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Abstract. Using an idea of Voronoi in the geometric theory of positive definite
quadratic forms, we give a transparent proof of John’s characterization of the
unique ellipsoid of maximum volume contained in a convex body. The same idea
applies to the ‘hard part’ of a generalization of John’s theorem and shows the
difficulties of the corresponding ‘easy part’.
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Introduction and Statement of Results

The following well-known characterizations of the unique ellipsoid of maximum
volume in a convex body in Euclidean d-space are due to John [10] ((i)⇒(ii))
and Pelczyński [12] and Ball [1] ((ii)⇒(i)), respectively. For references to other
proofs, a generalization and to the numerous applications see [2, 6, 11].

Theorem 1 Let C ⊂ Ed be compact, convex, symmetric in the origin o, and with
Bd ⊂ C. Then the following claims are equivalent:

(i) Bd is the unique ellipsoid of maximum volume in C.

(ii) There are uk ∈ Bd∩bd C and λk > 0, k = 1, . . . , n, where d ≤ n ≤ 1
2
d(d+1),

such that
I =

∑
k

λk uk ⊗ uk.

Here, Bd is the solid unit ball in Ed, I the d × d unit matrix, and for u, v ∈ Ed

the d× d matrix u vT is denoted by u⊗ v. bd stands for boundary.

Theorem 2 Let C ⊂ Ed be compact, convex, and with Bd ⊂ C. Then the
following claims are equivalent:

(i) Bd is the unique ellipsoid of maximum volume in C.

(ii) There are uk ∈ Bd ∩ bd C and λk > 0, k = 1, . . . , n, where d + 1 ≤ n ≤
1
2
d(d + 3), such that

I =
∑

k

λk uk ⊗ uk, o =
∑

k

λk uk.



Our proof of Theorem 1 is based on the idea of Voronoi in the geometric theory
of positive definite quadratic forms, to represent ellipsoids in Ed with center o by
points in E 1

2
d(d+1), see [4, 9, 14]. The problem on maximum volume ellipsoids in

Ed is then transformed into a simple problem on normal cones in E 1
2
d(d+1), which

can be solved easily by Carathéodory’s theorem on convex hulls. This idea has
been applied before by the first author [8]. The proof of Theorem 2 is a simple
extension. The proof of the latter also gives Theorem 4 of Bastero and Romance
[3], where Bd is replaced by a compact connected set with positive measure.

In the context of John’s theorem, it is natural to ask whether ellipsoids can
be replaced by more general convex or non-convex sets. The following is a slight
refinement of results of Giannopoulos, Perissinaki and Tsolomitis [7] and Bastero
and Romance [3] (Theorem 3). The result of Giannopoulos et. al. was first
observed by Milman in the case, where both bodies are centrally symmetric, see
[16].

Theorem 3 Let C ⊂ Ed be compact and convex, and B ⊂ C compact with
positive measure. Then (i) implies (ii), where the claims (i) and (ii) are as follows:

(i) B has maximum measure amongst all its affine images contained in C.

(ii) There are uk ∈ B ∩ bd C, vk ∈ NC(uk), and λk > 0, k = 1, . . . , n, where
d + 1 ≤ n ≤ d (d + 1), such that

I =
∑

k

λk uk ⊗ vk, o =
∑

k

λk vk.

Here NC(u), u ∈ bd C, is the normal cone of C at u. For this concept and other
required notions and results of convex geometry we refer to [15].

Note that B is not necessarily unique. A suitable modification of Voronoi’s
idea applies in the present context and thus leads to a proof of Theorem 3,
paralleling our proofs of Theorems 1 and 2. Incidentally, the proof of Theorem
3 shows, why it is not clear that property (ii) implies property (i), see the Final
Remarks.

Proof of Theorem 1

For (real) d× d–matrices A = (aij), B = (bij) define A · B =
∑

aijbij. The dot ·
denotes also the inner product in Ed. Easy arguments yield the following:

(1) Let M be a d× d matrix and u, v, w ∈ Ed. Then Mu · v = M · u⊗ v and
(u⊗ v)w = (v · w)u.

Next, we specify two tools:

(2) Each d × d matrix M with det M 6= 0 can be represented in the form
M = AR, where A is a symmetric, positive definite and R is an orthogonal
d× d matrix.
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(Put A = (MMT )
1
2 , R = A−1M , see [5], p.112.) Identify a symmetric d × d

matrix A = (aij) with the point (a11, . . . , a1d, a22, . . . , a2d, . . . , add)
T ∈ E 1

2
d(d+1).

The set of all symmetric, positive definite d× d matrices then is (represented by)

an open convex cone P ⊂ E 1
2
d(d+1) with apex at the origin. The set

(3) D = {A ∈ P : det A ≥ 1} is a closed, smooth, strictly convex set in P

with non-empty interior.

(Use the implicit function theorem and Minkowski’s inequality for symmetric,
positive definite d× d matrices, see [13], p.205.)

(i)⇒(ii): By (2), any ellipsoid in Ed can be represented in the form ABd,
where A ∈ P. Thus the family of all ellipsoids in C is represented by the set

E = {A ∈ P : Au · v = A · u⊗ v ≤ hC(v) for u, v ∈ Sd−1},

see (1). Here, hC(·) is the support function of C. Clearly, E is the intersection of
the closed halfspaces

(4) {A ∈ E 1
2
d(d+1) : A · u⊗ v ≤ hC(v)} : u, v ∈ Sd−1,

with the set P. Thus, in particular, E is convex. By (i), E \ {I} ⊂ {A ∈ P :
det A < 1}. This, together with (3), shows that

(5) D and E are convex, D ∩ E = {I}, and D and E are separated by the

unique support hyperplane H of D at I in E 1
2
d(d+1).

E is the intersection of the closed halfspaces in (4) with the set P, and these
halfspaces vary continuously as u, v range over Sd−1. Thus the support cone
K of E at I can be represented as the intersection of those halfspaces, which
contain I on their boundary hyperplanes, i.e. for which I · u⊗ v = u · v = hC(v).
Since u · v ≤ 1 and hC(v) ≥ 1 and equality holds in both cases precisely when
u = v ∈ Sd−1 ∩ bd C (note that Bd ⊂ C), we see that

(6) K =
⋂

u∈Bd∩bd C

{A ∈ E
1
2
d(d+1) : A · u⊗ u ≤ 1}.

The normal cone N of (E or) K at I is generated by the exterior normals of these
halfspaces,

(7) N = pos {u⊗ u : u ∈ Bd ∩ bd C}.

The cone K has apex I and, by (5), is separated from the convex set D by
the hyperplane H, where H is the unique support hyperplane of D at I. By
considering the gradient of the function A → det A, we see that I is an interior
normal vector of D at I and thus a normal vector of H pointing away from K.
Hence I ∈ N. (7) and Carathéodory’s theorem for convex cones then yield the
following: there are uk⊗uk ∈ N, i.e. uk ∈ Bd∩bd C, and λk > 0 for k = 1, . . . , n,
where n ≤ 1

2
d(d + 1), such that
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(8) I =
∑
k

λk uk ⊗ uk.

For the proof that n ≥ d, it is sufficient to show that lin {u1, . . . , un} = Ed. If
this were not true, we could choose u 6= o, u ⊥ u1, . . . , un, and then (1) yields the
contradiction

0 6= u2 = Iu · u = (
∑

k

λk (uk ⊗ uk) u) · u = (
∑

k

λk (uk · u) uk) · u = 0.

(ii)⇒(i): Let E be as above. E is convex. Bd ⊂ C implies that I satisfies all
defining inequalities of E, in particular those corresponding to u = v = uk, k =
1, . . . , n. Since hC(uk) = 1, these inequalities are satisfied even with the equality
sign. Thus I ∈ bd E. Define K, N and H as before. (ii) implies that I ∈ N. Hence
K is contained in the closed halfspace with boundary hyperplane H through I
and exterior normal vector I. Clearly, H separates K and D and thus, a fortiori,
E(⊂ K) and D. Since D is strictly convex by (3), D ∩ E = {I}. Hence Bd is the
unique ellipsoid of maximum volume in C.

Outline of the Proof of Theorem 2

The proof of Theorem 2 is almost identical with that of Theorem 1: an ellipsoid
now has the form ABd + a and is represented by (A, a) ∈ P × Ed ⊂ E 1

2
d(d+3). E

is the set

{(A, a) ∈ P× Ed : A · u⊗ v + a · v ≤ hC(v) for u, v ∈ Sd−1}

and instead of (5) we have

D × Ed and E are convex, (D × Ed) ∩ E = {(I, o)} and D × Ed and E

are separated by the hyperplane H × Ed, where H is the unique support
hyperplane of D at I (in E 1

2
d(d+1)).

K and N are the cones

K =
⋂

u∈Bd∩bd C

(A, a) ∈ E
1
2
d(d+3) : A · u⊗ u + a · u ≤ 1},

N = pos {(u⊗ u, u) : u ∈ Bd ∩ bd C}.

As before, (I, o) ∈ N. Carathéodory’s theorem for cones in E
1
2
d(d+3) then shows

the following: there are (uk ⊗ uk, uk) ∈ N or, equivalently, uk ∈ Bd ∩ bd C and
λk > 0, k = 1, . . . , n, where n ≤ 1

2
d(d + 3), such that instead of (8) we have

(I, o) = (
∑

k

λk uk ⊗ uk,
∑

k

λkuk).

Since o =
∑

λkuk and λk > 0, the proof that n ≥ d + 1 is the same as that for
n ≥ d above. This concludes the proof that (i)⇒(ii). The proof of (ii)⇒(i) is
almost the same as that of the corresponding part of the proof of Theorem 1.
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Proof of Theorem 3

Identify a d×d matrix M = (mij) with the point (m11, . . . ,m1d, m21, . . . , m2d, . . . ,
mdd)

T ∈ Ed2
. The set P′ of all non-singular d × d matrices then is (represented

by) an open cone in Ed2
with apex at the origin. The set

D′ = {M ∈ P′ : | det M | ≥ 1} is a closed body in P′, i.e. it is the closure
of its interior, with a smooth boundary surface.

The set of all affine images of B in C is represented by the set

E′ = {(M, a) ⊂ P′×Ed : Mu·v+a·v = M ·u⊗v+a·v ≤ hC(v) for u ∈ B, v ∈ Sd−1}.

This set is the intersection of the closed halfspaces

(9) {(M, a) ∈ Ed(d+1) : M · u⊗ v + a · v ≤ hC(v)} : u ∈ B, v ∈ Sd−1,

and thus of a convex set, with the set P′×Ed. Choose a convex neighborhood U′

of (I, o) (∈ E′ ∩ (P′ × Ed)) which is so small that it is contained in the open set
P′ × Ed. By (i),

the convex set E′ ∩ U′ and the smooth body D′ × Ed only have boundary
points in common, one being (I, o).

Hence E′ ∩ U′ and thus the support cone K′ of E′ ∩ U′ at (I, o) is contained in
the closed halfspace whose boundary hyperplane is the tangent hyperplane of the
smooth body D′ × Ed at (I, o) and with exterior normal pointing into D′ × Ed.
This normal is (I, o). The normal cone N′ of K′ thus contains (I, o).

The support cone K′ is the intersection of those halfspaces in (9), which
contain the apex (I, o) on their boundary hyperplanes. Thus I ·u⊗v+o·v = hC(v),
which is equivalent to u ∈ B ∩bd C, v ∈ NC(u). Hence, these halfspaces have the
form

{(M, a) ∈ Ed(d+1) : M · u⊗ v + a · v ≤ hC(v)} : u ∈ B ∩ bd C, v ∈ NC(u),

where NC(u) is the normal cone of C at the boundary point u. Thus, being the
normal cone of K′,

N′ = pos {(u⊗ v, v) : u ∈ B ∩ bd C, v ∈ NC(u)}.

Since (I, o) ∈ N′, Carathéodory’s theorem for convex cones in Ed(d+1) yields the
following: there are (uk⊗vk, vk) ∈ N′ or, equivalently, uk ∈ B∩bd C, vk ∈ NC(uk),
and λk > 0, k = 1, . . . , n, where n ≤ d(d + 1), such that

(I, o) = (
∑

k

λk uk ⊗ vk,
∑

k

λk vk).

For the proof that n ≥ d + 1 we show by contradiction that lin{v1, . . . , vn} = Ed

as in the proof of Theorem 1.
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Final Remarks

In different versions of the proofs of Theorems 1 and 2, which are closer to
Voronoi’s idea, ellipsoids are represented in the form xT Ax ≤ 1 and (x−a)T A(x−
a) ≤ 1, respectively.

If in Theorem 3 claim (ii) holds, then the support cone K′ of E′∩U′ at (I, o) is
contained in the halfspace whose boundary is the tangent hyperplane of D′ × Ed

at (I, o) and with exterior normal pointing into D′ × Ed. Since D′ × Ed is not
convex, this does not guarantee that D′ × Ed and E′ do not overlap , i.e. that (i)
holds.
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