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Abstract

A Minkowski class is a closed subset of the space of convex bodies in Euclidean
space Rn which is closed under Minkowski addition and non-negative dilatations.
A convex body in Rn is universal if the expansion of its support function in spher-
ical harmonics contains non-zero harmonics of all orders. If K is universal, then
a dense class of convex bodies M has the following property. There exist convex
bodies T1, T2 such that M + T1 = T2, and T1, T2 belong to the rotation invariant
Minkowski class generated by K. We show that every convex body K which
is not centrally symmetric has a linear image, arbitrarily close to K, which is
universal. A modified version of the result holds for centrally symmetric convex
bodies. In this way, we strengthen a result of S. Alesker, and at the same time
give a more elementary proof.
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1 Introduction and Main Results

Let Kn denote the space of convex bodies (non-empty, compact, convex sets) in
n-dimensional Euclidean space Rn (n ≥ 2). The basic algebraic structures on Kn

are Minkowski addition and dilatation, defined by

K + L := {x+ y : x ∈ K, y ∈ L} and λK := {λx : x ∈ K},

respectively, for K,L ∈ Kn and λ ≥ 0. By a Minkowski class in Rn we understand
(slightly modifying the definition of an M -class given in [12, p. 164]) a subset of
Kn which is closed in the Hausdorff metric and closed under Minkowski addition and
dilatation.

This work was supported by the European Network PHD, FP6 Marie Curie Actions, RTN,
Contract MCRN-2004-511953. The second author was also supported by the Austrian Science Fund
(FWF), within the project “Affinely associated bodies”, Project Number P16547-N12.
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IfG is a group of transformations of Rn, the Minkowski classM is calledG-invariant
if K ∈ M implies gK ∈ M for all g ∈ G. The smallest G-invariant Minkowski class
containing a given convex body K ∈ Kn is said to be the G-invariant Minkowski class
generated by K. It consists of all convex bodies which can be approximated by bodies
of the form λ1g1K + . . .+ λkgkK with k ∈ N, λ1, . . . , λk ≥ 0, and g1, . . . , gk ∈ G.

The elements of a Minkowski class M will be called M-bodies. Further, the convex
body K is a generalized M-body if there exist M-bodies T1, T2 such that K + T1 = T2.

Let M be the G-invariant Minkowski class generated by a convex body K. Then
the convex body M is a generalized M-body if and only if its support function can
be approximated, uniformly on the unit sphere, by functions from the vector space
spanned by the support functions of the G-images of K.

We recall a classical example. A convex body in Rn (n ≥ 2) is a zonoid if it can
be approximated by Minkowski sums of finitely many closed line segments. Thus, the
set Zn of zonoids is the rigid motion invariant Minkowski class generated by a (non-
degenerate) segment. Since the affine image of a segment is a segment, Zn is also the
affine invariant Minkowski class generated by a segment.

Every zonoid belongs to the subset Kn
c ⊂ Kn of convex bodies which have a centre

of symmetry; such bodies are called symmetric in the following, and origin symmetric
if 0 is the centre of symmetry. It is easy to see that Z2 = K2

c , but for n ≥ 3 the set Zn

is nowhere dense in Kn
c . A convex body K ⊂ Rn is called a generalized zonoid if there

exist zonoids Z1, Z2 such that K + Z1 = Z2. The set of generalized zonoids turns out
to be dense in Kn

c , see [12, Corollary 3.5.6]. Generalized zonoids played a critical role
in the first author’s solution [10] of the Shephard problem and in Klain’s classification
of translation invariant, even and simple valuations, see [7], [8]. More information on
zonoids and generalized zonoids is found in the survey articles [14], [5] and in Section
3.5 of the book [12].

In the following, we want to replace the segment, which is used in the definition
of zonoids, by other convex bodies. The non-denseness of zonoids mentioned above
extends as follows. For n ≥ 3, the affine invariant Minkowski class generated by a
convex body (a symmetric convex body) is nowhere dense in Kn (nowhere dense in
Kn
c ). This follows from [12, Theorem 3.3.3].

Our main issue here is the question analogous to the denseness of generalized
zonoids. Now we have to distinguish between convex bodies with or without a centre
of symmetry. Let Kn

o ⊂ Kn
c be the subset of origin symmetric convex bodies. In the

following, a convex body is called non-symmetric if it does not have a centre of symme-
try, and non-trivial if it has more than one point. Alesker [2] has proved the following
theorem, in a different but equivalent formulation.

Theorem (Alesker). (a) If M is the SL(n)-invariant Minkowski class generated by
a non-symmetric convex body, then the set of generalized M-bodies is dense in Kn.

(b) Let M be the SL(n)-invariant Minkowski class generated by a non-trivial symmetric
convex body K with centre different from 0 (with centre 0). Then the set of generalized
M-bodies is dense in Kn

c (dense in Kn
o ).
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Part (b) of this theorem extends the statement about generalized zonoids recalled
above (and can be deduced from it, see [2, Remark 9]).

Note that in Alesker’s result in effect the general linear group GL(n) is applied to
the convex body K, since Minkowski classes are dilatation invariant. In contrast to the
case of segments, for a general convex body K the affine invariant Minkowski class does
not coincide with the rigid motion invariant Minkowski class generated by K. However,
part (a) of Alesker’s theorem should be compared to an immediate consequence of a
result proved and used in [13]:

Theorem. Let T ⊂ Rn be a triangle. Then there exists an affine map A such that
for the rotation invariant Minkowski class M generated by AT , the set of generalized
M-bodies is dense in Kn.

Hence, for an arbitrary triangle T , the SL(n)-invariant Minkowski class generated
by T in part (a) of Alesker’s Theorem may be replaced by the rotation invariant
Minkowski class generated by AT , for one suitably chosen affine map A. Alesker [2],
p. 58, remarks that it is not clear whether this result can be obtained by his method.

Our aim in the following is to strengthen Alesker’s theorem in a way suggested by
the latter theorem. Instead of applying all linear transformations to a given convex
body, it is sufficient to perturb it only a little by an appropriate linear map and then
to apply only rotations and dilatations.

Theorem 1. (a) Let K ∈ Kn be a non-symmetric convex body. Then there exists
a linear map A, arbitrarily close to the identity, such that for the rotation invariant
Minkowski class M generated by AK, the set of generalized M-bodies is dense in Kn.

(b) Let K ∈ Kn be a non-trivial symmetric convex body, with centre different from 0
(with centre 0). Then there exists a linear map A, arbitrarily close to the identity,
such that for the rotation invariant Minkowski class M generated by AK, the set of
generalized M-bodies is dense in Kn

c (dense in Kn
o ).

Clearly, the perturbation by the linear transformation A is necessary in general, as
shown by the case of a ball in the symmetric case, and by a body of constant width in
the non-symmetric case.

Besides strengthening Alesker’s theorem, our second aim was to give an easier proof
for it. Whereas [2] employs deep results on representations of the general linear group
(proving an irreducibility theorem which is analogous to Alesker’s [1] irreducibility
theorem used in the theory of valuations), our proof uses spherical harmonics and is
comparatively elementary and self contained.

The basic notion in our method of proof is that of universal convex bodies. A
convex body K in Rn is called universal (centrally universal ) if the expansion of its
support function in spherical harmonics contains non-zero harmonics of all orders (of
all even orders). Universal convex bodies were introduced and applied by the first
author in [11, p. 70]. The following theorem shows why they are crucial for our result.

Theorem 2. Let K ∈ Kn be a convex body, and let M be the rotation invariant
Minkowski class generated by K.
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(a) The set of generalized M-bodies is dense in Kn if and only if K is universal.

(b) Let K be symmetric. If K has centre different from 0 (centre 0), then the set
of generalized M-bodies is dense in Kn

c (dense in Kn
o ) if and only if K is centrally

universal.

The only explicit convex bodies which are known to be universal are the triangles
with Steiner point not at the origin and with the property that at least one of their
angles is an irrational multiple of π, see [11], p. 71.

We consider the next theorem as our main result. In view of Theorem 2, it implies
Theorem 1.

Theorem 3. (a) Let K ∈ Kn be a non-symmetric convex body. Then there exists a
linear transformation A, arbitrarily close to the identity, such that AK is universal.

(b) Let K ∈ Kn be a non-trivial convex body. Then there exists a linear transformation
A, arbitrarily close to the identity, such that AK is centrally universal.

Remark. Our proof of Theorem 3, and thus of Theorem 1, shows that, in fact, in
every neighbourhood of the identity in GL(n), almost all (in the sense of measure)
linear maps have the required property.

We will prove Theorem 2 in Section 2, part (b) of Theorem 3 in Section 3, and
finish the proof of Theorem 3 in Section 4.

2 Universal Convex Bodies

In this section, we collect a few facts about spherical harmonics and convex bodies. An
introduction to spherical harmonics and their use in convexity is found in the book of
Groemer [6]; see also the short appendix of [12].

By Sn−1 we denote the unit sphere of Rn and by σ the spherical Lebesgue measure
on Sn−1. A spherical harmonic of dimension n and order m is the restriction to Sn−1

of a harmonic polynomial of degree m on Rn. For m ∈ N0, we denote by Hn
m the real

vector space of spherical harmonics of dimension n and order m. Hn will denote the
space of all finite sums of spherical harmonics of dimension n.

Hn
m is a finite-dimensional subspace of C(Sn−1), the vector space of real continuous

functions on Sn−1; letN(n,m) denote its dimension. With respect to the scalar product
defined by

(f, g) :=

∫
Sn−1

fg dσ, f, g ∈ C(Sn−1),

spherical harmonics of different orders are orthogonal. By

πm : C(Sn−1) → Hn
m
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we denote the orthogonal projection to Hn
m. In each space Hn

m we choose an orthonor-
mal basis {Ym1, . . . , YmN(n,m)}, which will be kept fixed in the following; then

πmf =

N(n,m)∑
j=1

(f, Ymj)Ymj for f ∈ C(Sn−1). (1)

One also writes

f ∼
∞∑
m=0

πmf

and calls this the condensed harmonic expansion of f (Groemer [6], p. 72). The series
converges to f in the L2-norm.

The rotation group SO(n) acts on C(Sn−1) by means of (ϑf)(u) = f(ϑ−1u), u ∈
Sn−1. The space Hn

m is invariant under rotations. Thus, for any rotation ϑ ∈ SO(n),
we have

ϑYmj(u) =

N(n,m)∑
i=1

tmij (ϑ)Ymi(u), u ∈ Sn−1, (2)

with real coefficients tmij (ϑ). Let ν denote the normalized Haar measure on the compact
group SO(n). The following formula was proved in [13, Lemma 3]. If f ∈ C(Sn−1),
then ∫

SO(n)

ϑf(u)tmij (ϑ) dν(ϑ) = N(n,m)−1(f, Ymj)Ymi(u) (3)

for u ∈ Sn−1, n ∈ N0, and i, j = 1, . . . , N(n,m).

A convex body K ∈ Kn is determined by its support function h(K, ·), defined on
Rn by h(K, x) = max{〈x, y〉 : y ∈ K}. Since h(K, ·) is positively homogeneous of
degree one, it is determined by its restriction to the sphere Sn−1, which we denote by
hK . If K,L ∈ Kn, then h(K + L, ·) = h(K, ·) + h(L, ·). Moreover, convergence in the
Hausdorff metric on Kn is equivalent to uniform convergence of support functions on
Sn−1.

The functions πmhK , m ∈ N, determine the convex body K uniquely. In particular,
a convex body K is symmetric if and only if πmhK = 0 for all odd numbers m 6= 1,
and K is one-pointed if and only if hK ∈ Hn

1 . It follows that for m 6= 1, the projection
πmhK is invariant under translations of K. We also note two special cases:

(π0hK)(u) =
1

2
b(K) and (π1hK)(u) = 〈s(K), u〉 = h{s(K)}(u)

for u ∈ Sn−1 and K ∈ Kn. Here, b : Kn → R is the mean width of the convex body K,
defined by

b(K) =
2

ωn

∫
Sn−1

hK dσ,

where ωn = σ(Sn−1). The rigid motion equivariant map s : Kn → Rn is the Steiner
point map, defined by

s(K) =
n

ωn

∫
Sn−1

hK(u)u dσ(u).
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It follows that π0hK = 0 if and only if K contains only one point, and π1hK = 0 if and
only if s(K) = 0.

We can now give a precise definition of universal convex bodies.

Definition. The convex body K ∈ Kn is called universal if πmhK 6= 0 for all m ∈ N0.
The body K ∈ Kn is centrally universal if πmhK 6= 0 holds for all even numbers
m ∈ N0.

Since the spaceHn
m and the scalar product on C(Sn−1) are invariant under rotations,

we have πmhλϑK = λϑ(πmhK) for every ϑ ∈ SO(n) and every λ ≥ 0. Therefore,
the property of being universal (centrally universal) is invariant under rotations and
dilatations.

Let K ∈ Kn be a k-dimensional convex body, k ≥ 2. Because of the rotation
invariance just mentioned and the translation equivariance of the Steiner point map,
it is no loss of generality to assume that K ⊂ Rk ⊂ Rn. If K is universal in the sense
of the preceding definition, we say that K is universal in Rn. Alternatively, we can
consider K as a subset of the Euclidean space Rk. If it is universal there, that is, in
the sense of the definition with n = k, we say that K is universal in Rk. The following
was proved in [11, §5].

Lemma 1. If K is universal in Rk, then K is universal in Rn.

Before we turn to the proof of Theorem 2, we recall that the set of convex bodies
L ∈ Kn with hL ∈ Hn is dense in Kn, see [12, p. 160]. Similarly, the set of all L ∈ Kn

c

with hL ∈ Hn is dense in Kn
c , and the set of all L ∈ Kn

o with hL ∈ Hn is dense in Kn
o .

Proof of Theorem 2. (a) Suppose K is not universal, i.e., πmhK = 0 for some m. If
m = 0, then K is one-pointed, hence we can assume that m ≥ 1. Let Ym be a non-zero
spherical harmonic of order m. There is a constant c > 0 such that c + Ym = hM for
some convex body M , see [12, Lemma 1.7.9]. Every function f in the closure of the
vector space spanned by the functions hϑK , ϑ ∈ SO(n), satisfies πmf = 0. Since this
does not hold for hM , the set of generalized M-bodies is not dense in Kn.

Now let K be universal. By the preceding remark, it is enough to show that for
every convex body L with hL ∈ Hn there are M-bodies T1, T2 such that L+ T1 = T2.
This was proved in [13] for the case where K is a triangle with at least one of its angles
an irrational multiple of π. For an arbitrary universal convex body K, the proof is
almost verbally the same. We sketch the argument, for the reader’s convenience and
since we have to explain the modifications in part (b). Let

hL =
k∑

m=0

N(n,m)∑
j=1

amjYmj (4)

and define cmj = (hK , Ymj). Since K is universal, for each m ∈ N0 there is an index
j(m) such that cmj(m) 6= 0. With the functions tmij from (2), we define

g := N(n,m)
k∑

m=0

N(n,m)∑
i,j=1

bmij t
m
ij , (5)
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where bmij = amic
−1
mj(m) for j = j(m) and 0 otherwise. By (3), we have

∫
SO(n)

hϑK(u)g(ϑ) dν(ϑ) = N(n,m)
k∑

m=0

N(n,m)∑
i,j=1

∫
SO(n)

hϑK(u)bmij t
m
ij (ϑ) dν(ϑ)

=
k∑

m=0

N(n,m)∑
i,j=1

bmij (hK , Ymj)Ymi(u)

=
k∑

m=0

N(n,m)∑
i=1

amiYmi(u) = hL(u).

Splitting g into positive and negative parts, we obtain that L is a generalized M-body.

(b) If K is not centrally universal, then πmhK for some even number m. With M
constructed as in part (a), we have M ∈ Kn

o , but M cannot be approximated by bodies
from M, since all bodies L ∈M satisfy πmhL = 0.

Suppose that K is centrally universal. First let K have its centre different from 0.
Then π1hK 6= 0. Let L ∈ Kn

c and hL ∈ Hn. Let hL be represented by (4); then amj = 0
for all odd m 6= 1. For even numbers m and for m = 1, we can define cmj and bmij as in
part (a), as well as the function g, where now bmij := 0 for odd m 6= 1.

If K has centre 0, then π1hK = 0 and we choose also bmij := 0 for m = 1. The proof
can now be completed as in part (a). �

3 Linear transformations

In this section, we investigate the behaviour of πmhAK under linear transformations A.

Lemma 2. Let f, g : Rn \ {0} → R be continuous functions, let f be positively
homogeneous of degree 1 and g positively homogeneous of degree −(n + 1). Then, for
every A ∈ GL(n),∫

Sn−1

f(Av)g(v) dσ(v) =
1

| detA|

∫
Sn−1

f(v)g(A−1v) dσ(v).

Proof. We can take advantage of the known transformation behaviour of the dual
mixed volume Ṽ−1(K,L). It is defined for two star bodies K,L ⊂ Rn (i.e., compact
sets, starshaped with respect to the origin and with continuous radial functions) by

Ṽ−1(K,L) =
1

n

∫
Sn−1

ρ(K, u)n+1ρ(L, u)−1 dσ(u),

where ρ(K, u) = max{λ ≥ 0 : λu ∈ K} denotes the radial function of K. Decomposing
f into its positive and negative part and adding, say, the function x 7→ ‖x‖ to both
components, we can write f = f+ − f−, where the functions f+, f− are positive,
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continuous, and positively homogeneous of degree 1, on Rn \ {0}. Let L+, L− be the
star bodies with radial functions ρ(L+, ·) = (f+)−1 and ρ(L−, ·) = (f−)−1, then

f = ρ(L+, ·)−1 − ρ(L−, ·)−1.

Similarly, there are star bodies K+, K− with

g = ρ(K+, ·)n+1 − ρ(K−, ·)n+1.

The assertion of the lemma now follows from the fact that ρ(K,Av) = ρ(A−1K, v) and
that

Ṽ−1(AK,AL) = | detA|Ṽ−1(K,L),

which is proved in Lutwak [9, Lemma (7.9)]. �

Lemma 2 is applied in the following argument. For m ∈ N0 and j ∈
{1, . . . , N(n,m)} we define

Y̌mj(x) :=
1

‖x‖n+1
Ymj

(
x

‖x‖

)
for x ∈ Rn \ {0}.

Let K ∈ Kn be fixed, and let A ∈ GL(n). Since h(AK, v) = h(K,ATv), Lemma 2
yields

(hAK , Ymj) =
1

| detA|

∫
Sn−1

h(K, v)Y̌mj(A
−Tv) dσ(v).

Since the spherical harmonic Ymj is the restriction of a polynomial on Rn to the sphere
Sn−1, the function

A 7→ 1

| detA|
Y̌mj(A

−Tv)

is real analytic on the connected component of the identity. (We identify GL(n), via
matrix description, with an open subset of Rn2

.) The convergence of its power series
is uniform on every compact subset and uniform in v. Using the compactness of Sn−1,
we see that the function defined by

A 7→ (hAK , Ymj),

(for given K) is real analytic. We will mostly apply this with linear maps A(λ)
which, with respect to the standard orthonormal basis of Rn, have diagonal matri-
ces diag(1, λ, . . . , λ) or (in Section 4) diag(1, 1, λ, . . . , λ), with λ ∈ I. Here I is any
open interval (0, a) with a > 1. Then the function defined by

fmj(λ) := (hA(λ)K , Ymj), λ ∈ I, (6)

is real analytic on I.

We are now in a position to prove part (b) of Theorem 3. This case exhibits already
the basic idea for the proof of the general result.

Proof of Theorem 3 (b). Let K ∈ Kn
c be a non-trivial convex body. For λ ∈ I, let

A(λ) ∈ GL(n) be defined by A(λ) : (x1, . . . , xn) 7→ (x1, λx2, . . . , λxn) (where x1, . . . , xn
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are coordinates with respect to the standard orthonormal basis of Rn). We may assume
that the orthogonal projection ofK to the first coordinate axis is a segment S of positive
length. We have limλ→0A(λ)K = S in the Hausdorff metric and hence

lim
λ→0

(hA(λ)K , Ymj) = (hS, Ymj)

for all m, j. Let m be even. It is well known that, for all Ym ∈ Hn
m, u ∈ Sn−1,∫

Sn−1

|〈u, v〉|Ym(v) dσ(v) = amYm(u)

with am 6= 0 (see, e.g., [12, p. 185]). Since hS = |〈x, ·〉| + 〈y, ·〉 for suitable x, y ∈ Rn

it follows that S is centrally universal. Therefore, for each even m ∈ N there is at
least one index j(m) ∈ {1, . . . , N(n,m)} for which (hS, Ymj(m)) 6= 0. This implies that
the function fmj(m), defined by (6), does not vanish identically on I. Since it is real
analytic, its zeros are isolated, thus there is an at most countable subset Zm ⊂ I such
that fmj(m)(λ) 6= 0 for λ ∈ I \ Zm. For such λ, we have πmhA(λ)K 6= 0 (this holds
trivially for m = 0 and all λ ∈ I, since A(λ)K has positive mean width). If now U ⊂ R
is a given neighbourhood of 1, there exists a number

λ ∈ U \
⋃

m∈N, 2|m

Zm.

It satisfies πmhA(λ)K 6= 0 for all even m, hence A(λ)K is centrally universal. Such a
map A(λ) ∈ GL(n) can be found in any prescribed neighbourhood of the identity. This
completes the proof of Theorem 3 (b). �

4 Proof of Theorem 3 (a)

For the proof of Theorem 3 (a), we first treat the case n = 2. Let K ∈ K2 be a
non-symmetric convex body; then K has interior points.

As usual, we parameterize S1 by an angle, writing uϕ := (cosϕ, sinϕ), and by slight
abuse of notation, for a function f on S1 we write f(uϕ) = f(ϕ). The space H2

m is
spanned by the functions cosmϕ and sinmϕ, thus, in complex notation,

πmhK = 0 ⇔
∫ 2π

0

h(K,ϕ) eimϕ dϕ = 0.

For m ∈ N, we define a map Fm(K, ·) : GL(2)+ → C by

Fm(K,A) :=

∫ 2π

0

h(AK,ϕ) eimϕ dϕ for A ∈ GL(2)+,

where GL(2)+ denotes the connected component of the identity in GL(2). As explained
in Section 3, the function Fm(K, ·) (interpreted as a function on an open subset of R4)
is real analytic. We make use of the following fact (for a proof, see [3, Lemma 5]).
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Lemma 3. Let f : U → R be a real analytic function on an open subset of Rk. Then
the zero set of f has Lebesgue measure zero, unless f vanishes identically.

In view of Lemma 3, the following auxiliary result will be crucial.

Lemma 4. The relation
Fm(K, ·) ≡ 0

does not hold for any odd integer m ≥ 1.

For the proof, we assume that the assertion were false. Then there exists a smallest
odd integer m ≥ 1 with Fm(K, ·) ≡ 0.

First Case: m ≥ 5. By the choice of m, we have Fm−2(K, ·) 6≡ 0, hence there exists
a map A0 ∈ GL(2)+ with Fm−2(K,A0) 6= 0, equivalently Fm−2(A0K, Id) 6= 0. We still
have Fm(A0K, ·) ≡ 0. We may now replace K by A0K and change the notation. Thus,
we can assume that

Fm(K, ·) ≡ 0, Fm−2(K, Id) 6= 0. (7)

Second Case: m = 1 orm = 3. SinceK is not symmetric, we cannot have Fk(K, Id) = 0
for all odd integers k ≥ 3. A fortiori, Fk(K, ·) ≡ 0 cannot hold for all odd integers
k ≥ 3. Therefore, there exists an odd integer k ≥ 3 such that Fk−2(K, ·) ≡ 0, but
Fk(K, ·) 6≡ 0. As in the first case, we can replace K by A0K, with a linear map A0, so
that after a change of notation we have

Fk−2(K, ·) ≡ 0, but Fk(K, Id) 6= 0. (8)

For a while, both cases are now treated together. To K we will apply rotations
R(α) and linear maps A(λ), given by matrices(

cosα sinα
− sinα cosα

)
and

(
1 0
0 λ

)
,

respectively, with α in an open neighbourhood U of 0 and λ ∈ I. We have

h(A(λ)K, uϕ) = h(K,A(λ)uϕ) = ‖A(λ)uϕ‖h(K, uψ)

with

uψ :=
A(λ)uϕ
‖A(λ)uϕ‖

=
(cosϕ, λ sinϕ)√
cos2 ϕ+ λ2 sin2 ϕ

.

Then

uϕ =
(λ cosψ, sinψ)√
λ2 cos2 ψ + sin2 ψ

,

thus

eimϕ =
(λ cosψ + i sinψ)m

(λ2 cos2 ψ + sin2 ψ)
m
2

and
dϕ

dψ
=

λ

λ2 cos2 ψ + sin2 ψ
.
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Substituting ϕ by ψ in the integral defining Fm(K,A), we get

Fm(K,A(λ)) = λ2

∫ 2π

0

h(K,ψ)
(λ cosψ + i sinψ)m

(λ2 cos2 ψ + sin2 ψ)
m+3

2

dψ.

By (7), this integral vanishes for all λ ∈ I. Therefore, also its derivatives with respect
to λ vanish. For

f(λ) =
(λ cosψ + i sinψ)m

(λ2 cos2 ψ + sin2 ψ)
m+3

2

,

we obtain

0 = −f ′(1) =
3

2
eimψ +

3−m

4
ei(m−2)ψ +

3 +m

4
ei(m+2)ψ.

Since Fm(K, Id) = 0, this yields∫ 2π

0

h(K,ψ)[(3−m) ei(m−2)ψ + (3 +m) ei(m+2)ψ] dψ = 0. (9)

According to (7), we also have Fm(R(α)K, ·) ≡ 0 for each angle α ∈ U , hence (9)
holds if K is replaced by R(α)K. Since h(R(α)K,ψ) = h(K,ψ − α), we see after a
substitution that (9) holds with ψ in the exponentials replaced by ψ + α. Since the
functions ei(m−2)α and ei(m+2)α are linearly independent on U , we deduce that

Fm−2(K, Id) = 0 if m 6= 3, Fm+2(K, Id) = 0. (10)

Now we distinguish between the two cases considered above. If m ≥ 5, then the
first relation of (10) yields Fm−2(K, Id) = 0, which contradicts the second relation of
(7). If m = 1 or m = 3, then we note that the first relation of (8) gives Fk−2(K, ·) ≡ 0.
Therefore, the second relation of (10) holds also with m replaced by k − 2, but this
contradicts the second relation of (8). This completes the proof of Lemma 4. �

Let m ∈ N0 be an integer. If m is odd, it follows from Lemma 4 that the real
analytic function Fm(K, ·) does not vanish identically. If m is even, the same result
follows as in the proof of Theorem 3 (b). Hence, the set of zeros of Fm(K, ·) has
Lebesgue measure zero, by Lemma 3. Therefore, in any given neighbourhood of the
identity in GL(2), we can find a linear map A with Fm(K,A) 6= 0 for all m ∈ N0. The
convex body AK is universal. This completes the proof of Theorem 3 for n = 2 and
non-symmetric convex bodies.

Finally, we assume that n ≥ 3 and that K ∈ Kn is a non-symmetric convex body.
ThenK has dimension at least two. There exists (see, e.g., Gardner [4, Corollary 3.1.5])
a two-dimensional subspace, without loss of generality the space R2 ⊂ Rn, such that
the orthogonal projection K ′ of K to R2 is non-symmetric. In a given neighbourhood
of the identity of GL(n) we can find an affine transformation B which maps R2 into
itself, leaves the orthogonal complement of R2 in Rn pointwise fixed, and is such that
BK ′ is universal in R2. By Lemma 1, BK ′ is universal in Rn. Moreover, BK ′ is the
image of BK under the orthogonal projection to R2. Assuming that R2 is spanned by
the first two vectors of the standard orthonormal basis of Rn, we define linear maps
A(λ) by A(λ) : (x1, . . . , xn) 7→ (x1, x2, λx3, . . . , λxn), λ ∈ I. As in the proof of Theorem
3 (b), we have

lim
λ→0

(hA(λ)BK , Ymj) = (hBK′ , Ymj).

11



Since BK ′ is universal in Rn, for each m there exists an index j(m) with
(hBK′ , Ymj(m)) 6= 0. Thus, the function λ 7→ (hA(λ)BK , Ymj(m)), λ ∈ I, does not vanish
identically. The proof can now be completed as it was done in Section 3 for centrally
symmetric bodies. �
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