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Abstract

The projection body operator Π, which associates with every convex body in
Euclidean space Rn its projection body, is a continuous valuation, it is invariant
under translations and equivariant under rotations. It is also well known that Π
maps the set of polytopes in Rn into itself. We show that Π is the only non-trivial
operator with these properties.
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1 Introduction and Main Results

Let Kn denote the space of convex bodies (non-empty, compact, convex sets) in
n-dimensional Euclidean space Rn (n ≥ 2), endowed with the Hausdorff metric. A
convex body K ∈ Kn is determined by its support function h(K, ·), defined on Rn by
h(K, x) = max{〈x, y〉 : y ∈ K}, where 〈·, ·〉 is the scalar product of Rn. The projection
body ΠK of K is defined by

h(ΠK, u) = Vn−1(K|u⊥) for u ∈ Sn−1.

Here, K|u⊥ denotes the image of K under orthogonal projection to the (n − 1)-
dimensional subspace orthogonal to u, and Sn−1 is the unit sphere of Rn. Generally,
we denote by Vk(M) the k-dimensional volume of a k-dimensional convex body M .

The projection body operator was already introduced by Minkowski [22]. In recent
years it has attracted increased attention due to its numerous applications in different
areas, see [3, 4, 5, 7, 13, 31]. Projection bodies of convex bodies are centered convex
bodies called zonoids. For their role in geometry, we refer to the surveys [28, 6].
Projection bodies of convex polytopes, called zonotopes, have appeared in optimization,
computational geometry, and other areas, see [32].

In this paper, the emphasis is on the fact that the projection body operator Π :
Kn → Kn is a Minkowski valuation, i.e., a valuation with respect to Minkowski addition
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on Kn. In general, a mapping ϕ : Kn → A into an abelian semigroup (A, +) is called
a valuation if

ϕ(K ∪M) + ϕ(K ∩M) = ϕ(K) + ϕ(M)

whenever K, M, K ∪ M ∈ Kn. Valuations on convex bodies are a classical concept.
Probably the most famous result in this area is Hadwiger’s classification of rigid motion
invariant real valued continuous valuations, see [8, 12] and the surveys [21], [20]. In
recent years, many new results on real and body valued valuations have been obtained,
see [1, 2, 10, 11, 13, 14, 15, 16, 17, 27].

An immediate consequence of a result obtained by M. Ludwig in [15, Corollary 2.2],
extending a previous result from [13], is the following characterization of the projection
body operator.

Theorem. Let Φ : Kn → Kn be a continuous, translation invariant valuation with the
property that, for all K ∈ Kn and every α ∈ SL(n),

ΦαK = α−T ΦK.

Then there is a constant c ≥ 0 such that Φ = cΠ.

Thus, among all continuous, translation invariant valuations from Kn to Kn, the
projection body operator is characterized, up to a factor, by its SL(n) contravariance.
It was also shown in [15] that the assumption of continuity can be omitted when Kn

as the domain of Φ is replaced by Pn, the set of convex polytopes in Rn.

In the following, we will consider continuous, translation invariant valuations Φ :
Kn → Kn, but we will replace the strong assumption of SL(n) contravariance, which
belongs to affine geometry, by the Euclidean condition of rotation equivariance, i.e.,
the property that, for all K ∈ Kn and every ϑ in the rotation group SO(n) of Rn,

ΦϑK = ϑΦK.

The projection body operator is no longer characterized by these properties. Simple
further examples are the trivial maps I and −I given by

I(K) = K − s(K) and (−I)(K) = −K + s(K) for K ∈ Kn.

Here, s : Kn → Rn denotes the Steiner point map, defined by

s(K) = n

∫
Sn−1

h(K, u)u du, (1)

where the integration is with respect to the rotation invariant probability measure on
the sphere. The Steiner point map is the unique vector valued, rigid motion equivariant
and continuous valuation on Kn, see [23, Satz 2].

A large class of non-trivial examples is provided by translation invariant Minkowski
endomorphisms. This class of operators was introduced and investigated by the first
author, see [24, 25], and more recently studied by Kiderlen [9]. They are precisely
the continuous valuations from Kn to Kn, invariant under translations and equivariant
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under rotations, that are homogeneous of degree one. Here a function ϕ from Kn

to R or Kn is called homogeneous of degree j if ϕ(λK) = λjϕ(K) for K ∈ Kn and
λ ≥ 0. The case of valuations homogeneous of degree n−1, called Blaschke Minkowski
homomorphisms, was investigated recently by the second author in [29, 30].

The main object of this paper is to find an additional assumption which suffices
to single out among this large class of valuations the combinations of the projection
body operator Π and the mappings I and −I. This additional assumption will be the
property that polytopes are mapped to polytopes.

Theorem 1. Let n ≥ 3. Let Φ : Kn → Kn be a continuous, translation invariant and
rotation equivariant valuation. If Φ maps polytopes to polytopes, then

Φ = c1Π + c2I + c3(−I)

with constants c1, c2, c3 ≥ 0.

Remarks. The assumption that Φ maps polytopes to polytopes is convenient to
formulate, but stronger than necessary. As the proof shows, only the following is
needed. To every j ∈ {0, . . . , n}, there exists a convex body K of dimension j such
that ΦmK is a polytope, for n + 1 different values of m.

In the plane, where the rotation group is abelian, the assertion has to be modified.
Let Φ : K2 → K2 be a continuous, translation invariant and rotation equivariant
valuation. If the image of Φ contains some polygon with more than one point, then
there are rotations ϑ1, . . . , ϑr of R2 and positive numbers λ1, . . . , λr such that

ΦK = λ1ϑ1[K − s(K)] + . . . + λrϑr[K − s(K)]

for all K ∈ K2. This was proved in [25, Satz 3].

Under the additional assumption of homogeneity of degree one, the combinations
of I and −I were characterized by the first author in [24, Corollary 1.12].

Among a subclass of the Blaschke Minkowski homomorphisms (which includes the
even ones), the projection body operator was characterized (up to a factor) by the
second author in [29, Theorem 5.3], by the assumption that it maps some n-dimensional
convex body to a polytope. The wish to generalize this characterization has led us to
the following result.

Theorem 2. Let n ≥ 3. Let Φ : Kn → Kn be a continuous, translation invariant and
rotation equivariant valuation. If Φ maps bodies of dimension n− 2 to {0} and maps
some n-dimensional convex body to a polytope, then Φ = cΠ with some constant c ≥ 0.

Without the assumption that Φ maps some n-dimensional convex body to a poly-
tope, every Blaschke Minkowski homomorphism would satisfy the conditions of Theo-
rem 2. Thus, in particular, the multiples of the projection body operator are the only
Blaschke Minkowski homomorphisms that map some n-dimensional convex body to a
polytope, see Corollary 1.
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2 Results on homogeneous valuations

In this section we collect further material on convex bodies and some well-known results
from the theory of real valued valuations. General references are the books by Schneider
[26] and by Klain and Rota [12]. At the end of this section we will prove the main tool
for the proofs of Theorems 1 and 2.

A convex body K ∈ Kn is uniquely determined by its support function h(K, ·),
which is positively homogeneous of degree one and sublinear. Conversely, every func-
tion with these properties is the support function of a convex body. From the definition
of h(K, ·) it is easily seen that h(ϑK, u) = h(K, ϑ−1u) for every u ∈ Rn and every
ϑ ∈ SO(n). The support function h(K, ·) of a convex body K ∈ Kn is piecewise linear
if and only if K is a polytope.

A convex body K ∈ Kn with non-empty interior is also determined up to translation
by its surface area measure Sn−1(K, ·). For a Borel set ω ⊆ Sn−1, the value Sn−1(K,ω)
is the (n− 1)-dimensional Hausdorff measure of the set of all boundary points of K at
which there exists a normal vector of K belonging to ω. The relation Sn−1(λK, ·) =
λn−1Sn−1(K, ·) holds for all K ∈ Kn and λ ≥ 0. For ϑ ∈ SO(n), we have Sn−1(ϑK, ·) =
ϑSn−1(K, ·), where ϑSn−1(K, ·) is the image measure of Sn−1(K, ·) under the rotation
ϑ. By Minkowski’s existence theorem, a non-negative measure µ on Sn−1 is the surface
area measure of a convex body if and only if µ has its center of mass at the origin and
is not concentrated on any great subsphere.

We collect some auxiliary results on translation invariant real valued valuations,
which will be employed repeatedly.

Lemma 1 (Hadwiger [8, p. 79]). If ϕ : Kn → R is a continuous, translation invariant
valuation, homogeneous of degree n, then ϕ = cVn with a constant c.

Lemma 2 (McMullen [18]). Every continuous, translation invariant valuation
ϕ : Kn → R has a unique representation

ϕ = ϕ0 + . . . + ϕn,

where ϕj : Kn → R is a continuous, translation invariant valuation which is homoge-
neous of degree j.

A valuation ϕ on Kn is called simple if ϕ(K) = 0 whenever dim K < n. A function
ϕ from Kn to R or Kn is called even (resp. odd ) if ϕ(−K) = ϕ(K) (resp. ϕ(−K) =
−ϕ(K)) for all K ∈ Kn. The following classification of translation invariant, continuous
and simple valuations, due to Klain [10] (for even valuations) and the first author [27],
will be useful.

Lemma 3. If ϕ : Kn → R is a continuous, translation invariant and simple valuation,
then

ϕ(K) = cVn(K) +

∫
Sn−1

g(u) dSn−1(K, u) for K ∈ Kn,

where c is a constant and g is an odd, continuous real function on Sn−1.
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From Lemma 3 we deduce a result on homogeneous valuations which are not nec-
essarily simple. For a subspace E of Rn, we denote by K(E) the set of convex bodies
contained in E, and by SO(E) the subgroup of rotations in SO(n) mapping E into
itself. The map πE : Rn → E is the orthogonal projection.

Lemma 4. Let ϕ : Kn → R be a continuous, translation invariant valuation which is
homogeneous of degree j, for a given j ∈ {0, 1, . . . , n− 1}.
(a) If ϕ is even and if ϕ(K) = 0 whenever dim K = j, then ϕ = 0.

(b) If ϕ(K) = 0 whenever dim K = j + 1, then ϕ = 0.

Proof. Assertion (a) was proved by Klain [11, Corollary 3.2]. In order to prove assertion
(b), we can assume j ∈ {0, 1, . . . , n−2}. Let E be a (j+2)-dimensional linear subspace
of Rn. By the continuity of ϕ, we have ϕ(K) = 0 if dim K ≤ j +1, thus the restriction
of the valuation ϕ to K(E) is simple. It is continuous and invariant under translations
of E into itself, therefore we deduce from Lemma 3, applied in E, that it is a linear
combination of valuations that are homogeneous of degrees j+2 and j+1, respectively.
Since ϕ is homogeneous of degree j, we get ϕ = 0 on K(E). Since E was an arbitrary
(j + 2)-dimensional subspace, we have ϕ(K) = 0 whenever dim K ≤ j + 2. Now we
can repeat the argument with a (j + 3)-dimensional subspace, and so on, to conclude
finally that ϕ(K) = 0 holds for all convex bodies K ∈ Kn. �

If ϕ satisfies all assumptions of Lemma 4 (a) except the evenness, then it follows
that the valuation defined by K 7→ ϕ(K) + ϕ(−K) is identically zero. In particular,
one can deduce that ϕ(K) = 0 for all centrally symmetric convex bodies K.

Lemma 4 leads to the following auxiliary result on valuations taking their values in
the space of convex bodies. The equation Φ = {0} means that Φ maps every convex
body to the one-pointed set containing only the origin of Rn.

Lemma 5. Let Φ : Kn → Kn be a continuous, translation invariant and rotation
equivariant valuation which is homogeneous of degree j, for a given j ∈ {0, 1, . . . , n−1}.
If ΦK = {0} whenever dim K = j, then Φ = {0}.

Proof. If the assumptions are satisfied, we deduce from Lemma 4 (a) (applying it to
h(ΦK + Φ(−K), u) with u ∈ Rn) that Φ is odd and that ΦK = {0} holds for all
centrally symmetric bodies K ∈ Kn.

To extend the latter result to general convex bodies, we use an argument employed
by Klain [10]. Let E be a (j + 1)-dimensional linear subspace of Rn. Let ∆ be a
simplex in E, say ∆ = conv{0, v1, . . . , vj+1}, without loss of generality. Let v :=
v1 + . . . + vj+1 and ∆′ := conv{v, v − v1, . . . , v − vj+1}. The parallelepiped, P , that
is spanned by v1, . . . , vj+1, is the union of ∆, ∆′ and a centrally symmetric polytope
Q, where dim(∆ ∩ Q) = dim(∆′ ∩ Q) = j and ∆ ∪ Q is convex. By assumption, the
valuation h(Φ(·), u), for given u ∈ Rn, vanishes on convex bodies of dimension smaller
than j + 1. Therefore, the restriction of h(Φ(·), u) to K(E) is a simple valuation. It
follows that h(Φ∆, u) + h(ΦQ, u) + h(Φ∆′, u) = h(ΦP, u). Since u ∈ Rn was arbitrary
and ΦQ = {0}, this yields Φ∆ + Φ∆′ = ΦP = {0}. Since the summands on the
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left-hand side are convex bodies, this is only possible if Φ∆ is one-pointed. Now we use
a standard argument: every polytope can be decomposed into simplices, and a simple
valuation on polytopes has an additive extension to the finite unions of polytopes.
Together with the continuity of Φ, this yields that ΦK is one-pointed for all K ∈ K(E),
say ΦK = {tK}. Consider the odd map t : K(E) → E defined by t(K) := πEtK . Then
t + s : K(E) → E is a continuous valuation, equivariant under the rigid motions of E.
By the uniqueness property of the Steiner point map mentioned after definition (1),
this yields t(K) = 0 for all K ∈ K(E). Thus, tK is contained in E⊥ for all K ∈ K(E).
If dim E ≤ n − 2, the vector tK is invariant under every rotation of Rn that leaves E
pointwise fixed, thus tK = 0. If dim E = n− 1, we have tK = ϕ(K)e, where e is a unit
normal vector of E and ϕ : K(E) → R is an odd, translation invariant, continuous and
simple valuation. For every ϑ ∈ SO(E) fixing e we get

ϕ(ϑK) = h(ΦϑK, e) = h(ϑΦK, e) = h(ϑΦK,ϑe) = h(ΦK, e) = ϕ(K).

Thus, ϕ is also invariant with respect to rotations of E into itself. The valuation ϕ
can be represented as in Lemma 3 (applied in E); here c = 0 since ϕ is odd, and by
the rotation invariance, the odd function g is constant and hence vanishes. This gives
ϕ = 0 and thus ΦK = {0}, for all K ∈ K(E).

Since E was an arbitrary (j + 1)-dimensional subspace, we have ΦK = {0} for
all convex bodies K with dim K ≤ j + 1. Therefore, by Lemma 4 (b), the valuation
h(Φ(·), u), for given u ∈ Rn, vanishes identically. Since u was arbitrary, this yields
Φ = {0}. �

In [24], the first author started an investigation of continuous maps Ψ : Kn → Kn,
called (Minkowski) endomorphisms, with the following properties:

(a) Ψ is Minkowski additive, i.e., Ψ(K + L) = ΨK + ΨL for K, L ∈ Kn.

(b) Ψ(ϑK + t) = ϑΨK + t for K ∈ Kn, ϑ ∈ SO(n) and t ∈ Rn.

Note that continuity and Minkowski additivity imply that Ψ is homogeneous of degree
one. Moreover, since (K ∪ L) + (K ∩ L) = K + L whenever K,L, K ∪ L ∈ Kn,
the map Ψ is a Minkowski valuation. Thus, it follows from the equivariance properties
of the Steiner point map s that the map Ψ − s is a translation invariant, continuous
Minkowski valuation that is equivariant with respect to rotations and homogeneous of
degree one.

Apart from constructing a large class of non-trivial examples, the main purpose of
[24] was to find reasonable additional assumptions to single out suitable combinations
of dilatations and reflections among the class of Minkowski endomorphisms. One of
the obtained results was the following, see [24, Theorem 1.8 (b)], which will be used
below.

Theorem 3. Let Ψ : Kn → Kn be an endomorphism. If the image under Ψ of some
convex body is a segment, then there are constants c2, c3 ≥ 0 such that

ΨK = c2[K − s(K)] + c3[−K + s(K)] + s(K) for K ∈ Kn.
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Motivated by the work of Schneider, the second author [29] recently investigated
continuous operators Ψ : Kn → Kn, called Blaschke Minkowski homomorphisms, with
the following properties:

(a) Ψ is Blaschke Minkowski additive, i.e., Ψ(K # L) = ΨK + ΨL for K, L ∈ Kn.

(b) Ψ is translation invariant and equivariant with respect to rotations.

Here, the Blaschke sum K # L of the convex bodies K, L ∈ Kn is the convex body
with Sn−1(K # L, ·) = Sn−1(K, ·) + Sn−1(L, ·) and, say, the Steiner point at the origin.
Property (a) and the continuity of Ψ imply that Ψ is homogeneous of degree n − 1.
Moreover, since (K ∪ L) # (K ∩ L) = K # L whenever K,L, K ∪ L ∈ Kn, the map
Ψ is a Minkowski valuation. A result of McMullen [19] on continuous, translation
invariant real valued valuations implies (compare the proof of Theorem 1.2 in [29])
that Blaschke Minkowski homomorphisms are precisely the continuous, translation
invariant valuations, homogeneous of degree n − 1, that are equivariant with respect
to rotations.

Among other results, the following, essentially unique, representation of Blaschke
Minkowski homomorphisms Ψ was obtained in [29, Theorem 1.2 and Lemma 4.6]:

h(ΨK, u) =

∫
Sn−1

[p(〈u, v〉) + q(〈u, v〉)] dSn−1(K, v), u ∈ Sn−1, (2)

for K ∈ Kn, where p, q are continuous functions on [−1, 1], p is even, q is odd, and
p(〈·, v〉) is the restriction of a support function to Sn−1. The following result is a
version of Theorem 5.3 in [29], it corresponds to Theorem 3 for Blaschke Minkowski
homomorphisms.

Theorem 4. Let Ψ : Kn → Kn be a Blaschke Minkowski homomorphism. If the
image under Ψ of some convex body M of dimension at least n− 1 is a polytope, then
ΨK = c1ΠK for each centrally symmetric K ∈ Kn, where c1 ≥ 0 is a real constant.

We note here that Theorem 5.3 in [29] was formulated for an n-dimensional body
M and a certain class of Blaschke Minkowski homomorphisms, but the proof needs
only minor modifications to give the result stated as Theorem 4; the only requirement
is that the support of Sn−1(M, ·) is not empty, which is satisfied if dim M = n− 1.

Continuous, translation invariant and rotation equivariant valuations Φ : Kn →
Kn which are homogeneous of some degree j ∈ {2, . . . , n − 2}, have not been much
investigated. Examples are the mappings Πj defined by

h(ΠjK, u) =
1

2

∫
Sn−1

|〈u, v〉| dSj(K, v) for u ∈ Sn−1,

where Sj(K, ·) is the area measure of order j of the convex body K. The body ΠjK is
known as the projection body of order j of the convex body K; see [5, p. 161]. These
examples can be generalized considerably.

The proofs of Theorems 1 and 2 will make use of the following generalization of
Theorems 3 and 4, concerning homogeneous valuations of arbitrary degrees.
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Theorem 5. Let n ≥ 3. Let Φ : Kn → Kn be a continuous, translation invariant and
rotation equivariant valuation which is homogeneous of degree j and maps some convex
body of dimension j to a polytope.

(a) If j = n, then Φ = {0}.
(b) If j = n− 1, then Φ = c1Π with a constant c1 ≥ 0.

(c) If j ∈ {2, . . . , n− 2}, then Φ = {0}.
(d) If j = 1, then Φ = c2I + c3(−I) with constants c2, c3 ≥ 0.

(e) If j = 0, then Φ = {0}.

Proof. (a) Let j = n. For u ∈ Rn, the function ϕ defined by ϕ(K) = h(ΦK, u) satisfies
the assumptions of Lemma 1. It follows that h(ΦK, u) = f(u)Vn(K) for K ∈ Kn. This
defines a function f on Rn. For ϑ ∈ SO(n) we have

f(ϑu)Vn(K) = f(ϑu)Vn(ϑK) = h(ΦϑK, ϑu) = h(ϑΦK, ϑu) = h(ΦK, u) = f(u)Vn(K),

hence f(u) = a‖u‖ and thus ΦK = aVn(K)Bn with a constant a, where Bn denotes the
unit ball. Inserting for K an n-dimensional convex body for which ΦK is a polytope,
we get that aBn is a polytope. This is only possible if a = 0 and hence f = 0. This
proves part (a).

(b) Let j = n−1. Since Φ is homogeneous of degree n−1, it is a Blaschke Minkowski
homomorphism. Since Φ maps some convex body M of dimension n− 1 to a polytope,
Theorem 4 yields that ΦK = cΠK holds for every centrally symmetric convex body
K, where c ≥ 0 is a constant.

Let K ∈ Kn, and let K # (−K) be the Blaschke sum of K and −K. Using (2), it
is easy to see that Φ commutes with the reflection in the origin. Thus, it follows from
the fact that K # (−K) is centrally symmetric that

ΦK + (−ΦK) = ΦK + Φ(−K) = Φ(K # (−K)) = cΠ(K # (−K)).

Suppose, first, that c = 0. Then ΦK is one-pointed, say ΦK = {t(K)}. The map
t + s : Kn → Rn, where s is the Steiner point map, is a continuous valuation which is
equivariant under translations and rotations. From the characterization of the Steiner
point mentioned after (1), we obtain that t = 0, hence ΦK = {0} = cΠK for K ∈ Kn.

Let c > 0. Let B be an n-dimensional polytope with the property that any three of
the outer unit normal vectors of its facets are linearly independent. Writing ΦB =: Q,
we get Q + (−Q) = cΠ(B # (−B)) =: Z and, clearly, cΠB = 1

2
Z. Then Q is a

summand of the polytope Z and is, therefore, itself a polytope. Let F be a two-
dimensional face of Q, and let u ∈ Sn−1 be such that F = F (Q, u), the face of Q with
outer normal vector u. Then F (Q, u) is a summand of F (Z, u). Since the normal cone
of Q at F has dimension n − 2 and hence cannot be covered by normal cones of Z
at faces of dimensions larger than 2, we can choose u in such a way that F (Z, u) is a
two-face of Z. Due to the way how the directions of the edges of Z are determined by
the facet normals of B, the assumption that any three normal vectors of the facets of
B are linearly independent implies that F (Z, u) is a parallelogram. Every summand
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of a parallelogram is either a parallelogram or a segment or a singleton. In any case,
we deduce that F (Q, u) is centrally symmetric. Since F was an arbitrary two-face of
Q, the polytope Q is a zonotope ([26, Theorem 3.5.1]). In particular, Q is centrally
symmetric. (This holds also if Q has no two-faces.) Therefore, Q = 1

2
Z + t(B), and

thus ΦB = cΠB + t(B), with some translation vector t(B). Using (1), (2) and the fact
that the center of mass of Sn−1(B, ·) is the origin, we obtain s(ΦB) = 0 = s(cΠB) and
thus t(B) = 0. Since any convex body can be approximated by polytopes B satisfying
the assumption on the facet normals, and since Φ and Π are continuous, we deduce
that ΦK = cΠK for all convex bodies K ∈ Kn. This completes the proof of part (b).

(c) Let j ∈ {2, . . . , n−2}. We choose linear subspaces E ⊂ U ⊂ Rn with dim E = j
and dim U = j + 1. Let πU : Rn → U denote the orthogonal projection, and define a
map Ψ : K(U) → K(U) by

ΨK := πUΦK for K ∈ K(U).

Then Ψ is a continuous valuation on K(U), it is invariant under the translations of U
into itself and equivariant under the rotations in SO(U). By assumption, Φ maps some
j-dimensional convex body to a polytope. By the translation invariance and rotation
equivariance of Φ, there also exists such a body that is contained in U . Now we can
apply Part (b) of Theorem 5, with Rn replaced by U . It follows that Ψ = cΠU , where
ΠU denotes the projection body operator in U , and c ≥ 0 is a constant (depending
on U). Let K ⊂ E be any j-dimensional convex body. Then ΠUK =: S is a (non-
degenerate) segment in U , centered at 0 and orthogonal to E, thus

πUΦK = cS.

In particular, the orthogonal projection of ΦK to E is equal to {0}. Therefore, ΦK is
contained in the orthogonal complement E⊥ (with respect to Rn) of E. Every rotation
of Rn that leaves E pointwise fixed maps ΦK to itself, hence ΦK is a ball with center
0 and dimension n − j ≥ 2 or dimension zero. But for a suitable j-dimensional body
M ⊂ E, the set ΦM is also a polytope. It follows that ΦM = {0}. This implies that
c = 0. In particular, we have ΦK = {0} for every K ∈ K(E). Here E can be any
j-dimensional subspace, hence ΦK = {0} holds for all K ∈ Kn with dim K ≤ j. An
application of Lemma 5 now completes the proof of part (c).

(d) Let j = 1. The continuous, translation invariant valuation Φ is homogeneous
of degree one and hence Minkowski additive (see [8] or [18]). The map defined by
K 7→ ΦK + s(K) is an endomorphism of Kn in the sense of [24]. A one-dimensional
convex body, that is, a segment, is a polytope and hence is mapped by Φ to a polytope.
Since the image has rotational symmetry and n ≥ 3, it can only be a segment. From
Theorem 3 we can now conclude that

ΦK = c2[K − s(K)] + c3[−K + s(K)] for K ∈ Kn,

with constants c2, c3 ≥ 0.

(e) Let j = 0. A continuous translation invariant valuation which is homogeneous
of degree zero is constant, hence for any u ∈ Rn we get h(ΦK, u) = f(u). As in the
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proof of case (a), we obtain ΦKn = aBn with a constant a ≥ 0. Choosing for K a
one-pointed set for which ΦK is a polytope, we get a = 0 and hence Φ = {0}. This
completes the proof of Theorem 5. �

Note that the proof of Theorem 5 (b) also holds under the modified assumption
that some n-dimensional convex body is mapped to a polytope, which leads to the
following generalization of Theorem 4:

Corollary 1. Let Ψ : Kn → Kn be a Blaschke Minkowski homomorphism. If the
image under Ψ of some convex body M of dimension at least n− 1 is a polytope, then
ΨK = cΠK, where c ≥ 0 is a real constant.

3 Proof of Theorem 1

We assume that Φ : Kn → Kn satisfies the assumptions of Theorem 1. Let u ∈ Rn. By
Lemma 2, the real valued valuation K 7→ h(ΦK, u) has a decomposition

h(ΦK,u) =
n∑

i=0

fi(K, u), K ∈ Kn, (3)

where fi(·, u) is a continuous translation invariant valuation that is homogeneous of
degree i. In (3), we replace K by mK for m = 1, 2, . . . , n + 1. The resulting system of
linear equations,

h(ΦmK, u) =
n∑

i=0

mifi(K, u), m = 1, . . . , n + 1,

can be solved to give representations

fj(K, u) =
n+1∑
m=1

ajmh(ΦmK, u), j = 0, . . . , n,

with coefficients ajm depending only on j and m. From this representation we read off
the following:

(a) For each rotation ϑ ∈ SO(n) we have fj(ϑK, u) = fj(K, ϑ−1u).

(b) The function fj(K, ·) is positively homogeneous.

(c) If K is a polytope, then the function fj(K, ·) is piecewise linear.

We do not know, at this point, whether each function fi(K, ·) is a support function;
only the following can be shown.

Lemma 6. Suppose that the convex body K ∈ Kn satisfies

h(ΦλK, ·) =
l∑

i=k

fi(λK, ·) (4)
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for λ > 0, with some k, l ∈ {0, . . . , n}, k ≤ l. Then there exist convex bodies ΦkK, ΦlK
such that h(ΦkK, ·) = fk(K, ·) and h(ΦlK, ·) = fl(K, ·). If ΦλK is a polytope for λ > 0,
then ΦkK and ΦlK are polytopes.

If E ⊆ Rn is a linear subspace and (4) holds for all K ∈ K(E), then the maps
Φk, Φl : K(E) → Kn defined in this way are continuous valuations, invariant under
translations and equivariant under rotations of E into itself, and homogeneous of de-
grees k and l, respectively.

Proof. Let u1, u2 ∈ Rn and λ > 0. Since h(ΦλK, ·) is sublinear, (4) yields

0 ≥ h(ΦλK, u1 + u2)− h(ΦλK, u1)− h(ΦλK, u2)

=
l∑

i=k

λi[fi(K, u1 + u2)− fi(K, u1)− fi(K, u2)].

Dividing by λk and letting λ tend to zero, we see that the function fk(K, ·) is sub-
linear. Being positively homogeneous, it is a support function, hence there exists a
convex body ΦkK with fk(K, ·) = h(ΦkK, ·). If all bodies ΦλK are polytopes, then
ΦkK is a polytope, since h(ΦkK, ·) is piecewise linear.

Similarly, dividing by λl and letting λ tend to infinity, we obtain that fl(K, ·) is
sublinear and hence fl(K, ·) = h(ΦlK, ·) with a convex body ΦlK. The remaining
assertions are clear. �

First we apply Lemma 6 with k = 0 and l = n (and E = Rn). Theorem 5 (a) and
(e) implies that Φ0 = {0} and Φn = {0}, hence

h(ΦK, ·) =
n−1∑
i=1

fi(K, ·) for K ∈ Kn. (5)

Now Lemma 6 with l = n− 1 yields the existence of a map Φn−1 : Kn → Kn which is a
continuous, translation invariant and rotation equivariant valuation, homogeneous of
degree n− 1, and satisfying h(Φn−1K, ·) = fn−1(K, ·). If K is a polytope, then Φn−1K
is a polytope. Theorem 5 (b) shows that Φn−1 = c1Π with a constant c1 ≥ 0.

Similarly, we conclude from (5) that f1(K, ·) = h(Φ1K, ·) with a continuous, transla-
tion invariant and rotation equivariant valuation Φ1 : Kn → Kn which is homogeneous
of degree one, and that Φ1K is a polytope if K is a segment. From Theorem 5 (d)
we obtain that Φ1 = c2I + c3(−I) with constants c2, c3 ≥ 0. Therefore, (5) can be
replaced by

h(ΦK, ·) = c1h(ΠK, ·) +
n−2∑
i=2

fi(K, ·) + c2h(IK, ·) + c3h(−IK, ·). (6)

This finishes the proof if n = 3. We assume, therefore, that n ≥ 4. We have to show
that the remaining functions fi(K, ·) are zero.

11



Let j ∈ {2, . . . , n − 2}. We choose a j-dimensional linear subspace E ⊂ Rn. Let
K ∈ K(E). Since a continuous, translation invariant valuation that is homogeneous of
degree i vanishes on convex bodies of dimension smaller than i, we have

h(ΦλK, ·) =

j∑
i=1

fi(λK, ·)

for λ > 0. By Lemma 6, there is a convex body ΦjK with h(ΦjK, ·) = fj(K, ·), and
if K is a polytope, then ΦjK is a polytope. For u ∈ Rn, Lemma 1 gives h(ΦjK, u) =
f(u)Vj(K), with a function f on Rn. Taking for K a j-dimensional polytope in E, we
see that f is the support function of a polytope, say P . By the rotation equivariance, P
is invariant under the rotations mapping E into itself and keeping E⊥ pointwise fixed.
Therefore, the projection πEP is a ball in E, centered at 0. It can only have radius
zero, hence P is contained in E⊥. Every rotation of Rn that leaves E pointwise fixed
maps P to itself, hence P is a centered ball of dimension n − j ≥ 2 or of dimension
zero. We deduce that P = {0}.

We have shown that

fj(K, ·) = 0 whenever dim K = j, j = 2, . . . , n− 2. (7)

From Lemma 4 (a) we conclude that

fj(K, ·) + fj(−K, ·) = 0 for all K ∈ Kn, j = 2, . . . , n− 2. (8)

Now let E ⊂ Rn be an (n − 1)-dimensional linear subspace. Define Ψ : K(E) →
K(E) by ΨK = πEΦK for K ∈ K(E). Then Ψ is a continuous valuation, invariant
under the translations of E into itself and equivariant under the rotations of SO(E).
It maps polytopes to polytopes. Let K ∈ Kn. The support function, on E, of ΨK is
the restriction of h(ΦK, ·) to E. Hence, it follows from (5) that

h(ΨK, u) =
n−1∑
i=1

fi(K, u) for u ∈ E.

On the other hand, from the result (6), applied in E, we have

h(ΨK, u) = cEh(ΠEK, u) +
n−3∑
i=1

gi(K, u) for u ∈ E,

where ΠE is the projection body operator in E and gi(·, u) is homogeneous of degree
i. By homogeneity, we must have

cEh(ΠEK, u) = fn−2(K, u) for u ∈ E.

Let K ⊂ E be an (n − 1)-dimensional centrally symmetric body. Since ΠEK 6= {0},
we deduce from (8) that cE = 0. This yields

fn−2(K, u) = 0 for all K ∈ K(E), u ∈ E. (9)
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Let e be one of the unit normal vectors of E, and let K ∈ K(E). Then (6) can be
written in the form

h(ΦK, ·) = c1Vn−1(K)|〈e, ·〉|+
n−2∑
i=1

fi(K, ·). (10)

Let H+
e := {u ∈ Rn : 〈e, u〉 ≥ 0} and H−

e = −H+
e . For u1, u2 ∈ H+

e and λ > 0, we
have

0 ≥ h(ΦλK, u1 + u2)− h(ΦλK, u1)− h(ΦλK, u2)

=
n−2∑
i=1

λi[fi(K, u1 + u2)− fi(K, u1)− fi(K, u2)],

from which we obtain

fn−2(K, u1 + u2) ≤ fn−2(K,u1) + fn−2(K, u2).

We replace K by −K and use (8). Together with the preceding inequality, this yields

fn−2(K, u1 + u2) = fn−2(K,u1) + fn−2(K, u2).

Since this holds for all u1, u2 ∈ H+
e and since fn−2(K, ·) is positively homogeneous, we

conclude that fn−2(K, ·) is linear on H+
e , thus there is a vector xK such that

fn−2(K, u) = 〈xK , u〉 for u ∈ H+
e .

Similarly, there is a vector yK such that

fn−2(K,u) = 〈yK , u〉 for u ∈ H−
e .

By (9), for any vector v ⊥ e we have 〈xK , v〉 = fn−2(K, v) = 0, and analogously
〈yK , v〉 = 0, hence xK and yK are parallel to e. Thus,

fn−2(K, u) = 〈e, u〉ϕ±n−2(K) for u ∈ H±
e ,

where ϕ+
n−2, ϕ

−
n−2 : K(E) → R are translation invariant, continuous valuations, ho-

mogeneous of degree n − 2, and by (7) they are simple. Moreover, for every rotation
ϑ ∈ SO(E) fixing e we have

ϕ+
n−2(ϑK) = f(ϑK, e) = f(K, e) = ϕ+

n−2(K).

Thus, ϕ+
n−2 is also invariant with respect to rotations of E into itself. By Lemma 3,

applied in E, this is only possible if ϕ+
n−2 = 0. Similarly, we obtain ϕ−n−2 = 0 and

thus fn−2(K, ·) = 0 for all K ∈ K(E). Since E was an arbitrary (n − 1)-dimensional
subspace, we have fn−2(K, ·) = 0 for arbitrary convex bodies K with dim K ≤ n − 1.
Now Lemma 4 (b) yields fn−2(K, ·) = 0 for all convex bodies K ∈ Kn.

Let j ∈ {2, . . . , n− 3} and suppose it has already been proved that

fi(K, ·) = 0 for all K ∈ Kn, i = j + 1, . . . , n− 2.
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We choose a (j + 1)-dimensional linear subspace E ⊂ Rn. For all K ∈ K(E) we have
ΠK = {0} and hence, by (6),

h(ΦK, ·) =

j∑
i=1

fi(K, ·).

By Lemma 6, the valuation Φj : K(E) → Kn with h(ΦjK, ·) = fj(K, ·) is defined. By
(7), it satisfies ΦjK = 0 if dim K = j. The proof of Lemma 5 shows that Φj = {0}.
Thus, fj(K, ·) = 0 whenever dim K ≤ j + 1. Now Lemma 4 (b) yields

fj(K, ·) = 0 for all K ∈ Kn.

In this way we continue, until we obtain f2(K, ·) = 0 for all K ∈ Kn. This completes
the proof of Theorem 1. �

4 Proof of Theorem 2

We assume that the assumptions of Theorem 2 are satisfied. As in the proof of Theorem
1, relation (3) holds (but fj(K, ·) need not have property (c) listed there), thus

h(ΦλK, ·) =
n∑

j=0

λjfj(K, ·) for K ∈ Kn,

for all λ > 0. If dim K ≤ n − 2, then ΦλK = {0} by assumption and continuity, and
we deduce that fj(K, ·) = 0 for j = 0, . . . , n.

We assert that fj(K, ·) = 0 for K ∈ Kn and for j = 0, . . . , n − 2. For j = 0, this
follows from f0(K, u) = a‖u‖ (obtained as before), by inserting a convex body K for
which f0(K, ·) = 0. Suppose that j ∈ {1, . . . , n − 2} and that fi(K, ·) = 0 for all
K ∈ Kn has been proved for i < j. Then

h(ΦK, ·) =
n∑

i=j

fi(K, ·) for K ∈ Kn.

By Lemma 6, the map Φj : Kn → Kn is defined. It maps bodies of dimension smaller
than n−1 to {0}; in particular, ΦjK = 0 if dim K = j. Lemma 5 shows that Φj = {0}.
Thus, (3) reduces to

h(ΦK, ·) = fn(K, ·) + fn−1(K, ·) = h(ΦnK, ·) + h(Φn−1K, ·)

for K ∈ Kn, where we have already inserted the homogeneous valuations Φn, Φn−1 that
exist by Lemma 6.

By Lemma 1, h(ΦnK,u) = g(u)Vn(K) with some function g. By the rotation
equivariance of Φ, we obtain ΦnK = aVn(K)Bn, with a constant a ≥ 0. By assumption,
there exists an n-dimensional convex body M such that ΦM is a polytope P . This
gives P = aVn(M)Bn + Φn−1M , where Bn denotes the unit ball. Since the polytope
P cannot have a ball with positive radius as a summand, this yields a = 0. Therefore,
Φ = Φn−1. Now Corollary 1 completes the proof of Theorem 2. �
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5 Open Problems

A positive answer to the following problem would simplify the proof of Theorem 1
considerably:

Problem 1. Let n ≥ 3. Let Φ : Kn → Kn be a continuous, translation invariant and
rotation equivariant valuation. Is there a (unique) representation of Φ of the form

Φ = Φ0 + . . . + Φn,

where Φj : Kn → Kn is a continuous, translation invariant and rotation equivariant
valuation which is homogeneous of degree j?

As remarked in the introduction, the assumptions of Theorem 1 are stronger than
necessary. Theorems 2 and 5 lead to the following question.

Problem 2. Let n ≥ 3. Let Φ : Kn → Kn be a continuous, translation invariant and
rotation equivariant valuation. Assume that Φ maps some n-dimensional convex body
to a polytope. Are there constants c1, c2, c3 ≥ 0 such that

Φ = c1Π + c2I + c3(−I)?
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