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Abstract

Sharp reverse affine isoperimetric inequalities for asymmetric
Wulff shapes and their polars are established, along with the
characterization of all extremals. These new inequalities have
as special cases previously obtained simplex inequalities by Ball,
Barthe and Lutwak, Yang, and Zhang. In particular, they provide
the solution to a problem by Zhang.

1. Introduction

Over the last decades considerable progress has been made in
establishing reverse (affine) isoperimetric inequalities, i.e., inequalities
which usually have simplices or, in the symmetric case, cubes and their
polars, as extremals. By the end of the 1980s, only a very small
number of significant reverse inequalities had been obtained and no
systematic approach towards these inequalities seemed within reach.
A breakthrough occurred when Ball [1, 2] discovered a reformulation
of the Brascamp–Lieb inequality by exploiting the notion of isotropic
measure which, in turn, is connected to a variety of extremal problems in
geometric analysis (see [14,15,18,30,35]). Ball’s geometric Brascamp–
Lieb inequality was tailor-made to establish several important new
reverse inequalities.

Settling the uniqueness of the extremals for the newly obtained
reverse isoperimetric inequalities with an underlying discrete isotropic
measure was made possible only through an optimal transport approach
of Barthe [4, 6] towards establishing not only the Brascamp–Lieb
inequality but also its inverse form conjectured by Ball. In this
way, for example, sharp Lp volume ratio inequalities and their duals
were established (see Section 6 for details and further examples). To
obtain uniqueness of extremals when the isotropic measure underlying
the extremal problem is not necessarily discrete, Lutwak, Yang, and
Zhang [29,31,32] developed a new approach based on the Ball–Barthe
techniques—but not on the Brascamp–Lieb inequality or its inverse—
which allowed them to extend all the new reverse inequalities to the
setting of general isotropic measures along with characterizations of all
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extremizers. Later, Barthe [7] established a continuous version of the
Brascamp–Lieb inequality and its inverse which also yields these general
reverse inequalities along with their equality conditions.

The notion of Wulff shape has its origins in the classical theory of
crystal growth. In more modern mathematical terms, it provides a uni-
fying setting for several extremal problems with an underlying isotropic
measure. Sharp reverse volume inequalities for origin-symmetric Wulff
shapes and their polars were obtained by Lutwak, Yang, and Zhang
[29] (see Section 3). These inequalities generalize several of the
previously obtained Ball–Barthe volume ratio inequalities for unit balls
of subspaces of Lp. The problem of finding similar volume estimates for
not necessarily origin-symmetric Wulff shapes remained open.

In this article we establish such sharp reverse isoperimetric inequali-
ties for asymmetric Wulff shapes and their polars including a complete
description of all equality cases. Special cases of these new Wulff shape
inequalities are previously obtained simplex inequalities of Ball [2],
Barthe [4] and Lutwak, Yang, and Zhang [27, 31,32].

The setting for this article is Euclidean space Rn, n ≥ 2. A convex
body is a compact convex set and in this article will always be assumed
to contain the origin in its interior. The polar body of a convex body
K is given by K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K}. Throughout, all
Borel measures are understood to be non-negative and finite. We write
supp ν for the support of a measure ν and we use convL to denote the
convex hull of a set L.

The main objects of this paper are Wulff shapes. This notion was
introduced at the turn of the previous century by Wulff [39], who
conjectured that this shape describes the minimizer of the interfacial
free energy among a crystal’s possible shapes of given volume (see also,
e.g., [38]). Variations of Wulff’s original definition (expanding the class
of admitted parameters) yield versatile geometric objects that have been
analyzed extensively (see e.g. [11, 12,17] or [37, Section 6.5]).

Definition. Suppose ν is a Borel measure on Sn−1 and f is a positive
continuous function on Sn−1. The Wulff shape Wν,f determined by ν
and f is defined by

Wν,f := {x ∈ Rn : x · u ≤ f(u) for all u ∈ supp ν} .

Without further assumptions on the measure ν and the function
f , Wulff shapes, while always convex, may be unbounded. In order
to guarantee that Wν,f is a convex body, we introduce the notion
of f -centered measure and consider only Wulff shapes determined by
measures ν which are f -centered and isotropic.
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Let f be a positive continuous function on Sn−1. A Borel measure ν
on Sn−1 is called f -centered if∫

Sn−1

f(u)u dν(u) = o.

The measure ν is called isotropic if

(1)

∫
Sn−1

u⊗ u dν(u) = In,

where u⊗u is the orthogonal projection onto the line spanned by u and
In denotes the identity map on Rn.

In order to establish reverse affine isoperimetric inequalities, it is
often critical to exploit special positions of convex bodies which, in
turn, are characterized by isotropic measures (see, e.g., [2,4–6,14,27,
30, 32, 33]). The notion of f -centered isotropic measure is designed
to unify approaches towards reverse inequalities which are based on the
isotropic-embedding technique introduced by Lutwak, Yang, Zhang [32]
(see Section 4 for details).

Sharp volume estimates for origin-symmetric Wulff shapes and their
polars determined by even functions and even isotropic measures
(clearly, they are f -centered) can easily be deduced from previous
work of Lutwak, Yang, and Zhang [29], see Section 3. The extremal
configurations here are given by constant functions and measures for
which the convex hull of their support is a cube. The natural problem
to determine sharp volume bounds for not necessarily symmetric Wulff
shapes was posed by Zhang [40].

With our first main result we establish such a sharp bound for the
volume of the Wulff shape Wν,f determined by an f -centered isotropic
measure ν. It depends on the displacement of Wν,f defined by

dispWν,f := cdWν,f ·
∫
Sn−1

u

f(u)
dν(u),

where cdWν,f denotes the centroid of the convex body Wν,f .

Theorem 1. Suppose f is a positive continuous function on Sn−1

and ν is an isotropic f -centered measure. If dispWν,f = 0, then

(2) V (Wν,f ) ≤ (n+ 1)(n+1)/2

n!
‖f‖nL2(ν)

with equality if and only if conv supp ν is a regular simplex inscribed in
Sn−1 and f is constant on supp ν.

While restrictions on the location of the Wulff shape are necessary
for inequality (2) to hold (see, e.g., Corollary 6.2), the assumption
dispWν,f = 0 is not necessary. Our proof of Theorem 1 yields an explicit
description of how the displacement enters the sharp upper bound for
the volume of Wν,f (see Theorem 5.1).
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Our second main result, a natural dual to Theorem 1, provides a
sharp lower bound for the volume of the polar of the Wulff shape Wν,f .
Note that it is independent of the displacement of the Wulff shape.

Theorem 2. Suppose f is a positive continuous function on Sn−1

and ν is an isotropic f -centered measure. Then

V
(
W ∗ν,f

)
≥ (n+ 1)(n+1)/2

n!
‖f‖−n

L2(ν)

with equality if and only if conv supp ν is a regular simplex inscribed in
Sn−1 and f is constant on supp ν.

Our proofs of Theorems 1 and 2 are based on a refinement of the
approach towards recently established simplex inequalities by Lutwak,
Yang, and Zhang [31, 32], which, in turn, uses many ideas of Ball and
Barthe. We remark, however, that our results can also be obtained by
applications of Barthe’s continuous Brascamp–Lieb inequality and its
inverse. The more direct approach we have chosen has the advantage
to be at the same time reasonably self contained and elementary.

In Section 6 we show how Theorems 1 and 2 directly imply a number
of reverse isoperimetric inequalities (including all equality conditions)
obtained by Ball [1,2], Barthe [4] and Lutwak, Yang, Zhang [29,31,32].
As an example, we state here one corollary of Theorem 2. It was first
established in [32] and provides a lower bound for the volume of the
polar of a convex body K in terms of the volume of its dual Legendre
ellipsoid Γ−2K introduced in [27] (see Section 2 for precise definitions).

Corollary 3. If K is a convex body in Rn, then

V (K∗)V (Γ−2K) ≥ κn(n+ 1)(n+1)/2

n!nn/2

with equality if and only if K is a simplex whose centroid is at the origin.

Here and in the following, κn denotes the volume of the Euclidean
unit ball in Rn.

2. Background material

For quick later reference, we collect in this section the necessary
background material. In particular, we list basic auxiliary facts from the
Lp Brunn–Minkowski theory and recall a number of special positions of
convex bodies (needed in the last section). As a general reference, the
reader may wish to consult the books [13,37] and the articles [25,26].

Throughout we denote by e1, . . . , en the standard Euclidean basis of
Rn and we use ‖ · ‖ to denote the standard Euclidean norm on Rn. We
emphasize that in this article a convex body in Rn is a compact convex
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set that contains the origin in its interior. A convex body K is uniquely
determined by its (positive, sublinear) support function defined by

h(K,x) := max{x · y : y ∈ K}, x ∈ Rn.
A convex body K in Rn is also determined up to translation by its

surface area measure S(K, ·). Recall that for a Borel set ω ⊆ Sn−1,
S(K,ω) is the (n − 1)-dimensional Hausdorff measure of the set of
all boundary points of K at which there exists a normal vector of K
belonging to ω. It is well known that the surface area measure of a
convex body K is 1-centered, that is,

(3)

∫
Sn−1

u dS(K,u) = o.

If K and L are convex bodies and α, β ≥ 0 (not both zero), then
their Lp Minkowski combination α · K +p β · L is the convex body
whose support function is given by

h(α ·K +p β · L, ·)p = αh(K, ·)p + βh(L, ·)p.
In [25, 26], Lutwak showed that merging the notion of volume with
these Lp Minkowski combinations of convex bodies, introduced by Firey,
leads to a Brunn–Minkowski theory for each p ≥ 1. In particular, the
Lp mixed volume Vp(K,L) was defined in [25] by

n

p
Vp(K,L) = lim

ε→0+

V (K +p ε · L)− V (K)

ε
.

Clearly, for K = L, we have

(4) Vp(K,K) = V (K).

It was shown in [25] that for each convex body K, there exists a positive
Borel measure on Sn−1, the Lp surface area measure Sp(K, ·) of K, such
that for every convex body L,

(5) Vp(K,L) =
1

n

∫
Sn−1

h(L, u)pdSp(K,u).

The measure S1(K, ·) is just the surface area measure of K.
The Lp surface area measure is absolutely continuous with respect to

S(K, ·), more precisely,

(6) dSp(K,u) = h(K,u)1−p dS(K,u), u ∈ Sn−1.
From (6) and the definition of surface area measures, it follows easily

that, for a given convex body K, the Wulff shape determined by the Lp
surface area measure Sp(K, ·) and the support function h(K, ·) of K is
precisely the body K, i.e.,

(7) WSp(K,·),h(K,·) = K.

A GL(n) image of a convex body is often called a position of the
body. Special positions have been the focus of intensive investigations,
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in particular, in relation with a variety of extremal problems for
geometric invariants of the bodies in special position (see e.g. [2, 5,
14,15,30]).

A classical example of an important special position of a convex body
K is the John position: Let JK denote the unique ellipsoid of maximal
volume contained in K. The body K is said to be in John position, if
JK coincides with the Euclidean unit ball B. The following well known
characterization of this position goes back to John [18]:

Proposition 2.1. A convex body K which contains the unit ball B is
in John position if and only if there exists a 1-centered isotropic measure
on Sn−1 supported on contact points of K and B.

A natural dual to the John position of a convex bodyK is the Loewner
position, here the ellipsoid of minimal volume containing K is the unit
ball. It was also characterized in [18] by the existence of a 1-centered
isotropic measure supported on the contact points of K and B.

Another classical position is closely related to the problem of finding
a reverse form of the Euclidean isoperimetric inequality. Since convex
bodies of a given volume may have arbitrarily large surface area, it is
natural to consider convex bodies in minimal surface area position, that
is, the surface area of these bodies is minimal among all their affine
images of the same volume. Petty [35] showed that a convex body K is
in minimal surface area position if and only if its surface area measure
S(K, ·) is isotropic (up to scaling).

In a more recent article, Lutwak, Yang, Zhang [30] have shown that
the John position and the minimal surface area position are in fact
special cases (p = ∞ and p = 1) of a family of Lp John positions of a
given convex body.

Definition. ([30]) Suppose K is a convex body and 1 ≤ p < ∞.
Amongst all origin-symmetric ellipsoids E, the unique ellipsoid that
solves the constrained extremal problem

max
E

V (E) subject to Vp(K,E) ≤ V (K)

will be called the Lp John ellipsoid EpK of K. We say K is in Lp John
position if EpK coincides with the Euclidean unit ball B.

The L1 John ellipsoid of a convex body K is also called the Petty
ellipsoid. It is not difficult to show (cf. [30]) that (up to scaling) K is
in L1 John position if and only if K is in minimal surface area position.
The L∞ John ellipsoid is the origin-centered ellipsoid of maximal volume
contained in K. Hence, E∞K = JK if the John ellipsoid of K is centered
at the origin.

Of particular importance among the family of Lp John ellipsoids of a
given body K is also the L2 John ellipsoid. This ellipsoid was previously
discovered by Lutwak, Yang, and Zhang (see [27, 28]) and denoted
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by Γ−2K. This notation should indicate a duality with the classical
Legendre ellipsoid Γ2K. In fact, Ludwig [21] showed that the operators
Γ−2 and Γ2 are the only linearly intertwining matrix-valued maps on
convex bodies that satisfy the inclusion-exclusion principle (see also [16,
22–24] for related results).

The following characterization of the Lp John position of a convex
body in terms of isotropic measures was also established in [30]:

Proposition 2.2. Suppose that p ≥ 1. A convex body K is in Lp
John position if and only if its Lp surface area measure Sp(K, ·) is
isotropic up to volume normalization.

We conclude this section with another auxiliary result [30, Theorem
5.1] concerning monotonicity properties of Lp John ellipsoids: If K is a
convex body and 1 ≤ p ≤ q ≤ ∞, then

(8) V (EqK) ≤ V (EpK).

3. Volume inequalities for symmetric Wulff shapes

In this section we state the volume inequalities corresponding to our
main results when the considered Wulff shapes are all origin-symmetric,
that is, they are determined by even isotropic measures and even
functions. In a slightly different formulation these inequalities were
established by Lutwak, Yang, and Zhang [29] and generalize previous
results by Ball and Barthe. We also sketch a proof of one of these
inequalities using Ball’s geometric Brascamp–Lieb inequality, in order
to emphasize the close connection between this analytic inequality and
volume inequalities for (symmetric as well as asymmetric) Wulff shapes.

The Brascamp–Lieb Inequality. Suppose that u1, . . . , um ∈ Sn−1
and c1, . . . , cm > 0 such that

m∑
i=1

ciui ⊗ ui = In.

If gi : R→ [0,∞), 1 ≤ i ≤ m, are integrable functions, then∫
Rn

m∏
i=1

gi(ui · x)ci dx ≤
m∏
i=1

(∫
R
gi

)ci
.

The Brascamp–Lieb inequality [9] was established to prove the sharp
form of Young’s convolution inequality. Around 1990 Ball [1] discovered
the geometric reformulation stated above (later generalized by Barthe
[7], after characterizing its equality cases in [6]) which allowed a simple
computation of the optimal constant. It directly yields the following
sharp volume bound for Wν,f , when the underlying isotropic measure is
even and discrete.
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Theorem 3.1. ( [29]) Suppose f is an even positive continuous
function on Sn−1 and ν is an even isotropic measure. Then

(9) V (Wν,f ) ≤
(

2√
n

)n
‖f‖nL2(ν)

with equality if and only if conv supp ν is a cube inscribed in Sn−1 and
f is constant on supp ν.

Sketch of the proof. We prove inequality (9) without its equality con-
ditions for the case of a discrete measure ν supported, say, on
±u1, . . . ,±um ∈ Sn−1. The Wulff shape Wν,f is thus given by

(10) Wν,f =

m⋂
i=1

{x ∈ Rn : |x · ui| ≤ f(ui)} .

For 1 ≤ i ≤ m, let ci > 0 be the total mass of ν at the points ±ui and
define the function gi : R→ [0,∞) by

(11) gi(t) = I[−f(ui),f(ui)](t).
By (10), (11) and the Brascamp–Lieb inequality, we now obtain

V (Wν,f ) =

∫
Rn

IWν,f
(x) dx =

∫
Rn

m∏
i=1

gi(x · ui)ci dx ≤ 2
∑m
i=1 ci

m∏
i=1

f(ui)
ci .

Since the measure ν is isotropic, taking traces in (1) shows that∑m
i=1 ci = n. Consequently, an application of the arithmetic-geometric

mean inequality yields

V (Wν,f ) ≤ 2n

(
1

n

m∑
i=1

cif(ui)
2

)n/2
=

(
2√
n

)n
‖f‖nL2(ν).

q.e.d.

The following result is dual to Theorem 3.1; for the case of even and
discrete isotropic measures, it follows from Barthe’s inverse Brascamp–
Lieb inequality [6] (by arguments similar to the ones sketched above).

Theorem 3.2. ( [29]) Suppose f is an even positive continuous
function on Sn−1 and ν is an even isotropic measure. Then

V (W ∗ν,f ) ≥ (2
√
n)
n

n!
‖f‖−n

L2(ν)

with equality if and only if conv supp ν is a cube inscribed in Sn−1 and
f is constant on supp ν.

The case f ≡ 1 of Theorem 3.1 was proved by Ball [2], the equality
conditions for discrete measures were obtained by Barthe [6]. Theorem
3.2 for f ≡ 1 and discrete measures was proved by Barthe [6].

In order to establish Theorems 3.1 and 3.2 for general even isotropic
measures, Lutwak, Yang, and Zhang [29] used a direct approach based
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on optimal mass transport and a determinant inequality, called the Ball–
Barthe Lemma (see the next section), that has easily stated equality
cases obtained in [29]. Another possibility towards proving Theorems
3.1 and 3.2 is to employ Barthe’s continuous versions of the Brascamp–
Lieb inequality and its inverse, the equality conditions of which are
also based on the Ball–Barthe Lemma. It is therefore no surprise that
this basic inequality is also critical in the proofs of our main results.
Moreover, to demonstrate the extremal property of the regular simplex
in our inequalities, we also need an important embedding of f -centered
isotropic measures introduced by Lutwak, Yang, and Zhang [31, 32],
which we review in the next section.

4. Isotropic embeddings and the Ball–Barthe Lemma

In the following we recall the concept of isotropic embeddings which
was introduced by Lutwak, Yang, Zhang [32]. These embeddings lift
f -centered isotropic measures on Sn−1 to isotropic measures on Sn and
at the same time map the vertices of the regular n-simplex inscribed in
Sn−1 to an orthonormal basis in Rn+1 = Rn × R. This latter property
ensures that we can apply the Ball–Barthe Lemma to obtain sharp
bounds in our main results.

Definition. If ν is a Borel measure on Sn−1, then a continuous
function g : Sn−1 → Rn+1 \ {o} is called an isotropic embedding of
ν if the Borel measure ν on Sn, defined by

(12)

∫
Sn
t(w) dν(w) =

∫
Sn−1

t

(
g(u)

‖g(u)‖

)
‖g(u)‖2dν(u)

for every continuous t : Sn → R, is isotropic.

Of particular interest for us are isotropic embeddings of already
isotropic measures. A natural class of such embeddings can be
characterized in the following way.

Lemma 4.1. Suppose f is a positive continuous function on Sn−1

and ν is an isotropic measure on Sn−1. Then the functions

g± : Sn−1 → Rn+1 = Rn × R,
defined by

(13) g±(u) = (±u, f(u)),

are isotropic embeddings of ν if and only if ν is f -centered and
‖f‖L2(ν) = 1.

Proof. If ν is defined as in (12), where g is replaced by g±, then we
have ∫

Sn
w ⊗ w dν(w) =

∫
Sn−1

(
u⊗ u ±f(u)u
±f(u)uT f2(u)

)
dν(u).
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Consequently, since ν is isotropic,∫
Sn
w ⊗ w dν(w) = In+1

if and only if ν is f -centered and ‖f‖L2(ν) = 1. q.e.d.

Note that for isotropic embeddings of the form (13) the last coor-
dinate (with respect to the decomposition Rn+1 = Rn × R) of all the
points in the support of the measure ν, defined by (12), is positive.

Examples. The following two special cases of isotropic embeddings
of the form (13) have played a critical role in the proofs of a number
of reverse isoperimetric inequalities having simplices as extremals
(see [2, 5, 20,31,32]):

(a) If ν is a 1-centered isotropic measure (e.g., the normalized surface
area measure of a convex body in minimal surface area position),
then g± : Sn−1 → Rn+1, defined by

(14) g±(u) =
(
±u, n−1/2

)
,

are isotropic embeddings of ν.
(b) Suppose that K is a convex body in L2 John position. Since, by

(3) and (6), ∫
Sn−1

uh(K,u) dS2(K,u) = o

and, by (4) and (5),

1

V (K)

∫
Sn−1

h(K,u)2 dS2(K,u) = n,

it follows from Proposition 2.2 that g± : Sn−1 → Rn+1, defined by

g±(u) =
(
±u, n−1/2h(K,u)

)
are isotropic embeddings of S2(K, ·)/V (K).

The approaches towards sharp reverse isoperimetric inequalities of
both Ball, Barthe and Lutwak, Yang, Zhang make critical use of the
following basic estimate for the determinant of a weighted sum of rank-
one projections:

The Ball–Barthe Lemma. If ν is an isotropic measure on Sn and
t is a positive continuous function on supp ν, then

(15) det

∫
Sn
t(w)w ⊗ w dν(w) ≥ exp

(∫
Sn

log t(w) dν(w)

)
,

with equality if and only if t(v1) · · · t(vn+1) is constant for linearly
independent v1, . . . , vn+1 ∈ supp ν.
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For discrete measures, inequality (15) goes back to Ball. In [6] Barthe
provides a simple proof. The equality conditions for (15) were obtained
using mixed discriminants and Hölder’s inequality by Lutwak, Yang,
Zhang [29].

The Ball–Barthe Lemma also plays a crucial role in the proof of our
main results, in particular, for establishing the equality cases. Our next
lemma goes back to arguments employed by Lutwak, Yang, Zhang [31].
It uses the equality conditions for (15) to characterize the support of
1-centered isotropic measures which are embedded by the functions
given in (14).

Lemma 4.2. Let ν be a 1-centered isotropic measure on Sn−1, let
ν± denote the isotropic measures on Sn defined by (12), isotropically
embedded by g± defined in (14), and let D ⊆ Rn+1 be an open cone
with apex at the origin containing en+1 such that w · z > 0 for every
w ∈ supp ν± and z ∈ D.

For every z ∈ D, define tz : supp ν± → (0,∞) by

tz(w) = φw(w · z),

where φw : (0,∞)→ (0,∞) is smooth nonconstant such that tz(w), for
every fixed z ∈ D, depends continuously on w ∈ supp ν±. If there is
equality in (15) for ν+, or ν− respectively, and every tz, z ∈ D, then
conv supp ν is a regular simplex inscribed in Sn−1.

Proof. We prove the statement for ν+. The argument for ν− is
almost verbatim the same. Since ν+ is isotropic, we can find n + 1
linearly independent vectors in its support, say {w1, . . . , wn+1}. If

w0 =
∑n+1

i=1 ciwi is an arbitrary vector in supp ν+ such that, without loss
of generality, c1 6= 0, then by the equality conditions of the Ball–Barthe
Lemma,

φw0(w0 · z)φw2(w2 · z) · · ·φwn+1(wn+1 · z)
= φw1(w1 · z)φw2(w2 · z) · · ·φwn+1(wn+1 · z)

for every z ∈ D. Since φw is positive for every w ∈ supp ν+, evaluating
partial derivatives with respect to z at λen+1 yields

φ′w0
(w0 · λen+1)w0 = φ′w1

(w1 · λen+1)w1

for every λ > 0. By the remark after Lemma 4.1, the support of ν+
cannot contain two antipodal points. Therefore, we either have that
w0 = w1 or φ′w0

(w0 · λen+1) = 0 for all λ > 0. Since w0 · en+1 > 0,
the latter implies that φw0 is constant, a contradiction. Consequently,
supp ν+ = {w1, . . . , wn+1}. Since ν+ is isotropic, it is easy to see (cf.
[29]) that w1, . . . , wn+1 must be an orthonormal basis of Rn+1.

From the definition of ν+, it follows that supp ν = {u1, . . . , un+1},
where g+(ui)/‖g+(ui)‖ = wi for 1 ≤ i ≤ n+ 1. Using definition (14) of
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12 FRANZ E. SCHUSTER AND MANUEL WEBERNDORFER

g+, we obtain

0 = wi · wj =
(ui,

1√
n

) · (uj , 1√
n

)√
1 + 1

n

√
1 + 1

n

, 1 ≤ i 6= j ≤ n+ 1.

In other words, ui · uj = − 1
n for all i 6= j. Hence, conv supp ν must be

a regular simplex. q.e.d.

5. Proof of the main results

After these preparations, we are now in a position to give the proofs of
Theorems 1 and 2. We start with the following refinement of Theorem 1:

Theorem 5.1. Suppose f is a positive continuous function on Sn−1

and ν is an isotropic f -centered measure. Then

(16) V (Wν,f ) ≤
(n+ 1− dispWν,f )n+1

n!(n+ 1)(n+1)/2
‖f‖nL2(ν)

with equality if and only if conv supp ν is a regular simplex inscribed in
Sn−1 and f is constant on supp ν.

Proof. By the definition of Wν,f and dispWν,f , we may assume
‖f‖L2(ν) = 1. Let ν denote the measure on Sn defined by (12),

isotropically embedded by g−(u) = (−u, f(u)), u ∈ Sn−1 (here we use
Lemma 4.1).

Next, let C ⊆ Rn+1 denote the cone with apex at the origin defined
by

C =
⋃
r>0

rWν,f × {r} ⊆ Rn+1.

Clearly, en+1 ∈ C. Moreover, since w ∈ supp ν ⊆ Rn × R if and only if

(17) w =
(−u, f(u))√

1 + f(u)2

for some u ∈ supp ν, we have that, for every w ∈ supp ν and
z = (rx, r) ∈ C,

w · z =
−u · rx+ rf(u)√

1 + f(u)2
≥ 0.

For w ∈ supp ν, define the smooth and strictly increasing function
Tw : (0,∞)→ R by∫ Tw(t)

−∞
e−πs

2
ds =

1

en+1 · w

∫ t

0
exp

(
− s

en+1 · w

)
ds.

Differentiating both sides with respect to t yields

T ′w(t) e−πTw(t)
2

=
1

en+1 · w
exp

(
− t

en+1 · w

)
.
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VOLUME INEQUALITIES FOR ASYMMETRIC WULFF SHAPES 13

Taking the log of both sides and substituting t = w · z for w ∈ supp ν
and z ∈ intC, we obtain

(18) log T ′w(w · z)− π Tw(w · z)2 = − log(en+1 · w)− w · z
en+1 · w

.

Furthermore define T : intC → Rn+1 by

T (z) =

∫
Sn
Tw(w · z)w dν(w).

Let dT denote the Jacobian of T . A straightforward computation yields
that, for every z ∈ intC,

(19) dT (z) =

∫
Sn
T ′w(w · z)w ⊗ w dν(w).

Since T ′w is a positive function, it follows that the matrix dT (z) is
positive definite for z ∈ intC. Consequently, T is a diffeomorphism
onto its image. Moreover, since

‖T (z)‖2 =

∫
Sn
Tw(w · z)(T (z) · w) dν(w)

and ν is isotropic, we obtain from an application of the Cauchy–Schwarz
inequality that

‖T (z)‖2 ≤
∫
Sn
Tw(w · z)2 dν(w).(20)

Now, by (18), followed by an application of the Ball–Barthe Lemma
with t(w) = T ′w(w · z), (19), (20), and a change of variables it follows
that

exp

(
−
∫
Sn

log(en+1 · w) dν(w)

) ∫
intC

exp

(∫
Sn
− w · z
en+1 · w

dν(w)

)
dz

=

∫
intC

exp

(∫
Sn

log T ′w(w · z) dν(w)− π
∫
Sn
Tw(w · z)2 dν(w)

)
dz

≤
∫
intC

det dT (z) exp
(
−π‖T (z)‖2

)
dz ≤

∫
Rn+1

exp
(
−π‖z‖2

)
dz = 1.

Equivalently, by the definition of the cone C,∫ ∞
0

∫
rWν,f

exp

(∫
Sn
−(x, r) · w
en+1 · w

dν(w)

)
dx dr

≤ exp

(
1

n+ 1

∫
Sn

log
(
(en+1 · w)2

)
dν(w)

)(n+1)/2

.

(21)

Since ν is isotropic, an application of Jensen’s inequality to the right-
hand side of (21) yields
(22)∫ ∞

0

∫
rWν,f

exp

(∫
Sn
−(x, r) · w
en+1 · w

dν(w)

)
dx dr ≤

(
1

n+ 1

)(n+1)/2

.
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14 FRANZ E. SCHUSTER AND MANUEL WEBERNDORFER

In order to obtain the desired inequality (16), it remains to show that
the left-hand side of (22) dominates

V (Wν,f )n! (n+ 1− dispWν,f )−(n+1).

To see this, first note that, by definition (12) of ν, the fact that we
use the embedding g(u) = (−u, f(u)) and since ν is f -centered, the
left-hand side of (22) is equal to

(23)

∫ ∞
0

e−(n+1)r

∫
rWν,f

exp

(∫
Sn−1

x · u
f(u)

dν(u)

)
dx dr.

Since

(24) r dispWν,f =
1

V (rWν,f )

∫
rWν,f

∫
Sn−1

x · u
f(u)

dν(u) dx,

another application of Jensen’s inequality yields∫
rWν,f

exp

(∫
Sn−1

x · u
f(u)

dν(u)

)
dx ≥ V (rWν,f ) er dispWν,f .

Consequently, (23) is larger than

V (Wν,f )

∫ ∞
0

rne−(n+1−dispWν,f )r dr

= V (Wν,f )n! (n+ 1− dispWν,f )−(n+1),

where we have used that dispWν,f ≤ n, which follows easily from (24)
and the definition of Wν,f . This completes the proof of inequality (16).

Assume now that there is equality in inequality (16). By the equality
conditions of Jensen’s inequality, equality in (22) can hold only if
en+1 · w is constant for every w ∈ supp ν. Since any w ∈ supp ν is of the
form (17), this implies that f is constant on the support of ν. By the
normalization ‖f‖L2(ν) = 1, we must have f ≡ 1√

n
on supp ν. Now it is

easy to check that the assumptions of Lemma 4.2, where D = intC and
φw = T ′w, are satisfied. Hence, an application of Lemma 4.2 concludes
the proof. q.e.d.

In order to establish Theorem 2, we will use a transport map T̂w that
is in some sense dual to the function Tw used in the proof above.

Proof of Theorem 2. As before we may assume that ‖f‖L2(ν) = 1. In the
following we denote by ν the measure on Sn defined by (12), isotropically
embedded by g+(u) = (u, f(u)), u ∈ Sn−1 (where we again use Lemma
4.1).
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For w ∈ supp ν, define the smooth and strictly increasing function

T̂w : R→ (0,∞) by

en+1 · w
∫ T̂w(t)

0
e−s(en+1·w) ds =

∫ t

−∞
e−πs

2
ds.

Differentiating both sides with respect to t yields

(en+1 · w) T̂ ′w(t) e−T̂w(t)(en+1·w) = e−πt
2
.

Taking the log of both sides and substituting t = w · z for w ∈ supp ν
and z ∈ Rn+1, we obtain

(25) log T̂ ′w(w · z) = T̂w(w · z)(en+1 · w)− π(w · z)2 − log(en+1 · w).

Define the map T̂ : Rn+1 → Rn+1 by

T̂ (z) :=

∫
Sn
T̂w(w · z)w dν(w).

The Jacobian of T̂ is given by

dT̂ (z) =

∫
Sn
T̂ ′w(w · z)w ⊗ w dν(w),

which shows that dT̂ (z) is a positive definite matrix for every z ∈ Rn+1.

Consequently, T̂ is a diffeomorphism onto its image. In fact, we claim
that its image is contained in the cone

Ĉ :=
⋃
r>0

rW ∗ν,f × {r}.

To prove this, we have to show that if T̂ (z) = (x, r) ∈ Rn+1 = Rn × R
and y ∈ Wν,f , then x · y ≤ r. By definition (12) of ν, the definition of

T̂ and the fact that u · y ≤ f(u) for every u ∈ supp ν, we obtain

x · y =

∫
Sn−1

T̂ (u,f(u))√
1+f(u)2

(
(u, f(u))√
1 + f(u)2

· z

)
(u · y)

√
1 + f(u)2 dν(u)

≤
∫
Sn−1

T̂ (u,f(u))√
1+f(u)2

(
(u, f(u))√
1 + f(u)2

· z

)
f(u)

√
1 + f(u)2 dν(u)

=

∫
Sn
T̂w(w · z)(en+1 · w) dν(w) = r.

Since

n!V (W ∗ν,f ) =

∫ ∞
0

∫
rW ∗

ν,f

e−r dx dr =

∫
Ĉ
e−en+1·z dz,
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16 FRANZ E. SCHUSTER AND MANUEL WEBERNDORFER

a change of variables, followed by an application of the Ball–Barthe
Lemma, (25) and the fact that ν is isotropic, yields

n!V (W ∗ν,f ) ≥
∫
Rn+1

e−en+1·T̂ (z) det dT̂ (z) dz

≥
∫
Rn+1

e−en+1·T̂ (z) exp

(∫
Sn

log T̂ ′w(w · z) dν(w)

)
dz

= exp

(
−
∫
Sn

log(en+1 · w) dν(w)

)∫
Rn+1

exp
(
−π‖z‖2

)
dz

= exp

(
1

n+ 1

∫
Sn

log
(
(en+1 · w)2

)
dν(w)

)−(n+1)/2

.

Thus, using Jensen’s inequality and again the fact that ν is isotropic,
we obtain the desired inequality

n!V (W ∗ν,f ) ≥ (n+ 1)(n+1)/2.(26)

Assume now that there is equality in inequality (26). As in the proof
of Theorem 5.1 we conclude that this is possible only if f is constant
on the support of ν. Thus, by the normalization ‖f‖L2(ν) = 1, we must

have f ≡ 1√
n

on supp ν. In order to apply Lemma 4.2, define the open

cone D ⊆ Rn+1 by

D = {z ∈ Rn+1 : w · z > 0 for every w ∈ supp ν}.

Clearly, the assumptions of Lemma 4.2, where φw = T̂ ′w, are satisfied.
Hence an application of Lemma 4.2 concludes the proof. q.e.d.

6. Applications

In this final section, we show how Theorem 1 and 2 directly imply
previously established reverse isoperimetric inequalities which have
simplices as extremals. We begin with consequences of Theorem 1,
such as Ball’s volume ratio inequality and its L2 analog by Lutwak,
Yang, and Zhang, and conclude this section with dual results (including
Corollary 3), which can be deduced from Theorem 2.

First suppose that ν is a 1-centered isotropic measure on Sn−1. Then

Wν,1 = (conv supp ν)∗

and dispWν,1 = 0. Consequently, Theorem 1 reduces to the following
result of Lutwak, Yang and Zhang [31].

Corollary 6.1. ([31]) If ν is a 1-centered isotropic measure on Sn−1,
then

(27) V ((conv supp ν)∗) ≤ nn/2(n+ 1)(n+1)/2

n!
,

with equality if and only if conv supp ν is a regular simplex inscribed in
Sn−1.

PROOF COPY NOT FOR DISTRIBUTION



VOLUME INEQUALITIES FOR ASYMMETRIC WULFF SHAPES 17

Ball [2] had first established inequality (27), but without the equality
conditions. For discrete measures, these were obtained by Barthe [6].

Corollary 6.1 allows for a geometric interpretation, known as Ball’s
volume ratio inequality, which gives an upper bound for the ratio
between the volume of a convex body and its John ellipsoid:

Ball’s Volume Ratio Inequality. ([2, 6]) If K ⊆ Rn is a convex
body, then

(28)
V (K)

V (JK)
≤ nn/2(n+ 1)(n+1)/2

κnn!
,

with equality if and only if K is a simplex.

Proof. Without loss of generality we may assume that K is in John
position, that is JK = B. By Proposition 2.1, there exists a 1-centered
isotropic measure ν on Sn−1 supported by contact points of K and B.

Clearly, K ⊆Wν,1 = (conv supp ν)∗. Thus, Corollary 6.1 implies (28)
along with its equality conditions. q.e.d.

If K ⊆ Rn is a convex body such that JK is centered at the origin,
then we can replace JK in inequality (28) by the L∞ John ellipsoid
E∞K. A combination of (28) and (8) thus yields the following Lp volume
ratio inequality for the entire family of Lp John ellipsoids EpK, where
1 ≤ p ≤ ∞ :

(29)
V (K)

V (EpK)
≤ nn/2(n+ 1)(n+1)/2

κnn!
,

with equality if and only if K is a simplex with centroid at the origin.
Using a similar approach, Lutwak, Yang and Zhang established the

case p = 2 of inequality (29) in [27]. This L2 volume ratio inequality is
also a direct consequence of Theorem 1, where in addition we can replace
the assumption that JK is centered at the origin by the more natural
assumption that K has centroid at the origin. Note that, in contrast,
the L2 volume ratio is unbounded on the set of all convex bodies.

Corollary 6.2. If K ⊆ Rn is a convex body with centroid at the
origin, then

(30)
V (K)

V (E2K)
≤ nn/2(n+ 1)(n+1)/2

κnn!
,

with equality if and only if K is a simplex with centroid at the origin.
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18 FRANZ E. SCHUSTER AND MANUEL WEBERNDORFER

Proof. Without loss of generality we may assume that K is in L2

John position, that is E2K = B. By Proposition 2.2, this implies that
the measure ν := 1

V (K)S2(K, ·) is isotropic. Moreover, by (3) and (6),

the measure ν is h(K, ·)-centered. By (7), (4) and (5), we have

Wν,h(K,·) = K and ‖h(K, ·)‖L2(ν) =
√
n.

Thus, dispWν,h(K,·) = 0 and Theorem 1 implies inequality (30) along
with its equality conditions. q.e.d.

A combination of (30) and (8) shows that inequality (30) (under
the assumption that cdK = o) holds true if E2K is replaced by EpK,
1 ≤ p ≤ 2.

We now turn to special cases of Theorem 2. To this end, it is useful
to keep the following (easily verified) alternative representation of the
polar Wulff shape W ∗ν,f of a given f -centered isotropic measure ν in
mind:

(31) W ∗ν,f = conv

{
u

f(u)
: u ∈ supp ν

}
.

If ν is now a 1-centered isotropic measure on Sn−1, then, by (31),
Theorem 2 reduces to the following result of Lutwak, Yang, Zhang [31].

Corollary 6.3. ([31]) If ν is a 1-centered isotropic measure on Sn−1,
then

(32) V (conv supp ν) ≥ (n+ 1)(n+1)/2

nn/2n!
,

with equality if and only if conv supp ν is a regular simplex inscribed in
Sn−1.

For discrete measures, Corollary 6.3 was first established by Barthe
[3]. A more geometric reformulation of inequality (32) is a dual result
to Ball’s volume ratio inequality:

Barthe’s Dual Volume Ratio Inequality. ([3]) If K ⊆ Rn is a
convex body, then

(33) V (K∗)V (JK) ≥ (n+ 1)(n+1)/2κn

nn/2n!
,

with equality if and only if K is a simplex with centroid at the origin.

Proof. First, we use Corollary 6.3 to deduce Barthe’s [3] outer volume
ratio inequality

(34)
V (K)

V (LK)
≥ (n+ 1)(n+1)/2

nn/2n!κn
,

where LK denotes the Loewner ellipsoid of K, that is the ellipsoid of
minimal volume containing K. To this end, we may assume without loss
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of generality that LK = B. Then, there exists a 1-centered isotropic
measure ν on Sn−1 supported by contact points of K and B (compare
the remark after Proposition 2.1). Clearly, conv supp ν ⊆ K. Thus,
using Corollary 6.3, we obtain inequality (34) with equality if and only
if K is a simplex.

Using the definitions of JK and LK and the fact that for every
ellipsoid E containing the origin in its interior, V (E)V (E∗) ≥ κ2n with
equality precisely for origin-symmetric ellipsoids, we obtain

V (JK)V (LK∗) ≥ V ((LK∗)∗)V (LK∗) ≥ κ2n.
Combining this with inequality (34), where K is replaced by K∗, yields
the desired inequality (33) along with its equality conditions. q.e.d.

If K ⊆ Rn is a convex body such that JK is centered at the origin,
that is JK = E∞K, then a combination of (33) and (8) yields the
following dual to inequality (29) for 1 ≤ p ≤ ∞ :

(35) V (K∗)V (EpK) ≥ (n+ 1)(n+1)/2κn

nn/2n!
,

with equality if and only if K is a simplex with centroid at the origin.
It is an important task in convex geometry to find sharp lower bounds

for the volume of K∗ in terms of other natural geometric quantities of K
(see e.g. [8, 10, 19,34,36] for results in this direction). Unfortunately,
for inequality (35), the requirement that the John ellipsoid of K is
centered at the origin cannot, in general, be omitted for all p > 2. For
the L2 case, Lutwak, Yang, and Zhang [32] have discovered that this
additional assumption is in fact unnecessary. Their result was stated
in the introduction as Corollary 3 and is (in the following equivalent
formulation) also a direct consequence of Theorem 2:

Corollary 6.4. ([32]) If K ⊆ Rn is a convex body, then

(36) V (K∗)V (E2K) ≥ (n+ 1)(n+1)/2κn

nn/2n!
,

with equality if and only if K is a simplex with centroid at the origin.

Proof. Without loss of generality we may assume that K is in L2

John position. By Proposition 2.2, this implies that the h(K, ·)-centered
measure ν := 1

V (K)S2(K, ·) is isotropic. By (7), (4) and (5), we have

Wν,h(K,·) = K and ‖h(K, ·)‖L2(ν) =
√
n.

Thus, Theorem 2 reduces to the desired statement. q.e.d.

A combination of (36) and (8) again shows that inequality (36) re-
mains true if E2K is replaced by EpK, 1 ≤ p ≤ 2.

We finally remark that all the special cases of Theorem 1 and 2
presented in this section have natural analogues for origin-symmetric
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20 FRANZ E. SCHUSTER AND MANUEL WEBERNDORFER

convex bodies, where the cube instead of the simplex plays the
extremal role. These are of course special cases of the volume
inequalities for symmetric Wulff shapes stated in Section 3.
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