be a reduct of a finitely bounded homogeneous structure. Let Δ be its core. Then:

- there exists a finite tuple \bar{c} such that $\mathsf{Pol}(\Delta, \bar{c}) \to \mathbf{1}$ continuously, or
- CSP(Γ) is in P.

Conjecture (Bodirsky + MP '11)

Let Γ be a reduct of a finitely bounded homogeneous structure. Let Δ be its core. Then:

• there exists a finite tuple \bar{c} such that $\mathsf{Pol}(\Delta, \bar{c}) \to \mathbf{1}$ continuously, or

■ CSP(Γ) is in P.

Problems:

Conjecture (Bodirsky + MP '11)

Let Γ be a reduct of a finitely bounded homogeneous structure. Let Δ be its core. Then:

• there exists a finite tuple \bar{c} such that $\mathsf{Pol}(\Delta, \bar{c}) \to \mathbf{1}$ continuously, or

CSP(Γ) is in P.

Problems:

Does not use full power of reductions (i), (h), (c).

Conjecture (Bodirsky + MP '11)

Let Γ be a reduct of a finitely bounded homogeneous structure. Let Δ be its core. Then:

• there exists a finite tuple \bar{c} such that $\mathsf{Pol}(\Delta, \bar{c}) \to \mathbf{1}$ continuously, or

CSP(Γ) is in P.

Problems:

- Does not use full power of reductions (i), (h), (c).
- Is criterion about structure of $Pol(\Delta, \bar{c})$, rather than $Pol(\Gamma)$.

Clone conjectures

Michael Pinsker

Let $\mathfrak{C}, \mathfrak{D}$ be function clones.

Let ${\mathfrak C}, {\mathfrak D}$ be function clones.

Function ξ from \mathcal{C} to \mathcal{D} is an h1 clone homomorphism if it preserves height 1 equations: $\xi(f(x_{i_1}, \ldots, x_{i_n})) = \xi(f)(x_{i_1}, \ldots, x_{i_n})$.

Let ${\mathfrak C}, {\mathfrak D}$ be function clones.

Function ξ from \mathcal{C} to \mathcal{D} is an h1 clone homomorphism if it preserves height 1 equations: $\xi(f(x_{i_1}, \ldots, x_{i_n})) = \xi(f)(x_{i_1}, \ldots, x_{i_n})$.

If there exists such a function, we write $\mathcal{C} \rightsquigarrow \mathcal{D}$.

Let ${\mathfrak C}, {\mathfrak D}$ be function clones.

Function ξ from \mathcal{C} to \mathcal{D} is an h1 clone homomorphism if it preserves height 1 equations: $\xi(f(x_{i_1}, \ldots, x_{i_n})) = \xi(f)(x_{i_1}, \ldots, x_{i_n})$.

If there exists such a function, we write $\mathcal{C} \rightsquigarrow \mathcal{D}$.

Theorem (Barto + Opršal + MP '15)

Let Γ be ω -categorical, let Δ be finite. TFAE:

Let ${\mathfrak C}, {\mathfrak D}$ be function clones.

Function ξ from \mathcal{C} to \mathcal{D} is an h1 clone homomorphism if it preserves height 1 equations: $\xi(f(x_{i_1}, \ldots, x_{i_n})) = \xi(f)(x_{i_1}, \ldots, x_{i_n})$.

If there exists such a function, we write $\mathcal{C} \rightsquigarrow \mathcal{D}$.

Theorem (Barto + Opršal + MP '15)

Let Γ be ω -categorical, let Δ be finite. TFAE:

• Δ can be obtained from Γ by {(i), (h), (c)}.

Let ${\mathfrak C}, {\mathfrak D}$ be function clones.

Function ξ from \mathcal{C} to \mathcal{D} is an h1 clone homomorphism if it preserves height 1 equations: $\xi(f(x_{i_1}, \ldots, x_{i_n})) = \xi(f)(x_{i_1}, \ldots, x_{i_n})$.

If there exists such a function, we write $\mathcal{C} \rightsquigarrow \mathcal{D}$.

Theorem (Barto + Opršal + MP '15)

Let Γ be ω -categorical, let Δ be finite. TFAE:

- Δ can be obtained from Γ by {(i), (h), (c)}.
- $Pol(\Gamma) \rightsquigarrow Pol(\Delta)$ uniformly continuously.

The new conjecture

New Conjecture

The new conjecture

New Conjecture

Let Γ be a reduct of a finitely bounded homogeneous structure. Then:

- **Pol**(Γ) \rightsquigarrow **1** uniformly continuously, or
- CSP(Г) is in P.

The new conjecture

New Conjecture

Let Γ be a reduct of a finitely bounded homogeneous structure. Then:

- **Pol**(Γ) \rightsquigarrow **1** uniformly continuously, or
- CSP(Г) is in P.

Old Conjecture

Let Γ be a reduct of a finitely bounded homogeneous structure. Let Δ be its core. Then:

• there exists a finite tuple \bar{c} such that $\mathsf{Pol}(\Delta, \bar{c}) \to \mathbf{1}$ continuously, or

■ CSP(Г) is in P.

Clone conjectures

Achievement:

Truer conjecture

- Truer conjecture
- Easier conjecture: avoids core (loss of properties, etc.)

- Truer conjecture
- Easier conjecture: avoids core (loss of properties, etc.)
- Easier conjecture: height 1 equations

- Truer conjecture
- Easier conjecture: avoids core (loss of properties, etc.)
- Easier conjecture: height 1 equations
- **Criterion** in terms of $Pol(\Gamma)$.

Achievement:

- Truer conjecture
- Easier conjecture: avoids core (loss of properties, etc.)
- Easier conjecture: height 1 equations
- **Criterion** in terms of $Pol(\Gamma)$.

Possibilities:

Achievement:

- Truer conjecture
- Easier conjecture: avoids core (loss of properties, etc.)
- Easier conjecture: height 1 equations
- **Criterion** in terms of $Pol(\Gamma)$.

Possibilities:

Both false: we do not understand homogeneous structures.

Achievement:

- Truer conjecture
- Easier conjecture: avoids core (loss of properties, etc.)
- Easier conjecture: height 1 equations
- **Criterion** in terms of $Pol(\Gamma)$.

Possibilities:

- Both false: we do not understand homogeneous structures.
- Old false, new true: method for disproving old conjecture.

Achievement:

- Truer conjecture
- Easier conjecture: avoids core (loss of properties, etc.)
- Easier conjecture: height 1 equations
- **Criterion** in terms of $Pol(\Gamma)$.

Possibilities:

- Both false: we do not understand homogeneous structures.
- *Old false, new true:* method for disproving old conjecture.
- **Both true:** structural insight on clones of ω -categorical structures.

Clone conjectures

Michael Pinsker

Problem (Conjectures equivalent?)

Let Γ be an ω -categorical core such that Pol(Γ) \rightsquigarrow **1** uniformly continuously. Then Pol(Γ, \bar{c}) \rightarrow **1** continuously for some \bar{c} ?

Problem (Conjectures equivalent?) Let Γ be an ω -categorical core such that Pol(Γ) \rightsquigarrow **1** uniformly continuously.

Then $\mathsf{Pol}(\Gamma, \bar{c}) \to \mathbf{1}$ continuously for some \bar{c} ?

Observe: $Pol(\Gamma, \bar{c}) \subseteq Pol(\Gamma)$ ("stabilizer").

Problem (Conjectures equivalent?) Let Γ be an ω -categorical core such that $Pol(\Gamma) \rightsquigarrow \mathbf{1}$ uniformly continuously. Then $Pol(\Gamma, \bar{c}) \rightarrow \mathbf{1}$ continuously for some \bar{c} ?

Observe: $Pol(\Gamma, \bar{c}) \subseteq Pol(\Gamma)$ ("stabilizer").

Proposition

There is an ω -categorical core Γ with a uniformly continuous h1 clone homomorphism ξ : Pol(Γ) \rightsquigarrow **1** such that no restriction of ξ to any Pol(Γ, \overline{c}) is a clone homomorphism.

III: Breakdown and decomposition of the talk
Clone conjectures

Old conjecture:

Old conjecture:

Let Γ be an ω -categorical core.

Old conjecture:

Let Γ be an ω -categorical core.

Suppose for no expansion (Γ, \bar{c}) the clone Pol (Γ, \bar{c}) has a continuous clone homomorphism to **1**.

Old conjecture:

Let Γ be an ω -categorical core.

Suppose for no expansion (Γ, \bar{c}) the clone Pol (Γ, \bar{c}) has a continuous clone homomorphism to **1**.

Problem

Are there non-trivial equations that hold in $Pol(\Gamma)$, i.e., $Pol(\Gamma) \not\rightarrow 1$?

Old conjecture:

Let Γ be an ω -categorical core.

```
Suppose for no expansion (\Gamma, \bar{c}) the clone Pol(\Gamma, \bar{c}) has a continuous clone homomorphism to 1.
```

Problem

Are there non-trivial equations that hold in $Pol(\Gamma)$, i.e., $Pol(\Gamma) \rightarrow 1$?

Then: apply Ramsey method to turn equations into an algorithm.

Old conjecture:

Let Γ be an ω -categorical core.

Suppose for no expansion (Γ, \bar{c}) the clone Pol (Γ, \bar{c}) has a continuous clone homomorphism to **1**.

Problem

Are there non-trivial equations that hold in $Pol(\Gamma)$, i.e., $Pol(\Gamma) \rightarrow 1$?

Then: apply Ramsey method to turn equations into an algorithm.

New conjecture:

Old conjecture:

Let Γ be an ω -categorical core.

Suppose for no expansion (Γ, \bar{c}) the clone Pol (Γ, \bar{c}) has a continuous clone homomorphism to **1**.

Problem

Are there non-trivial equations that hold in $Pol(\Gamma)$, i.e., $Pol(\Gamma) \rightarrow 1$?

Then: apply Ramsey method to turn equations into an algorithm.

New conjecture:

Problem

Let $Pol(\Gamma)$ have no uniformly continuously h1 homomorphism to **1**.

Old conjecture:

Let Γ be an ω -categorical core.

```
Suppose for no expansion (\Gamma, \bar{c}) the clone Pol(\Gamma, \bar{c}) has a continuous clone homomorphism to 1.
```

Problem

Are there non-trivial equations that hold in $Pol(\Gamma)$, i.e., $Pol(\Gamma) \rightarrow 1$?

Then: apply Ramsey method to turn equations into an algorithm.

New conjecture:

Problem Let $Pol(\Gamma)$ have no uniformly continuously h1 homomorphism to 1. Then $\neg(Pol(\Gamma) \rightsquigarrow 1)$?

Clone conjectures

Clone conjectures

Proposition

If \neg (Pol(Γ) \rightsquigarrow **1**), then there are finitely many ternary h1 equations holding in Pol(Γ) that are unsatisfiable in **1**.

Proposition

If \neg (Pol(Γ) \rightsquigarrow **1**), then there are finitely many ternary h1 equations holding in Pol(Γ) that are unsatisfiable in **1**.

ternary h1 equations: of the form

f(x, x, y) = g(y, x, y)

Proposition

If \neg (Pol(Γ) \rightsquigarrow **1**), then there are finitely many ternary h1 equations holding in Pol(Γ) that are unsatisfiable in **1**.

ternary h1 equations: of the form

$$f(x,x,y)=g(y,x,y)$$

Proposition

If $\neg(\text{Pol}(\Gamma) \rightarrow 1)$, then there are finitely many ternary h1 equations modulo unaries holding in $\text{Pol}(\Gamma)$ that are unsatisfiable in 1.

Proposition

If \neg (Pol(Γ) \rightsquigarrow **1**), then there are finitely many ternary h1 equations holding in Pol(Γ) that are unsatisfiable in **1**.

ternary h1 equations: of the form

$$f(x,x,y)=g(y,x,y)$$

Proposition

If $\neg(\text{Pol}(\Gamma) \rightarrow 1)$, then there are finitely many ternary h1 equations modulo unaries holding in $\text{Pol}(\Gamma)$ that are unsatisfiable in 1.

Example:

$$\alpha f(\beta \mathbf{x}, \gamma \mathbf{y}) = \delta f(\varepsilon \mathbf{y}, \mathbf{x})$$

Clone conjectures

Theorem (Bodirsky + Kára '08)

Let Γ be a reduct of $(\mathbb{Q}; <)$, and Δ be its core. Then $(\Delta, \bar{c}) \rightarrow \mathbf{1}$ continuously for some \bar{c} , or Pol(Δ) satisfies $\alpha f(x, x, y) = \beta f(x, y, x) = \gamma f(y, x, x)$.

Theorem (Bodirsky + Kára '08)

Let Γ be a reduct of $(\mathbb{Q}; <)$, and Δ be its core. Then $(\Delta, \bar{c}) \rightarrow \mathbf{1}$ continuously for some \bar{c} , or Pol(Δ) satisfies $\alpha f(x, x, y) = \beta f(x, y, x) = \gamma f(y, x, x)$.

Random graph: $\alpha f(x, y, z) = f(z, x, y)$ (Bodirsky + MP '11)

Theorem (Bodirsky + Kára '08)

Let Γ be a reduct of $(\mathbb{Q}; <)$, and Δ be its core. Then $(\Delta, \bar{c}) \rightarrow \mathbf{1}$ continuously for some \bar{c} , or Pol(Δ) satisfies $\alpha f(x, x, y) = \beta f(x, y, x) = \gamma f(y, x, x)$.

Random graph:
$$\alpha f(x, y, z) = f(z, x, y)$$

(Bodirsky + MP '11)

 K_n -free graph: $\alpha f(x, y, z) = f(z, x, y)$ (Bodirsky + Martin + MP + Pongrácz '15)

Theorem (Bodirsky + Kára '08)

Let Γ be a reduct of $(\mathbb{Q}; <)$, and Δ be its core. Then $(\Delta, \bar{c}) \rightarrow \mathbf{1}$ continuously for some \bar{c} , or Pol(Δ) satisfies $\alpha f(x, x, y) = \beta f(x, y, x) = \gamma f(y, x, x)$.

Random graph:
$$\alpha f(x, y, z) = f(z, x, y)$$

(Bodirsky + MP '11)

 K_n -free graph: $\alpha f(x, y, z) = f(z, x, y)$ (Bodirsky + Martin + MP + Pongrácz '15)

Binary branching homogeneous *C*-relation: $\alpha f(x, y) = \beta f(y, x)$. (Bodirsky + Jonsson + Van Pham '15)

Clone conjectures

Any f satisfying

$$f(x, y, x, z, y, z) = f(y, x, z, x, z, y)$$

Any f satisfying

$$f(x, y, x, z, y, z) = f(y, x, z, x, z, y)$$

Theorem (Siggers '09)

Every finite idempotent Γ with $\Gamma \not \rightarrow 1$ has a Siggers polymorphism.

Any f satisfying

$$f(x, y, x, z, y, z) = f(y, x, z, x, z, y)$$

Theorem (Siggers '09)

Every finite idempotent Γ with $\Gamma \not \rightarrow 1$ has a Siggers polymorphism.

Theorem / Claim (Barto + ? + MP)

Any f satisfying

$$f(x, y, x, z, y, z) = f(y, x, z, x, z, y)$$

Theorem (Siggers '09)

Every finite idempotent Γ with $\Gamma \nrightarrow 1$ has a Siggers polymorphism.

Theorem / Claim (Barto + ? + MP)

Let Γ be an ω -categorical core. Then:

Any f satisfying

$$f(x, y, x, z, y, z) = f(y, x, z, x, z, y)$$

Theorem (Siggers '09)

Every finite idempotent Γ with $\Gamma \nrightarrow 1$ has a Siggers polymorphism.

Theorem / Claim (Barto + ? + MP)

Let Γ be an ω -categorical core. Then:

Either $Pol(\Gamma, \bar{c}) \rightarrow \mathbf{1}$ continuously for some \bar{c} ,

Any f satisfying

$$f(x, y, x, z, y, z) = f(y, x, z, x, z, y)$$

Theorem (Siggers '09)

Every finite idempotent Γ with $\Gamma \nrightarrow 1$ has a Siggers polymorphism.

Theorem / Claim (Barto + ? + MP)

Let Γ be an ω -categorical core. Then:

- Either $Pol(\Gamma, \bar{c}) \rightarrow 1$ continuously for some \bar{c} ,
- or Pol(Γ) satisfies

$$\alpha f(\mathbf{x}, \mathbf{y}, \mathbf{x}, \mathbf{z}, \mathbf{y}, \mathbf{z}) = \beta f(\mathbf{y}, \mathbf{x}, \mathbf{z}, \mathbf{x}, \mathbf{z}, \mathbf{y})$$

(and $Pol(\Gamma) \rightarrow \mathbf{1}$).

Thank you!

Clone conjectures

Thanks to the organizers!

Thanks to Norbert!

Clone conjectures