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Abstract. A complete classification of all continuous GL(n) contravariant
Minkowski valuations is established. As an application we present a family
of sharp isoperimetric inequalities for such valuations which generalize the
classical Petty projection inequality.

1. Introduction

The projection body of a convex body is one of the central notions that
Minkowski introduced within convex geometry. Over the past four decades
it has become evident that the projection operator, its range (i.e. the class
of centered zonoids), and its polar are objects which arise naturally in a
number of different areas, see e.g., [8, 18, 27, 28, 35, 36, 39, 40]. The most
important affine isoperimetric inequality for projection bodies is the Petty
projection inequality [31] which is significantly stronger than the classical
isoperimetric inequality. This remarkable inequality also forms the geometric
core of the affine Zhang–Sobolev inequality [26, 42] which strengthens and
directly implies the classical Sobolev inequality.

The special role of projection bodies in affine convex geometry was
demonstrated only recently by two results of Ludwig [18, 20]: The projection
operator was characterized as the unique continuous Minkowski valuation
which is GL(n) contravariant and invariant under translations. Moreover, the
assumption of translation invariance can be omitted when the domain of the
valuation is restricted to convex bodies containing the origin. Through the
seminal work of Ludwig, convex and star body valued valuations have become
the focus of increased attention, see e.g., [9–11, 21, 38]. A very recent
development in this area explores the connections between these valuations
and the theory of isoperimetric inequalities, see e.g., [12, 13].

In this article we establish a complete classification of all continuous and
GL(n) contravariant Minkowski valuations, without any further assumption
on their behavior under translations or any restrictions on their domain. We
show that there is a two parameter family of such valuations generated by
the projection operator and the convex hull with the origin. We also obtain a
Petty projection type inequality for each member of this family and identify
the Petty projection inequality as the strongest inequality.
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Let Kn denote the space of convex bodies (compact convex sets) in Rn,
n ≥ 3, endowed with the Hausdorff metric and let Kn0 denote the subset of
Kn of bodies containing the origin. A convex body K is uniquely determined
by its support function h(K, x) = max{x · y : y ∈ K}, for x ∈ Rn.

Definition A map Φ : Kn → Kn is called a Minkowski valuation if

ΦK + ΦL = Φ(K ∪ L) + Φ(K ∩ L),

whenever K,L,K ∪ L ∈ Kn and addition on Kn is Minkowski addition.

The map Φ is called GL(n) contravariant if there exists q ∈ R such that for
all φ ∈ GL(n) and all K ∈ Kn,

Φ(φK) = | detφ|qφ−TΦK,

where φ−T denotes the transpose of the inverse of φ.

The classical example of a GL(n) contravariant Minkowski valuation is
the projection operator: The projection body ΠK of K ∈ Kn is defined by

h(ΠK, u) = voln−1(K|u⊥), u ∈ Sn−1, (1.1)

where K|u⊥ denotes the projection of K onto the hyperplane orthogonal to u.
It was first proved by Petty [30] that for all φ ∈ GL(n) and all K ∈ Kn,

Π(φK) = | detφ|φ−T ΠK.

The notion of valuation plays a central role in geometry. It was the
critical ingredient in the solution of Hilbert’s Third Problem and has since
been intimately tied to the dissection theory of polytopes (see [29]). Over
the last decades the theory of valuations has evolved enormously and had a
tremendous impact on various disciplines, see e.g., [1–5, 7, 15–17, 19, 22].

First results on Minkowski valuations which are rigid motion equivariant
were obtained by Schneider [32] in the 1970s (see [14, 34, 37, 38] for recent
extensions of these results). The starting point for the systematic study of
convex and star body valued valuations which are compatible with linear
transformations were two highly influential articles by Ludwig [18, 20]. The
following theorem is an example of the numerous results obtained there:

Theorem 1 (Ludwig [20]) A map Φ : Kn0 → Kn is a GL(n) contravariant
continuous Minkowski valuation if and only if there exists a constant c ≥ 0
such that for every K ∈ Kn0 ,

ΦK = cΠK.
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If we consider Minkowski valuations defined on all convex bodies, then
the projection operator is no longer the only GL(n) contravariant valuation.
To see this consider the map Πo : Kn → Kn defined by

ΠoK := Π(conv({0} ∪K)),

where conv({0} ∪K) denotes the convex hull of K and the origin. It is easy
to see that Πo is a GL(n) contravariant continuous Minkowski valuation but,
clearly, it is not a multiple of the projection operator.

The main object of this paper is to show that all GL(n) contravariant
continuous Minkowski valuations on Kn are given by combinations of the
projection operator and the map Πo.

Theorem 2 A map Φ : Kn → Kn is a GL(n) contravariant continuous
Minkowski valuation if and only if there exist constants c1, c2 ≥ 0 such that
for every K ∈ Kn,

ΦK = c1ΠK + c2 ΠoK.

Let K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K} denote the polar body of a
convex body K containing the origin in its interior. We write Φ∗K to denote
(ΦK)∗, V (K) for the volume of K, and B for the Euclidean unit ball.

In the early 1970s Petty established a fundamental affine isoperimetric
inequality, now known as the Petty projection inequality. (For important
recent generalizations, see [25, 28].) If K ∈ Kn has nonempty interior, then

V (K)n−1V (Π∗K) ≤ V (B)n−1V (Π∗B) (1.2)

with equality if and only if K is an ellipsoid.
As an application of Theorem 2 we extend the Petty projection inequality

to the entire class of GL(n) contravariant continuous Minkowski valuations
which are nontrivial, i.e., which do not map every convex body to the origin.

Theorem 3 Let K ∈ Kn have nonempty interior. If Φ : Kn → Kn is a
nontrivial GL(n) contravariant continuous Minkowski valuation, then

V (K)n−1V (Φ∗K) ≤ V (B)n−1V (Φ∗B).

If Φ is not a multiple of Π, there is equality if and only if K is an ellipsoid
containing the origin; otherwise equality holds if and only if K is an ellipsoid.
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In view of Theorems 2 and 3, the natural problem arises to determine for
fixed K ∈ Kn the maximum value of V (Φ∗K) among all suitably normalized
(say, e.g., ΦB = ΠB) GL(n) contravariant continuous Minkowski valuations.
Here, we will show that

V (Φ∗K) ≤ V (Π∗K).

This shows that the classical Petty projection inequality gives rise to the
strongest inequality among the inequalities of Theorem 3.

2. Background material

In the following we state for quick reference some basic facts about convex
bodies and the geometric inequalities needed in the proof of Theorem 3. For
general reference the reader may wish to consult the book by Schneider [33].

A convex body K ∈ Kn is uniquely determined by the values of its
support function h(K, ·) on Sn−1. If φ ∈ GL(n) and K ∈ Kn, then for
every x ∈ Rn,

h(φK, x) = h(K,φTx). (2.1)

A convex body K ∈ Kn with nonempty interior is also determined up to
translations by its surface area measure Sn−1(K, ·). Recall that for a Borel
set ω ⊆ Sn−1, Sn−1(K,ω) is the (n − 1)-dimensional Hausdorff measure of
the set of all boundary points of K at which there exists a normal vector of
K belonging to ω.

It is a well known fact that the projection function voln−1(K| ·⊥) of a
convex body K ∈ Kn is (up to a constant) the cosine transform of the
surface area measure of K. More precisely, we have

voln−1(K|u⊥) =
1

2

∫
Sn−1

|u · v| dSn−1(K, v), u ∈ Sn−1. (2.2)

For a compact set L in Rn which is star-shaped with respect to the origin,
its radial function is defined by ρ(L, x) = max{λ ≥ 0 : λx ∈ L}, x ∈ Rn\{0}.
For α, β ≥ 0 (not both zero) and K,L ∈ Kn containing the origin in their
interiors, the harmonic (radial) combination α ·K +̂ β · L of K and L is the
convex body defined by

ρ(α ·K +̂ β · L, ·)−1 = αρ(K, ·)−1 + βρ(L, ·)−1.
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If K ∈ Kn is a convex body containing the origin in its interior, then it
follows from the definitions of support and radial functions, and the definition
of the polar body of K, that

ρ(K∗, ·) = h(K, ·)−1 and h(K∗, ·) = ρ(K, ·)−1.

Thus, we have
α ·K +̂ β · L = (αK∗ + βL∗)∗, (2.3)

which shows that the set of convex bodies containing the origin in their
interiors is closed under harmonic combinations.

First results on harmonic combinations of convex bodies were obtained
in the early 1960’s by Firey [6]. In particular, he established the following
harmonic dual Brunn–Minkowski inequality: If K,L ∈ Kn contain the origin
in their interiors, then

V (K +̂L)−1/n ≥ V (K)−1/n + V (L)−1/n, (2.4)

with equality if and only if K and L are dilates.
A map Φ : Kn → Kn is called SL(n) contravariant if for all φ ∈ SL(n)

and all K ∈ Kn,
Φ(φK) = φ−TΦK,

and it is called (positively) homogeneous of degree r, r ∈ R, if for all λ > 0
and all K ∈ Kn,

Φ(λK) = λrΦK.

If Φ is SL(n) contravariant and homogeneous of degree r, then we have
for all K ∈ Kn,

Φ(φK) = (detφ)(r+1)/nφ−TΦK, (2.5)

for every φ ∈ GL(n) with detφ > 0.
Since, clearly, every GL(n) contravariant map is SL(n) contravariant and

homogeneous, the following result is a stronger version of Theorem 1.

Theorem 4 (Ludwig [20]) A map Φ : Kn0 → Kn is an SL(n) contravariant
and homogeneous continuous Minkowski valuation if and only if there exists
a constant c ≥ 0 such that for every K ∈ Kn0 ,

ΦK = cΠK.
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3. An auxiliary result

In this section we show that any SL(n) contravariant continuous
Minkowski valuation which is homogeneous of degree r 6= n − 1 is trivial.
The proof is based on the ideas and techniques developed by Ludwig [20].

As a first step we consider the image of convex bodies contained in a
hyperplane. We denote by aff K the affine hull of K ⊆ Rn.

Lemma 5 Let Φ : Kn → Kn be SL(n) contravariant and homogeneous of
degree r. Then the following statements hold:

(i) If dimK < n− 2, then ΦK = {0}.

(ii) If dimK = n− 2, then{
ΦK = {0} if 0 ∈ aff K,
ΦK ⊆ aff({0} ∪K)⊥ if 0 /∈ aff K.

(iii) If dimK = n− 1 and 0 ∈ aff K, then ΦK ⊆ (affK)⊥.

(iv) If K is contained in a hyperplane through the origin and r 6= n − 1,
then ΦK = {0}.

Proof : Let {e1, . . . , en} be a fixed orthonormal basis of Rn. For k ≥ 1, we
use the direct sum decomposition Rn = Rk ⊕ Rn−k, where

Rk = span {e1, . . . , ek} and Rn−k = span {ek+1, . . . , en}.

Let φ ∈ SL(n) be the matrix defined (with respect to the chosen basis) by

φ =

(
Ik B
0 A

)
,

where Ik is the k × k identity matrix, B is an arbitrary k × (n− k) matrix,
and A ∈ SL(n− k). A simple calculation shows that

φ−T =

(
Ik 0

−A−TBT A−T

)
. (3.1)

If K ∈ Kn and K ⊆ Rk, we have

φK = K. (3.2)
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Now let x ∈ ΦK and write x = x′ + x′′, where x′ ∈ Rk, x′′ ∈ Rn−k. Since Φ
is SL(n) contravariant, it follows from (3.1) and (3.2) that

φ−Tx = x′ − A−T(BTx′ − x′′) ∈ ΦK. (3.3)

This holds for every A ∈ SL(n − k) and every k × (n − k) matrix B. Since
ΦK is bounded, this implies that x′ = 0. Thus, we have

ΦK ⊆ Rn−k. (3.4)

Moreover, if n−k ≥ 2, it follows from (3.3) that also x′′ = 0, i.e., ΦK = {0}.
Since every convex body K ∈ Kn with dimK < n− 2 or dimK = n− 2

and 0 ∈ aff K is the linear image of some convex body contained in Rn−2,
we obtain (i) and the first assertion of (ii). The second assertion of (ii) and
statement (iii) are immediate consequences of (3.4).

Finally, let K ⊆ Rn−1 and r 6= n− 1. If ψ ∈ GL(n) is defined by

ψ =

(
In−1 0

0 s

)
,

where s > 0, then, by (2.5),

ΦK = Φ(ψK) = s(r−(n−1))/nΦK.

Since this holds for every s > 0 and ΦK is bounded, we deduce (iv). �

Our next result reduces the proof of Theorem 2 to Minkowski valuations
which are homogeneous of degree n− 1.

Proposition 6 If Φ : Kn → Kn is an SL(n) contravariant continuous
Minkowski valuation which is homogeneous of degree r 6= n − 1, then for
every K ∈ Kn,

ΦK = {0}.

Proof : Let {e1, . . . , en} be a fixed orthonormal basis of Rn. For 0 < λ < 1
and 1 ≤ i < j ≤ n, we denote by Hλ = Hλ(i, j) the hyperplane through the
origin with normal vector λej − (1− λ)ei, that is,

Hλ = span({λei + (1− λ)ej} ∪ {ek : k 6= i, j}).
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Let S be the (n − 1)-dimensional simplex with vertices {e1, . . . , en}. Then
Hλ dissects S into two simplices S ∩H+

λ and S ∩H−λ , where H+
λ , H−λ denote

the closed halfspaces bounded by Hλ. More precisely, we have

S ∩H+
λ = conv({λei + (1− λ)ej} ∪ {ek : k 6= i}),

S ∩H−λ = conv({λei + (1− λ)ej} ∪ {ek : k 6= j}).

Define linear maps φλ = φλ(i, j) and ψλ = φλ(i, j) by

φλei = λei + (1− λ)ej, φλek = ek for k 6= i,

ψλej = λei + (1− λ)ej, φλek = ek for k 6= j.

Then it is easy to see that

S ∩H+
λ = φλS and S ∩H−λ = ψλS. (3.5)

Since Φ is a Minkowski valuation, we have

ΦS + Φ(S ∩Hλ) = Φ(S ∩H+
λ ) + Φ(S ∩H−λ ). (3.6)

Since Φ is also SL(n) contravariant and homogeneous of degree r 6= n − 1,
it follows from Lemma 5 (iv) that Φ(S ∩Hλ) = {0}. Therefore, (2.5), (3.5),
and (3.6) yield

ΦS = λqφ−T
λ ΦS + (1− λ)qψ−T

λ ΦS, (3.7)

where q = (r + 1)/n.
Now let 1 ≤ k ≤ n and choose 1 ≤ i < j ≤ n such that k 6= i, j. This is

possible since n ≥ 3. By (2.1) and (3.7), we have

h(ΦS, ek) = λqh(ΦS, ek) + (1− λ)qh(ΦS, ek),

for every 0 < λ < 1. Since Φ is homogeneous of degree r 6= n − 1, we have
q 6= 1 which implies h(ΦS, ek) = 0. Similarly, we obtain h(ΦS,−ek) = 0.
Since this holds for every 1 ≤ k ≤ n, we must have

ΦS = {0}. (3.8)

Let T be an arbitrary (n − 1)-dimensional simplex. If T is contained in a
hyperplane through the origin, then, by Lemma 5 (iv), ΦT = {0}. Otherwise
there exists a linear transformation φ ∈ GL(n) with detφ > 0 such that
φS = T . Thus, by (2.5) and (3.8), we also obtain ΦT = {0}.
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Now let F ∈ Kn be an (n − 1)-dimensional polytope. We dissect F into
(n − 1)-dimensional simplices Si, i = 1, . . . ,m, that is, F = S1 ∪ . . . ∪ Sm
and dimSi ∩ Sj ≤ n− 2 whenever i 6= j. For x ∈ Rn fixed, we define a real
valued valuation ϕx : Kn → R by

ϕx(K) = h(ΦK, x).

From the continuity of Φ, it follows that ϕx is also continuous. Therefore,
ϕx satisfies the inclusion-exclusion principle

ϕx(F ) =
∑
I

(−1)|I|−1ϕx(SI),

where the sum is taken over all ordered k-tuples I = (i1, . . . , ik) such that
1 ≤ i1 < . . . < ik ≤ n and k = 1, . . . ,m. Here |I| denotes the cardinality of
I and SI = Si1 ∩ . . . ∩ Sik (cf. [17, p. 7]). By Lemma 5 and the fact that
ΦSi = {0} for i = 1, . . . ,m, it follows that ϕx(F ) = 0 for every x ∈ Rn.
Consequently,

ΦF = {0} (3.9)

for every (n− 1)-dimensional polytope F .
Next, let P ∈ Kn be an n-dimensional polytope. If 0 ∈ P , then ΦP = {0}

by Theorem 4. Therefore, suppose that 0 /∈ P . We call a facet F of P visible
if [0, x) ∩ P = ∅ for every x ∈ F . If P has exactly one visible facet F , then,
since Φ is a Minkowski valuation, we have

ΦPo + ΦF = ΦFo + ΦP,

where we use Ko to denote conv({0} ∪K). Since, by Theorem 4, ΦK = {0}
for all K ∈ Kno and ΦF = {0} by (3.9), we obtain ΦP = {0}. If P has m > 1
visible facets F1, . . . , Fm, we define polytopes Ci ∈ Kn, i = 1, . . . ,m, by

Ci = P ∩
⋃
t≥0

tFi.

Clearly, P = C1 ∪ . . . ∪ Cm and dimCi ∩ Cj ≤ n − 1 for i 6= j. Moreover,
each Ci, i = 1, . . . ,m, has exactly one visible facet. Hence, ΦCi = {0} for
i = 1, . . . ,m. Thus, as before, the inclusion-exclusion principle and (3.9)
imply

ΦP = {0} (3.10)

for every n-dimensional polytope P .
Finally, a combination of Lemma 5, (3.9), and (3.10) shows that the map

Φ vanishes on all polytopes. By the continuity of Φ, the same holds true for
all convex bodies. �
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4. Proof of the main result

After these preparations, we are now in a position to present the proof
of Theorem 2. In fact, since GL(n) contravariant Minkowski valuations are
SL(n) contravariant and homogeneous, we prove a slightly stronger result,
analogous to Theorem 4.

Theorem 7 A map Φ: Kn → Kn is an SL(n) contravariant and homogeneous
continuous Minkowski valuation if and only if there exist constants c1, c2 ≥ 0
such that for every K ∈ Kn,

ΦK = c1ΠK + c2 ΠoK.

Proof : By Proposition 6, it is sufficient to consider Φ that are homogeneous
of degree n− 1. We first show that in this case, Φ is already determined by
its values on convex bodies of dimension n− 1. To this end, let {e1, . . . , en}
be an orthonormal basis of Rn and define φs ∈ GL(n) by

φs =

(
s In−1 0

0 1

)
,

where s > 0 and, as before, Ik denotes the k × k identity matrix. Since Φ is
homogeneous of degree n− 1, (2.5) yields

φsΦK = Φ(sφ−T
s K).

Hence, by the continuity of Φ, letting s→ 0, we have

φ0ΦK = Φ(K|e⊥n ).

Since h(φ0L, en) = h(L, en) for every L ∈ Kn, we obtain

h(ΦK, en) = h(Φ(K|e⊥n ), en). (4.1)

Now let u ∈ Sn−1 and choose ϑ ∈ SO(n) such that ϑen = u. Using (2.1),
(2.5) and (4.1), we conclude that

h(ΦK, u) = h(Φ((ϑ−1K)|e⊥n ), en) = h(Φ(K|u⊥), u). (4.2)

Next, we show that there exists a constant c ≥ 0 such that

ΦK = c voln−1(Ko) [−u, u] (4.3)

for every K ∈ Kn contained in u⊥, u ∈ Sn−1, with dimK ≤ n − 2. Here,
[−u, u] denotes the segment with endpoints −u, u and Ko = conv ({0} ∪K).
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If dimK < n − 2 or 0 ∈ aff K, (4.3) holds by Lemma 5. Therefore, we
may assume that dimK = n− 2 and 0 /∈ aff K. Moreover, by (2.5), we may
also assume that K ⊆ e⊥n .

Let T ⊆ e⊥n be an (n − 2)-dimensional simplex with 0 /∈ aff T . Choose
ψ ∈ GL(n− 1) with detψ > 0 such that the linear map

φ =

(
ψ 0
0 1

)
satisfies T = φS, where S = conv{e1, . . . , en−1}. A simple calculation shows
that detψ = (n− 1)! voln−1(To). Since ΦS ⊆ span{en} by Lemma 5 (ii), we
obtain from (2.5) that

ΦT = (detφ)φ−tΦS = (n− 1)! voln−1(To) [−a en, b en],

with constants a, b ∈ R depending only on Φ. Choosing ϑ ∈ SO(n) such that
ϑen = −en and ϑS = S (this is possible since n ≥ 3), it follows from (2.5) that
ΦS = ϑΦS. Hence, a = b ≥ 0 and (4.3) holds for T .

Now suppose that P ⊆ e⊥n is a polytope of dimension n − 2 such that
0 /∈ aff P . We dissect P into (n− 2)-dimensional simplices P = S1 ∪ . . .∪Sm
such that dimSi∩Sj < n−2. As in the proof of Proposition 6, an application
of the inclusion-exclusion principle and Lemma 5 (i) shows that

ΦP = ΦS1 + . . .+ ΦSm = c voln−1(Po) [−en, en]

for some constant c ≥ 0 depending only on Φ. Since Φ is continuous, we
conclude that (4.3) holds for all convex bodies K ⊆ e⊥n of dimension n− 2.

Now let K ∈ Kn be an arbitrary convex body contained in u⊥, u ∈ Sn−1.
We want to show that there exist constants a1, a2 ≥ 0 depending only on Φ
such that

ΦK = (a1voln−1(K) + a2voln−1(Ko \K)) [−u, u]. (4.4)

If dimK < n− 1, then (4.4) holds by Lemma 5 and (4.3). Therefore, we
may assume that dimK = n − 1. Moreover, by (2.5), we may also assume
that K ⊆ e⊥n .

Let P ⊆ e⊥n be an (n − 1)-dimensional polytope. Recall that a face F
of P is called visible if [0, x) ∩ P = ∅ for every x ∈ F . Suppose that P has
exactly one visible (n− 2)-face F . Since Φ is a valuation, we have

ΦFo + ΦP = ΦPo + ΦF. (4.5)
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By Theorem 4, there exists a constant a1 ≥ 0 such that Φ restricts to a1Π on
Kno . Hence, ΦFo = a1ΠFo and ΦPo = a1ΠPo. Moreover, from (4.3), it follows
that there exists a constant a2 ≥ 0 such that

ΦF = a2voln−1(Fo)[−en, en] = a2ΠFo.

Thus, we can rewrite (4.5) in the following way

a1Π(Fo) + ΦP = a1ΠPo + a2ΠFo.

Since Π is a Minkowski valuation and ΠF = {0}, we have ΠPo = ΠP + ΠFo.
Thus, using the cancelation law for Minkowski addition, we deduce that

ΦP = a1ΠP + a2ΠFo = (a1voln−1(P ) + a2voln−1(Po \ P ))[−en, en].

In order to obtain (4.4) for an (n − 1)-dimensional polytope P ⊆ e⊥n with
m > 1 visible (n − 2)-faces F1, . . . , Fm, we dissect P as in the proof of
Proposition 6. Finally, since Φ is continuous, we conclude that (4.4) holds
for all convex bodies K ⊆ e⊥n .

In the last step of the proof we combine (4.2) and (4.4), to obtain

h(ΦK, u) = a1voln−1(K|u⊥) + a2voln−1((Ko|u⊥) \ (K|u⊥)) (4.6)

for every K in Kn and u ∈ Sn−1. Suppose that a1 < a2. Then, for u ∈ Sn−1,

h(ΦK, u) = c1voln−1(Ko|u⊥)− c2voln−1(K|u⊥),

where c1, c2 > 0. By (2.2), this is equivalent to

h(ΦK, u) =

∫
Sn−1

|u · v| dρ(v), u ∈ Sn−1, (4.7)

where ρ is the signed Borel measure defined by

ρ =
c1

2
Sn−1(Ko, ·)−

c2

2
Sn−1(K, ·). (4.8)

It follows from (4.7) that for every polytope P there exist polytopes Q1 and
Q2 such that

ΦP +Q1 = Q2.

Hence, for every polytope P , ΦP is also a polytope. Since, by (4.7), ΦP is
also a generalized zonoid, we conclude that ρ ≥ 0, whenever P is a polytope
(cf. [33, Corollary 3.5.6]). But this is a contradiction, as can be seen by
calculating the surface area measures in (4.8) for P = conv{e1, . . . , en}.
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We conclude that a1 ≥ a2 in (4.6). Consequently, there are constants
c1, c2 ≥ 0 such that (4.6) is equivalent to

h(ΦK, u) = c1h(ΠK, u) + c2h(ΠoK, u), u ∈ Sn−1,

which completes the proof of Theorem 7. �

5. A Petty projection type inequality

The fundamental affine isoperimetric inequalities for projection bodies are
the Petty [31] projection inequality and the Zhang [41] projection inequality:
Among bodies of given volume polar projection bodies have maximal volume
precisely for ellipsoids and they have minimal volume precisely for simplices.
It is a major open problem to determine the corresponding results for the
volume of the projection body itself (see, e.g., [23, 24]).

Let Φ : Kn → Kn be an SL(n) contravariant and homogeneous continuous
Minkowski valuation. It follows from Theorem 7 that among bodies K of
given volume, the quantity V (Φ∗K) does not, in general, attain a minimum.
However, it always attains a maximum. The following result provides a
generalization of Petty’s projection inequality. In view of Theorem 7 it is
equivalent to Theorem 3.

Theorem 8 Let K ∈ Kn have nonempty interior. If Φ : Kn → Kn is
a nontrivial SL(n) contravariant and homogeneous continuous Minkowski
valuation, then

V (K)n−1V (Φ∗K) ≤ V (B)n−1V (Φ∗B). (5.1)

If Φ is not a multiple of Π, there is equality if and only if K is an ellipsoid
containing the origin; otherwise equality holds if and only if K is an ellipsoid.

Proof : Since Φ is SL(n) contravariant, we have Φ(ϑK) = ϑΦK for every
ϑ ∈ SO(n) and every K ∈ Kn. Thus, there exists an rΦ ≥ 0 such that
ΦB = rΦB. Since inequality (5.1) is homogeneous and Φ is nontrivial, we
may assume that ΦB = ΠB = κn−1B. Here, κm denotes the m-dimensional
volume of the Euclidean unit ball in Rm.

Since ΠoB = ΠB, it follows from Theorem 7 that there exists a constant
0 ≤ λ ≤ 1 such that for every K ∈ Kn,

ΦK = λΠK + (1− λ) ΠoK.
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Thus, using (2.3), we obtain for convex bodies K with nonempty interior,

Φ∗K = λ · Π∗K +̂ (1− λ) · Π∗oK.

An application of the harmonic dual Brunn–Minkowski inequality (2.4), now
yields

V (Φ∗K)−1/n ≥ λV (Π∗K)−1/n + (1− λ)V (Π∗oK)−1/n, (5.2)

with equality, for 0 < λ < 1, if and only if Π∗K and Π∗oK are dilates.
Since K ⊆ conv({0} ∪ K), definition (1.1) of the projection operator

shows that ΠK ⊆ ΠoK, with equality if and only if K contains the origin.
Consequently,

V (Π∗oK) ≤ V (Π∗K), (5.3)

with equality if and only if K contains the origin. Combining (5.2) and (5.3),
yields

V (Φ∗K) ≤ V (Π∗K).

If Φ 6= Π, there is equality if and only if K contains the origin. Finally, an
application of the Petty projection inequality (1.2), yields (5.1) along with
the equality conditions. �

The proof of Theorem 8 also shows that the Petty projection inequality
is the strongest inequality in the family of inequalities (5.1). More precisely:

Corollary 9 Let K ∈ Kn have nonempty interior. If Φ : Kn → Kn is an
SL(n) contravariant and homogeneous continuous Minkowski valuation such
that ΦB = ΠB , then

V (Φ∗K) ≤ V (Π∗K).

If Φ 6= Π, there is equality if and only if K contains the origin.
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