
Minkowski Valuations and Generalized Valuations

Franz E. Schuster and Thomas Wannerer

Dedicated to Prof. Erwin Lutwak on the occasion of his seventieth birthday

Abstract. A convolution representation of continuous translation-invariant
and SO(n)-equivariant Minkowski valuations is established. This is based on
a new classification of translation-invariant generalized spherical valuations.
As applications, Crofton and kinematic formulas for Minkowski valuations
are obtained.

1. Introduction

A valuation on convex bodies (non-empty compact convex sets) is a finitely
additive function. More precisely, let Kn denote the space of convex bodies in Rn

endowed with the Hausdorff metric. A map φ : Kn → A with values in an Abelian
semigroup A is a valuation if

φ(K) + φ(L) = φ(K ∪ L) + φ(K ∩ L)

whenever K ∪L is convex. As a generalization of the notion of measure and as the
crucial ingredient in Dehn’s solution of Hilbert’s third problem, scalar valuations
(where A = R or C) have long played a central role in convex and discrete geometry
(see [39] or [56, Chapter 6]). The most famous classical result on valuations is the
celebrated characterization of rigid-motion-invariant valuations by Hadwiger [33]
(which was slightly improved later by Klain [37]).

Theorem 1 ([33, 37]) The intrinsic volumes V0, V1, . . . , Vn form a basis of the
vector space of all continuous scalar valuations on Kn which are translation- and
SO(n)-invariant.

Hadwiger’s characterization theorem had a transformative effect on integral
geometry. It not only allowed for almost effortless proofs of the principal and
more general kinematic formulas (see, e.g., [39]) but also made the importance
of precise descriptions of classes of invariant valuations evident. Still to this day,
Theorem 1 often serves as a starting point for the classification of invariant scalar
valuations (see, e.g., [4, 9, 13, 31, 43]) and, more general, equivariant tensor
valued valuations, where A = SymkRn (see [3, 10, 35, 67]). These results in
turn were critical for the tremendous progress in integral geometry of recent years
(see [5, 16, 17, 20, 35, 66] and the references therein).
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In 1974 Schneider [54, 55] first investigated valuations, where A = Kn, and
addition on Kn is the usual Minkowski addition. In a more recent influential article,
Ludwig [41] coined the name Minkowski valuations for such maps and started a line
of research concerned with the classification of Minkowski valuations intertwining
linear transformations, see [1, 2, 30, 40, 42, 61, 65].

The recent results on Minkowski valuations which are equi- or contravariant with
respect to linear transformations show that they often form convex cones generated
by finitely many valuations, such as the projection or difference body operators. In
contrast to this, the cone of translation-invariant and SO(n)-equivariant Minkowski
valuations is infinite dimensional. This is one reason why no full analogue of
Theorem 1 for Minkowski valuations has been obtained yet, except for dimension
n = 2, where Schneider [55] already established such a result. We therefore assume
throughout that n ≥ 3.

About a decade ago, Kiderlen [36] and the first author [59] were the first to
obtain convolution representations of translation-invariant and SO(n)-equivariant
continuous Minkowski valuations. However, their results were limited to the case of
valuations of degree 1 and n−1, respectively, where a map Φ from Kn to Kn (or R)
is said to have degree i if Φ(λK) = λiΦK for K ∈ Kn and λ > 0. The convolution
of measures on Sn−1 used in [36] and [59] is induced from the group SO(n) by
identifying Sn−1 with the homogeneous space SO(n)/SO(n− 1) (see Section 2).

Under additional smoothness assumptions, the first author in [60] and jointly
with the second author in [62] extended the results from [36] and [59] to the
remaining (non-trivial) degrees i ∈ {2, . . . , n − 2} when the Minkowski valuations
are even. (McMullen [47] showed that only integer degrees 0 ≤ i ≤ n can occur.)
However, the techniques employed in [60] or [62] were not suited to describe merely
continuous Minkowski valuations, which is the goal since the 1970s.

In this article we establish a precise description of all continuous Minkowski
valuations which are translation-invariant and SO(n)-equivariant without any
further assumptions on the parity or degree of the valuations. As we explain
in Section 5, our main theorem generalizes and implies all previously obtained
convolution representations of Minkowski valuations intertwining rigid motions.

In order to state our main result, recall that a convex body K ∈ Kn is uniquely
determined by its support function hK(u) = max{u · x : x ∈ K} for u ∈ Sn−1

and let Mo(Sn−1) and Co(Sn−1) denote the spaces of signed finite Borel measures
and continuous functions on Sn−1, respectively, having their center of mass at the
origin. If G denotes a group acting on a set X, then as usual XG denotes the set
of all elements in X which are G-invariant. We also emphasize that throughout
the article we use the spherical Lebesgue measure to identify functions on Sn−1

(whether smooth or continuous) with absolutely continuous measures on the sphere.
In particular, equation (1.1) below has to be understood in this sense.
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Theorem 2 If Φ : Kn → Kn is a continuous Minkowski valuation which is
translation-invariant and SO(n)-equivariant, then there exist uniquely determined
constants c0, cn ≥ 0, measures µi ∈Mo(Sn−1)SO(n−1), 1 ≤ i ≤ n−2, and a function
fn−1 ∈ Co(Sn−1)SO(n−1) such that

hΦK = c0 +
n−2∑
i=1

Si(K, ·) ∗ µi + Sn−1(K, ·) ∗ fn−1 + cnVn(K) (1.1)

for every K ∈ Kn.

The Borel measures Si(K, ·), 1 ≤ i ≤ n − 1, on Sn−1 are Aleksandrov’s area
measures (see, e.g., [56]) associated with K ∈ Kn. If K is sufficiently smooth and
has positive curvature, then each Si(K, ·) is absolutely continuous with respect to
spherical Lebesgue measure and its density is (up to a constant) given by the ith
elementary symmetric function of the principal radii of curvature of K.

For n ≤ 4, we show in Section 5 that if Φ has degree 1 or 2, then the measures
µ1 or µ2, respectively, are in fact absolutely continuous with a density in L2(Sn−1).
However, this is no longer true in general when n > 4.

The proof of Theorem 2 is based on new techniques involving translation-
invariant generalized valuations which were only recently introduced by Alesker and
Faifman [9] (see also [15]). Generalized valuations are related to smooth valuations
in the same way that generalized functions are related to smooth functions. More
precisely, let Val∞i , 0 ≤ i ≤ n, denote the space of smooth translation-invariant
scalar valuations of degree i endowed with the G̊arding topology which makes it a
Fréchet space (see Section 3 for details). The space Val−∞i of (translation-invariant)
generalized valuations of degree i is defined by

Val−∞i := (Val∞n−i)
∗ ⊗Dens(Rn) (1.2)

endowed with the weak topology. Here, Dens(Rn) denotes the 1-dimensional space
of densities on Rn. However, since throughout the article we fix a Euclidean
structure on Rn and, thus, a choice of Lebesgue measure, we obtain an isomorphism
Dens(Rn) ∼= R which we use to identify Val−∞i with the topological dual (Val∞n−i)

∗.
As part of his far reaching reconceptualization of integral geometry, Alesker [6]

discovered a continuous non-degenerate bilinear pairing

〈 · , · 〉 : Val∞i ×Val∞n−i → R

for 0 ≤ i ≤ n (see also Section 3). The induced Poincaré duality map

pd : Val∞i → (Val∞n−i)
∗ = Val−∞i

is therefore continuous, injective and has dense image with respect to the weak
topology. This was the motivation for definition (1.2) and shows that Val−∞i can
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be seen as a completion of Val∞i with respect to the weak topology. Alesker [8]
also proved that the Poincaré duality map admits a unique continuous extension
to the space Vali of continuous translation-invariant valuations of degree i. Thus,
just like smooth and continuous functions or, more general, signed Borel measures
can be identified with subclasses of generalized functions (compare Section 2), we
can use the Poincaré duality map in the following to identify the spaces Val∞i or
Vali, respectively, with certain dense subspaces of Val−∞i .

It was first observed in [60] that a translation-invariant and SO(n)-equivariant
continuous Minkowski valuation Φ is uniquely determined by a scalar valuation
ϕ ∈ Val

SO(n−1)
i . In turn, the space Val

SO(n−1)
i consists of spherical valuations.

Spherical (generalized) valuations correspond to spherical representations of
SO(n) (see Section 3 for details). Let Val∞,sph

i and Val−∞,sph
i denote the subspaces

of smooth and generalized spherical valuations, respectively, and let C−∞o (Sn−1)
denote the space of generalized functions on Sn−1 which vanish on restrictions of
linear functions to Sn−1. Our second main result, which is critical for the proof
of Theorem 2 but also of independent interest, is the following classification of
(generalized) spherical valuations.

Theorem 3 Suppose that 1 ≤ i ≤ n− 1.

(a) The map Ei : C∞o (Sn−1)→ Val∞,sph
i , defined by

(Eif)(K) =

∫
Sn−1

f(u) dSi(K, u),

is an SO(n)-equivariant isomorphism of topological vector spaces which admits
a unique extension by continuity in the weak topologies to an isomorphism

Ẽi : C−∞o (Sn−1)→ Val−∞,sph
i .

(b) The space Val
SO(n−1)
i is contained in Ẽi(Mo(Sn−1)) if i ≤ n − 2 and in

Ẽi(Co(Sn−1)) if i = n− 1.

Theorem 3 (a) for i = 1 was recently proved by Alesker, see [11, Appendix].
Theorem 3 (b) for i = n− 1 follows from a classical result of McMullen [48].

Characterizations of Minkowski valuations, in particular, earlier versions of
Theorem 2, have had far reaching implications for isoperimetric type inequalities
(see, e.g., [2, 11, 32, 44–46, 61]). Motivated by a recent important Crofton type
formula for the identity map of Goodey and Weil [25], we show in the final section
of this paper how Theorem 2 can be applied to obtain a general Crofton formula
for continuous Minkowski valuations which generalizes the result from [25] and an
earlier result of this type from [62]. Using our new Crofton formula and Hadwiger’s
general integral geometric theorem, a consequence of Theorem 1 (cf. [58, p. 173]),
we can then also state a kinematic formula for Minkowski valuations.
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2. Preliminaries

In this section we first recall basic notions from Riemannian geometry and
compute several quantities in cylindrical coordinates on Sn−1 which will be needed
in the proof of Theorem 3 (b). Next, we collect background material from
representation theory and harmonic analysis, in particular, about the convolution
of measures on Sn−1 and its relation to the theory of spherical harmonics. We also
recall some well known facts about generalized functions on Sn−1 and the definition
of Berg’s functions used in the solution of the classical Christoffel problem.

Although in this article we are mainly concerned with the Euclidean unit sphere
Sn−1 in Rn and the Lie group SO(n) of proper rotations of Rn, let us first consider
a general smooth manifold M . We denote by C∞(M) the space of all smooth
functions on M equipped with the Fréchet space topology of uniform convergence
of each finite number of derivatives on each compact subset of M . For a Banach
space X, the Fréchet space C∞(M,X) of all infinitely differentiable functions on
M with values in X is defined similarly.

If in addition M is compact and endowed with a Riemannian metric, then the
Ck norm ‖f‖Ck of a function f ∈ Ck(M) is defined by (see, e.g., [52, p. 301])

‖f‖Ck =
k∑
j=0

max
M
|∇jf |, (2.1)

where ∇ denotes the covariant derivative with respect to the given Riemannian
metric and |∇jf | is the (Euclidean) norm of the tensor field ∇jf .

Among other quantities, we compute in the following example the C2 norm of
an SO(n − 1)-invariant function on Sn−1 more explicitly. This will be useful later
on for the proof of Theorem 3 (b).

Example 2.1

In this article we use ē ∈ Sn−1 to denote an arbitrary but fixed point (the pole) of
the sphere and we write SO(n − 1) for the stabilizer in SO(n) of ē. Clearly, every
u ∈ Sn−1\{−ē, ē} can be written uniquely in the form

u = tē+
√

1− t2v (2.2)

for some t ∈ (−1, 1) and v ∈ Sn−2
ē = {w ∈ Sn−1 : ē · w = 0}. In the cylindrical

coordinates (2.2), the (standard) metric tensor % on Sn−1 is given by

% =
1

1− t2
dt⊗ dt+ (1− t2) dv ⊗ dv, (2.3)

where dv ⊗ dv is the metric tensor on Sn−2
ē .
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Let ∆S denote the Laplacian (or Laplace–Beltrami operator) on Sn−1 and recall
that, for f, g ∈ C2(Sn−1), we have∫

Sn−1

f(u) ∆Sg(u) du =

∫
Sn−1

g(u) ∆Sf(u) du. (2.4)

Using (2.3), one can easily obtain the following expression for the Laplacian in
cylindrical coordinates (cf. [12, Proposition 2.6])

∆S =
1√
|%|
∂i

(√
|%|%ij∂j

)
= (1− t2)

∂2

∂t2
− (n− 1) t

∂

∂t
+

1

1− t2
∆̄S, (2.5)

where ∆̄S denotes the Laplacian on Sn−2
ē .

Now let f ∈ C2(Sn−1) be SO(n − 1)-invariant, that is, in the cylindrical
coordinates (2.2) the function f depends only on t. Then, by (2.5), we have

∆Sf = (1− t2)
∂2f

∂t2
− (n− 1) t

∂f

∂t
. (2.6)

Moreover, a straightforward computation, using again (2.3), yields

|∇f |2 = (1− t2)

(
∂f

∂t

)2

(2.7)

and

|∇2f |2 = (n− 2)

(
t
∂f

∂t

)2

+

(
(1− t2)

∂2f

∂t2
− t ∂f

∂t

)2

. (2.8)

We turn now to representations of Lie groups. First recall that since SO(n)
is compact, all its irreducible representations are finite dimensional, and the
equivalence classes of irreducible complex representations of SO(n) are uniquely
determined by their highest weights (see, e.g., [18]). These highest weights, in
turn, can be indexed by bn/2c-tuples of integers (λ1, λ2, . . . , λbn/2c) such that{

λ1 ≥ λ2 ≥ · · · ≥ λbn/2c ≥ 0 for odd n,
λ1 ≥ λ2 ≥ · · · ≥ λn/2−1 ≥ |λn/2| for even n.

(2.9)

A notion of particular importance for our purposes is that of smooth vectors of
an infinite-dimensional representation of a Lie group.

Definition Let ρ be a continuous representation of a Lie group G on a Banach
space X. An element x ∈ X is called a smooth vector if the map zx : G → X,
defined by zx(ϑ) = ρ(ϑ)x, is infinitely differentiable. The subspace of all smooth
vectors in X is denoted by X∞.
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It is well known (cf. [68, Section 4.4]) that the subspace X∞ is a G-invariant
and dense subset of X. Moreover, the map X∞ → C∞(G,X), given by x 7→ zx,
leads to an identification of X∞ with a closed subspace of C∞(G,X). Hence, we
can endow X∞ with the relative topology induced by C∞(G,X). This topology
on X∞ is called the G̊arding topology and turns X∞ into a Fréchet space. An
important property of the G̊arding topology on X∞ is that the restriction of the
representation of G to X∞ is continuous.

Two more basic facts about smooth vectors are contained in the next lemma.

Lemma 2.2 Let G be a Lie Group.

(a) If ρ and τ are continuous representations of G on Banach spaces X and Y and
T : X → Y is a continuous and G-equivariant linear map, then T (X∞) ⊆ Y ∞

and the restriction T : X∞ → Y ∞ is continuous.

(b) If H is a closed subgroup of G, then the smooth vectors of the left regular
representation of G on C(G/H) are precisely the smooth functions on G/H,
that is, (C(G/H))∞ = C∞(G/H).

In this article, we are specifically interested in spherical representations of SO(n)
with respect to SO(n− 1).

Definition Let G be a compact Lie group and H a closed subgroup of G. A
representation ρ of G on a vector space X is called spherical with respect to H
if there exists an H-invariant non-zero x ∈ X, that is, ρ(ϑ)x = x for every ϑ ∈ H.

For the following two important facts about spherical representations (see, e.g.,
[64, p. 17]), we consider the left regular representation of G on the Hilbert space
L2(G/H) of square-integrable functions on the homogeneous space G/H.

Theorem 2.3 Let G be a compact Lie group and H a closed subgroup of G.

(i) Every subrepresentation of L2(G/H) is spherical with respect to H.

(ii) Every irreducible representation of G which is spherical with respect to H is
isomorphic to a subrepresentation of L2(G/H).

Example 2.4

The space L2(Sn−1) is an orthogonal sum of SO(n) irreducible subspaces,

L2(Sn−1) =
⊕
k≥0

Hn
k ,

where Hn
k is the space of spherical harmonics of dimension n and degree k. It

is well known that the highest weights corresponding to the spaces Hn
k are the

bn/2c-tuples (k, 0, . . . , 0). Since Sn−1 is diffeomorphic to the homogeneous space
SO(n)/SO(n−1), it follows from Theorem 2.3 that every irreducible representation
of SO(n) which is spherical with respect to SO(n − 1) is isomorphic to one of the
spaces Hn

k and, thus, their highest weights are of the form (k, 0, . . . , 0), k ≥ 0.
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For the discussion of Theorem 2 and its applications to integral geometry, we
need some more background from the theory of spherical harmonics (see, e.g., [28]).
Let N(n, k) denote the dimension of the space Hn

k and recall that

N(n, k) =
n+ 2k − 2

n+ k − 2

(
n+ k − 2

n− 2

)
= O(kn−2) as k →∞. (2.10)

Using πk : L2(Sn−1)→ Hn
k to denote the orthogonal projection, we can write

f ∼
∞∑
k=0

πkf (2.11)

for the (condensed) Fourier expansion of f ∈ L2(Sn−1). Recall that the Fourier
series in (2.11) converges to f in the L2 norm.

In the theory of spherical harmonics, a function or measure on Sn−1 which is
SO(n− 1)-invariant is often called zonal. The subspace of zonal functions in Hn

k is
1-dimensional for every k ≥ 0 and spanned by the function u 7→ P n

k (u · ē), where
P n
k ∈ C([−1, 1]) denotes the Legendre polynomial of dimension n and degree k.

Since the spacesHn
k are orthogonal, it is not difficult to show that any zonal function

f ∈ L2(Sn−1) admits a series expansion of the form

f ∼
∞∑
k=0

N(n, k)

ωn
ank [f ]P n

k ( . · ē), (2.12)

where ωn denotes the surface area of the n-dimensional Euclidean unit ball and

ank [f ] = ωn−1

∫ 1

−1

f(t)P n
k (t) (1− t2)

n−3
2 dt. (2.13)

Here, we have used again the cylindrical coordinates (2.2) to identify the zonal
function f with a function on [−1, 1].

Now we turn to (formal) Fourier expansions of measures and, more generally,
distributions on Sn−1. To this end, first recall that a distribution on Sn−1 is a
continuous linear functional on C∞(Sn−1). Since Sn−1 is compact, every distribution
ν on Sn−1 is of finite order, that is, there exist k ≥ 0 and C > 0 such that

|ν(f)| ≤ C ‖f‖Ck (2.14)

for every f ∈ C∞(Sn−1). The order of ν is the smallest k such that (2.14) holds.
Distributions on a general smooth manifold M are often also called generalized

densities and C−∞(|Λ|(M)) is used to denote the space of distributions on M .
However, the choice of a Riemannian metric on M induces an isomorphism between
the space of distributions and the space of generalized functions on M , usually
denoted by C−∞(M) (cf. [29]). Throughout this article, when M = Sn−1, we
always make use of this identification and, thus, write C−∞(Sn−1) for the space
of distributions on Sn−1 equipped with the topology of weak convergence. The
canonical bilinear pairing on C∞(Sn−1)× C−∞(Sn−1) will be denoted by 〈 · , · 〉.
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Since every (signed) Borel measure µ on Sn−1 defines a distribution νµ by

〈f, νµ〉 =

∫
Sn−1

f(u) dµ(u), f ∈ C∞(Sn−1),

we will use the continuous linear injection µ 7→ νµ, to identify M(Sn−1) with a
subspace of C−∞(Sn−1). Clearly, this subspace consists precisely of the distributions
of order 0. In the same way, the spaces C∞(Sn−1), C(Sn−1), and L2(Sn−1) can be
identified with (dense) subspaces of C−∞(Sn−1) and we have

C∞(Sn−1) ⊆ C(Sn−1) ⊆ L2(Sn−1) ⊆M(Sn−1) ⊆ C−∞(Sn−1). (2.15)

The natural action of SO(n) on C−∞(Sn−1) is defined as follows: For ϑ ∈ SO(n)
and ν ∈ C−∞(Sn−1), we set

〈f, ϑν〉 = 〈ϑ−1f, ν〉, f ∈ C∞(Sn−1). (2.16)

Note that if ν is a measure on Sn−1, then ϑν is just the image measure of ν under
the rotation ϑ and that (2.16) is also consistent with the left regular representation
of SO(n) on the spaces C∞(Sn−1), C(Sn−1), and L2(Sn−1).

In order to extend the orthogonal projection πk : L2(Sn−1)→ Hn
k to C−∞(Sn−1),

note that πk is self-adjoint. In particular, 〈f, πkg〉 = 〈πkf, g〉 for all f ∈ C∞(Sn−1)
and g ∈ L2(Sn−1). In view of (2.15), it is therefore consistent to define πkν for
ν ∈ C−∞(Sn−1) as the distribution given by

〈f, πkν〉 = 〈πkf, ν〉, f ∈ C∞(Sn−1).

From this, it follows (cf. [49, p. 38]) that indeed πkν ∈ Hn
k for every k ∈ N.

Next let us discuss the convolution of measures and distributions on Sn−1. Recall
that the convolution σ ∗ µ of signed measures σ, µ on SO(n) can be defined by∫

SO(n)

f(ϑ) d(σ ∗ µ)(ϑ) =

∫
SO(n)

∫
SO(n)

f(ηθ) dσ(η) dµ(θ), f ∈ C(SO(n)).

In other words, σ ∗µ is the pushforward of the product measure σ⊗µ by the group
multiplication m : SO(n)×SO(n)→ SO(n), that is, σ∗µ = m∗(σ⊗µ). Since SO(n)
is compact, this definition can be readily extended to distributions by replacing the
product measure with the tensor product of distributions (see, e.g., [34, p. 128]).

The identification of Sn−1 with the homogeneous space SO(n)/SO(n − 1) can
now be used to identify C−∞(Sn−1) with right SO(n − 1)-invariant distributions
on SO(n). Using this correspondence, the convolution of distributions on SO(n)
induces a convolution product on C−∞(Sn−1) as follows: Let π : SO(n) → Sn−1,
π(η) = ηē, be the canonical projection. Then the convolution of distributions
δ, ν ∈ C−∞(Sn−1) is defined by

δ ∗ ν = π∗m∗(π
∗δ ⊗ π∗ν),

where π∗ and π∗ denote the pushforward and pullback by π, respectively.
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The convolution product defined in this way has the following well-known
continuity property (see, e.g., [34, Chapter 6]).

Lemma 2.5 If νj ∈ C−∞(Sn−1), j ∈ N, converge weakly to ν ∈ C−∞(Sn−1), then
limj→∞ δ ∗ νj = δ ∗ ν weakly for every δ ∈ C−∞(Sn−1).

Zonal measures play an essential role for spherical convolution. For later use we
state here explicitly the expressions for the convolution of a function h ∈ C(Sn−1)
and a measure σ ∈ M(Sn−1) with a zonal measure µ ∈ M(Sn−1) and a zonal
function f ∈ C(Sn−1), respectively:

(h ∗ µ)(η̄) =

∫
Sn−1

h(ηu) dµ(u) and (σ ∗ f)(η̄) =

∫
Sn−1

f(η−1u) dσ(u), (2.17)

where for η ∈ SO(n), we write π(η) = η̄ ∈ Sn−1.
Note that for signed measures σ, µ on Sn−1 and every ϑ ∈ SO(n), we have

(ϑσ) ∗ µ = ϑ(σ ∗ µ) and that, by (2.17), the convolution of zonal measures on Sn−1

is Abelian. Moreover, from the identification of a zonal measure µ on Sn−1 with a
measure on [−1, 1] and the well-known Funk–Hecke Theorem, it follows (cf. [59])
that the Fourier expansion of σ ∗ µ is given by

σ ∗ µ ∼
∞∑
k=0

ank [µ] πkσ, (2.18)

where the numbers ank [µ] are defined by (2.13).
Like the convolution on Rn, spherical convolution can be used to approximate

a given measure or distribution on Sn−1 by smooth functions. To this end, let
Bj(ē), j ∈ N, denote the open geodesic ball of radius 1

j
centered at ē ∈ Sn−1. A

sequence of non-negative zonal functions ζj ∈ C∞(Sn−1), j ∈ N, is called a spherical
approximate identity if for each j,∫

Sn−1

ζj(u) du = 1 and supp ζj ⊆ Bj(ē). (2.19)

For a proof of the following auxiliary result, we refer to [27] or [53, Chapter 6].

Lemma 2.6 If ζj ∈ C∞(Sn−1), j ∈ N, is a spherical approximate identity, then

(i) limj→∞ g ∗ ζj = g uniformly for every g ∈ C(Sn−1);

(ii) limj→∞ ν ∗ ζj = ν weakly for every ν ∈ C−∞(Sn−1).
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In the final part of this section, we turn to the Christoffel problem and its
solution by Berg [12]. First recall that spherical harmonics are eigenfunctions of
the Laplacian ∆S, more precisely, for Yk ∈ Hn

k ,

∆SYk = −k(k + n− 2)Yk. (2.20)

Like the orthogonal projection πk, the Laplacian ∆S is self-adjoint. Thus, it is
consistent to define ∆Sν for ν ∈ C−∞(Sn−1) as the distribution given by

〈f,∆Sν〉 = 〈∆Sf, ν〉, f ∈ C∞(Sn−1).

In particular, by (2.15), ∆S can now be applied to support functions of not
necessarily smooth convex bodies. This is important for us, since the first-order
area measure S1(K, ·) of K ∈ Kn and its support function hK are related by a
linear differential operator �n in the following way:

S1(K, ·) = hK +
1

n− 1
∆ShK =: �nhK . (2.21)

From (2.20) and the definition of �n, it follows that for f ∈ C∞(Sn−1), the
spherical harmonic expansion of �nf is given by

�nf ∼
∞∑
k=0

(1− k)(k + n− 1)

n− 1
πkf. (2.22)

Hence, the kernel of �n : C∞(Sn−1)→ C∞(Sn−1) is given by Hn
1 , that is, it consists

precisely of the restrictions of linear functions on Rn to Sn−1. In the following let

C∞o (Sn−1) = {f ∈ C∞(Sn−1) : π1f = 0}

and define C−∞o (Sn−1) in the same way. Then �n : C∞o (Sn−1) → C∞o (Sn−1) is an
SO(n)-equivariant isomorphism of topological vector spaces.

The classical Christoffel problem consists in finding necessary and sufficient
conditions for a Borel measure on Sn−1 to be the first-order area measure of a convex
body. A solution was obtained by Berg [12] by providing an explicit inversion
formula for the operator �n. In order to state this result, we define for a function
g on [−1, 1] an associated zonal function ğ on Sn−1 by

ğ(u) = g(u · ē), u ∈ Sn−1.

Theorem 2.7 ([12]) For every n ≥ 2 there exists a uniquely determined C∞

function gn on (−1, 1) such that the associated zonal function ğn ∈ L1(Sn−1) and

an1 [gn] = 0, ank [gn] =
n− 1

(1− k)(k + n− 1)
, k 6= 1. (2.23)

It follows from (2.22), (2.18), and (2.23) that for every f ∈ C∞o (Sn−1),

f = (�nf) ∗ ğn. (2.24)
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In the final section, we need a generalization of (2.24) that can be deduced from
[25, Theorem 4.3] and was independently proved in [11]:

Proposition 2.8 For every j ∈ {2, . . . , n}, the integral transform

Tgj : C∞o (Sn−1)→ C∞o (Sn−1), f 7→ f ∗ ğj,

is an isomorphism.

Proposition 2.8 and (2.24) give rise to the following:

Definition For j ∈ {2, . . . , n}, let �j : C∞o (Sn−1) → C∞o (Sn−1) denote the linear
operator which is inverse to the integral transform Tgj .

3. Smooth and Generalized Valuations

We now turn to the background material on translation-invariant scalar and
convex body valued valuations. In particular, we recall the definitions of smooth
and generalized (spherical) valuations as well as the Alesker–Poincaré duality map.

If G is a group of affine transformations on Rn, a valuation φ is called
G-invariant if φ(gK) = φ(K) for all K ∈ Kn and every g ∈ G. Let Val denote
the vector space of continuous translation-invariant scalar valued valuations on Rn.
It was first proved by McMullen [47] that

Val =
⊕

0≤i≤n

Vali, (3.1)

where Vali ⊆ Val denotes the subspace of valuations (homogeneous) of degree i.
Recall that a map Φ : Kn → Kn is called a Minkowski valuation if

ΦK + ΦL = Φ(K ∪ L) + Φ(K ∩ L)

whenever K ∪ L is convex and addition on Kn is Minkowski addition. We denote
by MVal the set of continuous translation-invariant Minkowski valuations, and we
write MVali, 0 ≤ i ≤ n, for its subset of Minkowski valuations of degree i.

More general than Minkowski valuations, we also consider valuations with values
in C(Sn−1), that is, maps F : Kn → C(Sn−1), K 7→ FK , such that

FK + FL = FK∪L + FK∩L

whenever K ∪L is convex. Let CVal denote the vector space of all such valuations
which are continuous and translation-invariant and, as before, let CVali, 0 ≤ i ≤ n,
denote its subspace of valuations of degree i.

Note that any Minkowski valuation Φ ∈MVal induces a valuation FΦ ∈ CVal
by FΦ

K = hΦK , and that Φ is SO(n)-equivariant if and only if FΦ is SO(n)-
equivariant. Using the map Φ 7→ FΦ, the set MVal can be identified with an
infinite dimensional convex cone in CVal.
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Clearly, a valuation F ∈ CVal is uniquely determined by the family of valuations
ϕu ∈ Val, u ∈ Sn−1, defined by ϕu(K) = FK(u) for K ∈ Kn. If in addition F is
SO(n)-equivariant, then for η ∈ SO(n) and η̄ = ηē ∈ Sn−1,

ϕη̄(K) = FK(ηē) = (η−1FK)(ē) = Fη−1K(ē) = ϕē(η
−1K).

Thus, an SO(n)-equivariant F ∈ CVal is uniquely determined by a single SO(n−1)-
invariant valuation ϕē ∈ Val. In fact, there is a one-to-one correspondence between
the subspace of SO(n− 1)-invariant valuations in Val and the subspace of SO(n)-
equivariant valuations in CVal. This observation leads to the following:

Definition Suppose that F ∈ CVal is SO(n)-equivariant. The SO(n−1)-invariant
valuation ϕ ∈ Val, defined by

ϕ(K) = FK(ē), K ∈ Kn,

is called the associated real valued valuation of F ∈ CVal.

The following collection of examples and results on homogeneous valuations will
be useful for later reference.

Examples 3.1

(a) It is a trivial fact that Val0 is one-dimensional and spanned by the Euler
characteristic V0. (Recall that V0(K) = 1 for every K ∈ Kn.) Using this
observation, it follows that Φ0 ∈MVal0 if and only if there exists an L0 ∈ Kn
such that Φ0K = L0 for every K ∈ Kn. If Φ0 is also SO(n)-equivariant, then
L0 = c0B, where B denotes the Euclidean unit ball in Rn and c0 ≥ 0.

Hadwiger [33, p. 79] proved that also Valn is one-dimensional and spanned by
the ordinary volume Vn. From this one can easily deduce that Φn ∈ MValn
if and only if there exists an Ln ∈ Kn such that ΦnK = LnV (K) for every
K ∈ Kn. If Φn is also SO(n)-equivariant, then Ln = cnB for some cn ≥ 0.

(b) It was first proved by Spiegel [63] that if ψ ∈ Val1, then

ψ(K + L) = ψ(K) + ψ(L)

for all K,L ∈ Kn. Using this Minkowski additivity, a description of valuations
in Val1 was obtained by Goodey and Weil [23] and refined by Kiderlen [36].
In order to state their result, recall that any f ∈ C∞(Sn−1) can be written as
a difference of two support functions f = hKf − hrfB, where rf ≥ 0 (see, e.g.,
[56, Lemma 1.7.8]). Now for ψ ∈ Val1, let νψ ∈ C−∞o (Sn−1) be given by

〈f, νψ〉 = ψ(Kf )− ψ(rfB), f ∈ C∞(Sn−1), (3.2)

which is well defined by the Minkowski additivity of ψ. Moreover, since rf
depends continuously on f in the C2 norm, the distribution νψ ∈ C−∞o (Sn−1)
is of order at most 2.
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This allows one to conclude that if ψ ∈ Val1, then there exists a uniquely
determined νψ ∈ C−∞o (Sn−1) of order at most 2, which can be extended to the
vector space spanned by support functions, such that

ψ(K) = 〈hK , νψ〉
for every K ∈ Kn. Also observe that ψ 7→ νψ is continuous as a map from
Val1 to C−∞o (Sn−1). Using this description of valuations in Val1, Kiderlen [36]
proved that if Φ1 ∈MVal1 is SO(n)-equivariant, then there exists a uniquely
determined zonal ν1 ∈ C−∞o (Sn−1) of order at most 2 such that

hΦ1K = hK ∗ ν1 (3.3)

for every K ∈ Kn. From (3.3) and a straightforward generalization of (2.18), it
follows that for every SO(n)-equivariant Φ1 ∈MVal1, there exists a uniquely
determined sequence of real numbers ank [Φ1], k ≥ 0, such that an1 [Φ1] = 0 and

πkhΦ1K = ank [Φ1]πkhK (3.4)

for every K ∈ Kn and k ≥ 0. In fact, relation (3.4) was already proved by
Schneider [54] in 1974, where he also showed that for every k 6= 1,

|ank [Φ1]| ≤ an0 [Φ1]. (3.5)

We note that a precise description of the cone of zonal distributions in
C−∞o (Sn−1) which generate a Minkowski valuation by (3.3) is still open.
However, Kiderlen [36] showed that this cone contains all non-negative zonal
measures on Sn−1. More precisely, if µ1 ∈Mo(Sn−1) is zonal and non-negative,
then

hΨ1K = hK ∗ µ1, K ∈ Kn,
defines an SO(n)-equivariant Minkowski valuation in MVal1.

(c) A classification of continuous translation-invariant scalar valued valuations of
degree n−1 was obtained by McMullen [48]. It states that φ ∈ Valn−1 if and
only if there exists a uniquely determined f ∈ Co(Sn−1) such that

φ(K) =

∫
Sn−1

f(u) dSn−1(K, u)

for every K ∈ Kn. Applying McMullen’s result to associated real valued
valuations, the first author obtained in [59] the following description of
SO(n)-equivariant Minkowski valuations of degree n− 1: If Φn−1 ∈MValn−1

is SO(n)-equivariant, then there exists a uniquely determined zonal function
fn−1 ∈ Co(Sn−1) such that

hΦn−1K = Sn−1(K, ·) ∗ fn−1 (3.6)

for every K ∈ Kn. As in the case of Minkowski valuations of degree 1, a
precise description of the cone of zonal functions in Co(Sn−1) which generate
a Minkowski valuation by (3.6) is still open (see [59] for more information).
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(d) Several important Minkowski valuations arise from data about sections or
projections of convex bodies and are therefore objects of intensive research in
geometric tomography (see, e.g., [21, 30, 36, 40, 41]). Of particular interest
for us are the normalized mean section operators Mj ∈MValn+1−j, 2 ≤ j ≤ n,
introduced by Goodey and Weil [24]. In [25, Theorem 4.4], they showed that
for K ∈ Kn,

hMjK = qn,j Sn+1−j(K, ·) ∗ ğj, (3.7)

where gj is the jth Berg function and the constant qn,j is given by

qn,j =
j − 1

2π(n+ 1− j)
κj−1κj−2κn−j
κj−3κn−2

.

Here, κi is the i-dimensional volume of the i-dimensional Euclidean unit ball.

A simple consequence of (3.1) is that the space Val becomes a Banach space
when endowed with the norm

‖φ‖ = sup{|φ(K)| : K ⊆ B}.

The natural continuous action of the general linear group GL(n) on the Banach
space Val is for A ∈ GL(n) given by

(Aφ)(K) = φ(A−1K), φ ∈ Val, K ∈ Kn.

The notion of smooth vectors of a continuous representation now gives rise to
the notion of smooth valuations, first introduced by Alesker [5].

Definition A valuation φ ∈ Val is called smooth if the map GL(n)→ Val, defined
by A 7→ Aφ, is infinitely differentiable.

Note that smooth valuations are precisely the smooth vectors of the natural
representation of GL(n) on Val. We therefore write Val∞ for the Fréchet space
of smooth translation-invariant valuations endowed with the G̊arding topology (see
Section 2). We denote the subspace of smooth valuations of degree i by Val∞i . By
the general properties of smooth vectors discussed in Section 2, the spaces Val∞i
are dense GL(n)-invariant subspaces of Vali and from (3.1) one can deduce that

Val∞ =
⊕

0≤i≤n

Val∞i .

The one-to-one correspondence between SO(n)-equivariant valuations in CVal
and SO(n− 1)-invariant valuations in Val now motivates the following.

Definition Let F ∈ CVal be SO(n)-equivariant and let ϕ ∈ Val be the associated
real valued valuation of F . We define the norm of F by

‖F‖ = sup{|ϕ(K)| : K ⊆ B}. (3.8)

Furthermore, we call F smooth if ϕ is smooth.
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While it is easy to see that McMullen’s decomposition result (3.1) implies that

CVal =
⊕

0≤i≤n

CVali, (3.9)

it was recently proved by Parapatits and the second author [51] that, in general,
a Minkowski valuation Φ ∈ MVal need not be a sum of homogeneous Minkowski
valuations Φi ∈MVali. However, from (3.9) one can still deduce a decomposition
result for translation-invariant Minkowski valuations (cf. [57]), which we state here
under the additional assumption of SO(n)-equivariance.

Lemma 3.2 If Φ ∈ MVal is SO(n)-equivariant, then there exist uniquely
determined c0, cn ≥ 0 and SO(n)-equivariant valuations Fi ∈ CVali, 1 ≤ i ≤ n− 1
such that

hΦK = c0 +
n−1∑
i=1

Fi,K + cnV (K),

for every K ∈ Kn. Moreover, if Φ is smooth, then each Fi is also smooth.

The space of SO(n)-equivariant valuations in CVal endowed with the norm
(3.8) becomes a Banach space in which smooth valuations form a dense subspace.
However, it is a priori not clear that an SO(n)-equivariant Minkowski valuation in
MVal can be approximated by smooth ones. We will prove this in Section 5.

It is well known that for any φ ∈ Val and K ∈ Kn, McMullen’s decomposition
(3.1) implies that the function t 7→ φ(K + tB) is a polynomial of degree at most n.
This, in turn, gives rise to a derivation operator Λ : Val→ Val, defined by

(Λφ)(K) =
d

dt

∣∣∣∣
t=0

φ(K + tB). (3.10)

Using (3.10) it is not difficult to show that if φ ∈ Vali, then Λφ ∈ Vali−1, that Λ is
continuous, SO(n)-equivariant, and that Λ maps smooth valuations to smooth ones.

The advantage of working with smooth translation-invariant valuations instead
of merely continuous ones is that the space Val∞ admits more algebraic structure.
For example, the following Hard Lefschetz type theorem for the operator Λ was
proved by Alesker [5] for even and by Bernig and Bröcker [14] for general valuations.

Theorem 3.3 ([5, 14]) Suppose that n
2
< i ≤ n. Then Λ2i−n : Val∞i → Val∞n−i is

an isomorphism.

Recently, Parapatits and the first author [50] proved that for any Φ ∈ MVal,
there exist Φ(j) ∈MVal, where 0 ≤ j ≤ n, such that

Φ(K + tB) =
n∑
j=0

tn−jΦ(j)(K)

for every K ∈ Kn and t ≥ 0. This Steiner type formula shows that the operator Λ
from (3.10) has a natural analogue for Minkowski valuations Λ : MVal → MVal.
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Definition For Φ ∈MVal, define ΛΦ ∈MVal by

h(ΛΦ)(K)(u) =
d

dt

∣∣∣∣
t=0

hΦ(K+tB)(u), u ∈ Sn−1.

Note that if Φ ∈ MVali is SO(n)-equivariant, then so is ΛΦ ∈ MVali−1.
Moreover, if ϕ ∈ Vali is the associated real valued valuation of Φ, then Λϕ ∈ Vali−1

is associated with ΛΦ. In particular, if Φ is smooth, then so is ΛΦ.

Another important structural property of smooth valuations is the existence of
a continuous bilinear product, discovered by Alesker [6],

· : Val∞ ×Val∞ → Val∞, (φ, ψ) 7→ φ · ψ.

Endowed with the Alesker product, Val∞ becomes an associative and commutative
algebra with unit given by the Euler characteristic which is graded by the degree
of homogeneity, that is,

Val∞i ·Val∞j ⊆ Val∞i+j. (3.11)

Recall that Valn is 1-dimensional and spanned by Vn, our fixed Lebesgue
measure on Rn. If V ∗n ∈ Val∗n is the unique element such that 〈Vn, V ∗n 〉 = 1,
then it follows from (3.11) that for every 0 ≤ i ≤ n,

〈 · , ·〉 : Val∞i ×Val∞n−i → R, (φ, ψ) 7→ 〈φ · ψ, V ∗n 〉, (3.12)

defines a continuous bilinear pairing between smooth valuations of complementary
degree. Moreover, Alesker [6] proved that this pairing is non-degenerate.

Definition The space of translation-invariant generalized valuations of degree
i ∈ {0, . . . , n} is defined as the topological dual

Val−∞i = (Val∞n−i)
∗

endowed with the weak topology.

Since the pairing (3.12) is non-degenerate, the Poincaré duality map, defined by

pd : Val∞i → Val−∞i , 〈pdφ, ψ〉 = 〈φ, ψ〉, (3.13)

is continuous, injective and has dense image with respect to the weak topology.
Moreover, a result of Alesker [8, Proposition 8.1.2] directly implies another property
which will be crucial for our purposes:

Proposition 3.4 For 0 ≤ i ≤ n, the Poincaré duality map pd : Val∞i → Val−∞i
admits a unique continuous extension to Vali.
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In the following, we will use the Poincaré duality map to identify the spaces
Val∞i and Vali with dense subspaces of Val−∞i . Hence, we have the inclusions

Val∞i ⊆ Vali ⊆ Val−∞i .

Next we recall a recent result of Alesker, Bernig and the first author [10] on the
decomposition of the vector spaces of translation invariant (generalized) valuations
into SO(n)-irreducible subspaces.

Theorem 3.5 ([10]) For 0 ≤ i ≤ n, the spaces Val∞i , Vali, and Val−∞i are
multiplicity free under the action of SO(n). Moreover, the highest weights of
the SO(n)-irreducible subspaces in either of them are precisely given by the tuples
(λ1, . . . , λbn/2c) satisfying (2.9) and the following additional conditions:

(i) λj = 0 for j > min{i, n− i}; (ii) |λj| 6= 1 for 1 ≤ j ≤ bn
2
c; (iii) |λ2| ≤ 2.

We now use the notion of spherical representations (see Section 2) to define
spherical valuations.

Definition For 0 ≤ i ≤ n, the subspaces Valsph
i , Val∞,sph

i , and Val−∞,sph
i of

translation invariant continuous, smooth, and generalized spherical valuations of
degree i are defined as the closures (w.r.t. the respective topologies) of the direct
sum of all SO(n)-irreducible subspaces in Vali, Val∞i , and Val−∞i , respectively,
which are spherical with respect to SO(n− 1).

By Theorems 3.5 and 2.3 (see also Example 2.4), Val−∞,sph
i is the annihilator

of the closure of the direct sum of all SO(n) irreducible subspaces in Val∞n−i with
highest weights not of the form (k, 0, . . . , 0), k ≥ 0. Consequently, Theorem 2.3 (b)
implies the following critical fact:

Proposition 3.6 Every SO(n−1)-invariant (generalized) valuation in Vali, Val∞i ,
or Val−∞i , where 0 ≤ i ≤ n, is spherical.

Examples 3.7

(a) It follows from Theorem 3.5 or Example 3.1 (b) that

Val1 = Valsph
1 , Val∞1 = Val∞,sph

1 , Val−∞1 = Val−∞,sph
1 .

(b) It follows from Theorem 3.5 or Example 3.1 (c) that

Valn−1 = Valsph
n−1, Val∞n−1 = Val∞,sph

n−1 , Val−∞n−1 = Val−∞,sph
n−1 .
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4. Auxiliary Results about Smooth Valuations

In this section we begin with the proof of Theorem 3 (a). As a corollary, we
obtain a version of Theorem 2 for smooth Minkowski valuations. We also determine
an explicit expression for the pairing (3.12) when one of the valuations is spherical.
This will be needed in the next section to complete the proof of Theorem 3 (a).

Theorem 4.1 For 1 ≤ i ≤ n− 1, the map Ei : C∞o (Sn−1)→ Val∞,sph
i , defined by

(Eif)(K) =

∫
Sn−1

f(u) dSi(K, u), (4.1)

is an SO(n)-equivariant isomorphism of topological vector spaces.

Proof. Clearly, the maps Ei : Co(Sn−1) → Vali, given by (4.1), are linear and
SO(n)-equivariant for every i ∈ {1, . . . , n − 1}. If N(K) denotes the normal cycle
of a convex body K, then

Eif(K) = ci

∫
N(K)

f(y)
∑
π

sgn(π)yπ1dyπ2 ∧ · · · ∧ dyπn−i ∧ dxπn−i+1
∧ · · · ∧ dxπn ,

where ci is a constant and the sum ranges over all permutations of {1, . . . , n},
see [17]. This shows that the maps Ei : C∞o (Sn−1) → Val∞i are well defined and
continuous.

Since differences of area measures of order i of convex bodies in Kn are dense
in the set of all signed finite Borel measures on Sn−1 with centroid at the origin
(see, e.g., [56, p. 477])), the maps Ei are also injective. Consequently, by Schur’s
lemma and Example 2.4, Ei(Hn

k), k 6= 1, is an SO(n)-irreducible subspace of Val∞i
of highest weight (k, 0, . . . , 0). By Theorem 3.5 and the definition of the spaces
Val∞,sph

i , it follows that Ui := Ei(C
∞
o (Sn−1)) is a dense subspace of Val∞,sph

i . By
the open mapping theorem, it remains to show that Ui is closed.

First, let i = n− 1. In this case, En−1 can be rewritten as a GL(n)-equivariant
map Ψ : C(P∨+(Rn),L) → Valn−1 mapping continuous sections of a certain line
bundle over the manifold of cooriented linear hyperplanes of Rn to valuations, see
[8, Section 2] for details. As an immediate consequence of Lemma 2.2 and the
Casselman-Wallach theorem [19], the image of Ψ : C∞(P∨+(Rn),L)→ Val∞n−1, which
coincides with the image of En−1 : C∞o (Sn−1)→ Val∞n−1, is closed.

Next, recall that the area measures satisfy the Steiner type formula

Si(K + tB, ·) =
i∑

j=0

ti−j
(
i

j

)
Sj(K, ·)

for every K ∈ Kn and t ≥ 0. Thus, for f ∈ Co(Sn−1) and i ≥ 2, we have

(ΛEif)(K) =
d

dt

∣∣∣∣
t=0

∫
Sn−1

f(u) dSi(K + tB, u) = i(Ei−1f)(K). (4.2)
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In particular, the restriction of the derivation operator Λ to Ui is injective for
2 ≤ i ≤ n − 1 and Λ(Ui) = Ui−1. Since Λ is a linear SO(n)-equivariant operator,
its kernel is an SO(n)-invariant subspace. Consequently, the restriction of Λ to
cl Ui = Val∞,sph

i is injective as well. By Theorem 3.3, Λn−2 : Val∞n−1 → Val∞1 is
an SO(n)-equivariant isomorphism. But Un−1 = Val∞n−1 by what we have proved
above. Therefore,

U1 = Λn−2(Un−1) = Val∞1 .

In particular, U1 = Λi−1(Ui) is closed. Hence,

Ui = (Λi−1)−1U1 ∩Val∞i

is closed and, therefore, Ui = Val∞,sph
i . �

Using Theorem 4.1, we can now prove the following Hadwiger type result for
smooth SO(n)-equivariant valuations with values in C(Sn−1).

Theorem 4.2 A map F : Kn → C(Sn−1) is a smooth translation-invariant and
SO(n)-equivariant valuation if and only if there exist uniquely determined c0, cn ∈ R
and SO(n− 1)-invariant fi ∈ C∞o (Sn−1), 1 ≤ i ≤ n− 1, such that

FK = c0 +
n−1∑
i=1

Si(K, ·) ∗ fi + cnVn(K) (4.3)

for every K ∈ Kn.

Proof. Let F ∈ CVal be SO(n)-equivariant and smooth. From (3.9), we deduce
that there exist smooth and SO(n)-equivariant valuations Fi ∈ CVali, 0 ≤ i ≤ n,
such that

F = F0 + · · ·+ Fn.

The classifications of valuations from Val0 and Valn described in Example 3.1 (a)
imply that there exist unique c0, cn ∈ R such that F0,K = c0 and Fn,K = cnV (K)
for every K ∈ Kn. It remains to show that for every SO(n)-equivariant smooth
Fi ∈ CVali, 1 ≤ i ≤ n− 1, there exists a uniquely determined SO(n− 1)-invariant
fi ∈ C∞o (Sn−1), such that for every K ∈ Kn,

Fi,K = Si(K, ·) ∗ fi. (4.4)

To this end, let ϕi ∈ Val∞i denote the associated real valued valuation of Fi and
recall that, by definition, ϕi is SO(n− 1)-invariant. Therefore, by Proposition 3.6,
ϕi ∈ Val∞,sph

i . Consequently, by Theorem 4.1, there exists a uniquely determined
fi ∈ C∞o (Sn−1) such that

ϕi(K) =

∫
Sn−1

fi(u) dSi(K, u). (4.5)
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Moreover, the SO(n−1)-invariance of ϕi implies that fi is also SO(n−1)-invariant.
Hence, by the definition of ϕi and (2.17), we obtain

Fi,K(η̄) = ϕi(η
−1K) =

∫
Sn−1

fi(η
−1u) dSi(K, u) = (Si(K, ·) ∗ fi)(η̄),

where for η ∈ SO(n), we set, as before, η̄ = ηē ∈ Sn−1.

Conversely, let F ∈ CVal be defined by (4.3). Then, by the properties
of spherical convolution, F is SO(n)-equivariant and the associated real valued
valuation ϕi of its homogeneous component of degree i ∈ {1, . . . , n− 1} is given by
(4.5). By Theorem 4.1, ϕi is smooth and, thus, F is smooth. �

Since any smooth SO(n)-equivariant Minkowski valuations Φ ∈MVal induces a
smooth SO(n)-equivariant valuation FΦ ∈ CVal, we obtain as a direct consequence
of Lemma 3.2 and Theorem 4.2 the following:

Corollary 4.3 If Φ : Kn → Kn is a smooth Minkowski valuation which is
translation-invariant and SO(n)-equivariant, then there exist uniquely determined
c0, cn ≥ 0 and SO(n− 1)-invariant fi ∈ C∞o (Sn−1), 1 ≤ i ≤ n− 1, such that

hΦK = c0 +
n−1∑
i=1

Si(K, ·) ∗ fi + cnVn(K) (4.6)

for every K ∈ Kn.

Corollary 4.3 under the additional assumption that the Minkowski valuation Φ
is even was recently obtained by the authors [62] using a different approach.

Finally, we require a generalization of a formula of Bernig and Hug [17] for the
pairing (3.12) of spherical valuations. To this end, let a : Sn−1 → Sn−1 denote the
antipodal map, given by, a(u) = −u, u ∈ Sn−1, and recall from Example 3.1 (b)
that any ψ ∈ Val1 determines a unique νψ ∈ C−∞o (Sn−1), defined by (3.2).

Proposition 4.4 Let 1 ≤ i ≤ n− 1. For φi ∈ Vali and f ∈ C∞o (Sn−1), we have

〈φi,En−if〉 =
(n− i)!
(n− 1)!

〈f ◦ a, νΛi−1φi〉. (4.7)

Proof. Since both pairings in (4.7) are jointly continuous and bilinear, we may
assume that f ∈ Hn

k for some k ≥ 0, k 6= 1, and that φi belongs to an SO(n)-
irreducible subspace Γλ ⊆ Vali of highest weight λ = (λ1, . . . , λbn/2c). In particular,
φi is smooth.
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Next, note that Λi−1φi ∈ Val∞1 = Val∞,sph
1 (cf. Examples 3.7). Therefore, by

Theorem 4.1, there exists a smooth function h ∈ C∞o (Sn−1) (in fact, h ∈ Hn
m for

some m ∈ N) such that

(Λi−1φi)(K) = i!

∫
Sn−1

h(u) dS1(K, u). (4.8)

The normalizing coefficient i! is chosen for convenience as will become clear below.
From (2.21), the fact that �n is self-adjoint, and definition (3.2), it follows that
(4.8) can be rewritten in the following way:

(Λi−1φi)(K) = i!

∫
Sn−1

hK(u)�nh(u) du = 〈hK , νΛi−1φi〉.

In particular, νΛi−1φi = i!�nh.
Since the pairing (3.12) is biinvariant under the (simultaneous) action of SO(n)

and the spaces Hn
k are self-dual as SO(n)-modules, the restriction of the Poincaré

duality map to Γλ defines a linear SO(n)-equivariant map from Γλ to Hn
k , that is,

pd|Γλ ∈ HomSO(n)(Γλ,Hn
k).

Since both Γλ and Hn
k are SO(n)-irreducible, it follows from Schur’s lemma that

pd|Γλ and, thus, the left hand side of (4.7) can only be non-zero when Γλ and Hn
k

are isomorphic, that is, when (λ1, . . . , λbn/2c) = (k, 0, . . . , 0). Similarly, the right
hand side of (4.7) can only be non-zero if (λ1, . . . , λbn/2c) = (k, 0, . . . , 0). We may

therefore assume that φi is spherical. But if φi ∈ Val∞,sph
i , then, by (4.8) and (4.2),

we have

φi(K) =

∫
Sn−1

h(u) dSi(K, u) = Eih.

In this case, it follows from [17, Proposition 4.11] that

〈Eih,En−if〉 =
(n− i)!i!
(n− 1)!

∫
Sn−1

h(u)�nf(−u) du. (4.9)

Using again the fact that �n is self-adjoint and νΛi−1φi = i!�nh, we obtain

〈φi,En−if〉 =
(n− i)!
(n− 1)!

〈f ◦ a, νΛi−1φi〉

which is the desired relation. �
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5. Proof of the Main Results

We are now in a position to complete the proofs of Theorems 2 and 3. We also
discuss a more precise version of Theorem 2 for homogeneous Minkowski valuations
in dimensions n ≤ 4. At the end of the section we include an approximation result
for continuous Minkowski valuations by smooth ones.

We begin with the following slightly more precise version of Theorem 3 (a).

Theorem 5.1 For 1 ≤ i ≤ n − 1, the isomorphism Ei : C∞o (Sn−1) → Val∞,sph
i

admits a unique extension by continuity in the weak topologies to an isomorphism

Ẽi : C−∞o (Sn−1)→ Val−∞,sph
i .

That is, the diagram

C∞o (Sn−1)
Ei //

��

_�

�

Val∞, sph
i

��

_�

pd

�

C−∞o (Sn−1)
Ẽi // Val−∞, sph

i

commutes and the vertical maps have dense image.

Proof. First recall that Val−∞,sph
i is the annihilator of the subspace spanned by

all SO(n)-irreducible subspaces of Val∞n−i which are non-spherical. Hence, using

Theorem 4.1, we can define a map Ẽi : C−∞o (Sn−1)→ Val−∞,sph
i by

〈Ẽiν, φn−i〉 =
i!

(n− 1)!
〈ν, (�n ◦ a∗ ◦ E−1

1 ◦ Λn−i−1)φn−i〉, (5.1)

where φn−i ∈ Val∞n−i and a∗ denotes the pullback by the antipodal map. Since �n

and a∗ are self-adjoint, (4.9) shows that Ẽi continuously extends Ei.

Since Ei is SO(n)-equivariant and injective, it follows that Ẽi is also injective.

In order to prove that Ẽi is surjective, let ξ ∈ Val−∞,sph
i be given and note that

ξ ◦ En−i ∈ C−∞o (Sn−1). If we put

ν =
(n− 1)!

(n− i)!i!
ξ ◦ En−i ◦ a∗ ◦�−1

n ∈ C−∞o (Sn−1)

and use the fact that, by (4.2),

(E−1
1 ◦ Λn−i−1)En−if = (n− i)! f,

then, by (5.1),

〈Ẽiν,En−if〉 = 〈ξ,En−if〉
for all f ∈ C∞o (Sn−1), that is, Ẽiν = ξ. Clearly, the map Ẽ−1

i thus defined is
continuous. �
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In the next lemma, which is crucial for the proof of Theorem 3 (b), and in all
that follows, the letter C will denote a constant that can be different from one line
to the next and that depends only on the dimension n.

Lemma 5.2 There exists a constant C > 0 such that

‖f‖C2 ≤ C ‖�nf‖C0 .

for every SO(n− 1)-invariant f ∈ C2
o(Sn−1).

Proof. For arbitrary but fixed q ∈ R, we consider the linear differential operator
Dq : C2(Sn−1)→ C(Sn−1), defined by

Dqf = ∆Sf + qf.

Note that Dq is SO(n)-equivariant and that Dn−1 = (n−1)�n. Moreover, by (2.20),
the operator Dq is injective and has dense image for every q 6= k(k + n− 2), k ≥ 0.
If q = k(k + n− 2) for some k ≥ 0, then the kernel of Dq is given by Hn

k .
First, we show that there exists a constant C > 0 such that for k = 1, 2,

|∇kf |0 := max
Sn−1
|∇kf | ≤ C(‖f‖C0 + ‖Dqf‖C0) (5.2)

for every SO(n− 1)-invariant f ∈ C2(Sn−1) and, therefore, by (2.1),

‖f‖C2 ≤ C(‖f‖C0 + ‖Dqf‖C0). (5.3)

Using the cylindrical coordinates (2.2) and expressions (2.7) and (2.8), we see that
in order to prove (5.2), it suffices to prove that

|∂tf |0 := sup
(−1,1)

∣∣∣∣∂f∂t
∣∣∣∣ ≤ C(‖f‖C0 + ‖Dqf‖C0) (5.4)

and

|(1− t2)∂ttf |0 := sup
(−1,1)

∣∣∣∣(1− t2)
∂2f

∂t2

∣∣∣∣ ≤ C(‖f‖C0 + ‖Dqf‖C0) (5.5)

for every SO(n−1)-invariant f ∈ C2(Sn−1). But since (1−t2)∂ttf = ∆Sf+(n−1)t∂tf
by (2.6), it follows that (5.5) is actually an immediate consequence of (5.4) and the
definition of Dq. Thus, in order to prove (5.2), we only have to show that (5.4)
holds for every SO(n− 1)-invariant f ∈ C2(Sn−1).

Let f ∈ C2(Sn−1) now be an arbitrary but fixed SO(n − 1)-invariant function.
Since |∇f | and |∇2f | are bounded on Sn−1, it follows from (2.8) that ∂tf is bounded
on (−1, 1). Assume that |∂tf | attains its maximum at t0 ∈ (−1, 1). Since, by (2.6),

∆Sf = (1− t2)∂ttf − (n− 1)t∂tf = (1− t2)1−(n−1)/2∂t
(
(1− t2)(n−1)/2∂tf

)
,
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it follows from the definition of Dq that

(1− t20)(n−1)/2∂tf(t0) =

∫ t0

−1

∂t
(
(1− t2)(n−1)/2∂tf(t)

)
dt

=

∫ t0

−1

(1− t2)(n−1)/2−1(Dqf(t)− qf(t)) dt

and, hence,
|(1− t20)(n−1)/2∂tf(t0)| ≤ C(‖f‖C0 + ‖Dqf‖C0). (5.6)

This shows that we may assume that |t0| ≥ α for some fixed α > 0, otherwise (5.6)
implies (5.4). But since ∂ttf(t0) = 0, we conclude from (2.6) that

−(n− 1)t0∂tf(t0) = Dqf(t0)− qf(t0)

which also yields |∂tf(t0)| ≤ C(‖f‖C0 + ‖Dqf‖C0). Hence, we have shown that

|∂tf |0 ≤ max

{
C(‖f‖C0 + ‖Dqf‖C0), lim sup

t→±1
|∂tf(t)|

}
(5.7)

and it remains to bound lim supt→±1 |∂tf(t)| in terms of ‖f‖C0 and ‖Dqf‖C0 . In
order to do this, note that, by (2.6), ∂tf is a bounded solution on (−1, 1) of the
differential equation

y′(t)− (n− 1)t

1− t2
y(t) =

Dqf(t)− qf(t)

1− t2
.

All solutions of this equation are given by

y(t) = (1− t2)−(n−1)/2

(∫ t

−1

Dqf(s)− qf(s)

(1− s2)1−(n−1)/2
ds+ c

)
,

where c ∈ R. Since ∂tf is bounded, we must have

∂tf(t) = (1− t2)−(n−1)/2

∫ t

−1

Dqf(s)− qf(s)

(1− s2)1−(n−1)/2
ds (5.8)

and ∫ 1

−1

Dqf(s)− qf(s)

(1− s2)1−(n−1)/2
ds = 0. (5.9)

Consequently,

lim sup
t→1

|∂tf(t)| = lim sup
t→1

(1− t2)−(n−1)/2

∣∣∣∣∫ 1

t

Dqf(s)− qf(s)

(1− s2)1−(n−1)/2
ds

∣∣∣∣
≤ lim sup

t→1

1− t
1− t2

‖Dqf − qf‖C0 ≤ C(‖f‖C0 + ‖Dqf‖C0).

Similarly, we obtain lim supt→−1 |∂tf(t)| ≤ C(‖f‖C0 + ‖Dqf‖C0) which, by (5.7),
completes the proof of (5.4) and thus of (5.2) and (5.3).
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Next, assume that q < 0 and note that at a point x0 where |f(x0)| is maximal,
we have sign f(x0) = − sign ∆Sf(x0). Therefore, there exists a C > 0 such that

‖f‖C0 ≤ C‖Dqf‖C0

for every f ∈ C2(Sn−1). Consequently, we obtain from (5.3) that

‖f‖C2 ≤ C‖Dqf‖C0 .

for every SO(n− 1)-invariant f ∈ C2(Sn−1). From this, together with the fact that
Dq : C2(Sn−1)→ C(Sn−1) is injective and has dense image, we conclude that

D−1
q : C(Sn−1)SO(n−1) → C2(Sn−1)SO(n−1) ↪→ C(Sn−1)SO(n−1)

exists and is bounded. Recall that C(Sn−1)SO(n−1) denotes the Banach subspace of
all SO(n−1)-invariant functions in C(Sn−1) and C2(Sn−1)SO(n−1) is defined similarly.
Moreover, the Arzelà–Ascoli theorem implies that D−1

q is compact.
Now, choose m > n − 1 and put q = n − m − 1 < 0. Applying the

Fredholm alternative (see, e.g., [22, Theorem 5.3]) to the compact operator
D−1
q : Co(Sn−1)SO(n−1) → Co(Sn−1)SO(n−1) yields that either

f +mD−1
q f = 0 (5.10)

has a non-trivial solution f ∈ Co(Sn−1)SO(n−1) or

f +mD−1
q f = D−1

q h (5.11)

has a solution for every h ∈ Co(Sn−1)SO(n−1). In the latter case, the operator
(Id +mD−1

q )−1 is bounded. However, since

Dq(f +mD−1
q f) = ∆Sf + (n− 1)f = 0

for f ∈ Co(Sn−1)SO(n−1) implies that f = 0, equation (5.10) has no non-trivial
solution in Co(Sn−1)SO(n−1) and thus (5.11) is solvable for every h ∈ Co(Sn−1)SO(n−1),
that is, h = ∆Sf + (n− 1)f is solvable for every h ∈ Co(Sn−1)SO(n−1) and

‖f‖C0 = ‖(Id +mD−1
q )−1D−1

q h‖C0 ≤ C‖D−1
q h‖C0 ≤ C‖h‖C0 = C‖Dn−1f‖C0 .

Combining this with (5.3) for the case q = n−1 and recalling that Dn−1 = (n−1)�n,
completes the proof of the lemma. �

We remark, that Lemma 5.2 without the assumption of SO(n − 1)-invariance
does not hold in general.

Using Lemma 5.2 and Proposition 4.4, we can now complete the proof of
Theorem 3 (b).
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Proof of Theorem 3 (b). Let φi ∈ Val
SO(n−1)
i , 1 ≤ i ≤ n − 1, and recall

that, by Proposition 3.6, every SO(n − 1)-invariant valuation is spherical. Hence,
by Proposition 3.4, we can use the Poincaré duality map to identify φi with a
generalized valuation from Val−∞,sph

i . By Proposition 4.4,

〈φi,En−if〉 =
(n− i)!
(n− 1)!

〈f ◦ a, νΛi−1φi〉

for f ∈ C∞o (Sn−1). Since Λi−1φi is 1-homogeneous, νΛi−1φi ∈ C−∞o (Sn−1) is of
order at most 2 (cf. Example 3.1 (b)). Hence, φi ◦ En−i ∈ C−∞o (Sn−1) defines an
SO(n− 1)-invariant distribution of order at most 2.

At the same time, by Theorem 5.1, φi = Ẽiγ for some uniquely determined
γ ∈ C−∞o (Sn−1) and since φi is SO(n− 1)-invariant, so is γ. We want to show that
γ is of order 0 and, thus, in fact a measure. To this end, first note that, by (5.1),

φi ◦ En−i =
(n− i)!i!
(n− 1)!

γ ◦�n ◦ a∗.

Now, for f ∈ C∞o (Sn−1), let

f =

∫
SO(n−1)

ϑf dϑ = δē ∗ f

denote the SO(n − 1)-rotational symmetrization of f . Clearly, ‖f ‖C0 ≤ ‖f‖C0 .
Moreover, it is not difficult to show (cf. [53, Theorem 6.30]) that the SO(n − 1)-
invariance of γ implies γ(f) = γ(f). Consequently, using Lemma 5.2, we obtain

|γ(f)| = |γ(f)| = C|(φi ◦ En−i ◦ a∗)(�−1
n f)| ≤ C‖�−1

n f‖C2 ≤ C‖f ‖C0 ≤ C‖f‖C0 ,

that is, γ is of order 0 and therefore a measure.
In the case i = n− 1, it follows from the result of McMullen [48], described in

Example 3.1 (c), that, in fact, φi ∈ Ẽi(Co(Sn−1)). �

In the same way Theorem 4.1 implies Corollary 4.3, we can use Theorem 3 (b)
and an approximation argument to deduce Theorem 2.

Proof of Theorem 2. By Lemma 3.2, we have to show that for every SO(n)-
equivariant Fi ∈ CVali, 1 ≤ i ≤ n− 1, there exist uniquely determined SO(n− 1)-
invariant measures µi ∈ Mo(Sn−1), 1 ≤ i ≤ n − 2, and an SO(n − 1)-invariant
function fn−1 ∈ Co(Sn−1), such that for 1 ≤ i ≤ n− 2,

Fi,K = Si(K, ·) ∗ µi (5.12)

and
Fn−1,K = Sn−1(K, ·) ∗ fn−1 (5.13)

for every K ∈ Kn.
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Since (5.13) can be proved, using Theorem 3 (b), in exactly the same way that
(4.4) was deduced from Theorem 4.1, we only explain the proof of (5.12) here.
First, let K ∈ Kn be such that hK ∈ C∞(Sn−1) and that K has positive curvature.
Then the area measure Si(K, ·) of K is absolutely continuous with respect to
spherical Lebesgue measure with a smooth density function si(K, ·) ∈ C∞o (Sn−1)
(see, e.g., [56, Chapter 2.5]). We want to show that if ϕi ∈ Valsph

i denotes the
SO(n−1)-invariant associated real valued valuation of Fi, 1 ≤ i ≤ n−2, then there
exists a uniquely determined SO(n− 1)-invariant µi ∈Mo(Sn−1) such that

ϕi(K) =

∫
Sn−1

si(K, u) dµi(u). (5.14)

To this end, note that, by Theorem 3, there exists a uniquely determined SO(n−1)-

invariant µi ∈Mo(Sn−1) such that ϕi = Ẽiµi. Moreover, it follows from a result of
Bernig and Faifman [15, p. 11] that

ϕi(K) = 〈ϕi, ψKn−i〉, (5.15)

where ψKn−i ∈ Val∞n−i is given by the mixed volume

ψKn−i(L) =

(
n

i

)
V (L[n− i],−K[i]).

Now, let fi,j ∈ C∞o (Sn−1), j ∈ N, be a sequence of smooth functions which converges
weakly to µi. Then, by (5.15) and Proposition 4.4, we have

ϕi(K) = lim
j→∞
〈Ẽifi,j, ψ

K
n−i〉 =

i!

(n− 1)!
lim
j→∞
〈fi,j ◦ a, νΛn−i−1ψKn−i

〉.

Using the definitions of ψKn−i and Λ it is not difficult to show that

(Λn−i−1ψKn−i)(L) =
n!

i!
V (L,B[n− i− 1],−K[i]) =

(n− 1)!

i!

∫
Sn−1

hL(u)dSi(−K, u).

Thus, using dSi(−K, u) = si(K,−u) du and the definition of νΛn−i−1ψKn−i
, we obtain

ϕi(K) = lim
j→∞

∫
Sn−1

si(K, u)fi,j(u) du =

∫
Sn−1

si(K, u) dµi(u)

which completes the proof of (5.14).
From the definition of ϕi, (5.14), and (2.17), we now obtain

Fi,K(η̄) = ϕi(η
−1K) =

∫
Sn−1

si(K, ηu) dµi(u) = (si(K, ·) ∗ µi)(η̄).

Since both sides of this equation depend continuously on K, (5.12) follows from the
fact that convex bodies with smooth support functions and positive curvature are
dense in Kn. �

28



The following consequence of Theorem 2 for homogeneous Minkowski valuations
includes a slight improvement for dimensions n ≤ 4 which we deduce from the
existence of the derivation operator Λ : MVal→MVal and the estimate (3.5).

Corollary 5.3 Let Φi : Kn → Kn be a continuous, translation-invariant, and
SO(n)-equivariant Minkowski valuation of degree i ∈ {0, . . . , n}.

(i) If i = 0, then Φ0K = c0B for some c0 ≥ 0 and every K ∈ Kn.

(ii) If 1 ≤ i ≤ n− 2, then there exists a uniquely determined SO(n− 1)-invariant
µi ∈Mo(Sn−1) such that hΦiK = Si(K, ·) ∗ µi for every K ∈ Kn.

(iii) If i = n − 1, then there exists a uniquely determined SO(n − 1)-invariant
fn−1 ∈ Co(Sn−1) such that hΦn−1K = Sn−1(K, ·) ∗ fn−1 for every K ∈ Kn.

(iv) If i = n, then ΦnK = cnVn(K)B for some cn ≥ 0 and every K ∈ Kn.

Moreover, if n = 3 or n = 4, then the measures µi, i = 1, 2, from (ii) are absolutely
continuous with respect to spherical Lebesgue measure with densities in L2

o(Sn−1).

Proof. The statements (i)–(iv) are direct consequences of Theorem 2, so we only
have to prove the absolute continuity of the measures µi, i = 1, 2, for n ≤ 4. To
this end, first note that Λi−1Φi ∈MVal1 is SO(n)-equivariant and that if ϕi ∈ Vali
is the associated real valued valuation of Φi, then Λi−1ϕi ∈ Val1 is associated with
Λi−1Φi. Thus, it follows easily from (ii), (4.2), (2.21) and the fact that multiplier
transformations commute that for every K ∈ Kn,

hΛi−1ΦiK = i!S1(K, ·) ∗ µi = i!hK ∗�nµi. (5.16)

Hence, the distribution determined by Λi−1ϕi ∈ Val1 (cf. Example 3.1 (b)) is given
by i!�nµi. Since µi is SO(n− 1)-invariant, so is i!�nµi and it follows from (2.12)
and (2.22) that the Fourier expansion of i!�nµi is given by

i!�nµi ∼ i!
∞∑
k=0

N(n, k)

ωn

(1− k)(k + n− 1)

n− 1
ank [µi]P

n
k ( . · ē).

Therefore, using (5.16), (2.18), and (3.5), it follows that there exists an absolute
constant C > 0 such that for every k ≥ 2,

|ank [µi]| ≤ C
i!(n− 1)

(k − 1)(k + n− 1)
. (5.17)

But, since
(
N(n,k)
ωn

)1/2

P n
k ( . · ē) forms an orthonormal sequence in L2(Sn−1) (see,

e.g., [28, p. 84]) and, by (2.10), N(n, k) = O(kn−2) as k →∞, we see that

µi ∼
∞∑
k=0

N(n, k)

ωn
ank [µi]P

n
k ( . · ē).

converges in L2(Sn−1) as long as n ≤ 4. �
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Corollary 5.3 (iii) was previously obtained by the first author [59] as already
explained in Example 3.1 (c). The case i = 1 of Corollary 5.3 (ii) can be
reformulated as follows (cf. (5.16)): There exists a uniquely determined SO(n− 1)-
invariant µ1 ∈Mo(Sn−1) such that for every K ∈ Kn,

hΦ1K = hK ∗�nµ1. (5.18)

Comparing (5.18) with the corresponding result (3.3) of Kiderlen [36], shows that
we have slightly improved (3.3) by proving that the SO(n−1)-invariant distribution
ν1 ∈ C−∞o (Sn−1) of order at most 2 determined by Φ1 is always of the form ν1 = �nµ1

for some SO(n− 1)-invariant µ1 ∈Mo(Sn−1).
Note that the estimate (5.17) is not strong enough to deduce that µi is absolutely

continuous in higher dimensions, as can be seen for example from the spherical
Radon (or Minkowski-Funk) transform, R : C(Sn−1)→ C(Sn−1), defined by

Rf = f ∗ µSn−2 ,

where µSn−2 ∈ M(Sn−1) is uniformly concentrated on Sn−1 ∩ ē⊥. Clearly, µSn−2 is
SO(n−1)-invariant but not absolutely continuous with respect to spherical Lebesgue
measure. However, |ank [µSn−2 ]| = O(k1−n/2) as k →∞ (see, [28, Lemma 3.4.8]).

Finally we remark that Corollary 5.3 (ii) does not leave much room for
improvement since the zonal functions ğj associated with Berg’s functions are not
continuous on Sn−1 for n, j ≥ 3 and they do not lie in L2

o(Sn−1) but merely in
L1

o(Sn−1) for n, j ≥ 5. However, they are generating functions of the normalized
mean section operators Mj as described in Example 3.1 (d).

We conclude this section with an approximation result of continuous Minkowski
valuations by smooth ones which generalizes a corresponding result for even
Minkowski valuations of the first author [60] and will be useful in the last section.

Corollary 5.4 Every continuous, translation-invariant, and SO(n)-equivariant
Minkowski valuation can be approximated uniformly on compact subsets of Kn by
smooth, translation-invariant, and SO(n)-equivariant Minkowski valuations.

Proof. Let Φ ∈MVal be SO(n)-equivariant and let

hΦK = c0 +
n−2∑
i=1

Si(K, ·) ∗ µi + Sn−1(K, ·) ∗ fn−1 + cnVn(K) (5.19)

be the convolution representation of Φ according to Theorem 2. We define a
sequence Φj ∈MVal, j ∈ N, of SO(n)-equivariant Minkowski valuations by

hΦjK = hΦK ∗ ζj, K ∈ Kn,

where ζj, m ∈ N, is a spherical approximate identity. Note that since ζj ≥ 0, Φj is
well defined by the result of Kiderlen [36] described at the end of Example 3.1 (b).
Using (2.19) and the SO(n)-equivariance of Φ, it is easy to show that Φj converges
to Φ on compact subsets (cf. the proof of [60, Theorem 6.5]).
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It remains to show that the Minkowski valuations Φj are smooth, that is, the
associated real valued valuations ϕj ∈ Valsph are smooth. To this end note that
by the linearity of the convolution, the fact that µi ∗ ζj, fn−1 ∗ ζj ∈ C∞(Sn−1), and
(2.17), we have

ϕj(K) = c0 +
n−2∑
i=1

∫
Sn−1

(µi ∗ ζj)(u) dSi(K, u) +

∫
Sn−1

(fn−1 ∗ ζj)(u) dSn−1(K, u) + cnVn(K).

Thus, an application of Theorem 4.1 completes the proof. �

6. Integral Geometry of Minkowski Valuations

In this final section we apply Theorem 2 to establish a Crofton formula for
continuous, translation-invariant, and SO(n)-equivariant Minkowski valuations.
Combining this with Hadwiger’s general kinematic formula, allows us also to deduce
a kinematic formula for such Minkowski valuations.

We begin by recalling the classical Crofton formula (see, e.g., [39, p. 124]) for
intrinsic volumes: For 0 ≤ i, j ≤ n and K ∈ Kn, we have∫

AGrn−i,n

Vj(K ∩ E) dσn−i(E) =

[
i+ j
j

]
Vi+j(K). (6.1)

Here, AGri,n denotes the affine Grassmannian of i planes in Rn and σi is the rigid-
motion-invariant measure on AGri,n normalized such that the set of planes having
non-empty intersection with the Euclidean unit ball in Rn has measure[

n
i

]
κn−i :=

(
n

i

)
κn
κi
.

The Crofton formula (6.1) is intimately related with the general kinematic
formula: For 0 ≤ j ≤ n and K,L ∈ Kn, we have∫

SO(n)

Vj(K ∩ gL) dg =

n−j∑
i=0

[
i+ j
j

] [
n
i

]−1

Vi+j(K)Vn−i(L), (6.2)

where SO(n) = SO(n) nRn (see the books [39, 58] for more information).
The obvious connection between (6.1) and (6.2) is just a special case of

Hadwiger’s general integral geometric theorem (see, [58, p. 173]), which states in
the translation-invariant case that for every φ ∈ Val and K,L ∈ Kn, we have∫

SO(n)

φ(K ∩ gL) dg =
n∑
i=0

Vn−i(L)

[
n
i

]−1∫
AGrn−i,n

φ(K ∩ E) dσn−i(E). (6.3)
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An application of (6.3) to the real valued associated valuation of an SO(n)-
equivariant Minkowski valuation Φ ∈ MVal immediately yields the following
kinematic formula for such Minkowski valuations.

Corollary 6.1 If Φ ∈MVal is SO(n)-equivariant, then∫
SO(n)

hΦ(K∩gL)(u) dg =
n∑
i=0

Vn−i(L)

[
n
i

]−1∫
AGrn−i,n

hΦ(K∩E)(u) dσn−i(E) (6.4)

for every K,L ∈ Kn and u ∈ Sn−1.

Note that the sum on the right hand side of (6.4) is again the support function
of a convex body. Thus, it remains to determine the Crofton integral in (6.4). In
view of Lemma 3.2 and Theorem 2, this is accomplished by our final result.

Theorem 6.2 Suppose that 1 ≤ j ≤ n − 2 and 1 ≤ i ≤ n − j − 1. If Fj ∈ CValj
is SO(n)-equivariant and, for K ∈ Kn, given by

Fj,K = Sj(K, ·) ∗ µ

for some (uniquely determined) SO(n− 1)-invariant measure µ ∈Mo(Sn−1), then∫
AGrn−i,n

Fj,K∩E dσn−i(E) = qn,i,j Si+j(K, ·) ∗ (µ ∗�n−j+1ğn−i−j+1), (6.5)

where qn,i,j = 2i

i!κi

∏i+j−1
k=j cn,k with

cn,k =
k(n− k − 1)(n− k + 1)κ2

n−k−2κn−k+1κk

2(n− k)(k + 1)κn−k−3κ2
n−kκk−1

.

Proof. Consider the isomorphism Θj : C∞o (Sn−1)→ C∞o (Sn−1), defined by

Θjf = cn,j�n−j+1f ∗ ğn−j = cn,j f ∗�n−j+1ğn−j.

Here and in (6.5), �kğl is to be understood in the sense of distributions, where we
use the canonical extension of the selfadjoint operator �k to C−∞o (Sn−1).

Now, let us first assume that Fj is smooth, that is, µ is absolutely continuous
with respect to spherical Lebesgue measure with density f ∈ C∞o (Sn−1). In this
case it was proved by the authors in [62, Theorem 6.3] that∫

AGrn−1,n

Fj,K∩E dσn−1(E) = Sj+1(K, ·) ∗Θjf. (6.6)
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In order to obtain from this the more general formula (6.5), we use the following
well known relation (which can be proved by induction using Crofton’s formula;
see, e.g., [39, p. 124])∫

AGrn−i,n

f(E) dσn−i(E) =
2i

i!κi

∫
AGrn−1,n

· · ·
∫

AGrn−1,n

f(E1 ∩ · · · ∩ Ei) dσn−1(E1) · · · dσn−1(Ei)

for every Borel measurable f ∈ L1(AGrn−i,n). Comparing this with (6.6), we obtain∫
AGrn−i,n

Fj,K∩E dσn−i(E) =
2i

i!κi
Si+j(K, ·) ∗Θi+j−1 · · ·Θj+1Θjf. (6.7)

Next, note that if τē = δē − π1δē ∈ Mo(Sn−1), where δē is the Dirac measure
supported in ē ∈ Sn−1, then, by (2.18), f ∗ τē = f for every f ∈ C∞o (Sn−1). But
since �kğk = τē, (6.5) follows from (6.7) and the definition of Θj.

In order to establish (6.5) in the general case, where Fj is merely continuous, we
use a spherical approximate identity ζk, k ∈ N, (instead of repeating the arguments
from the proof of [62, Theorem 6.3]) to define F k

j,K = Fj,K ∗ ζk for every K ∈ Kn.
Then, F k

j ∈ CValj is SO(n)-equivariant and smooth and, by what we have already
shown and the fact that multiplier transformations commute,∫

AGrn−i,n

F k
j,K∩E dσn−i(E) = qn,i,j Si+j(K, ·) ∗ (µ ∗�n−j+1ğn−i−j+1) ∗ ζk.

Letting now k →∞, we obtain (6.5) from Lemmas 2.5 and 2.6. �

We conclude with the remark that equivalent forms of Theorem 6.2 were
obtained very recently, independently, and using different approaches by Bernig
and Hug [17] and Goodey, Hug, and Weil [26].

Acknowledgments The first author was supported by the European Research
Council (ERC), Project number: 306445, and the Austrian Science Fund (FWF),
Project number: Y603-N26. The second author was supported by the German
Research Foundation (DFG), Project number: BE 2484/5-1.

References
[1] J. Abardia, Difference bodies in complex vector spaces, J. Funct. Anal. 263 (2012), 3588–

3603.

[2] J. Abardia and A. Bernig, Projection bodies in complex vector spaces, Adv. Math. 227 (2011),
830–846.

[3] S. Alesker, Continuous rotation invariant valuations on convex sets, Ann. of Math. (2) 149
(1999), 977–1005.

33



[4] S. Alesker, Description of translation invariant valuations on convex sets with solution of P.
McMullen’s conjecture, Geom. Funct. Anal. 11 (2001), 244–272.

[5] S. Alesker, Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily
invariant valuations, J. Differential Geom. 63 (2003), 63–95.

[6] S. Alesker, The multiplicative structure on polynomial continuous valuations, Geom. Funct.
Anal. 14 (2004), 1–26.

[7] S. Alesker, Hard Lefschetz theorem for valuations and related questions of integral geometry,
Geometric aspects of functional analysis, 9–20, Lecture Notes in Math., 1850, Springer,
Berlin, 2004.

[8] S. Alesker, A Fourier type transform on translation invariant valuations on convex sets,
Israel J. Math. 181 (2011), 189–294.

[9] S. Alesker and D. Faifman, Convex valuations invariant under the Lorentz group, J.
Differential Geom. 98 (2014), 183–236.

[10] S. Alesker, A. Bernig and F.E. Schuster, Harmonic analysis of translation invariant
valuations, Geom. Funct. Anal. 21 (2011), 751–773.

[11] A. Berg, L. Parapatits, F.E.Schuster and M. Weberndorfer, Log-Concavity Properties of
Minkowski Valuations, arXiv:1411.7891.

[12] C. Berg, Corps convexes et potentiels sphériques, Mat.-Fys. Medd. Danske Vid. Selsk. 37
(1969), 64 pp.

[13] A. Bernig, A Hadwiger-type theorem for the special unitary group, Geom. Funct. Anal. 19
(2009), 356–372.

[14] A. Bernig and L. Bröcker, Valuations on manifolds and Rumin cohomology, J. Differential
Geom. 75 (2007), 433–457.

[15] A. Bernig and D. Faifman, Generalized translation invariant valuations and the polytope
algebra, Adv. Math. 290 (2016), 36–72.

[16] A. Bernig and J.H.G. Fu, Hermitian integral geometry, Ann. of Math. (2) 173 (2011), 907–
945.

[17] A. Bernig and D. Hug, Kinematic formulas for tensor valuations, J. Reine Angew. Math.,
in press.
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