
Chapter 6
A Hadwiger-type theorem for general tensor
valuations

Franz E. Schuster

Abstract Hadwiger’s characterization of continuous rigid motion invariant real
valued valuations has been the starting point for many important developments in
valuation theory. In this chapter, the decomposition of the space of continuous and
translation invariant valuations into a sum of SO(n) irreducible subspaces, derived by
S. Alesker, A. Bernig and the author, is discussed. It is also explained how this result
can be reformulated in terms of a Hadwiger-type theorem for translation invariant
and SO(n) equivariant valuations with values in an arbitrary finite dimensional SO(n)
module. In particular, this includes valuations with values in general tensor spaces.
The proofs of these results will be outlined modulo a couple of basic facts from
representation theory. In the final part, we survey a number of special cases and
applications of the main results in different contexts of convex and integral geometry.

6.1 Statement of the principal results

Let K n denote the space of convex bodies in Euclidean n-space Rn, where n≥ 3,
endowed with the Hausdorff metric. In this chapter we consider valuations φ defined
on K n and taking values in an Abelian semigroup A , that is,

φ(K∪L)+φ(K∩L) = φ(K)+φ(L)

whenever K∪L is convex and + denotes the operation of A .
The most famous and important classical result on scalar-valued valuations (where

A = R or C) is the characterization of continuous rigid motion invariant valuations
by Hadwiger [40] (which was slightly improved later by Klain [45]).
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Theorem ([40, 45]). A basis for the vector space of all continuous, translation- and
SO(n) invariant scalar valuations on K n is given by the intrinsic volumes.

The characterization theorem of Hadwiger had a transformative effect on integral
geometry. It not only allows for an effortless proof of the principal kinematic formula
(see, e.g., [47]) but almost all classical integral-geometric results can be derived
from this landmark theorem. It also motivated subsequent characterizations of rigid
motion equivariant vector-valued valuations (where A = Rn) (see [41]), valuations
taking values in the set of finite Borel measures on Rn or Sn−1 which intertwine
rigid motions (see [69, 70]) and, more recently, Minkowski valuations (where A =
K n endowed with Minkowski addition) which are translation invariant and SO(n)
equivariant (see [44, 68, 72, 74, 76, 77]). Important parts of modern integral geometry
also deal with variants of Hadwiger’s characterization theorem, where either the
group SO(n) is replaced by a subgroup acting transitively on the unit sphere (see
[6, 16, 17, 19, 21, 24] ) or the valuations are invariant under the larger group SL(n)
but neither assumed to be continuous nor translation invariant (see, e.g., [36, 51, 55]).

Here we focus on continuous and translation invariant valuations which take values
in a general (finite dimensional) tensor space Γ and are equivariant with respect to
SO(n). The case of symmetric tensors, where Γ = Symk(Rn), was first investigated
by McMullen [60], who considered instead of translation invariant more general
isometry covariant tensor valuations. Alesker [4, 3] showed that the space of all
such continuous isometry covariant Symk(Rn)-valued valuations (of a fixed rank and
given degree of homogeneity) is spanned by the Minkowski tensors. More recently,
Hug, Schneider and R. Schuster [42, 43] explicitly determined the dimension of this
space and obtained a full set of kinematic formulas for Minkowski tensors. Following
a more algebraic approach, these kinematic formulas could be further simplified
in the translation invariant case by Bernig and Hug [20]. For applications of the
integral geometry of tensor valuations in different areas, see Chapters 10 to 13 and
the references therein. We also mention that Symk(Rn)-valued valuations were also
investigated in the context of affine and centro-affine geometry by Ludwig [52] and
Haberl and Parapatits [37, 38].

Bernig [15] constructed an interesting translation invariant valuation with values
in Λ k(Rn)⊗Λ k(Rn) which can be interpreted as a natural curvature tensor. Apart
from this, not much was known for general, non-symmetric tensor valuations until
recently Alesker, Bernig and the author [10] established a Hadwiger-type theorem
for continuous, translation invariant and SO(n) equivariant valuations with values in
an arbitrary finite dimensional complex representation space Γ of SO(n). In order
to state this result first recall that given a Lie group G and a topological vector
space Γ (finite or infinite dimensional), a (continuous) representation of G on Γ is a
continuous left action G×Γ → Γ such that for each g ∈G the map v 7→ g ·v is linear.
Note that we assume throughout that all representations are continuous.

For a finite dimensional complex vector space Γ , we denote by ΓVal the vector
space of all continuous and translation invariant valuations with values in Γ and write
ΓVali for its subspace of all valuations of degree i. If Γ = C, then we simply write
Val and Vali, respectively. McMullen’s decomposition theorem [57] implies that
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ΓVal =
⊕

0≤i≤n

ΓVali. (6.1)

We also recall the parametrization of the isomorphism classes of irreducible
representations of SO(n) in terms of their highest weights. These can be identified
with bn/2c-tuples of integers (λ1, . . . ,λbn/2c) such that{

λ1 ≥ λ2 ≥ ·· · ≥ λbn/2c ≥ 0 for odd n,
λ1 ≥ λ2 ≥ ·· · ≥ λn/2−1 ≥ |λn/2| for even n.

(6.2)

We write Γλ for any isomorphic copy of an irreducible representation of SO(n) with
highest weight λ = (λ1, . . . ,λbn/2c). Note that since SO(n) is a compact Lie group,
every Γλ is finite dimensional. Moreover, any finite dimensional representation
of SO(n) can be decomposed into a direct sum of irreducible representations. In
particular, we have a decomposition of our representation space Γ of the form

Γ =
⊕

λ

m(Γ,λ )Γλ , (6.3)

where the sum ranges over a finite number of highest weights λ = (λ1, . . . ,λbn/2c)
satisfying (6.2). Here and in the following m(Θ,λ ) denotes the multiplicity of Γλ in
an arbitrary SO(n) module Θ which, by Schur’s lemma, is given by

m(Θ,λ ) = dimHomSO(n)(Θ,Γλ ),

where HomSO(n) denotes as usual the space of continuous linear SO(n) equivariant
maps. If m(Θ,λ ) is 0 or 1 for all highest weights λ satisfying (6.2), we say that the
SO(n) module Θ is multiplicity free. For explicit examples of decompositions of the
form (6.3) and more background material as well as references on representation
theory of compact Lie groups, see Section 6.2.

We are now ready to state the main result of [10] which is the topic of this chapter.

Theorem 6.1. Let Γ be a finite dimensional complex SO(n) module and let 0≤ i≤ n.
The dimension of the subspace of SO(n) equivariant valuations in ΓVali is given by

∑
λ

m(Γ,λ ),

where the sum ranges over all highest weights λ = (λ1, . . . ,λbn/2c) satisfying (6.2)
and the following additional conditions:

(i) λ j = 0 for j > min{i,n− i};
(ii) |λ j| 6= 1 for 1≤ j ≤ bn/2c;

(iii) |λ2| ≤ 2.

Theorem 6.1 follows from an equivalent result about the decomposition of the
space Vali into SO(n) irreducible subspaces.
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Theorem 6.2. Let 0≤ i≤ n. Under the action of SO(n) the space Vali is multiplicity
free. Moreover, m(Vali,λ ) = 1 if and only if the highest weight λ = (λ1, . . . ,λbn/2c)
satisfies (6.2) and the conditions (i)–(iii) from Theorem 6.1.

In order to outline how Theorem 6.1 can be deduced from Theorem 6.2 (for the
precise argument, see [10, p. 765]), first note that we may assume that Γ is irreducible,
that is, Γ = Γµ for some highest weight µ = (µ1, . . . ,µbn/2c) satisfying (6.2). Next,
observe that the linear map ι : Vali⊗Γ→ ΓVali, induced by

ι(φ ⊗ v)(K) = φ(K)v,

is an isomorphism and that the subspace of SO(n) equivariant valuations in ΓVali
corresponds under this isomorphism to the subspace of SO(n) invariant elements in
Vali⊗Γ. (As usual we will use the superscript SO(n) to denote subspaces of SO(n)
invariant elements.) Now, if S denotes the set of highest weights of SO(n) satisfying
conditions (i)-(iii), then, by Theorem 6.2,

dim(Vali⊗Γ)SO(n) = ∑
λ∈S

dim(Γλ ⊗Γµ)
SO(n) = ∑

λ∈S
dimHomSO(n)(Γ

∗
λ
,Γµ).

It follows from Lemma 6.3 below, that the SO(n) irreducible subspaces Γλ for λ ∈ S
are not necessarily isomorphic as SO(n) modules to their dual representations Γ∗

λ

(see Section 6.2 for details). However, Lemma 6.3 also implies that if λ ∈ S, then also
λ ′ ∈ S, where λ ′ is the highest weight of Γ∗

λ
. Thus, from an application of Schur’s

lemma, we obtain

dim(Vali⊗Γ)SO(n) = ∑
λ∈S

dimHomSO(n)(Γλ ,Γµ) =

{
1 if µ ∈ S,
0 otherwise

which is precisely the statement of Theorem 6.1 in the case Γ = Γµ . We also remark
that the argument outlined here can be easily reversed to deduce Theorem 6.2 from
Theorem 6.1.

A proof of Theorem 6.2 for even valuations was first given by Alesker and
Bernstein [11] (based on the Irreducibility Theorem of Alesker [5]). They used the
Klain embedding of continuous, translation invariant and even valuations and its
relation to the cosine transform on Grassmannians to deduce Theorem 6.2 in this
special case. We will discuss this approach in more detail in the last section of this
chapter, where we also survey a number of other special cases and applications of
Theorems 6.1 and 6.2.

In Section 6.2 we collect more background material about representations of
SO(n) which is needed for the analysis of the action of SO(n) on the space of
translation invariant differential forms on the sphere bundle. Combining this with a
description of smooth translation invariant valuations via integral currents by Alesker
[8] and, in a refined form, by Bernig and Bröcker [18] and Bernig [17], this will
allow us to give an essentially complete proof of Theorem 6.2 in Section 6.4.
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6.2 Irreducible representations of SO(n)

For an introduction to the representation theory of compact Lie groups we refer to
the books by Bröcker and tom Dieck [22], Fulton and Harris [25], Goodman and
Wallach [33], and Knapp [49]. These books, in particular, contain all the material on
irreducible representations of SO(n) which are needed in this chapter.

In this and the next section let V be an n-dimensional Euclidean vector space and
write VC =V ⊗C for its complexification. For later reference we state here a number
of examples of irreducible SO(n) modules as well as reducible ones together with
their direct sum decomposition into SO(n) irreducible subspaces.

Examples.

(a) Up to isomorphism, the trivial representation is the only one dimensional (com-
plex) representation of SO(n). It corresponds to the SO(n) module Γ(0,...,0). The
standard representation of SO(n) on VC is isomorphic to Γ(1,0,...,0).

(b) The exterior power Λ iVC is SO(n) irreducible for every 0 ≤ i ≤ bn/2c−1. If
n = 2i+1 is odd, then Λ iVC is also irreducible under the action of SO(n). In
these cases the highest weight tuple of Λ iVC is given by λ = (1, . . . ,1,0, . . . ,0),
where 1 appears i times. If n = 2i is even, then Λ iVC is not irreducible but is a
direct sum of two irreducible subspaces, namely, Λ iVC = Γ(1,...,1)⊕Γ(1,...,1,−1).
Moreover, for every i ∈ {0, . . . ,n}, there is a natural isomorphism of SO(n)
modules

Λ
iVC ∼= Λ

n−iVC. (6.4)

The spaces Λ iVC are called fundamental representations since they can be used
to construct arbitrary irreducible representations of SO(n) (cf. [25]).

(c) The symmetric power SymkVC is not irreducible as SO(n) module when k ≥ 2.
Its direct sum decomposition into irreducible subspaces takes the form

SymkVC =

bk/2c⊕
j=0

Γ(k−2 j,0,...,0). (6.5)

(d) The decomposition of L2(Sn−1) into an orthogonal sum of SO(n) irreducible
subspaces is given by

L2(Sn−1) =
⊕
k∈N

H n
k , (6.6)

where H n
k is the space of spherical harmonics of dimension n and degree k.

The highest weight tuple of the space H n
k is given by λ = (k,0, . . . ,0).

(e) For 1 ≤ i ≤ n− 1, the space L2(G(n, i)) is an orthogonal sum of SO(n) irre-
ducible subspaces whose highest weights (λ1, . . . ,λbn/2c) satisfy (6.2) and the
following two additional conditions (see, e.g., [49, Theorem 8.49]):{

λ j = 0 for all j > min{i,n− i},
λ1, . . . ,λbn/2c are all even.

(6.7)
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Let Θ be a complex finite dimensional SO(n) module which is not necessarily
irreducible. The dual representation of SO(n) on the dual space Θ∗ is defined by

(ϑ u∗)(v) = u∗(ϑ−1v), ϑ ∈ SO(n), u∗ ∈Θ
∗, v ∈Θ.

We say that Θ is self-dual if Θ and Θ∗ are isomorphic representations. The module
Θ is called real if there exists a non-degenerate symmetric SO(n) invariant bilinear
form on Θ. In particular, if Θ is real, then Θ is also self-dual.

Lemma 6.3 ([22]). Let λ = (λ1, . . . ,λbn/2c) be a tuple of integers satisfying (6.2).

(a) If n≡ 2 mod 4, then the irreducible representation Γλ of SO(n) is real if and
only if λn/2 = 0.

(b) If n≡ 2 mod 4 and λn/2 6= 0, then the dual of Γλ is isomorphic to Γλ ′ , where
λ ′ = (λ1, . . . ,λn/2−1,−λn/2).

(c) If n 6≡ 2 mod 4, then all representations of SO(n) are real.

Now, let Γ be again a finite dimensional complex SO(n) module and denote by
ρ : SO(n)→ GL(Γ) the corresponding representation. The character of Γ is the
function charΓ : SO(n)→ C defined by

(charΓ)(ϑ) = trρ(ϑ),

where trρ(ϑ) is the trace of the linear map ρ(ϑ) : Γ→ Γ.
The most important property of the character of a complex representation is

that it determines the module Γ up to isomorphism. Moreover, several well known
properties of the trace map immediately carry over to useful arithmetic properties of
characters. For example, if Γ and Θ are finite dimensional SO(n) modules, then

char(Γ⊕Θ) = charΓ+ charΘ (6.8)
and

char(Γ⊗Θ) = charΓ · charΘ. (6.9)

A description of the characters of irreducible representations of compact Lie
groups in terms of their highest weights is provided by Weyl’s character formula. For
our purposes, that is, the case of the special orthogonal group SO(n), a consequence
of this description, known as the second determinantal formula, is crucial. In order to
state this result let λ = (λ1, . . . ,λbn/2c) be a tuple of non-negative integers satisfying
(6.2). We define the SO(n) module Γλ by

Γλ :=

{
Γλ ⊕Γλ ′ if n is even and λn/2 6= 0,
Γλ otherwise.

.

The conjugate of λ is the s := λ1 tuple µ = (µ1, . . . ,µs) defined by letting µ j be the
number of terms in λ that are greater than or equal j.
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The second determinantal formula expresses the character of Γλ as a polynomial
in the characters Ei := charΛ iVC, i ∈ Z. (Here and in the following, we use the
convention Ei = 0 for i < 0 or i > n.)

Theorem 6.4 ([25]). Let λ = (λ1, . . . ,λbn/2c) be a tuple of non-negative integers
satisfying (6.2) and let µ = (µ1, . . . ,µs) be the conjugate of λ . The character of Γλ

is equal to the determinant of the s× s-matrix whose i-th row is given by(
Eµi−i+1 Eµi−i+2 +Eµi−i · · · Eµi−i+s +Eµi−i−s+2

)
. (6.10)

In the definition of the conjugate of λ we will later also allow s > λ1. Note that
this introduces additional zeros at the end of the conjugate tuple but does not change
the determinant of the matrix defined by (6.10).

In order to analyze the action of SO(n) on the infinite dimensional space Val,
we need to briefly discuss the construction of a class of such infinite dimensional
representations of a Lie group G induced from closed subgroups H ⊆ G (although
we only need the case G = SO(n) and H = SO(n−1)). To this end, we denote by
C∞(G;Γ) the space of all smooth functions from G to an arbitrary finite dimensional
(complex) H module Γ. The induced representation of G by H on the space

IndG
HΓ :=

{
f ∈C∞(G;Γ) : f (gh) = h−1 f (g) for all g ∈ G,h ∈ H

}
⊆C∞(G;Γ)

is given by left translation, that is, (g f )(u) = f (g−1u), g,u ∈ G. Conversely, if Θ

is any representation of G, we obtain a representation ResG
HΘ of H by restriction.

The fundamental Frobenius Reciprocity Theorem establishes a connection between
induced and restricted representations.

Theorem 6.5 ([33]). If Θ is a G module and Γ is an H module, then there is a
canonical vector space isomorphism

HomG(Θ, IndG
HΓ)∼= HomH(ResG

HΘ,Γ).

A for our purposes crucial consequence of the Frobenius Reciprocity Theorem
(and the definition of multiplicity) is the fact that if Θ and Γ are irreducible, then the
multiplicity of Θ in IndG

HΓ equals the multiplicity of Γ in ResG
HΘ.

In order to apply Theorem 6.5 in the case G = SO(n) and H = SO(n−1), we re-
quire the following branching formula for decomposing ResSO(n)

SO(n−1)Γ into irreducible
SO(n−1) modules.

Theorem 6.6 ([25]). If Γλ is an irreducible representation of SO(n) with highest
weight tuple λ = (λ1, . . . ,λbn/2c) satisfying (6.2), then

ResSO(n)
SO(n−1)Γλ =

⊕
µ

Γµ , (6.11)

where the sum ranges over all µ = (µ1, . . . ,µk) with k := b(n−1)/2c satisfying
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λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ ·· · ≥ µk−1 ≥ λbn/2c ≥ |µk| for odd n,
λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ ·· · ≥ µk ≥ |λn/2| for even n.

6.3 Smooth valuations and the Rumin-de Rham complex

We discuss in this section a description of translation invariant smooth valuations
via integral currents and how it relates to induced representations. This will allow us
in the next section to apply the machinery from representation theory presented in
Section 6.2 to prove Theorem 6.2.

First recall that by McMullen’s decomposition theorem

Val =
⊕

0≤i≤n

Val+i ⊕Val−i , (6.12)

where Val±i denote the subspaces of valuations of degree i and even or odd parity,
respectively. In the cases i = 0 and i = n a simple description of the valuations in
Vali is possible (cf. Chapter 1, Theorem 1.16 and Corollary 1.24).

Proposition 6.7 ([39]).

(a) The space Val0 is one-dimensional and spanned by the Euler characteristic.
(b) The space Valn is one-dimensional and spanned by the volume functional.

Note that statement (a) of Proposition 6.7 is trivial while the non-trivial statement
(b) was proved by Hadwiger [39, p. 79]. We also note that Proposition 6.7 directly
implies Theorem 6.2 for the cases i = 0 and i = n.

There is also an explicit description of the valuations in Valn−1 going back to
McMullen [58] (cf. Chapter 1, Theorem 1.25). However, in this chapter we will not
make use of this result and we will therefore not repeat it here. Instead we turn to
the notion of smooth valuations. To this end first recall that the space Val becomes a
Banach space when endowed with the norm

‖φ‖= sup{|φ(K)| : K ⊆ Bn}.

Here, Bn denotes as usual the Euclidean unit ball. On the Banach space Val there is a
natural continuous action of the group GL(n) given by

(Aφ)(K) = φ(A−1K), A ∈ GL(n), φ ∈ Val.

Clearly, the subspaces Val±i ⊆ Val are GL(n) invariant. In fact, they are irreducible
as was shown by Alesker [5] (but we will not use this deep result directly).

Smooth translation invariant valuations were first introduced by Alesker [6].
By definition, they are precisely the smooth vectors (see, e.g. [79]) of the natural
representation of GL(n) on Val.
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Definition. A valuation φ ∈ Val is called smooth if the map GL(n)→ Val, defined
by A 7→ Aφ , is infinitely differentiable.

As usual, we denote by Val∞ the Fréchet space of smooth translation invariant
valuations endowed with the Gårding topology (see, e.g., [82, Section 4.4]) and write
Val∞i for its subspaces of smooth valuations of degree i.

By general properties of smooth vectors (cf. [79]), the spaces Val∞i are dense
GL(n) invariant subspaces of Vali and from (6.12) it is easy to deduce that

Val∞ =
⊕

0≤i≤n

Val∞i .

The advantage of considering smooth translation invariant valuations instead of
merely continuous ones is that the Fréchet space Val∞ admits additional algebraic
structures. Since these are precisely the topic of Chapter 4, we will discuss here only
one structural property of Val∞ which is crucial for us. To this end, first recall that
McMullen’s decomposition (6.12) implies that for any φ ∈ Val and K ∈K n, the
function t 7→ φ(K+ tBn) is a polynomial of degree at most n. This, in turn, gives rise
to a derivation operator Λ : Val→ Val, defined by

(Λφ)(K) =
d
dt

∣∣∣∣
t=0

φ(K + tBn). (6.13)

From this definition it follows that if φ ∈Vali, then Λφ ∈Vali−1, that Λ is continuous,
SO(n) equivariant, and that Λ maps smooth valuations to smooth ones. Moreover,
the following Hard Lefschetz theorem for Λ was proved by Alesker [6] for even and
by Bernig and Bröcker [18] for general valuations.

Theorem 6.8 ([6, 18]). For n
2 < i ≤ n, the map Λ2i−n : Val∞i → Val∞n−i is an SO(n)

equivariant isomorphism of Fréchet spaces.

The main tool used in [18] to establish Theorem 6.8 was a description of smooth
valuations in terms of the normal cycle map by Alesker [8]. Since a refined version
of this result by Bernig [17] (stated below as Theorem 6.9) is critical for the proof of
Theorem 6.2, we discuss these results and the necessary background in the following.

Let SV =V ×Sn−1 denote the unit sphere bundle on the n-dimensional Euclidean
vector space V . The natural (smooth) action of SO(n) on SV is given by

lϑ (x,u) := (ϑx,ϑu), ϑ ∈ SO(n),(x,u) ∈ SV. (6.14)

Similarly, each y ∈V determines a smooth map ty : SV → SV by

ty(x,u) = (x+ y,u), (x,u) ∈ SV. (6.15)

The canonical contact form α on SV is the one form given by

α|(x,u)(w) = 〈u,d(x,u)π(w)〉, w ∈ T(x,u)SV,
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where π : SV →V denotes the canonical projection and d(x,u)π is its differential at
(x,u) ∈ SV . Endowed with the contact form α the manifold SV becomes a 2n− 1
dimensional contact manifold. The kernel of α defines the so-called contact distribu-
tion Q := kerα . Note that the restriction of dα to Q is a non-degenerate two form
and, therefore, each space Q(x,u) becomes a symplectic vector space.

Since SV is a product manifold, the vector space Ω ∗(SV ) of complex valued
smooth differential forms on SV admits a bigrading given by

Ω
∗(SV ) =

⊕
i, j

Ω
i, j(SV ),

where Ω i, j(SV ) are the subspaces of Ω ∗(SV ) of forms of bidegree (i, j). We denote
by Ω i, j the subspace of translation invariant forms in Ω i, j(SV ), that is,

Ω
i, j = {ω ∈Ω

i, j(SV ) : t∗y ω = ω for all y ∈V}.

The natural (continuous) action of SO(n) on the vector space Ω i, j is given by

ϑω = l∗
ϑ−1ω, ϑ ∈ SO(n),ω ∈Ω

i, j.

Here, t∗y and l∗
ϑ−1 are the pullbacks of the maps defined in (6.14) and (6.15). We also

note that the restriction of the exterior derivative d to Ω i, j has bidegree (0,1).
For K ∈ K n and x ∈ ∂K, let N(K,x) denote the normal cone of K at x. The

normal cycle of K is the Lipschitz submanifold of SV defined by

nc(K) = {(x,u) ∈ SV : x ∈ ∂K,u ∈ N(K,x)}.

For 0≤ i≤ n−1, Alesker [8, Theorem 5.2.1] proved that the SO(n) equivariant map
ν : Ω i,n−i−1→ Val∞i , defined by

ν(ω)(K) =
∫

nc(K)
ω, (6.16)

is surjective. However, for our purposes we need a more precise version of this
statement which includes, in particular, a description of the kernel of ν first obtained
by Bernig and Bröcker [18]. In order to state this refinement, we first have to recall
the notion of primitive forms.

Let Ii, j denote the SO(n) submodule of Ω i, j defined by

Ii, j := {ω ∈Ω
i, j : ω = α ∧ξ +dα ∧ψ, ξ ∈Ω

i−1, j,ψ ∈Ω
i−1, j−1}.

The SO(n) module Ω
i, j
p of primitive forms is defined as the quotient

Ω
i, j
p := Ω

i, j/Ii, j. (6.17)

Primitive forms are very important for the study of translation invariant valuations
since, by a theorem of Bernig [17], the space Val∞i , 0 ≤ i ≤ n, fits into an exact
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sequence of the spaces Ω
i, j
p . In order to state Bernig’s result precisely, first note that

dIi, j ⊆ Ii, j+1. Thus, by (6.17), on one hand the exterior derivative induces a linear
SO(n) equivariant operator dQ : Ω

i, j
p →Ω

i, j+1
p . On the other hand, integration over

the normal cycle (6.16) induces a linear map ν : Ω
i,n−i−1
p → Val∞i which, clearly, is

also SO(n) equivariant.

Theorem 6.9 ([17]). For every 0≤ i≤ n, the SO(n) equivariant sequence of SO(n)
modules

0−−→Λ
iVC −−→Ω

i,0
p

dQ−−→Ω
i,1
p

dQ−−→ ·· ·
dQ−−→Ω

i,n−i−1
p

ν−−→ Val∞i −−→ 0

is exact.

In order to apply Theorem 6.9 in the proof of Theorem 6.2, we require an equiv-
alent description of primitive forms involving horizontal forms. To this end, let R
denote the Reeb vector field on SV defined by R(x,u) = (u,0). Note that α(R) = 1
and that iRdα = 0, where iR denotes the interior product with the vector field R. The
SO(n) submodule Ω

i, j
h ⊆Ω i, j of horizontal forms is defined by

Ω
i, j
h := {ω ∈Ω

i, j : iRω = 0}.

From this definition it is not difficult to see that the multiplication by the symplectic
form −dα induces an SO(n) equivariant linear operator L : Ω

i, j
h →Ω

i+1, j+1
h which

is injective if i+ j ≤ n−2. Moreover, it follows from (6.17) that in this case

Ω
i, j
p = Ω

i, j
h /LΩ

i−1, j−1
h . (6.18)

Let us now fix an arbitrary point u0 ∈ Sn−1 and let SO(n−1) denote the stabilizer
of SO(n) at u0. For u ∈ Sn−1, we denote by Wu := TuSn−1⊗C the complexification
of the tangent space TuSn−1 and we write W0 to denote Wu0 . The advantage of using
description (6.18) instead of definition (6.17) of primitive forms becomes clear
from the next lemma which relates horizontal and primitive forms to certain SO(n)
representations induced from SO(n−1).

Lemma 6.10 ([10]). For i, j ∈ N, there is an isomorphism of SO(n) modules

Ω
i, j
h
∼= IndSO(n)

SO(n−1)(Λ
iW ∗0 ⊗Λ

jW ∗0 ). (6.19)

Moreover, if i+ j ≤ n−1, then there is an isomorphism of SO(n) modules

Ω
i, j
p ⊕ IndSO(n)

SO(n−1)(Λ
i−1W ∗0 ⊗Λ

j−1W ∗0 )∼= IndSO(n)
SO(n−1)(Λ

iW ∗0 ⊗Λ
jW ∗0 ). (6.20)

Note that (6.20) is an immediate consequence of (6.19) and (6.18).
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6.4 Proof of the main result

With the auxiliary results from the last two sections at hand, we are now in a position
to complete the proof of Theorem 6.2. To this end, first recall that the cases i = 0 and
i = n are immediate consequences of Proposition 6.7. Hence, by Theorem 6.8, we
may assume that n/2≤ i < n.

Let λ = (λ1, . . . ,λbn/2c) be a highest weight tuple of SO(n). As a consequence
of (6.20), the multiplicity m(Ω i, j

p ,λ ) is finite for all i, j ∈ N such that i+ j ≤ n−1.
Since, by Theorem 6.9, the spaces Val∞i are quotients of Ω

i,n−i−1
p , it follows that

also m(Val∞i ,λ ) is finite. Moreover, since m(Vali,λ ) = m(Val∞i ,λ ), we deduce from
Theorem 6.9 that

m(Vali,λ ) = (−1)n−im(Λ iVC,λ )+
n−i−1

∑
j=0

(−1)n−1−i− jm(Ω i, j
p ,λ ) (6.21)

and another application of (6.20) yields

m(Ω i, j
p ,λ )

= m
(

IndSO(n)
SO(n−1)(Λ

iW ⊗Λ
jW ),λ

)
−m

(
IndSO(n)

SO(n−1)(Λ
i−1W ⊗Λ

j−1W ),λ
)
,

where W ∼=W ∗ denotes the complex standard representation of SO(n−1). In order
to further simplify the last expression, we require a consequence of the second
determinantal formula, Theorem 6.4. In order to state this simple auxiliary result, let
#(λ , j) denote the number of integers in λ which are equal to j.

Lemma 6.11. If i, j ∈ N are such that n/2≤ i≤ n and i+ j ≤ n, then

EiE j−Ei−1E j−1 = ∑
λ

charΓλ , (6.22)

where the sum ranges over all tuples of non-negative integers λ = (λ1, . . . ,λbn/2c)
satisfying (6.2) and

λ1 ≤ 2, #(λ ,1) = n− i− j, #(λ ,2)≤ j. (6.23)

Proof. The conjugate of an bn/2c-tuple of non-negative integers λ = (λ1, . . . ,λbn/2c)
satisfying (6.2) and (6.23) is given by µ = (µ1,µ2), where µ2 = #(λ ,2) ≤ j and
µ1−µ2 = #(λ ,1) = n− i− j. Thus, by Theorem 6.4,

charΓλ = det
(

Eµ2+k Eµ2+k+1 +Eµ2+k−1
Eµ2−1 Eµ2 +Eµ2−2

)
,

where k = n− i− j. Since, by (6.4), En−i = Ei, we therefore obtain for the right hand
side of (6.22),
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∑
λ

charΓλ =
j

∑
µ2=0

(
Eµ2+k(Eµ2 +Eµ2−2)−Eµ2−1(Eµ2+k+1 +Eµ2+k−1)

)
= En−iE j−En−(i−1)E j−1 = EiE j−Ei−1E j−1. ut

An application of Lemma 6.11 with n replaced by n−1 and 0≤ j≤ n−1− i now
yields

m(Ω i, j
p ,λ ) = ∑

σ

m
(

IndSO(n)
SO(n−1)Γσ ,λ

)
, (6.24)

where the sum ranges over all k := b(n−1)/2c-tuples of non-negative highest weights
σ = (σ1, . . . ,σk) of SO(n−1) such that

σ1 ≤ 2, #(σ ,1) = n−1− i− j, #(σ ,2)≤ j.

Let Wi denote the union of these k-tuples of non-negative highest weights of
SO(n−1). By (6.21) and (6.24), we now have

m(Vali,λ ) = (−1)n−im(Λ iVC,λ )+ ∑
σ∈Wi

(−1)|σ |m
(

IndSO(n)
SO(n−1)Γσ ,λ

)
. (6.25)

The Frobenius Reciprocity Theorem (Theorem 6.5), the branching formula from
Theorem 6.6, and the definition of Γσ yield

∑
σ∈Wi

(−1)|σ |m
(

IndSO(n)
SO(n−1)Γσ ,λ

)
= ∑

µ

(−1)|µ|,

where the sum on the right ranges over all tuples µ = (µ1, . . . ,µk) with µn−i = 0 and{
λ ∗1 ≥ µ1 ≥ λ ∗2 ≥ µ2 ≥ . . .≥ µk−1 ≥ λ ∗bn/2c ≥ |µk| for odd n,

λ ∗1 ≥ µ1 ≥ λ ∗2 ≥ µ2 ≥ . . .≥ µk ≥ λ ∗n/2 for even n.
.

Here, λ ∗1 := min{λ1,2} and λ ∗j := |λ j| for every 1 < j ≤ bn/2c. Thus, if λ ∗n−i+1 > 0,
then there is no such tuple µ . However, if λ ∗n−i+1 = 0, then

∑
σ∈Wi

(−1)|σ |m
(

IndSO(n)
SO(n−1)Γσ ,λ

)
=

n−i−1

∏
j=1

λ ∗j

∑
µ j=λ ∗j+1

(−1)µ j .

This product vanishes if the λ ∗j , j = 1, . . . ,n− i, do not all have the same parity. If the
λ ∗j all do have the same parity, then the product above equals (−1)(n−i−1)λ ∗1 . Hence,
we obtain for i > n/2,

∑
σ∈Wi

(−1)|σ |m
(

IndSO(n)
SO(n−1)Γσ ,λ

)
=


(−1)n−i−1 if Γλ

∼= Λ n−iVC,

1 if λ satisfies (i), (ii), (iii),
0 otherwise.
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If i = n/2, in which case n must be even, then

∑
σ∈Wi

(−1)|σ |m
(

IndSO(n)
SO(n−1)Γσ ,λ

)
=


(−1)i−1 if λ = (1, . . . ,1,±1),
1 if λ satisfies (i), (ii) and (iii),
0 otherwise.

Plugging these expressions into (6.25) and using that Λ n/2VC = Γ(1,...,1)⊕Γ(1,...,1,−1)

if n is even and Λ n−iVC ∼= Λ iVC for every i ∈ {0, . . . ,n}, completes the proof of
Theorem 6.2.

6.5 Special cases and applications

In this final section we discuss numerous special cases and recent applications of
Theorems 6.1 and 6.2. In particular, these results should illustrate the variety of
implications that the study of valuations has for different areas.

6.5.1 Special cases

The following is a list of special cases and immediate consequences of Theorem 6.1.

• If Γ = Γ(0,...,0)
∼= C is the trivial representation, then the subspace of SO(n) equiv-

ariant valuations in ΓVal coincides with the vector space ValSO(n) of all continuous
and rigid motion invariant scalar valuations on K n. By (6.1) and Theorem 6.1,
we have

dimValSO(n) =
n

∑
i=0

dimValSO(n)
i = n+1.

Together with the fact that intrinsic volumes of different degrees of homogeneity
are linearly independent, this yields Hadwiger’s characterization theorem.
• Let Γ = Γ(1,0,...,0)

∼= VC be the complex standard representation of SO(n). By
Theorem 6.1, there is no non-trivial continuous, translation invariant, and SO(n)
equivariant vector valued valuation. While this result seems of no particular interest
at first, it directly implies a classical characterization of the Steiner point map by
Schneider [67]. Recall that the Steiner point s(K) of a convex body K ∈K n is
defined by

s(K) =
1
n

∫
Sn−1

uh(K,u)du,

where h(K, ·) is the support function of K and du denotes integration with respect
to the rotation invariant probability measure on the unit sphere.

Theorem ([67]). A map φ : K n→ Rn is a continuous, rigid motion equivariant
valuation if and only if φ is the Steiner point map.
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Proof. It is well known that s : K n→ Rn has the asserted properties (cf. [71]).
Assume that φ is another such valuation. Then φ − s is a continuous, translation
invariant, and SO(n) equivariant valuation and, hence, φ − s = 0. ut

• Next, let Γ = SymkVC be the space of symmetric tensors of rank k ≥ 2 over
VC. The subspace of SO(n) equivariant valuations in ΓVal is then just the vector
space TValk,SO(n) of all continuous, translation invariant and SO(n) equivariant
valuations on K n with values in SymkVC.

By Theorem 6.1 and (6.5), we have, for 1≤ i≤ n−1,

dimTValk,SO(n)
i =

{
k/2+1 if k is even,
(k−1)/2 if k is odd.

In order to recall a basis of the space TValk,SO(n)
i , let e1, . . . ,en be an orthonormal

basis of VC and denote by Q = ∑
n
l=1 e2

l ∈ Sym2VC the metric tensor. Moreover, for
s ∈ N, 1≤ i≤ n−1 and K ∈K n, let

Ψi,s(K) =
∫

Sn−1
us dSi(K,u),

where, as usual, us denotes the s-fold symmetric tensor product of u ∈ Sn−1

and Si(K, ·) denotes the ith area measure of the body K. Then the valuations
QrΨi,s, where r,s≥ 0, s 6= 1, and 2r+ s = k, form a basis of the space TValk,SO(n)

i .
The dimensions and bases of the spaces TValk,SO(n)

i and more general spaces of
isometry covariant tensor valuations were first determined in the articles [3, 42].
For more information, we refer to Chapters 2, 3, and 5 of this volume.
• In [83], Yang posed the problem to classify valuations compatible with some

subgroup of affine transformations with values in skew-symmetric tensors of
rank two. Using Theorem 6.1, we can give a partial solution to Yang’s problem.
Taking Γ = Γ(1,1,0...,0) = Λ 2VC, it follows that there is no non-trivial continuous,
translation invariant, and SO(n) equivariant valuation with values in Γ.

In contrast to this negative result, we note that Bernig [15] constructed for
each 0 ≤ k ≤ i ≤ n− 1 a family of continuous, translation invariant, and SO(n)
equivariant valuations of degree i with values in Λ kVC⊗Λ kVC = Γ(2,...,2,0,...,0). By
Theorem 6.1, Bernig’s curvature tensor valuations are (up to scalar multiples) the
uniquely determined SO(n) equivariant valuations in ΓVali.

6.5.2 Even valuations and the cosine transform

As already mentioned in the introduction, Theorem 6.2 was first proved for even
valuations by Alesker and Bernstein [11] using a fundamental relation between even
translation invariant valuations and the cosine transform on Grassmannians. This
relation will be the topic of this subsection.
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First recall that the cosine of the angle between E,F ∈ G(n, i), 1 ≤ i ≤ n− 1,
is given by |cos(E,F)| = voli(M|E), where M is an arbitrary subset of F with
voli(M) = 1. The cosine transform on smooth functions is the SO(n) equivariant
linear operator Ci : C∞(G(n, i))→C∞(G(n, i)) defined by

(Ci f )(F) =
∫

G(n,i)
|cos(E,F)| f (E)dE,

where integration is with respect to the Haar probability measure on G(n, i).
Next, we also briefly recall the Klain map (for more information, see Chapter 1).

For 1≤ i≤ n−1, Klain defined a map Kli : Val+i →C(G(n, i)), φ 7→Kliφ , as follows:
For φ ∈Val+i and every E ∈G(n, i), consider the restriction φE of φ to convex bodies
in E. This is a continuous translation invariant valuation of degree i in E and, thus, a
constant multiple of i-dimensional volume, that is, φE = (Kliφ)(E)voli. This gives
rise to a function Kliφ ∈C(G(n, i)), called the Klain function of the valuation φ . It
is not difficult to see that Kli is SO(n) equivariant and maps smooth valuations to
smooth ones. Moreover, by an important result of Klain [46], the Klain map Kli is
injective for every i ∈ {1, . . . ,n−1} (see also [64]).

Now, for 1≤ i≤ n−1, consider the map Cri : C∞(G(n, i))→ Val+,∞
i , defined by

(Cri f )(K) =
∫

G(n,i)
voli(K|E) f (E)dE.

Clearly, Cri is an SO(n) equivariant linear operator. Moreover, if F ∈ G(n, i), then,
for any f ∈C∞(G(n, i)) and convex body K ⊆ F ,

(Cri f )(K) = voli(K)
∫

G(n,i)
|cos(E,F)| f (E)dE.

In other words, the Klain function of the valuation Cri f is the cosine transform Ci f
of f . Hence, the image of the cosine transform is contained in the image of the Klain
map. From the main result of [11] and an application of the Casselman-Wallach
Theorem [23], Alesker [6] proved that, in fact, these images coincide.

Theorem 6.12 ([11, 6]). Let 1≤ i≤ n−1. The image of the restriction of the Klain
map to smooth valuations Kli : Val+,∞

i →C∞(G(n, i)) coincides with the image of
the cosine transform Ci : C∞(G(n, i))→C∞(G(n, i)).

Theorem 6.12 was essential in the discovery of algebraic structures on the space
of continuous translation invariant even valuations (see [6] and Chapter 4 for more
detailed information). Using a variant of Theorem 6.12 combined with certain compu-
tations from the proof of Alesker’s Irreducibility Theorem [5], Alesker and Bernstein
[11] gave the following precise description of the range of the cosine transform in
terms of the decomposition under the action of SO(n). This description is equivalent
to Theorem 6.2 for even valuations.
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Theorem 6.13 ([11]). Let 1≤ i≤ n−1. The image of the cosine transform consists
of irreducible representations of SO(n) with highest weights λ = (λ1, . . . ,λbn/2c)
satisfying (6.2), (6.7), and |λ2| ≤ 2.

As a concluding remark for this subsection we note that the structural analysis of
intertwining transforms on Grassmannians, such as Radon- and cosine transforms,
has a long tradition in integral geometry and is still to this day a focus of research
(see, e.g., [13, 26, 34, 61, 62, 65, 84]).

6.5.3 Unitary vector valued valuations

We have seen in Section 6.5.1 that there exists no non-trivial continuous, translation
invariant, and SO(n) equivariant valuation from K n to Rn. As Wannerer [81] dis-
covered, the situation changes when the translation invariant vector valued valuations
are no longer required to be equivariant with respect to SO(n) but merely with re-
spect to the smaller group U(n) (for classifications of vector valued valuations in the
non-translation invariant case, see [41, 37, 50] ).

Since the natural domain of the unitary group U(n) is Cn ∼= R2n, we consider in
this (and only in this) subsection valuations defined on the space K 2n of convex
bodies in R2n. In particular, in the following also the spaces Val, Vali, . . . will refer
to translation invariant continuous valuations on K 2n.

We denote by Vec the (real) vector space of continuous and translation invariant
valuations φ : K 2n→ Cn and we write VecU(n) for its subspace of U(n) equivariant
valuations. It follows from McMullen’s decomposition (6.1) that

Vec =
⊕

0≤i≤2n

Veci,

where as usual Veci denotes the subspace of valuations of degree i.

Theorem 6.14 ([81]). Suppose that 0≤ i≤ 2n. Then

dimR VecU(n)
i = 2min

{⌊
i
2

⌋
,

⌊
2n− i

2

⌋}
. (6.26)

Proof. We put V =R2n and write again VC for the complexification of V . Since Veci
is isomorphic as vector space to Vali⊗V , we have, by Theorem 6.2,

dimC(Veci⊗C)U(n) = dimC(Vali⊗VC)
U(n) = ∑

λ

dimC(Γλ ⊗VC)
U(n), (6.27)

where the sum ranges over all highest weights λ = (λ1, . . . ,λn) of SO(2n) satisfying

(i) λ j = 0 for j > min{i,2n− i}; (ii) |λ j| 6= 1 for 1≤ j ≤ n; (iii) |λ2| ≤ 2.
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In order to determine the sum on the right hand side of (6.27), we first apply a
formula of Klimyk [48] to Γλ ⊗VC to obtain the decomposition of this tensor product
into SO(2n) irreducible subspaces:

Γλ ⊗VC =
⊕

ν

Γν , (6.28)

where the sum ranges over all ν = λ ±ek for some n-tuple ek = (0, . . . ,0,1,0, . . . ,0).
Next, a theorem of Helgason (see, e.g., [78, p. 151]) applied to the symmetric

space SO(2n)/U(n) implies that the highest weights ν = (ν1, . . . ,νn) we need to
consider have to satisfy the following additional condition{

ν1 = ν2 ≥ ν3 = ν4 ≥ ·· · ≥ νn−1 = νn if n is even,
ν1 = ν2 ≥ ν3 = ν4 ≥ ·· · ≥ νn−2 = νn−1 ≥ νn = 0 if n is odd.

(6.29)

since

dimC Γ
U(n)
ν =

{
1 if ν satisfies (6.29),
0 otherwise.

From this, conditions (i), (ii), (iii), and (6.28), it follows now that (Γλ ⊗VC)
U(n)

is non-trivial if and only if λ if of the form

λ1 = 3, λ2 = · · ·= λ2m = 2, λ j = 0 for j > 2m

for some integer 1≤ m≤min{b i
2c,b

2n−i
2 c} and that in this case

dimC(Γλ ⊗VC)
U(n) = 2.

To see this, fix some λ satisfying (i), (ii), and (iii) and suppose that ν = λ + ek for
some k. If ν satisfies in addition (6.29), then necessarily k = 2, ν1 = ν2 = 3, and,
thus, λ1 = 3, λ2 = · · ·= λ2m = 2, and λ j = 0 for j > 2m. If ν = λ − ek, then (6.29)
forces k = 1, ν1 = ν2 = 2, and, again, λ1 = 3, λ2 = · · · = λ2m = 2, and λ j = 0 for
j > 2m.

Finally, since dimR VecU(n)
i = dimC(Veci⊗C)U(n), we obtain now from (6.27)

the desired dimension formula. ut

As an application of Theorem 6.14, Wannerer [81] obtained the following new
characterization of the Steiner point map in hermitian vector spaces.

Corollary 6.15 ([81]). A map φ : K 2n→ Cn is a continuous, translation and U(n)
equivariant map satisfying φ(K +L) = φ(K)+φ(L) for all K,L ∈K 2n if and only
if φ is the Steiner point map.

Corollary 6.15 is a generalization of a similar result by Schneider [66], where the
unitary group U(n) is replaced by the lager group SO(2n).
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6.5.4 The symmetry of bivaluations

In this subsection we outline how Theorem 6.2 can be used to prove a remarkable
symmetry property of rigid motion invariant continuous bivaluations which in turn
has important consequences in geometric tomography and the study of geometric
inequalities for Minkowski valuations.

Definition. A map ϕ : K n ×K n → C is called a bivaluation if ϕ is a valua-
tion in both arguments. We call ϕ translation biinvariant if ϕ is invariant under
independent translations of its arguments and say that ϕ has bidegree (i, j) if
ϕ(aK,bL) = aib jϕ(K,L) for all K,L ∈ K n and a,b > 0. If G is some group of
linear transformations of Rn, we say ϕ is G invariant provided ϕ(gK,gL) = ϕ(K,L)
for all K,L ∈K n and g ∈ G.

The problem to classify invariant bivaluations was already posed in the book
by Klain and Rota [47] on geometric probability. A first such classification was
obtained by Ludwig [54] in connection with notions of surface area in normed spaces.
However, here we want to discuss a structural property of rigid motion invariant
bivaluations. To this end we denote by BVal the vector space of all continuous
translation biinvariant complex valued bivaluations. An immediate consequence of
McMullen’s decomposition (6.1) of the space Val is an analogous result for the space
BVal:

BVal =
n⊕

i, j=0

BVali, j, (6.30)

where BVali, j denotes the subspace of all bivaluations of bidegree (i, j). In turn,
(6.30) can be used to show that BVal becomes a Banach space when endowed with
the norm

‖ϕ‖= sup{|ϕ(K,L)| : K,L⊆ Bn}.

The following symmetry property of rigid motion invariant bivaluations was
established in [10].

Theorem 6.16. Let 0≤ i≤ n. Then

ϕ(K,L) = ϕ(L,K) for all K,L ∈K n (6.31)

holds for all SO(n) invariant ϕ ∈BVali,i if and only if (i,n) 6= (2k+1,4k+2), k ∈N.
Moreover, (6.31) holds for all O(n) invariant ϕ ∈ BVali,i.

In the following we outline the proof of the ‘if’ part of the first statement of
Theorem 6.16 using Theorem 6.2. We refer to [10, p. 768], for the construction of
an SO(n) invariant bivaluation ζ ∈ BVali,i, where (i,n) = (2k+1,4k+2) for some
k ∈ N, such that ζ (K,L) 6= ζ (L,K) for some pair of convex bodies. Similarly, we
will not treat O(n) invariant bivaluations here. For the proof of (6.31) in this case,
a description of the irreducible representations of O(n) in terms of the irreducible
representations of SO(n) is needed and we also refer to [10] for that.
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Now, assume that ϕ ∈ BVali,i is SO(n) invariant and that (i,n) 6= (2k+1,4k+2).
Moreover, since for i = 0 or i = n, (6.31) follows easily from Proposition 6.7, we
may assume that 0 < i < n. Now, by Theorem 6.2,

BValSO(n)
i,i

∼= (Vali⊗Vali)SO(n) ∼=
⊕
γ,λ

(Γγ ⊗Γλ )
SO(n), (6.32)

where the sum ranges of all highest weights γ and λ of SO(n) satisfying conditions
(i), (ii), and (iii) from Theorem 6.1. (In fact, in order to make the isomorphisms in
(6.32) precise, we have to consider the dense subset of all bivaluations with finite
SO(n)×SO(n) orbit, compare [10, p. 766]).

Since (i,n) 6= (2k+1,4k+2), it follows from condition (i) and Lemma 6.3, that
all irreducible representations of SO(n) which appear in (6.32) are real and, thus,
self-dual. Hence, we have

(Γγ ⊗Γλ )
SO(n) ∼= HomSO(n)(Γγ ,Γλ )∼= HomSO(n)(Γγ ⊗Γλ ,C).

Since Γγ and Γλ are irreducible, Schur’s lemma implies that

dimHomSO(n)(Γγ ,Γλ ) =

{
1 if γ = λ ,

0 if γ 6= λ .

Using again that the SO(n) irreducible representations which we consider are real,
the space

HomSO(n)(Γλ ⊗Γλ ,C) = (Sym2
Γλ )

SO(n)⊕ (Λ2
Γλ )

SO(n)

of SO(n) invariant bilinear forms on Γλ must coincide with (Sym2
Γλ )

SO(n). Hence,

BValSO(n)
i,i

∼=
⊕

λ

(Sym2
Γλ )

SO(n)

which implies (6.31).
Using partial derivation operators on bivaluations (the definition of which is

motivated by the operator Λ : Val→ Val defined in (6.13)), one can easily obtain a
corollary of Theorem 6.16 which is particularly useful for applications. To state this
result, define for m = 1,2 the operators Λm : BVal→ BVal by

(Λ1φ)(K,L) =
d
dt

∣∣∣∣
t=0

φ(K + tBn,L)

and

(Λ2φ)(K,L) =
d
dt

∣∣∣∣
t=0

φ(K,L+ tBn).

Clearly, if φ ∈ BVali, j, then Λ1φ ∈ BVali−1, j and Λ2φ ∈ BVali, j−1.
Also define an operator T : BVal→ BVal by
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(Tφ)(K,L) = φ(L,K).

Note that, by Theorem 6.16, the restriction of T to BValO(n)
i,i acts as the identity.

Corollary 6.17. Suppose that 0≤ j ≤ n and 0≤ i≤ j. Then the following diagram
is commutative:

BValO(n)
j, j BValO(n)

j, j

BValO(n)
j,i BValO(n)

i, j .

Λ
j−i
2

T=Id

Λ
j−i
1

T

Corollary 6.17 has found several interesting applications in connection with
Minkowski valuations, that is, maps Φ : K n→K n such that

Φ(K)+Φ(L) = Φ(K∪L)+Φ(K∩L),

whenever K∪L is convex and addition here is the usual Minkowski addition. Recently,
Ludwig [53] started an important line of research concerned with the classification
of Minkowski valuations intertwining linear transformations, see [1, 2, 35, 51, 54,
75, 80] and Chapter 7. However, first investigations of Minkowski valuations by
Schneider [68] in 1974 were concentrating on rigid motion compatible valuations
which are still a focus of intensive research, see [44, 72, 74, 76, 77].

In order to explain how Corollary 6.17 can be used in the theory of Minkowski val-
uations, let MVal denote the set of all continuous and translation invariant Minkowski
valuations. Parapatits and the author [63] proved that for any Φ ∈MVal, there exist
Φ ( j) ∈MVal, where 0≤ j ≤ n, such that for every K ∈K n and t ≥ 0,

Φ(K + tBn) =
n

∑
j=0

tn− j
Φ

( j)(K)

This Steiner type formula shows that an analogue of the operator Λ from (6.13) can
be defined for Minkowski valuations Λ : MVal → MVal by

h((ΛΦ)(K),u) =
d
dt

∣∣∣∣
t=0

h(Φ(K + tBn,u), u ∈ Sn−1.

For K,L∈K n, we use Wi(K,L) to denote the mixed volume V (K[n− i−1],Bn[i],L).

Corollary 6.18 ([63]). Suppose that Φ j ∈MVal j, 2≤ j≤ n−1, is O(n) equivariant.
If 1≤ i≤ j+1, then

Wn−i(K,Φ j(L)) =
(i−1)!

j!
Wn−1− j(L,(Λ j+1−i

Φ j)(K))

for every K,L ∈K n.
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Proof. For K,L ∈K n, define φ ∈ BValO(n)
j, j by φ(K,L) =Wn−1− j(K,Φ j(L)). Then

it is not difficult to show that

Wn−i(K,Φ j(L)) =
(i−1)!

j!
(Λ j+1−i

1 φ)(K,L).

Thus, an application of Corollary 6.17 completes the proof. ut

Corollary 6.18 as well as variants and generalizations of this result have been
a critical tool in the proof of log-concavity properties of rigid motion compatible
Minkowski valuations (see [2, 10, 14, 56, 63, 73, 74]). Corollary 6.18 was also
important in the solution of injectivity questions for certain Minkowski valuations
arising naturally from tomographic data, more precisely, the so-called mean section
operators, defined and investigated by Goodey and Weil [30, 31, 32].

6.5.5 Miscellaneous applications

In this short final subsection we collect three more applications of Theorem 6.2 in
various contexts. We will not outline proofs here but rather refer to the original source
material. We begin with the following fact about Minkowski valuations.

Proposition 6.19 ([10]). If Φ ∈ MVal is SO(n) equivariant, then Φ is also O(n)
equivariant.

Note that, by Proposition 6.19, Corollary 6.18 in fact holds for SO(n) equivariant
Minkowski valuations.

The proof of Proposition 6.19 is based on the simple fact that any continuous
Minkowski valuation which is translation invariant and SO(n) equivariant is uniquely
determined by a spherical valuation.

Definition. For 0≤ i≤ n, the subspaces Valsph
i and Val∞,sph

i of translation invariant
continuous and smooth spherical valuations of degree i are defined as the closure
(w.r.t. the respective topologies) of the direct sum of all SO(n) irreducible subspaces
in Vali and Val∞i which contain a non-zero SO(n−1) invariant valuation.

Since, by Theorem 6.2, the space Vali is multiplicity free under the action of
SO(n), it follows from basic facts about spherical representations (see [77]) that

Val∞,sph
i = cl∞

⊕
k∈N

Γ(k,0,...,0). (6.33)

Spherical valuations also play an important role in the recent article [20] by
Bernig and Hug, where they compute kinematic formulas for translation invariant
and SO(n) equivariant tensor valuations. It follows from Theorem 6.2 and (6.5) that
tensor valuations from TValSO(n)

i are also determined by spherical valuations. In
order to bring the algebraic machinery from modern integral geometry into play in
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the computation of the kinematic formulas in [20], the main step was to determine
the Alesker–Fourier transform F (see [9]) of spherical valuations. Note that since
F is a linear and SO(n) equivariant map, (6.33) and Schur’s lemma imply that the
restriction of F to Val∞,sph

i is determined by a sequence of multipliers which was
computed in [20].

As a final application of Theorem 6.2, we mention that it was used by Bernig
and Solanes [21] to give a complete classification of valuations on the quaternionic
plane which are invariant under the action of the group Sp(2)Sp(1). Note that since
Sp(2)Sp(1) contains −Id all such valuations are even and, thus, determined by
their Klain functions. For the proof of their classification theorem, Bernig and
Solanes now identify certain Sp(2)Sp(1) invariant functions on the Grassmannian as
eigenfunctions of the Laplace-Beltrami operator on G(n, i) and determine the SO(n)
irreducible subspaces that they are contained in. Then Theorem 6.2 is applied to show
that these subspaces also appear in Vali. Finally, the computation of dimValSp(2)Sp(1)

i
from [17] is used to show that the so-constructed valuations form a basis.
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