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Abstract. The decomposition of the space of continuous and translation
invariant valuations into a sum of SO(n) irreducible subspaces is obtained.
A reformulation of this result in terms of a Hadwiger type theorem for
continuous translation invariant and SO(n)-equivariant tensor valuations is
also given. As an application, symmetry properties of rigid motion invariant
and homogeneous bivaluations are established and then used to prove new
inequalities of Brunn–Minkowski type for convex body valued valuations.

1. Introduction and statement of main results

Let V be an n-dimensional Euclidean vector space and let A be an abelian
semigroup. A function φ defined on convex bodies (compact convex sets) in
V and taking values in A is called a valuation, or additive, if

φ(K) + φ(L) = φ(K ∪ L) + φ(K ∩ L)

whenever K,L and K ∪ L are convex.
The most important cases are A = R or C (scalar valued valuations),

A = SymkV (tensor valuations) and A = Kn, the semigroup of convex bodies
in V with the Minkowski addition (Minkowski valuations).

Scalar valued valuations play an important role in integral geometry.
Hadwiger characterized in [26] the continuous Euclidean motion invariant
valuations. Almost all classical integral-geometric formulas can be reduced
to this landmark result. For generalizations of this idea in different directions,
we refer to [2, 4, 11, 15, 17, 30, 36, 46].

Tensor valuations were studied by McMullen [47], the first author [3] and
Ludwig [32]. Recently, a full set of kinematic formulas for tensor valuations
was obtained by Hug, Schneider and R. Schuster [27, 28].

The best known example of a Minkowski valuation is the projection body.
This central notion from affine geometry has many applications in several
areas such as geometric tomography, stereology, computational geometry,
optimization or functional analysis. For a systematic study of Minkowski
valuations, we refer to [22, 23, 29, 31–34, 50] and the references therein.
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In this article, we contribute to these three different directions in the
theory of valuations. Our main result may be stated in the language of scalar
valued valuations or in the language of tensor valuations. For simplicity, we
assume throughout this paper that n ≥ 3, even if most of the results also
hold true for n = 2.

A valuation φ is called translation invariant if φ(K + x) = φ(K) for
all x ∈ V and K ∈ Kn and φ is said to have degree i if φ(tK) = tiφ(K)
for all K ∈ Kn and t > 0. We call φ even if φ(−K) = φ(K) and odd if
φ(−K) = −φ(K) for all K ∈ Kn. We denote by Val the vector space of
all continuous translation invariant complex valued valuations and we write
Val±i for its subspace of all valuations of degree i and even/odd parity. An
important result by McMullen [45] is that

Val =
⊕

0≤i≤n

(Val+i ⊕Val−i ). (1.1)

In order to state our main theorem, we need the following basic fact
from the representation theory of the group SO(n): The isomorphism classes
of irreducible representations of SO(n) are parametrized by their highest
weights, namely sequences of integers (λ1, λ2, . . . , λbn/2c) such that{

λ1 ≥ λ2 ≥ . . . ≥ λbn/2c ≥ 0 for odd n,
λ1 ≥ λ2 ≥ . . . ≥ λn/2−1 ≥ |λn/2| for even n.

(See Section 3 for the background material from representation theory.)
The natural action of the group SO(n) on the space Val is given by

(ϑφ)(K) = φ(ϑ−1K), ϑ ∈ SO(n), φ ∈ Val.

Our main theorem is the following decomposition of the space Val into
irreducible SO(n)-modules.

Theorem 1. Let 0 ≤ i ≤ n. The space Vali is the direct sum of the
irreducible representations of SO(n) with highest weights (λ1, . . . , λbn/2c)
precisely satisfying the following additional conditions:

(i) λj = 0 for j > min{i, n− i};
(ii) |λj| 6= 1 for 1 ≤ j ≤ bn/2c;
(iii) |λ2| ≤ 2.

In particular, under the action of SO(n) the space Vali is multiplicity free.
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Earlier versions of Theorem 1 for even valuations were obtained in [4]
and [9]. These results were subsequently applied in the construction of new
algebraic structures on the space Val (see [6, 14]) which provided the means
for a fuller understanding of the integral geometry of compact groups acting
transitively on the unit sphere (see e.g. [5, 11, 15, 17]).

For the proof of Theorem 1 we draw on methods from representation
theory, differential geometry and geometric measure theory. To be more
specific, we use a representation of smooth translation invariant valuations
via integral currents first obtained in [7] and later refined in [13] and [12] as
well as an analysis of the action of SO(n) on the space of translation invariant
differential forms on a contact manifold (see Sections 4 and 5).

We now state a reformulation of Theorem 1 in the language of tensor
valuations. Let (Γ, %) be a (finite dimensional, complex) representation of
SO(n). A continuous translation invariant valuation with values in Γ is called
SO(n) equivariant if

φ(ϑK) = %(ϑ)φ(K)

for all ϑ ∈ SO(n) and K ∈ Kn.

Theorem 1′. Let (Γ, %) be an irreducible SO(n) representation and let
0 ≤ i ≤ n. There exists a non-trivial continuous translation invariant
and SO(n) equivariant valuation of degree i with values in Γ if and only
if the highest weight of Γ satisfies the conditions (i)-(iii) from Theorem 1.
This valuation is unique up to scaling.

Since a finite dimensional representation of SO(n) can be decomposed
into a sum of irreducible representations, Theorem 1′ can be used to study
the space of equivariant Γ-valued valuations also for reducible Γ (compare
the examples in Section 5).

The case of symmetric tensors, namely Γ = SymkV , has been intensively
treated in [2, 27, 28, 32, 47]. In these papers, translation invariance is
replaced by the more general isometry covariance. In the recent article [28],
Hug, Schneider and R. Schuster explicitly determined the dimension of the
space of all continuous isometry covariant tensor valuations of a fixed rank
and of a given degree of homogeneity. However, these computations do not
seem to give a basis of the subspace of translation invariant tensor valuations.
For the general, non-symmetric, case, not much seems to be known except
the construction of ΛkV ⊗ΛkV -valued translation invariant valuations in [10].
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Definition. A map ϕ : Kn ×Kn → C is called a bivaluation if ϕ is additive
in each argument. A bivaluation ϕ is called translation biinvariant if ϕ is
invariant under independent translations of its arguments and ϕ is said to
have bidegree (i, j) if ϕ(tK, sL) = tisjϕ(K,L) for all K,L ∈ Kn and t, s > 0.
We say ϕ is O(n) invariant (resp. SO(n) invariant) if ϕ(ϑK, ϑL) = ϕ(K,L)
for all K,L ∈ Kn and ϑ ∈ O(n) (resp. ϑ ∈ SO(n)).

In their book on geometric probability, Klain and Rota [30] pose the
problem to classify all ”invariant” bivaluations. First such classification
results were obtained recently by Ludwig [35]. In Section 6 we obtain a
description of all continuous translation biinvariant bivaluations which can
be seen as a starting point for systematic investigations of this problem.

As an application of Theorem 1, we obtain the following important
symmetry property of rigid motion invariant homogeneous bivaluations.

Theorem 2. If ϕ : Kn×Kn → R is a continuous translation biinvariant and
O(n) invariant bivaluation of bidegree (i, i), 0 ≤ i ≤ n, then

ϕ(K,L) = ϕ(L,K) (1.2)

for every K,L ∈ Kn.

As a byproduct of our proof of Theorem 2, we also obtain that if the
bivaluation ϕ is as above but merely SO(n) invariant, then (1.2) still holds
true if (i, n) 6= (2k + 1, 4k + 2), k ∈ N. If n ≡ 2 mod 4, then there exist
continuous translation biinvariant and SO(n) invariant bivaluations of
bidegree

(
n
2
, n

2

)
which are not symmetric.

The symmetry property established in Theorem 1 in combination with
techniques developed by Lutwak [37, 41] can be used to obtain geometric
inequalities for Minkowski valuations. Recall that a map Φ : Kn → Kn

is called a Minkowski valuation if Φ is additive with respect to the usual
Minkowski addition of convex sets. We denote by MVali the set of all
continuous translation invariant Minkowski valuations of degree i.

A convex body K is uniquely determined by its support function
h(K, u) = max{u · x : x ∈ K}, for u ∈ Sn−1. Among the most important
examples of Minkowski valuations is the projection operator Π ∈ MValn−1:
The projection body ΠK of K is the convex body defined by

h(ΠK, u) = voln−1(K|u⊥), u ∈ Sn−1,

whereK|u⊥ denotes the projection ofK onto the hyperplane orthogonal to u.
For the special role of the map Π in the theory of valuations we refer to [31].
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Let 0 ≤ i ≤ n−1. If Φi ∈ MVali is O(n) equivariant, i.e. Φi(ϑK) = ϑΦiK
for all K ∈ Kn and ϑ ∈ O(n), then the map

ϕ(K,L) = V (ΦiK,L[i], B[n− i− 1]), K, L ∈ Kn,

where V (ΦiK,L[i], B[n− i− 1]) denotes the mixed volume of ΦiK, i copies
of L and n − i − 1 copies of the Euclidean unit ball B, is a translation
biinvariant and O(n) invariant bivaluation of bidegree (i, i). By Theorem 2,
it is symmetric in K and L.

In the particular case where i = n − 1 and Φn−1 = Π, this symmetry
property is well known. Its variants and generalizations have been used
extensively for establishing geometric inequalities related to convex and star
body valued valuations (see [19, 21, 24, 37, 38, 40–44, 50] and Section 7).
Complex versions of the projection body were recently studied in [1], they
satisfy similar symmetry properties.

In the following we give one example of the type of inequalities that can
be derived from Theorem 2. To this end let us recall a version of the classical
Brunn–Minkowski inequality. For i ∈ {0, . . . , n}, let Vi(K) denote the i-th
intrinsic volume of K ∈ Kn. The Brunn–Minkowski inequality for intrinsic
volumes states the following: If 2 ≤ i ≤ n and K,L ∈ Kn have non-empty
interior, then

Vi(K + L)1/i ≥ Vi(K)1/i + Vi(L)1/i, (1.3)

with equality if and only if K and L are homothetic.
In [37, 41] Lutwak obtained inequalities of Brunn–Minkowski type for a

well known family of Minkowski valuations derived from the projection body
operator. As an application of Theorem 2, we show that inequalities (1.3)
and Lutwak’s inequalities for derived projection operators of order i are in
fact part of a larger family of Brunn–Minkowski type inequalities which hold
for all continuous translation invariant and SO(n) equivariant Minkowski
valuations of a given degree.

Theorem 3. Suppose that Φi ∈ MVali, 1 ≤ i ≤ n−1, is SO(n) equivariant.
If K,L ∈ Kn have non-empty interior, then

Vi+1(Φi(K + L))1/i(i+1) ≥ Vi+1(ΦiK)1/i(i+1) + Vi+1(ΦiL)1/i(i+1).

If i ≥ 2 and Φi maps convex bodies with non-empty interior to bodies with
non-empty interior, then equality holds if and only if K and L are homothetic.

The special case of Theorem 3 for even Minkowski valuations was recently
established by other methods by the third author [50].
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2. Translation invariant valuations

In the following we collect background results on translation invariant
complex valued valuations needed in subsequent sections. In particular, we
recall the definition of O(n) finite valuations and smooth valuations as well
as their representation via integral currents.

A classical theorem of Minkowski states that the volume of a Minkowski
linear combination t1K1 + . . . + tkKk of convex bodies K1, . . . , Kk can be
expressed as a homogeneous polynomial of degree n:

Vn(t1K1 + . . .+ tkKk) =
k∑

i1,...,in=1

V (Ki1 , . . . , Kin)ti1 · · · tin .

The coefficients V (Ki1 , . . . , Kin) are called mixed volumes of Ki1 , . . . , Kin .
Clearly, V (K, . . . ,K) = Vn(K). Moreover, mixed volumes are symmetric,
non-negative and multilinear with respect to Minkowski linear combinations.
They are also continuous with respect to the Hausdorff metric and satisfy
the following two properties:

• If K,L ∈ Kn such that K ∪ L ∈ Kn, and C = (K1, . . . , Ki), then

Vi(K,C) + Vi(L,C) = Vi(K ∪ L,C) + Vi(K ∩ L,C),

where Vi(K,C) denotes the mixed volume V (K, . . . ,K,K1, . . . , Ki).

• Mixed volumes are invariant under independent translations of their
arguments and they are invariant under simultaneous unimodular linear
transformations, i.e., if K1, . . . , Kn ∈ Kn and A ∈ SL(n), then

V (AK1, . . . , AKn) = V (K1, . . . , Kn).

Recall that we denote by Val the vector space of continuous translation
invariant complex valued valuations and we write Val±i for its subspaces of
all valuations of degree i and even/odd parity.

It is easy to see that the space Val0 is one-dimensional. The analogous
(non-trivial) statement for Valn was proved by Hadwiger [26, p. 79].

The following consequence of McMullen’s decomposition (1.1) is well
known.
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Corollary 2.1. Let C ∈ Kn be a fixed convex body with non-empty interior.
The space Val becomes a Banach space under the norm

‖φ‖ = sup{|φ(K)| : K ⊆ C}.

Moreover, a different choice of C yields an equivalent norm.

The natural continuous action of the group GL(n) on the Banach space
Val is given by

(Aφ)(K) = φ(A−1K), A ∈ GL(n), φ ∈ Val.

Note that the subspaces Val±i ⊆ Val are invariant under this GL(n) action.
The following result is known as the Irreducibility Theorem. It implies a

conjecture by McMullen that the linear combinations of mixed volumes form
a dense subspace in Val.

Theorem 2.2. ([4]) The natural action of GL(n) on Val±i is irreducible for
every i ∈ {0, . . . , n}.

In the following it will be important for us to work with two different
dense subsets of valuations in Val:

Definition A valuation φ ∈ Val is called O(n) finite if the O(n) orbit of φ,
i.e. the subspace span{ϑφ : ϑ ∈ O(n)}, is finite dimensional.

A valuation φ ∈ Val is called smooth if the map GL(n) → Val defined by
A 7→ Aφ is infinitely differentiable.

The notions of O(n) finite and smooth valuations are special cases of more
general well known concepts from representation theory (see e.g. [51]).

We denote the space of continuous translation invariant and O(n) finite
valuations by Valf and we write Val∞ for the space of smooth translation
invariant valuations. For the subspaces of homogeneous valuations of given
parity in Valf and Val∞ we write Val±,f

i and Val±,∞
i , respectively.

It is well known (cf. [16, p. 141] and [51, p. 32]) that the set of O(n) finite
valuations Val±,f

i is a dense O(n) invariant subspace of Val±i and that the set
of smooth valuations Val±,∞

i is a dense GL(n) invariant subspace of Val±i .
Moreover, Valf ⊆ Val∞ and from (1.1) one easily deduces that the spaces
Valf and Val∞ admit direct sum decompositions into their corresponding
subspaces of homogeneous valuations of given parity.
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An equivalent description of smooth valuations can be given in terms of
the normal cycle map. Let SV = V × Sn−1 denote the unit sphere bundle
on V . For K ∈ Kn and x ∈ ∂K, we write N(K, x) for the normal cone of K
at x. The normal cycle (or generalized normal bundle) of a convex body K
is the Lipschitz submanifold of SV defined by

nc(K) = {(x, u) ∈ SV : x ∈ ∂K, u ∈ N(K, x)}.
For 0 ≤ i ≤ n − 1, let Ωi,n−i−1 denote the space of smooth translation

invariant differential forms of bidegree (i, n − i − 1) on SV . The following
result is a special case of [7, Theorem 5.2.1]:

Lemma 2.3. If 0 ≤ i ≤ n−1, then the map ν : Ωi,n−i−1 → Val∞i , defined by

ν(ω)(K) =

∫
nc(K)

ω, (2.1)

is surjective.

The kernel of the map ν was described in [13] in terms of the Rumin
operator [48], a second order differential operator which acts on smooth forms
on the sphere bundle. A refined version of this result (stated in Section 4
as Theorem 4.3) was recently proved in [12] and will be crucial in the proof
of Theorem 1. We also remark that recently a broader notion of smooth
valuations in the setting of smooth manifolds was introduced, see [7]. The
classical concept of valuations as used in this article is in some sense an
infinitesimal version of this more general notion.

The description of smooth valuations provided by Lemma 2.3 was the
main tool used in [13] to establish a Hard Lefschetz Theorem for translation
invariant valuations (see also [5, 8]). The next statement is an immediate
consequence of this result:

Theorem 2.4. For every i ∈ {0, . . . , n}, the spaces Val∞i and Val∞n−i are
isomorphic as SO(n) modules.

3. Irreducible representations of SO(n) and O(n)

In this section we recall some well known results concerning irreducible
representations of the groups SO(n) and O(n), n ≥ 3. As a general reference
for this material we recommend the books by Bröcker and tom Dieck [16],
Fulton and Harris [18], and Goodman and Wallach [20].
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Since SO(n) and O(n) are compact Lie groups, all their irreducible
representations are finite dimensional. The equivalence classes of irreducible
complex representations of SO(n) are indexed by their highest weights,
namely bn/2c-tuples of integers (λ1, λ2, . . . , λbn/2c) such that{

λ1 ≥ λ2 ≥ . . . ≥ λbn/2c ≥ 0 for odd n,
λ1 ≥ λ2 ≥ . . . ≥ λn/2−1 ≥ |λn/2| for even n.

(3.1)

In the following we use Γλ to denote any isomorphic copy of an irreducible
representation of SO(n) with highest weight λ = (λ1, λ2, . . . , λbn/2c).

Examples:

(a) The only one dimensional (complex) representation of SO(n) is the
trivial representation; it corresponds to the SO(n) module Γ(0,...,0).

(b) We denote by VC = V ⊗ C the complexification of V . The standard
representation of SO(n) on VC corresponds to Γ(1,0,...,0).

(c) For every 0 ≤ i ≤ bn/2c − 1, the exterior power ΛiVC is an irreducible
SO(n) module with λ = (1, . . . , 1, 0, . . . , 0), where 1 appears i times.

If n = 2k + 1 is odd, the exterior power ΛkVC is also irreducible; but if
n = 2k is even, it splits as ΛkVC = Γ(1,...,1) ⊕ Γ(1,...,1,−1)

For every i ∈ {0, . . . , n}, there is a natural isomorphism of SO(n)
modules

ΛiVC ∼= Λn−iVC. (3.2)

(d) For k ≥ 2, the symmetric power SymkVC is not irreducible as SO(n)
module; its decomposition into irreducible submodules is given by

SymkVC =

bk/2c⊕
j=0

Γ(k−2j,0,...,0). (3.3)

A description of the irreducible representations of the full orthogonal
group O(n) can be given in terms of the irreducible representations of its
identity component SO(n) (cf. [20, p. 249]). The main difference arises from
the fact that O(n) has a non-trivial one dimensional representation, called
the determinant representation, which corresponds to the O(n) module ΛnVC.
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Lemma 3.1. Let λ = (λ1, . . . , λbn/2c) be a tuple of integers satisfying (3.1).

(a) If n is odd, then the irreducible representation Γλ of SO(n) is the
restriction of two non-isomorphic irreducible O(n) representations Γ̄λ

and Γ̄λ ⊗ ΛnVC.

(b) If n is even and λn/2 = 0, then the irreducible representation Γλ

of SO(n) is the restriction of two non-isomorphic irreducible O(n)
representations Γ̄λ and Γ̄λ ⊗ ΛnVC. If λn/2 6= 0, then Γλ is not such a
restriction.

(c) If n is even and λn/2 6= 0, then the SO(n) representation Γλ ⊕ Γλ′,
where λ′ := (λ1, . . . , λn/2−1,−λn/2), is the restriction of an irreducible
O(n) representation Γ̄λ.

Moreover, all irreducible representations of O(n) are determined in this way.

Let Γ be a (not necessarily irreducible) complex SO(n) or O(n) module.
Recall that the dual representation is defined on the dual space Γ∗ by

(ϑu∗)(v) = u∗(ϑ−1v), ϑ ∈ SO(n), u∗ ∈ Γ∗, v ∈ Γ.

We say that Γ is self-dual if Γ and Γ∗ are isomorphic representations. The
module Γ is called real if there exists a non-degenerate symmetric SO(n)
invariant, or O(n) respectively, bilinear form on Γ. In particular, if Γ is real,
then Γ is also self-dual.

The following lemma (cf. [16, p. 292]) will be critical in the proof of
Theorem 2:

Lemma 3.2. Let λ = (λ1, . . . , λbn/2c) be a tuple of integers satisfying (3.1).

(a) If n 6≡ 2 mod 4, then all representations of SO(n) are real.

(b) If n ≡ 2 mod 4, then the irreducible representation Γλ of SO(n) is real
if and only if λn/2 = 0. If λn/2 6= 0, then the dual of Γλ is Γλ′.

Moreover, all representations of O(n) are real.

An essential tool in the classification of irreducible modules of a compact
group is the character of a representation: Let Γ be a finite dimensional
(complex) SO(n) module and let % : SO(n) → GL(Γ) be the corresponding
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representation. The character of Γ is the function char Γ : SO(n) → C
defined by

(char Γ)(ϑ) = Tr %(ϑ),

where Tr %(ϑ) is the trace of the linear map %(ϑ) : Γ → Γ.
A complex representation is determined up to isomorphism by its

character. Moreover, from properties of the trace map, one immediately
obtains several useful arithmetic properties of characters: If Γ and Θ are
finite dimensional SO(n) modules, then

char(Γ⊕Θ) = char Γ + char Θ (3.4)

and
char(Γ⊗Θ) = char Γ · char Θ. (3.5)

The character of the irreducible SO(n) modules Γλ with highest weights
λ = (λ1, . . . , λbn/2c) are described by Weyl’s character formula. However,
more important for us is a consequence of this description, known as the
second determinantal formula, which we describe in the following.

Let λ = (λ1, . . . , λbn/2c) be a tuple of non-negative integers satisfying (3.1).
We define the SO(n) module Γ̄λ by

Γ̄λ :=

{
Γλ ⊕ Γλ′ if n is even and λn/2 6= 0,
Γλ otherwise.

The second determinantal formula expresses char Γ̄λ as a polynomial in the
characters Ei of the fundamental representations ΛiVC, i ∈ Z. (Note that
E0 = En = 1 and that we use the convention Ei = 0 for i < 0 or i > n.)

Given a tuple of non-negative integers λ = (λ1, . . . , λbn/2c) satisfying (3.1),
recall that the conjugate of λ is the s := λ1 tuple µ = (µ1, . . . , µs) defined by
saying that µj is the number of terms in λ that are greater than or equal j.
The second determinantal formula (cf. [18, p. 409]) can be stated as follows:

Theorem 3.3. Let λ = (λ1, . . . , λbn/2c) be a tuple of non-negative integers
satisfying (3.1) and let µ = (µ1, . . . , µs) be the conjugate of λ. The character
of Γ̄λ equals the determinant of the s× s-matrix whose i-th row is given by(

Eµi−i+1 Eµi−i+2 + Eµi−i · · · Eµi−i+s + Eµi−i−s+2

)
. (3.6)
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It is sometimes convenient for us to take s > λ1 in the definition of
the conjugate of λ. This just introduces additional zeros at the end of the
conjugate tuple. However, note that this does not change the determinant
of the matrix defined by (3.6).

In the following we use #(λ, j) to denote the number of terms in a
tuple of (non-negative) integers λ = (λ1, . . . , λbn/2c) which are equal to j.
As a consequence of Theorem 3.3, we note the following auxiliary result
which will be needed in the proof of Theorem 1.

Corollary 3.4. If i, j ∈ N are such that n/2 ≤ i ≤ n and i+ j ≤ n, then

EiEj − Ei−1Ej−1 =
∑

λ

char Γ̄λ, (3.7)

where the sum ranges over all bn/2c-tuples of non-negative integers
λ = (λ1, . . . , λbn/2c) satisfying (3.1) and

λ1 ≤ 2, #(λ, 1) = n− i− j, #(λ, 2) ≤ j. (3.8)

Proof : If λ = (λ1, . . . , λbn/2c) is a tuple of non-negative integers satisfying
(3.1) and (3.8), then the conjugate of λ is given by µ = (µ1, µ2), where
µ2 = #(λ, 2) ≤ j and µ1 − µ2 = #(λ, 1) = n− i− j. Thus, by Theorem 3.3,
the character of Γ̄λ is given by

char Γ̄λ = det

(
Eµ2+k Eµ2+k+1 + Eµ2+k−1

Eµ2−1 Eµ2 + Eµ2−2

)
,

where k = n− i− j. Consequently, the right hand side of (3.7) is

∑
λ

char Γ̄λ =

j∑
µ2=0

(
Eµ2+k(Eµ2 + Eµ2−2)− Eµ2−1(Eµ2+k+1 + Eµ2+k−1)

)
= En−iEj − En−(i−1)Ej−1.

To finish the proof, note that En−i = Ei by (3.2). �

An important class of (infinite dimensional) representations of a Lie group
G are those induced from closed subgroups H of G. Although in this article
we will only need the case G = SO(n) and H = SO(n− 1), we shall explain
this construction for a general compact Lie group G and its closed subgroup
H. To this end, for any finite dimensional complex vector space Γ, we denote
by C∞(G; Γ) the space of all smooth functions f : G→ Γ.
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If Θ is any representation of G, clearly we obtain a representation ResG
HΘ

of H by restriction. Conversely, each H module Γ induces a representation
of G as follows: Let IndG

HΓ ⊆ C∞(G; Γ) be the space of functions defined by

IndG
HΓ :=

{
f ∈ C∞(G; Γ) : f(gh) = h−1f(g) for all g ∈ G, h ∈ H

}
.

The (smooth) induced representation of G on IndG
HΓ is now given by left

translation
(gf)(u) = f(g−1u), g, u ∈ G.

A basic result on induced representations is the well known Frobenius
Reciprocity Theorem (cf. [20, p. 523]):

Theorem 3.5. If Θ is a G module and Γ is an H module, then there is a
canonical vector space isomorphism

HomG(Θ, IndG
HΓ) ∼= HomH(ResG

HΘ,Γ).

Here, HomG denotes the space of continuous linear G equivariant maps.
Recall that if Θ is an irreducible G module, by Schur’s lemma, the

multiplicity m(Ξ,Θ) of Θ in an arbitrary G module Ξ is given by

m(Ξ,Θ) = dim HomG(Ξ,Θ) = dim HomG(Θ,Ξ).

Thus, by the Frobenius Reciprocity Theorem, if Θ and Γ are irreducible,
then the multiplicity of Θ in IndG

HΓ equals the multiplicity of Γ in ResG
HΘ.

In order to apply Theorem 3.5 in our situation, where G = SO(n) and

H = SO(n − 1), we will need a formula for decomposing Res
SO(n)
SO(n−1)Γ into

irreducible SO(n−1) modules. This is the content of the following branching
theorem (cf. [18, p. 426]):

Theorem 3.6. If Γλ, with λ = (λ1, . . . , λbn/2c) satisfying (3.1), is an
irreducible representation of SO(n), then

Res
SO(n)
SO(n−1)Γλ =

⊕
µ

Γµ, (3.9)

where the sum ranges over all µ = (µ1, . . . , µk) with k := b(n− 1)/2c and{
λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ µk−1 ≥ λbn/2c ≥ |µk| for odd n,
λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ µk ≥ |λn/2| for even n.
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4. The Rumin–de Rham complex

We state in this section a refinement of the description of translation
invariant smooth valuations via integral currents. We also establish an
auxiliary result which will enable us to subsequently employ the machinery
from representation theory explained in Section 3.

Recall that SV = V × Sn−1 denotes the unit sphere bundle. The natural
smooth (left) action of SO(n) on SV is given by

lϑ(x, u) := (ϑx, ϑu), ϑ ∈ SO(n), (x, u) ∈ SV. (4.1)

Similarly, each y ∈ V determines a smooth map ty : SV → SV by

ty(x, u) = (x+ y, u), (x, u) ∈ SV. (4.2)

The canonical contact form α on SV is the one form defined by

α|(x,u)(w) = 〈u, d(x,u)π(w)〉, w ∈ T(x,u)SV,

where π : SV → V denotes the canonical projection and d(x,u)π its differential
at (x, u) ∈ SV . In this way, SV becomes a 2n − 1 dimensional contact
manifold. The kernel of α defines the contact distribution Q := kerα. The
restriction of dα to Q is a non-degenerate two form. In this way, each Q(x,u)

becomes a symplectic vector space.
The Reeb vector field R on SV is defined by R(x,u) = (u, 0). It is the

unique vector field on SV such that α(R) = 1 and iRdα = 0, where iRdα
denotes the interior product of R and dα. At each point (x, u), Q(x,u) is
the orthogonal sum of two copies of TuS

n−1 and, consequently, we have an
orthogonal splitting of the tangent space T(x,u)SV given by

T(x,u)SV = spanRR(x,u) ⊕ TuS
n−1 ⊕ TuS

n−1. (4.3)

The product structure of SV induces a bigrading on the vector space
Ω∗(SV ) of complex valued smooth differential forms given by

Ω∗(SV ) =
⊕
i,j

Ωi,j(SV ),

where Ωi,j(SV ) denotes the subspace of Ω∗(SV ) of forms of bidegree (i, j).
We write Ωi,j ⊆ Ωi,j(SV ) for the subspace of translation invariant forms, i.e.,

Ωi,j = {ω ∈ Ωi,j(SV ) : t∗yω = ω for all y ∈ V }.
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Here, t∗y is the pullback of the map ty : SV → SV defined in (4.2). Note that
the restriction of the exterior derivative d to Ωi,j has bidegree (0, 1).

The vector space Ωi,j becomes an SO(n) module under the (continuous)
action

ϑω = l∗ϑ−1ω, ϑ ∈ SO(n), ω ∈ Ωi,j.

An important SO(n) submodule of Ωi,j is given by the space Ωi,j
v of vertical

forms, defined by
Ωi,j

v := {ω ∈ Ωi,j : α ∧ ω = 0}.

Note that a differential form ω ∈ Ωi,j is vertical if and only if it vanishes on
the contact distribution Q of SV .

The SO(n) submodule Ωi,j
h ⊆ Ωi,j of horizontal forms, is given by

Ωi,j
h := {ω ∈ Ωi,j : iRω = 0} ∼= Ωi,j/Ωi,j

v .

It follows from (4.3) and the definition of Ωi,j
h that ω ∈ Ωi,j is horizontal if

and only if
ω|(x,u) ∈ ΛiT ∗uS

n−1 ⊗ ΛjT ∗uS
n−1 ⊗ C

for every x ∈ V and each u ∈ Sn−1. In the following we will therefore simply
write ω|u instead of ω|(x,u) whenever ω ∈ Ωi,j

h and (x, u) ∈ SV .
We now fix a point u0 ∈ Sn−1 and let SO(n−1) be the stabilizer of SO(n)

at u0. For u ∈ Sn−1, we denote by Wu := TuS
n−1 ⊗ C the complexification

of the tangent space TuS
n−1 and we write W0 to denote Wu0 .

Lemma 4.1. For i, j ∈ N, there is an isomorphism of SO(n) modules

Ωi,j
h
∼= Ind

SO(n)
SO(n−1)(Λ

iW ∗
0 ⊗ ΛjW ∗

0 ).

Proof : First note that, for each ϑ ∈ SO(n), the differential of the map
lϑ : SV → SV defined in (4.1) induces a linear isomorphism

d̂u0lϑ := (du0lϑ)∗ : ΛiW ∗
ϑu0

⊗ ΛjW ∗
ϑu0

→ ΛiW ∗
0 ⊗ ΛjW ∗

0 .

Moreover, the natural representation of the group SO(n − 1) on the space

ΛiW ∗
0 ⊗ ΛjW ∗

0 is given by η 7→ d̂u0lη−1 .

Suppose now that ω ∈ Ωi,j
h . We define fω : SO(n) → ΛiW ∗

0 ⊗ ΛjW ∗
0 by

fω(ϑ) = d̂u0lϑ(ω|ϑu0).
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Clearly, we have fω(ϑη) = η−1fω(ϑ) for every ϑ ∈ SO(n) and η ∈ SO(n− 1).

This shows that fω ∈ Ind
SO(n)
SO(n−1)(Λ

iW ∗
0 ⊗ ΛjW ∗

0 ).

Conversely, let f ∈ Ind
SO(n)
SO(n−1)(Λ

iW ∗
0 ⊗ ΛjW ∗

0 ). We define a horizontal

form ωf ∈ Ωi,j
h by

ωf |ϑu0 = d̂u0lϑ
−1

(f(ϑ)).

It is not difficult to show that ω is well defined, i.e. if ϑu0 = ϑ′u0 for some
ϑ, ϑ′ ∈ SO(n), then ω|ϑu0 = ω|ϑ′u0 .

The observation that the SO(n) equivariant linear maps ω 7→ fω and
f 7→ ωf are inverse to each other finishes the proof. �

Let I i,j denote the SO(n) invariant subspace of Ωi,j defined by

I i,j := {ω ∈ Ωi,j : ω = α ∧ ξ + dα ∧ ψ, ξ ∈ Ωi−1,j, ψ ∈ Ωi−1,j−1}.

Finally, we denote by Ωi,j
p the SO(n) module of primitive forms defined

as the quotient
Ωi,j

p := Ωi,j/I i,j. (4.4)

An equivalent description of primitive forms can be given as follows: The
multiplication by the symplectic form −dα induces an SO(n) equivariant
linear operator L : Ωi,j

h → Ωi+1,j+1
h which is injective if i + j ≤ n − 2.

Moreover, it follows from the definition of Ωi,j
p that in this case

Ωi,j
p = Ωi,j

h /LΩi−1,j−1
h . (4.5)

From Lemma 4.1 and (4.5), we now immediately obtain

Corollary 4.2. If i, j ∈ N are such that i + j ≤ n − 1, then there is an
isomorphism of SO(n) modules

Ωi,j
p ⊕ Ind

SO(n)
SO(n−1)(Λ

i−1W ∗
0 ⊗ Λj−1W ∗

0 ) ∼= Ind
SO(n)
SO(n−1)(Λ

iW ∗
0 ⊗ ΛjW ∗

0 ).

Primitive forms are of particular importance for us since the space Val∞i
fits into an exact sequence of the spaces Ωi,j

p , as was recently established
in [12]. In order to describe this sequence, note that dI i,j ⊆ I i,j+1. Thus,
by definition (4.4), the exterior derivative, on one hand, induces a linear
operator dQ : Ωi,j

p → Ωi,j+1
p and, on the other hand, integration over the

normal cycle induces a linear map ν : Ωi,n−i−1
p → Val∞i (cf. Lemma 2.3).

Clearly, both operators are SO(n) equivariant.
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Theorem 4.3. If 0 ≤ i ≤ n, then there is an exact SO(n) equivariant
sequence of SO(n) modules

0 → ΛiVC → Ωi,0
p

dQ→ Ωi,1
p

dQ→ . . .
dQ→ Ωi,n−i−1

p
ν→ Val∞i → 0.

5. Proof of Theorems 1 and 1′

Theorems 1 and 1′ are just reformulations of each other. We give the
proof of Theorem 1 first and then show how Theorem 1′ follows from it.

Proof of Theorem 1 : The cases i = 0 and i = n are trivial. Moreover, by
Theorem 2.4, we may assume that n/2 ≤ i < n.

Let Γλ be an arbitrary irreducible SO(n) module of highest weight
λ = (λ1, . . . , λbn/2c). It is well known (and a consequence of Corollary 4.2)
that the multiplicity of Γλ in the spaces Ωi,j

p of primitive forms is finite. The
same holds true for the spaces Vali since they are quotients of Ωi,n−i−1

p by
Theorem 4.3. Thus, by Theorem 4.3, we have

m(Vali, λ) = (−1)n−im(ΛiVC, λ) +
n−i−1∑

j=0

(−1)n−1−i−jm(Ωi,j
p , λ), (5.1)

wherem( · , λ) denotes the multiplicity of Γλ in the respective SO(n) modules.
Let W ∼= W ∗ denote the (complex) standard representation of SO(n−1).

By Corollary 4.2 and (3.4), we have

m(Ωi,j
p ,λ) = m

(
Ind

SO(n)
SO(n−1)(Λ

iW⊗ ΛjW ),λ
)
−m

(
Ind

SO(n)
SO(n−1)(Λ

i−1W⊗ Λj−1W ),λ
)
.

Thus, it follows from an application of Corollary 3.4 (with n replaced by n−1
and 0 ≤ j ≤ n− 1− i) that

m(Ωi,j
p , λ) =

∑
σ

m
(
Ind

SO(n)
SO(n−1)Γ̄σ, λ

)
, (5.2)

where the sum ranges over all k := b(n−1)/2c-tuples of non-negative highest
weights σ = (σ1, . . . , σk) of SO(n− 1) such that

σ1 ≤ 2, #(σ, 1) = n− 1− i− j, #(σ, 2) ≤ j.
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If Pi denotes the union of these k-tuples of non-negative highest weights
of SO(n− 1), then, by (5.1) and (5.2),

m(Vali, λ) = (−1)n−im(ΛiVC, λ) +
∑
σ∈Pi

(−1)|σ|m
(
Ind

SO(n)
SO(n−1)Γ̄σ, λ

)
. (5.3)

Let λ∗ = (λ∗1, . . . , λ
∗
bn/2c), where λ∗1 := min{λ1, 2} and λ∗j := |λj| for every

1 < j ≤ bn/2c. By Theorem 3.5, Theorem 3.6 and the definition of Γ̄σ, we
have ∑

σ∈Pi

(−1)|σ|m
(
Ind

SO(n)
SO(n−1)Γ̄σ, λ

)
=

∑
µ

(−1)|µ|,

where the sum on the right ranges over all sequences µ = (µ1, . . . , µk) with
µn−i = 0 and{

λ∗1 ≥ µ1 ≥ λ∗2 ≥ µ2 ≥ . . . ≥ µk−1 ≥ λ∗bn/2c ≥ |µk| for odd n,

λ∗1 ≥ µ1 ≥ λ∗2 ≥ µ2 ≥ . . . ≥ µk ≥ λ∗n/2 for even n.

If λ∗n−i+1 > 0, there is no such sequence. If λ∗n−i+1 = 0, we obtain

∑
σ∈Pi

(−1)|σ|m
(
Ind

SO(n)
SO(n−1)Γ̄σ, λ

)
=

n−i−1∏
j=1

λ∗j∑
µj=λ∗j+1

(−1)µj .

This product vanishes if the λ∗j , j = 1, . . . , n− i, do not all have the same
parity. If the λ∗j , j = 1, . . . , n− i, all have the same parity, the product above

equals (−1)(n−i−1)λ∗1 . Consequently, we obtain for i > n/2,

∑
σ∈Pi

(−1)|σ|m
(
Ind

SO(n)
SO(n−1)Γ̄σ, λ

)
=


(−1)n−i−1 if Γλ

∼= Λn−iVC,
1 if λ satisfies (i), (ii), (iii),
0 otherwise.

If i = n/2, in which case n is even, then

∑
σ∈Pi

(−1)|σ|m
(
Ind

SO(n)
SO(n−1)Γ̄σ, λ

)
=


(−1)i−1 if λ = (1, . . . , 1,±1),
1 if λ satisfies (i), (ii) and (iii),
0 otherwise.

Plugging this into (5.3) and using that Λn/2VC = Γ(1,...,1) ⊕ Γ(1,...,1,−1) if n
is even and Λn−iVC ∼= ΛiVC for every i ∈ {0, . . . , n}, completes the proof. �
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Next we explain how Theorem 1′ can be deduced from Theorem 1. The
argument presented here in fact shows that Theorem 1 and 1′ are equivalent.

Proof of Theorem 1′ : Let Γ = Γµ be an irreducible SO(n)-module. The space
of Γ-valued valuations is isomorphic to Val⊗ Γ.

Let S denote the set of highest weights of SO(n) satisfying conditions
(i)-(iii). By Theorem 1, we have

dim(Vali ⊗ Γ)SO(n) = dim(Valfi ⊗ Γ)SO(n) =
∑
λ∈S

dim(Γλ ⊗ Γµ)SO(n).

Here and in the following, the superscript SO(n) denotes the subspaces of
SO(n) invariant elements. The Γλ, λ ∈ S are not necessarily self dual (com-
pare Lemma 3.2). However, if λ ∈ S, then also λ′ ∈ S, where λ′ is the highest
weight of Γ∗λ. Thus, by Schur’s lemma, we have

dim(Vali ⊗ Γ)SO(n) =
∑
λ∈S

dim HomSO(n)(Γλ,Γµ) =

{
1 if µ ∈ S;
0 otherwise.

�

Examples:

(a) If Γ = Γ(0,...,0)
∼= C is the trivial representation, then (Val⊗ Γ)SO(n) ∼=

ValSO(n) is the vector space of all continuous rigid motion invariant
valuations and Theorem 1′ reduces to Hadwiger’s characterization of
intrinsic volumes.

(b) If Γ = Γ(1,0,...,0)
∼= VC is the standard representation, then there is no

translation invariant and SO(n) equivariant continuous valuation with
values in Γ.

(c) By (3.3), we have, for 1 ≤ i ≤ n− 1,

dim(Vali ⊗ SymkVC)SO(n) =

{
k/2 + 1 if k is even
(k − 1)/2 if k is odd.

In particular, if k = 2, then there exist (up to constant multiples) two
translation invariant and SO(n) equivariant continuous Sym2VC valued
valuations of a given degree 1 ≤ i ≤ n − 1. These valuations are
explicitly known (see [27, 32, 47]).
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(d) If Γ = Γ(1,1,0...,0) = Λ2VC is the space of skew-symmetric tensors of
rank two, then there is no translation invariant and SO(n) equivariant
continuous valuation with values in Γ. This answers (the translation
invariant case of) a question by Yang [52].

(e) The unique translation invariant and SO(n) equivariant continuous
valuation with values in Γ(2,...,2,0,...,0) was constructed in [10].

6. Bivaluations

We turn now to the study of bivaluations. In particular, we will present
the proof of Theorem 2 at the end of this section.

We denote the vector space of all continuous translation biinvariant
complex valued bivaluations by BVal and we write BVali,j for its subspace of
all bivaluations of bidegree (i, j). An immediate consequence of McMullen’s
decomposition (1.1) of the vector space Val is a corresponding result for the
space BVal:

Corollary 6.1. The space BVal admits a decomposition

BVal =
n⊕

i,j=0

BVali,j.

Corollary 6.1 implies an analog of Corollary 2.1 for the space of translation
biinvariant bivaluations as follows.

Corollary 6.2. Let C ∈ Kn be a fixed convex body with non-empty interior.
The space BVal becomes a Banach space under the norm

‖ϕ‖ = sup{|ϕ(K,L)| : K,L ⊆ C}.

Moreover, a different choice of C yields an equivalent norm.

The group O(n)×O(n) acts continuously on the Banach space BVal by

((η, ϑ)φ)(K,L) = φ(η−1K,ϑ−1L), (η, ϑ) ∈ O(n)×O(n), ϕ ∈ BVal.

We denote by BValf the subspace of bivaluations with finite dimensional
O(n)×O(n) orbit. Since O(n)×O(n) is compact, BValf is a dense subspace
of BVal (see e.g. [16, p. 141]).
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Proposition 6.3. Let 0 ≤ i, j ≤ n. The linear map ι : Valfi ⊗ Valfj →
BValfi,j, induced by

ι(φ⊗ ψ)(K,L) = φ(K)ψ(L), (6.1)

is an isomorphism of O(n)×O(n) modules.

Proof : It is easy to see that the map ι is O(n) × O(n) equivariant and
injective. It remains to prove that it is onto.

It is well known that every irreducible O(n)×O(n) module is of the form
Γ ⊗ Θ, where Γ,Θ are irreducible O(n) modules (c.f. [16, p. 82]). Thus, if
ϕ ∈ BValfi,j belongs to a subspace isomorphic to Γ ⊗ Θ, the valuation
ϕ( · , L) ∈ Vali belongs to a subspace which is isomorphic to Γ as an O(n)
module for every L ∈ Kn. Since any O(n) representation whose restriction
to SO(n) is multiplicity free, is itself multiplicity free, it follows from
Theorem 1 that the irreducible subspace of Vali which is isomorphic to Γ
has multiplicity at most one.

If {φ1, . . . , φl} is a basis of the isomorphic copy of Γ in Vali, then

ϕ( · , L) =
l∑

k=1

φk( · )ψk(L),

where ψk(L) are coefficients depending on L. It is not difficult to show that
ψk ∈ Valj and that ψk belongs to an isomorphic copy of Θ in Valj for every
k ∈ {1, . . . , l}. Thus, we have shown that ϕ is the image under the map ι of
the element

∑l
k=1 φk ⊗ ψk ∈ Valfi ⊗Valfj . �

After these preparations, we are now in a position to proof the following
refinement of Theorem 2.

Theorem 6.4. Suppose that ϕ ∈ BVali,i, where 0 ≤ i ≤ n.

(a) If ϕ is O(n) invariant, then ϕ(K,L) = ϕ(L,K) for every K,L ∈ Kn.

(b) If ϕ is SO(n) invariant and (i, n) 6= (2k + 1, 4k + 2), k ∈ N, then
ϕ(K,L) = ϕ(L,K) for every K,L ∈ Kn.

(c) If (i, n) = (2k + 1, 4k + 2), k ∈ N, then there exist an SO(n) invariant
ζ ∈ BVali,i and K,L ∈ Kn such that ζ(K,L) 6= ζ(L,K).
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Proof : Since the cases i = 0 and i = n are trivial, we may assume that
0 < i < n. Moreover, since O(n) × O(n) finite bivaluations are dense in
BVali,i we may assume that ϕ ∈ BValfi,i, where 1 ≤ i ≤ n.

From Theorem 1 we deduce that the decomposition of the space Vali into
irreducible O(n) modules is multiplicity free, say

Vali =
⊕
γ∈R

Γγ,

where the sum ranges over some set R of equivalence classes of irreducible
representations of O(n).

From Proposition 6.3, it follows that

BVal
f,O(n)
i,i

∼= (Valfi ⊗Valfi )
O(n) ∼=

⊕
γ,δ∈R

(Γγ ⊗ Γδ)
O(n).

Since, by Lemma 3.2, all representations of O(n) are self-dual, we have

(Γγ ⊗ Γδ)
O(n) ∼= HomO(n)(Γγ,Γδ) ∼= HomO(n)(Γγ ⊗ Γδ,C).

Since Γγ and Γδ are irreducible, Schur’s lemma implies that

dim HomO(n)(Γγ,Γδ) =

{
1 if γ = δ
0 if γ 6= δ.

Since all representations of O(n) are real, the space

HomO(n)(Γγ ⊗ Γγ,C) = (Sym2Γγ)
O(n) ⊕ (Λ2Γγ)

O(n)

of O(n) invariant bilinear forms on Γγ coincides with (Sym2Γγ)
O(n). Thus,

BVal
f,O(n)
i,i

∼=
⊕
γ∈R

(Sym2Γγ)
O(n)

which completes the proof of statement (a).
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If n 6≡ 2 mod 4, then the proof of statement (b) is similar, since in this
case all representations of SO(n) are also real, by Lemma 3.2. However, in
the case n ≡ 2 mod 4, more care is needed, since there are SO(n) modules
which are not real. By Lemma 3.2, an irreducible SO(n) module Γλ of highest
weight λ = (λ1, . . . , λn/2) is real if and only if λn/2 = 0. If i 6= n/2, then, by
Theorem 1, all irreducible SO(n) modules which enter Vali are of this form.
Consequently, any SO(n) invariant bivaluation ϕ ∈ BVali,i is symmetric in
this case.

Finally let n ≡ 2 mod 4 and i = n/2. By Theorem 1, the dual irreducible
SO(n) modules Γ(2,...,2) and Γ(2,...,2,−2) both enter Vali with multiplicity one.

If {φ1, . . . , φl} is a basis of Γ(2,...,2) ⊆ Valfi and {ψ1, . . . , ψl} denotes the

corresponding dual basis in Γ(2,...,2,−2) ⊆ Valfi , then the image of
∑l

k=1 φk⊗ψk

under the map ι defined in (6.1) clearly is a continuous SO(n) invariant
bivaluation in BVali,i. However, it is not symmetric since the valuations
{φ1, . . . , φl, ψ1, . . . , ψl} are linearly independent. �

7. Applications to geometric inequalities

As applications of Theorem 2, we present in this section several new
geometric inequalities involving SO(n) equivariant Minkowski valuations.
Their proofs are based, on one hand, on the symmetry of bivaluations and,
on the other hand, on techniques developed by Lutwak [37–41].

Lemma 7.1. If Φ ∈ MVal is SO(n) equivariant, then Φ is also O(n)
equivariant.

Proof : Let CVal denote the vector space of all continuous and translation
invariant valuations with values in the space C(Sn−1) of continuous complex
valued functions on Sn−1. Note that any SO(n) equivariant Φ ∈ MVal
induces an SO(n) equivariant Φ̄ ∈ CVal, by Φ̄(K, ·) = h(ΦK, ·). Therefore,
it is sufficient to show that any SO(n) equivariant valuation in CVal is O(n)
equivariant.

Using arguments as in the proof of Proposition 6.3, it is easy to show that
CValf ∼= Valf ⊗ C(Sn−1)f as O(n)×O(n) modules. Consequently,

CValf,O(n) ∼= (Valf ⊗ C(Sn−1)f )O(n). (7.1)
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It is well known that the decomposition of C(Sn−1) into irreducible SO(n)
modules is given by

C(Sn−1) =
⊕
k≥0

Γ(k,0,...,0), (7.2)

where the spaces Γ(k,0,...,0) are precisely the spaces of spherical harmonics of
degree k in dimension n. Moreover, the spaces Γ(k,0,...,0) are self-dual and
O(n) invariant and, thus, (7.2) also represents the decomposition of C(Sn−1)
into irreducible O(n) modules.

Let mk denote the (finite) multiplicity of the isomorphic copy of Γ(k,0,...,0)

in Val. From (7.1), Theorem 1 and an application of Schur’s lemma, we
obtain

CValSO(n) =
⊕

k

mk(Γ(k,0,...,0) ⊗ Γ(k,0,...,0))
SO(n) = CValO(n).

Thus, any SO(n) equivariant valuation in CVal is also O(n) equivariant. �

For K,L ∈ Kn and 0 ≤ i ≤ n−1, we write Wi(K,L) to denote the mixed
volume V (K, . . . ,K,B, . . . , B, L), where K appears n− 1− i times and the
Euclidean unit ball B appears i times. The mixed volume Wi(K,K) will
be written as Wi(K) and is called the i-th quermassintegral of K. The i-th
intrinsic volume Vi(K) of K is defined by

κn−iVi(K) =

(
n

i

)
Wn−i(K), (7.3)

where κn is the n-dimensional volume of the Euclidean unit ball in V .
We will repeatedly make use of the following consequence of Theorem 2

and Lemma 7.1.

Corollary 7.2. If Φi ∈ MVali, 1 ≤ i ≤ n− 1, is SO(n) equivariant, then

Wn−1−i(K,ΦiL) = Wn−1−i(L,ΦiK)

for every K,L ∈ Kn. �

Let Kn
o ⊆ Kn denote the set of convex bodies with non-empty interior.

One of the fundamental inequalities for mixed volumes is the (general)
Minkowski inequality: If K,L ∈ Kn

o and 0 ≤ i ≤ n− 2, then

Wi(K,L)n−i ≥ Wi(K)n−i−1Wi(L), (7.4)

with equality if and only if K and L are homothetic.
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Lemma 7.3. Let Φi ∈ MVali, 1 ≤ i ≤ n − 1, be SO(n) equivariant and
non-trivial, i.e. Φi(K) 6= {0} for some K ∈ Kn.

(a) There exists a constant r(Φi) > 0 such that for every K ∈ Kn,

Wn−1(ΦiK) = r(Φi)Wn−i(K).

(b) If K ∈ Kn
o , then

Wn−i(K)i+1 ≥ κi
n

r(Φi)i+1
Wn−1−i(ΦiK).

If ΦiKn
o ⊆ Kn

o , then equality holds if and only if ΦiK is a ball.

Proof : Statement (a) follows from Hadwiger’s characterization theorem.
From repeated application of Minkowski’s inequality (7.4) with L = B, we
obtain the inequality

Wn−1(K)i+1 ≥ κi
nWn−1−i(K),

where, for K ∈ Kn
o , there is equality if and only if K is a ball. Taking ΦiK

instead of K and using (a), yields statement (b). �

Special cases of Lemma 7.3 were previously obtained by Lutwak [37] (for
Φi = Πi) and one of the authors [49] (for i = n− 1).

In order to proof Theorem 3, we need a further generalization of the
Brunn–Minkowski inequality (1.3) (where the equality conditions are not yet
known): If 0 ≤ i ≤ n− 2, K,L,K1, . . . , Ki ∈ Kn and C = (K1, ..., Ki), then

Vi(K + L,C)1/(n−i) ≥ Vi(K,C)1/(n−i) + Vi(L,C)1/(n−i). (7.5)

Proof of Theorem 3 : Since translation invariant continuous Minkowski
valuations which are homogeneous of degree one are linear with respect to
Minkowski addition (see e.g. [26]), the case i = 1 is a direct consequence of
inequality (1.3). Thus, we may assume that i ≥ 2.

By Corollary 7.2 and (7.5), we have for Q ∈ Kn
o ,

Wn−1−i(Q,Φi(K + L))1/i = Wn−1−i(K + L,ΦiQ)1/i

≥ Wn−1−i(K,ΦiQ)1/i +Wn−1−i(L,ΦiQ)1/i

= Wn−1−i(Q,ΦiK)1/i +Wn−1−i(Q,ΦiL)1/i.
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It follows from Minkowski’s inequality (7.4), that

Wn−1−i(Q,ΦiK)i+1 ≥ Wn−1−i(Q)iWn−1−i(ΦiK), (7.6)

and
Wn−1−i(Q,ΦiL)i+1 ≥ Wn−1−i(Q)iWn−1−i(ΦiL). (7.7)

Thus, if we set Q = Φi(K+L) and use (7.3), we obtain the desired inequality

Wn−1−i(Φi(K + L))1/i(i+1) ≥ Wn−1−i(ΦiK)1/i(i+1) +Wn−1−i(ΦiL)1/i(i+1).

Suppose now that equality holds and that ΦiKn
o ⊆ Kn

o . By Theorem 1′,
applied to the standard representation V = Γ(1,0,...,0), the Steiner point of
ΦiK is the origin for every K ∈ Kn. Thus, we can deduce from the equality
conditions of (7.6) and (7.7), that there exist λ1, λ2 > 0 such that

ΦiK = λ1Φi(K + L) and ΦiL = λ2Φi(K + L) (7.8)

and
λ

1/i
1 + λ

1/i
2 = 1.

Using Lemma 7.3 (a) and (7.8) we get

Wn−i(K + L)1/i = Wn−i(K)1/i +Wn−i(L)1/i,

which, by (1.3), implies that K and L are homothetic. �

The major open problem concerning the rigid motion invariant quantities
Wn−1−i(ΦiK) is how to estimate them from below in terms of Wn−1−i(K).
A standard method of proof for isoperimetric problems of this kind was
introduced by Lutwak [38] and is now known as the class reduction technique.
Our last result shows how Corollary 7.2 allows for applications of the class
reduction technique to the functionals Wn−1−i(ΦiK), K ∈ Kn.

In the following we use Φ2
iK to denote ΦiΦiK.

Theorem 7.4. Let Φi ∈ MVali, 1 ≤ i ≤ n − 1, be SO(n) equivariant and
suppose that ΦiKn

o ⊆ Kn
o . If K ∈ Kn

o , then

Wn−1−i(ΦiK)

Wn−1−i(K)i
≥ Wn−1−i(Φ

2
iK)

Wn−1−i(ΦiK)i
,

with equality if and only if K and Φ2
iK are homothetic.
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Proof : Let K,Q ∈ Kn
o . From Corollary 7.2 and the Minkowski inequality

(7.4), we obtain

Wn−1−i(Q,ΦiK)i+1 = Wn−1−i(K,ΦiQ)i+1 ≥ Wn−1−i(K)iWn−1−i(ΦiQ),

with equality if and only if K and ΦiQ are homothetic. Taking Q = ΦiK,
yields

Wn−1−i(ΦiK)i+1 ≥ Wn−1−i(K)iWn−1−i(Φ
2
iK),

with equality if and only if K and Φ2
iK are homothetic. �
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