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Abstract

A new sharp affine Lp Sobolev inequality for functions on Rn is established.
This inequality strengthens and implies the previously known affine Lp Sobolev
inequality which in turn is stronger than the classical Lp Sobolev inequality.

1. Introduction

The sharp Lp Sobolev inequality of Aubin [1] and Talenti [36] is one of
the fundamental inequalities of analysis. It plays a central role in a number
of different areas such as the theory of partial differential equations, geometric
measure theory, and the calculus of variations. In recent years, many variations
and generalizations have been obtained, see, e.g., [2, 3, 6, 8, 11, 32, 33, 37] and
the references therein.

Recently, Zhang [38] (for p = 1) and Lutwak, Yang, and Zhang [27] (for
1 < p < n) formulated and proved a sharp affine Lp Sobolev inequality. This
remarkable inequality is invariant under all affine transformations of Rn and
turned out to be significantly stronger than the classical Lp Sobolev inequality
although it does not rely on any Euclidean geometric structure. As was shown
in [38], the affine Zhang–Sobolev inequality is equivalent to the extended Petty
projection inequality established in [38]. In the Euclidean setting, all the Lp
Sobolev inequalities have the classical isoperimetric inequality at their core (for
p = 1 both inequalities are equivalent as discovered Maz’ya [31] and, indepen-
dently, by Federer and Fleming [10]). In the affine setting, the situation is more
difficult. Here, new geometry is needed to pass from the case p = 1 to p > 1. To
establish the affine Lp Sobolev inequality for p > 1, Lutwak, Yang and Zhang
[25] had to first establish an Lp Petty projection inequality.

In this article we establish a new sharp affine Lp Sobolev inequality which
strengthens and directly implies the previously known sharp affine Lp Sobolev
inequality of Lutwak, Yang, and Zhang. The geometry behind this new Sobolev
inequality is an Lp affine isoperimetric inequality, stronger than the Lp Petty
projection inequality, which was recently established by the authors in [13]. This
crucial geometric inequality was made possible by recent advances in valuation
theory by Ludwig [17, 19].
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We denote by W 1,p(Rn) the space of real-valued Lp functions on Rn (n ≥ 2)
with weak Lp partial derivatives. Let | · | denote the standard Euclidean norm
on Rn and let ‖f‖p denote the usual Lp norm of f in Rn. The classical sharp Lp
Sobolev inequality states that if f ∈W 1,p(Rn), with real p satisfying 1 ≤ p < n,
then (∫

Rn

|∇f |p dx
)1/p

≥ ĉn,p ‖f‖p∗ , (1.1)

where p∗ = np/(n− p). The optimal constants ĉn,p in this inequality are due to
Federer and Fleming [10] and Maz’ya [31] for p = 1 and to Aubin [1] and Talenti
[36] for p > 1. The extremal functions for inequality (1.1) are the characteristic
functions of balls for p = 1 and for p > 1 equality is attained when

f(x) = (a+ b|(x− x0)|p/(p−1))1−n/p,

with a, b > 0, and x0 ∈ Rn.
The sharp affine Lp Sobolev inequality of Zhang [38] and Lutwak, Yang, and

Zhang [27] states that if f ∈W 1,p(Rn), 1 ≤ p < n, then(∫
Sn−1

‖Duf‖−np du

)−1/n

≥ c̃n,p ‖f‖p∗ , (1.2)

where Duf is the directional derivative of f in the direction u ∈ Sn−1. The
optimal constants c̃n,p in (1.2) were explicitly computed in [38] (for p = 1) and
[27]. The determination of ĉn,p and c̃n,p in (1.1) and (1.2) is in many situations
not as important as the identification of extremal functions. The extremals
associated with inequality (1.2) for p = 1 are the characteristic functions of
ellipsoids and for p > 1 equality is attained when

f(x) = (a+ |φ(x− x0)|p/(p−1))1−n/p,

with a > 0, φ ∈ GL(n), and x0 ∈ Rn.
We emphasize that inequality (1.2) is invariant under affine transformations

of Rn, while the classical Lp Sobolev inequality (1.1) is invariant only under rigid
motions. That the affine Lp Sobolev inequality is stronger than (1.1) follows
from an application of Hölder’s inequality (cf. [27, p. 33]):(∫

Rn

|∇f |p dx
)1/p

≥ an,p
(∫

Sn−1
‖Duf‖−np du

)−1/n

≥ ĉn,p ‖f‖p∗ .

Here, equality in the left inequality holds if and only if ‖Duf‖p is independent
of u ∈ Sn−1. The constant an,p was computed in [27].

For u ∈ Sn−1 and f ∈W 1,p(Rn), we denote by

D+
u f(x) = max{Duf(x), 0}

the positive part of the directional derivative of f in the direction u.
The main result of this article is the following:
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Theorem 1. If f ∈W 1,p(Rn), with 1 ≤ p < n, then(∫
Sn−1

‖D+
u f‖−np du

)−1/n

≥ cn,p ‖f‖p∗ , (1.3)

where p∗ = np/(n− p). For p > 1, the optimal constant cn,p is given by

cn,p = 2−1/p(n−pp−1 )1−1/p
(

Γ( n
p )Γ(n+1−n

p )

Γ(n+1)

)1/n (
nΓ( n

2 )Γ( p+1
2 )

√
πΓ( n+p

2 )

)1/p

,

and cn,1 = limp→1 cn,p. If p = 1, equality holds in (1.3) for characteristic
functions of ellipsoids and for p > 1 equality is attained when

f(x) = (a+ |φ(x− x0)|p/(p−1))1−n/p,

with a > 0, φ ∈ GL(n) and x0 ∈ Rn.

Note that inequality (1.3) is invariant under affine transformations of Rn.
We will show in Section 6 that, for p ≥ 1,(∫

Sn−1
‖Duf‖−np du

)−1/n

≥ 21/p

(∫
Sn−1

‖D+
u f‖−np du

)−1/n

. (1.4)

Since c̃n,p = 21/pcn,p, the new affine Lp Sobolev inequality (1.3) is stronger
than inequality (1.2) of Zhang and Lutwak, Yang, and Zhang. In particular,
inequality (1.3) is also stronger than the classical Lp Sobolev inequality (1.1).
It is crucial to observe that while for inequality (1.2) only the even part of
the directional derivatives of f contribute, for the new inequality (1.3) also
asymmetric parts are accounted for. This is reflected by the fact that equality
in (1.4) holds precisely when ‖D+

u f‖p is an even function on Sn−1.
The classical L2 Sobolev inequality has drawn particular attention due to

its conformal invariance, see, e.g., [3, 6, 16]. As noted in [27], the affine L2

Sobolev inequality of Lutwak, Yang, and Zhang is equivalent under an affine
transformation to the L2 Sobolev inequality. The case p = 2 of inequality (1.3),
however, yields a stronger inequality.

While the geometric inequalities behind the affine Zhang–Sobolev inequality
and inequality (1.3) for p = 1 are the same, a new affine isoperimetric inequality
recently established by the authors [13] is needed to establish inequality (1.3) for
p > 1. We will apply this inequality to convex bodies (associated with the given
function) which occur as solutions to the Lp Minkowski problem for 1 < p < n.
Since the geometric inequality assumes that the convex bodies contain the origin
in their interiors, its application is intricate in the asymmetric situation. Here,
the origin can lie on the boundary of the convex bodies which occur as a solution
to the Lp Minkowski problem. All this geometric background will be discussed
in detail in Sections 3 & 4.
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2. Background Material

In the following we state some basic facts about convex bodies and compact
domains. General references for the theory of convex bodies are the books by
Gardner [12] and Schneider [35]. We will also collect background material from
real analysis needed in the proof of Theorem 1.

The setting for this article is Euclidean n-space Rn with n ≥ 2. A convex
body is a compact convex set in Rn with non-empty interior. Let Kn denote the
set of convex bodies in Rn endowed with the Hausdorff metric. We write Kno
for the set of convex bodies containing the origin in their interiors.

A compact convex set K is uniquely determined by its support function
h(K, ·), where h(K,x) = max{x · y : y ∈ K}, x ∈ Rn, and where x · y denotes
the usual inner product of x and y in Rn. Note that h(K, ·) is positively homo-
geneous of degree one and subadditive. Conversely, every function with these
properties is the support function of a unique compact convex set.

If K ∈ Kno , the polar body K∗ of K is defined by

K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K}.

Let ρ(K,x) = max{λ ≥ 0 : λx ∈ K}, x ∈ Rn\{0}, denote the radial function
of K. It follows from the definitions of support functions and radial functions,
and the definition of the polar body of K, that

ρ(K∗, ·) = h(K, ·)−1 and h(K∗, ·) = ρ(K, ·)−1. (2.1)

A compact domain is the closure of a bounded open subset of Rn. If M and
N are compact domains in Rn, then the Brunn–Minkowski inequality states
that

V (M +N)1/n ≥ V (M)1/n + V (N)1/n,

where V denotes the usual n-dimensional Lebesgue measure. For a compact
domain M and a convex body K in Rn, define

nV1(M,K) = lim inf
ε→0+

V (M + εK)− V (M)
ε

.

If the boundary ∂M of M is a C1 submanifold of Rn, then

V1(M,K) =
1
n

∫
∂M

h(K, ν(x)) dHn−1(x), (2.2)

where ν(x) is the exterior unit normal vector of ∂M at x and Hn−1 denotes
(n− 1)-dimensional Hausdorff measure (cf. [38, Lemma 3.2]).

We need the following immediate consequence of the Brunn–Minkowski in-
equality: If M is a compact domain and K is a convex body in Rn, then

V1(M,K)n ≥ V (M)n−1V (K). (2.3)
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We will frequently apply Federer’s co-area formula (see, e.g., [9, p. 258]).
For quick reference we state a version which is sufficient for our purposes: If
f : Rn → R is locally Lipschitz and g : Rn → [0,∞) is measurable, then, for
any Borel set A ⊆ R,∫

f−1(A)∩{|∇f |>0}
g(x) dx =

∫
A

∫
f−1{y}

g(x)
|∇f(x)|

dHn−1(x) dy. (2.4)

Finally, we require the following consequence (cf. [2, Proposition 2.18]) of
Bliss’ inequality [4]. For an elementary proof we refer to [27, Lemma 4.1]: Let
f : (0,∞) → [0,∞) be decreasing and locally absolutely continuous and let
1 < p < n. If the integrals exist, then(∫ ∞

0

|f ′(x)|pxn−1 dx

)1/p

≥ bn,p
(∫ ∞

0

f(x)p
∗
xn−1 dx

)1/p∗

, (2.5)

where p∗ = np/(n− p) and

bn,p = n1/p∗(n−pp−1 )1−1/p
(

Γ( n
p )Γ(n+1−n

p )

Γ(n)

)1/n

.

Equality in (2.5) holds if f(x) = (axp/(p−1) + b)1−n/p, with a, b > 0.

3. Lp Projection Bodies and the Lp Minkowski Problem

In this section we collect the material which forms the geometric core in the
proof of our main result. The critical ingredients are an Lp affine isoperimetric
inequality recently established in [13] and the solution (to the discrete data case)
of an Lp extension of the classical Minkowski problem obtained in [7].

The projection body ΠK of K ∈ Kn is the convex body defined by

h(ΠK,u) = voln−1(K|u⊥),

where voln−1(K|u⊥) is the (n − 1)-dimensional volume of the projection of K
onto the hyperplane orthogonal to u.

Introduced by Minkowski, projection bodies have become a central notion in
convex geometry, see, e.g., [12, 13, 17, 26] and the references therein. A recent
result by Ludwig [19] has demonstrated their special place in affine geometry:
The projection operator was characterized as the unique valuation which is
contravariant with respect to linear transformations.

The fundamental affine isoperimetric inequality for projection bodies is the
Petty projection inequality: If K ∈ Kn, then

V (K)n−1V (Π∗K) ≤
(

κn
κn−1

)n
,

with equality if and only if K is an ellipsoid. Here Π∗K = (ΠK)∗ and κn
denotes the volume of the Euclidean unit ball in Rn. This inequality turned out
to be far stronger than the classical isoperimetric inequality. It is the geometric
inequality behind the affine Zhang–Sobolev inequality [38].
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Projection bodies are part of the classical Brunn–Minkowski theory. In a
series of articles [22, 23], Lutwak showed that merging the notion of volume
with Firey’s Lp addition of convex sets leads to a Brunn–Minkowski theory for
each p ≥ 1. Since Lutwak’s seminal work, the topic has been much studied, see,
e.g., [5, 7, 18, 19, 20, 24, 26, 27, 29, 30]. For p ≥ 1, K,L ∈ Kno and α, β ≥ 0
(not both zero), the Lp Minkowski combination α ·K+p β ·L is the convex body
defined by

h(α ·K +p β · L, ·)p = αh(K, ·)p + βh(L, ·)p.
One of the basic notions of the Lp Brunn–Minkowski theory is the Lp mixed
volume Vp(K,L) of two bodies K, L ∈ Kno . It was defined in [22] by

Vp(K,L) =
p

n
lim
ε→0+

V (K +p ε · L)− V (K)
ε

.

Clearly, the diagonal form of Vp reduces to ordinary volume, i.e., for K ∈ Kno ,

Vp(K,K) = V (K). (3.1)

It was shown in [22] that corresponding to each convex body K ∈ Kno , there
exists a positive Borel measure on Sn−1, the Lp surface area measure Sp(K, ·)
of K, such that for every L ∈ Kno ,

Vp(K,L) =
1
n

∫
Sn−1

h(L, u)p dSp(K,u). (3.2)

The measure S1(K, ·) is just the classical surface area measure S(K, ·) of K.
Moreover, it was proved in [22], that the Lp surface area measure is absolutely
continuous with respect to S(K, ·):

dSp(K,u) = h(K,u)1−pdS(K,u), u ∈ Sn−1. (3.3)

Recall that for a Borel set ω ⊆ Sn−1, S(K,ω) is the (n− 1)-dimensional Haus-
dorff measure of the set of all boundary points of K for which there exists a
normal vector of K belonging to ω. From the homogeneity properties of the
surface area measure and the support function of K, one obtains that, for every
λ > 0,

Sp(λK, ·) = λn−pSp(K, ·). (3.4)

For a finite Borel measure µ on Sn−1, we define a continuous function C+
p µ

on Sn−1, the asymmetric Lp cosine transform of µ, by

(C+
p µ)(u) =

∫
Sn−1

(u · v)p+ dµ(v), u ∈ Sn−1,

where (u ·v)+ = max{u ·v, 0}. For f ∈ C(Sn−1), let C+
p f be the asymmetric Lp

cosine transform of the absolutely continuous measure (with respect to spherical
Lebesgue measure) with density f . The asymmetric Lp projection body Π+

pK of
K ∈ Kno , first considered in [23], is the convex body defined by

h(Π+
pK, ·)p = C+

p Sp(K, ·). (3.5)
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For p > 1, Ludwig [19] established the Lp analogue of her classification of the
projection operator: She showed that the convex bodies

c1 ·Π+
pK +p c2 ·Π−p K, K ∈ Kno , (3.6)

where Π−p K = Π+
p (−K) and c1, c2 ≥ 0 (not both zero), constitute all natural

Lp extensions of projection bodies.
The (symmetric) Lp projection body ΠpK of K ∈ Kno , defined in [26], is

ΠpK = 1
2 ·Π

+
pK +p

1
2 ·Π

−
p K.

Lutwak, Yang, and Zhang [26] (see also Campi and Gronchi [5]) established
an Lp extension of the Petty projection inequality for the (symmetric) Lp pro-
jection operator which forms the geometry behind their sharp affine Lp Sobolev
inequality: If K ∈ Kno , then

V (K)n/p−1V (Π∗pK) ≤
(

κnΓ( n+p
2 )

π(n−1)/2Γ( 1+p
2 )

)n/p
, (3.7)

with equality if and only if K is an ellipsoid centered at the origin.
Recently the authors [13] established the Lp Petty projection inequality for

each member of the family (3.6) of Lp projection operators. The geometric core
of the asymmetric affine Lp Sobolev inequality (1.3) is the following special case
of this result:

Theorem 2. If p > 1 and K ∈ Kno , then

V (K)n/p−1V (Π+,∗
p K) ≤

(
κnΓ( n+p

2 )
π(n−1)/2Γ( 1+p

2 )

)n/p
, (3.8)

where equality is attained if K is an ellipsoid centered at the origin.

Although this inequality was formulated in [13] for dimensions n ≥ 3, we
remark that it also holds true in dimension n = 2. The proof is verbally the
same as the one given in [13]. Since surface area measures have their center of
mass at the origin, we have

Π+
1 K = ΠK.

Thus, for p = 1, inequality (3.8) is the classical Petty projection inequality.
It was also shown in [13] that inequality (3.8), for p > 1, is stronger than the

Lp Petty projection inequality (3.7) of Lutwak, Yang, and Zhang: If K ∈ Kno ,
then

V (Π∗pK) ≤ V (Π+,∗
p K). (3.9)

If p is not an odd integer, equality holds precisely for origin-symmetric K.

We turn now to the second main ingredient in the proof of Theorem 1. The
Lp Minkowski problem asks for necessary and sufficient conditions for a Borel
measure µ on Sn−1 to be the Lp surface area measure of a convex body. A
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solution to this problem for p > n was given by Chou and Wang [7]. Moreover,
Chou and Wang [7] established the solution to the discrete-data case of the Lp
Minkowski problem for all p > 1 (see also [15] for an alternate approach). The
following solution to the discrete Lp Minkowski problem due to Chou and Wang
will be crucial:

Theorem 3. If α1, . . . , αn > 0 and u1, . . . , un ∈ Sn−1 are not contained in a
closed hemisphere, then, for any p > 1, p 6= n, there exists a unique polytope
P ∈ Kno such that

n∑
j=1

αjδuj
= Sp(P, ·).

Here, δu denotes the probability measure with unit point mass at u ∈ Sn−1.
We will also apply two auxiliary results [28, Lemma 2.2 & 2.3] concerning the

volume normalized Lp Minkowski problem: Let µ be a positive Borel measure
on Sn−1, and let K ∈ Kn contain the origin. Suppose that

V (K)h(K, ·)p−1µ = S(K, ·),

and that for some constant c > 0,∫
Sn−1

(u · v)p+ dµ(v) ≥ n

cp
for every u ∈ Sn−1.

Then

V (K) ≥ κn
(

n

µ(Sn−1)

)n/p
and K ⊂ cBn, (3.10)

where Bn denotes the Euclidean unit ball in Rn.

4. A Critical Lemma

A crucial part in the proof of our main result is the construction of a family
of convex bodies containing the origin in their interiors from a given function.
It is essential that the origin is an interior point in order to apply the critical
geometric inequality (3.8) afterwards. In [26], this was done by using the solution
to the even Lp Minkowski problem. In our case, we have to deal with the
solutions to the general Lp Minkowski problem. Here, the bodies can contain
the origin in their boundaries (cf. [15]). Therefore, we will associate a two
parametric family of convex polytopes with a given function. These polytopes
are obtained from the solution to the discrete-date case of the Lp Minkowski
problem which ensures that they contain the origin as an interior point. This
will allow us to use the relevant geometric inequality.

A function f ∈ C∞(Rn) is called smooth. Suppose f is smooth and has
compact support. Then the level set

[f ]t = {x ∈ Rn : |f(x)| ≥ t}

is compact for every 0 < t ≤ ‖f‖∞, where ‖f‖∞ denotes the maximum value of
|f | over Rn.
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Lemma 1. Suppose that f : Rn → R is smooth and has compact support.
Then, for almost every t ∈ (0, ‖f‖∞), there exists a sequence of convex polytopes
P tk ∈ Kno , k ∈ N, such that

lim
k→∞

P tk = Kt
f ∈ Kn

and
V (Kt

f ) =
1
n

∫
∂[f ]t

h(Kt
f ,∇f(x))p|∇f(x)|−1 dHn−1(x). (4.1)

Moreover, there exists a convex body Ltf ∈ Kno such that

lim
k→∞

Π+
p P

t
k = Ltf .

Proof : By Sard’s theorem, for almost every t ∈ (0, ‖f‖∞), the boundary ∂[f ]t of
[f ]t is a smooth (n− 1)-dimensional submanifold with everywhere nonzero nor-
mal vector∇f . Let t be chosen in this way and denote by ν(x) = ∇f(x)/|∇f(x)|
the unit normal of ∂[f ]t at x.

Let µt be the finite positive Borel measure on Sn−1 defined by∫
Sn−1

g(v) dµt(v) =
∫
∂[f ]t

g(ν(x))|∇f(x)|p−1 dHn−1(x), (4.2)

for g ∈ C(Sn−1). Since

{ν(x) : x ∈ ∂[f ]t} = Sn−1, (4.3)

it follows that for every u ∈ Sn−1,∫
Sn−1

(u · v)+ dµ
t(v) =

∫
∂[f ]t

(u · ν(x))+|∇f(x)|p−1 dHn−1(x) > 0.

Therefore, the measure µt cannot be concentrated in a closed hemisphere.
As in [35, pp. 392-3], construct a sequence µtk, k ∈ N, of discrete measures

on Sn−1 whose support is not contained in a closed hemisphere and such that
µtk converges weakly to µt as k → ∞. By Theorem 3, for each k ∈ N, there
exists a polytope P tk ∈ Kno such that

µtk = Sp(P tk, ·). (4.4)

We want to show that the sequence of polytopes P tk is bounded. To this end,
define for each k ∈ N a new polytope Qtk by

Qtk = V (P tk)−1/pP tk.

By (3.3) and the homogeneity (3.4) of Lp surface area measures, the polytopes
Qtk, k ∈ N, form a solution to the volume normalized Lp Minkowski problem

V (Qtk)h(Qtk, ·)p−1µtk = S(Qtk, ·). (4.5)
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Moreover, from definition (3.5), relation (4.4) and the weak convergence of the
measures µtk, it follows that for every u ∈ Sn−1,

h(Π+
p P

t
k, u)p =

∫
Sn−1

(u · v)p+ dµ
t
k(v) −→

∫
Sn−1

(u · v)p+ dµ
t(v) > 0. (4.6)

Since pointwise convergence of support functions implies uniform convergence
(see, e.g., [35, Theorem 1.8.12]), there exists a c > 0 such that for all k ∈ N,∫

Sn−1
(u · v)p+ dµ

t
k(v) > c, for every u ∈ Sn−1. (4.7)

From (4.5), (4.7) and (3.10), we deduce that the sequence Qtk, k ∈ N, is bounded.
Moreover, by (3.10) and the weak convergence of the measures µtk, the volumes
V (Qtk) are bounded from below by a constant independent of k. Therefore, the
original sequence P tk = V (Qtk)1/(p−n)Qtk is also bounded.

By the Blaschke selection theorem (see, e.g., [35, Theorem 1.8.6]), we can
select a subsequence of the P tk converging to a convex body Kt

f . After relabeling
(if necessary) we may assume that limk→∞ P tk = Kt

f . From (3.1), (3.2), and
relation (4.4), we obtain

V (Kt
f ) = lim

k→∞
V (P tk) = lim

k→∞

1
n

∫
Sn−1

h(P tk, v)p dµtk(v).

Thus, the uniform convergence of the support functions h(P tk, ·), the weak con-
vergence of the measures µtk, and definition (4.2), yield

V (Kt
f ) =

1
n

∫
∂[f ]t

h(Kt
f ,∇f(x))p|∇f(x)|−1 dHn−1(x).

Finally, we define h(Ltf , ·)p = C+
p µ

t. By definition (4.2), we have

h(Ltf , u)p =
∫
∂[f ]t

(u · ∇f(x))p+|∇f(x)|−1 dHn−1(x), u ∈ Sn−1. (4.8)

From (4.6), we deduce that h(Ltf , ·) is the support function of a convex body
Ltf ∈ Kno and that limk→∞Π+

p P
t
k = Ltf . �

5. Proof of the Main Result

After these preparations, we are now in a position to proof our main result.
We want to point out that the approach we use to establish Theorem 1 is based
on ideas and techniques of Lutwak, Yang, and Zhang [27].

We will need the decreasing rearrangement f̄ of a function f : Rn → R. It is
defined by

f̄(x) = inf{t > 0 : V ([f ]t) < κn|x|n}.
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Note that the level set [f̄ ]t is a dilate of the unit ball Bn and its volume is equal
to V ([f ]t). Moreover, for all p ≥ 1,

‖f‖p = ‖f̄‖p. (5.1)

We will first reduce the proof of Theorem 1 to the class of smooth functions
with compact support.

Lemma 2. In order to prove Theorem 1, it is sufficient to verify the following
assertion: If f ∈ C∞(Rn) has compact support and 1 ≤ p < n, then(∫

Sn−1
‖D+

u f‖−np du

)−1/n

≥ cn,p ‖f‖p∗ . (5.2)

Proof : Assume that (5.2) holds for smooth functions with compact support and
let f ∈ W 1,p. We may assume that the set {x ∈ Rn : f(x) 6= 0} has positive
measure. First, we will show that ‖D+

u f‖p > 0 for every u ∈ Sn−1.
We may assume that u = en is the last canonical basis vector. We denote

the indicator function of a set A ⊆ Rn by IA. Since for each N ∈ N, almost all
points in Rn are Lebesgue points of f · I[−N,N ]n (see, e.g., [34, Theorem 7.7]),
there exists an n-box P = [a1, b1]× · · · × [an, bn] such that

∫
P
f 6= 0.

If
∫
P
f > 0, then, since f ∈ Lp(Rn), there exist real a < b < c such that∫

P ′

∫ b

a

f <

∫
P ′

∫ c

b

f,

where P ′ denotes the (n − 1)-box [a1, b1] × · · · × [an−1, bn−1]. Let 0 < ε < 1
and let gi : R → [0, 1], i = 1, . . . , n − 1, be smooth functions with gi = 1 on
[ai, bi] and gi = 0 on (ai − ε, bi + ε)c. Furthermore, define gn : R → R, by
gn(x) =

∫ x
−∞ hn(x) dx, where hn is a smooth function which is equal to ε on

[a+ ε, b− ε], −ε on [b+ ε, c− ε], and zero on [a, c]c.
If we set φ(x) = g1(x1) · . . . · gn(xn), then φ is a non-negative, smooth, and

compactly supported function such that
∫

Rn f∂nφ < 0 for sufficiently small ε.
Here, ∂nφ denotes the n-th partial derivative of φ.

If
∫
P
f < 0, then the above argument applied to x 7→ −f(−x) yields a

non-positive, smooth, and compactly supported function φ with
∫

Rn f∂nφ > 0.
Now suppose that ‖D+

en
f‖p = 0. This implies, by the definition of weak

derivatives, that
∫

Rn f∂nφ ≥ 0 (≤ 0) for every smooth and compactly supported
φ which is non-negative (non-positive). This is a contradiction to the above
construction. Thus ‖D+

u f‖p > 0 for every u ∈ Sn−1.
Since f ∈W 1,p, we can find a sequence fk, k ∈ N, of smooth functions with

compact support such that

‖fk − f‖p → 0 and ‖∂ifk − ∂if‖p → 0

for i = 1, . . . , n. By Minkowski’s inequality we have

cn,p‖fl − fm‖p∗ ≤
(∫

Sn−1
‖D+

u (fl − fm)‖−np du

)−1/n

≤ 1

ω
1/n
n

n∑
i=1

‖∂ifl − ∂ifm‖p
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for all l,m ∈ N, where ωn denotes the surface area of the Euclidean unit ball in
Rn. Consequently, the sequence fk, k ∈ N, is a Cauchy sequence in Lp∗(Rn).

By the completeness of Lp∗(Rn), there exists a function g such that
‖fk − g‖p∗ → 0. Since sequences of functions converging in Lq, q > 0, posess
a subsequence converging almost everywhere, we can find fkj , j ∈ N, such that
fkj → f and fkj → g almost everywhere. We conclude that f = g almost
everywhere and hence fk → f also in Lp∗(Rn).

By the first part of the proof, limk→∞ ‖D+
u fk‖−np = ‖D+

u f‖−np for every unit
vector u ∈ Sn−1. Thus an application of Fatou’s Lemma yields∫

Sn−1
‖D+

u f‖−np du =
∫
Sn−1

lim
k→∞

‖D+
u fk‖−np du

≤ lim inf
k→∞

∫
Sn−1

‖D+
u fk‖−np du

≤ lim
k→∞

c−nn,p‖fk‖−np∗ = c−nn,p‖f‖−np∗ . �

Proof of Theorem 1. In the following let p > 1. By Lemma 2 we may assume
that f is a smooth function with compact support which is not identically zero.
An application of the co-area formula (2.4) shows that

‖D+
u f‖pp =

∫
Rn

(u · ∇f(x))p+ dx =
∫ ‖f‖∞

0

∫
∂[f ]t

(u · ∇f(x))p+
|∇f(x)|

dHn−1(x) dt.

By Lemma 1 and (4.8), there exists a convex body Ltf ∈ Kno such that

(∫
Sn−1

‖D+
u f‖−np du

)−p/n
=

∫
Sn−1

(∫ ‖f‖∞
0

h(Ltf , u)p dt

)−n/p
du

−p/n .
Since h(Ltf , ·) is positive, we can apply a consequence of Minkowski’s integral
inequality (see, e.g., [14, p. 148]), to obtain(∫

Sn−1
‖D+

u f‖−np du

)−p/n
≥
∫ ‖f‖∞

0

(∫
Sn−1

h(Ltf , u)−n du
)−p/n

dt.

Using (2.1) and the polar coordinate formula for volume, we deduce(∫
Sn−1

‖D+
u f‖−np du

)−p/n
≥
∫ ‖f‖∞

0

(
nV (Lt,∗f )

)−p/n
dt. (5.3)

By Lemma 1, there exists a sequence of convex polytopes P tk ∈ Kno such that
limk→∞ P tk = Kt

f ∈ Kn and limk→∞Π+
p P

t
k = Ltf . Thus, from an application of

Theorem 2, we obtain

(nV (Lt,∗f ))−p/n = lim
k→∞

(nV (Π+,∗
p P tk))−p/n ≥ en,pV (Kt

f )(n−p)/n, (5.4)

12



where
en,p =

π(n−1)/2Γ( 1+p
2 )

np/nκnΓ( n+p
2 ) .

From (5.3) and (5.4), we deduce(∫
Sn−1

‖D+
u f‖−np du

)−p/n
≥ en,p

∫ ‖f‖∞
0

V (Kt
f )(n−p)/n dt. (5.5)

An application of Hölder’s integral inequality to volume formula (4.1), yields

V (Kt
f )(n−p)/np ≥ n1−1/p

(∫
∂[f ]t

dHn−1(x)
|∇f(x)|

)(1−p)/p

V (Kt
f )−1/nV1([f ]t,Kt

f ),

where we have used integral representation (2.2). From inequality (2.3), we
deduce further that

V (Kt
f )(n−p)/n ≥ np−1

(∫
∂[f ]t

dHn−1(x)
|∇f(x)|

)1−p

V ([f ]t)(n−1)p/n. (5.6)

Another application of the co-area formula (2.4), yields∫ ‖f‖∞
t

∫
∂[f ]s

dHn−1(x)
|∇f(x)|

ds = V ([f ]t ∩ {|∇f | > 0}).

Using Sard’s theorem, it is not hard to show that for almost every t satisfying
0 < t < ‖f‖∞, there exists a neighborhood Ut of t such that

V (f−1(Ut) ∩ {|∇f | > 0}) = V (f−1(Ut)).

Therefore, we obtain for almost every t with 0 < t < ‖f‖∞,∫
∂[f ]t

dHn−1(x)
|∇f(x)|

= −V ([f ]t)′. (5.7)

Combining (5.5), (5.6), and (5.7), we obtain(∫
Sn−1

‖D+
u f‖−np du

)−p/n
≥ en,p
n1−p

∫ ‖f‖∞
0

V ([f ]t)(n−1)p/n

(−V ([f ]t)′)p−1
dt. (5.8)

In order to estimate the right integral in (5.8), define f̂ : (0,∞)→ R, by

f̄(x) = f̂(1/|x|).

Since the decreasing rearrangement f̄(x) depends only on the Euclidean norm
of x, the function f̂ is well defined and increasing. Moreover, it follows from the
definition of f̄ that

V ([f ]f̂(s)) = κns
−n.

13



Noting that f̂ is locally Lipschitz, the substitution rule thus yields∫ ‖f‖∞
0

V ([f ]t)(n−1)p/n

(−V ([f ]t)′)p−1
dt = n1−pκ1−p/n

n

∫ ∞
0

f̂ ′(s)ps2p−n−1 ds.

Hence, we can rewrite (5.8) as(∫
Sn−1

‖D+
u f‖−np du

)−p/n
≥ en,pκ1−p/n

n

∫ ∞
0

f̂ ′(s)ps2p−n−1 ds. (5.9)

Using polar coordinates and (5.1), we see that

‖f̄‖p
∗

p∗ = nκn

∫ ∞
0

f̂(s)p
∗
s−n−1 ds = ‖f‖p

∗

p∗ .

The substitution t = 1/s and an application of inequality (2.5), therefore yields(∫ ∞
0

f̂ ′(s)ps2p−n−1 ds

)1/p

≥ bn,p

n1/p∗κ
1/p∗
n

‖f‖p∗ . (5.10)

Finally, combine inequalities (5.9) and (5.10), to obtain the desired result(∫
Sn−1

‖D+
u f‖−np du

)−1/n

≥ cn,p ‖f‖p∗ . (5.11)

In order to see that inequality (1.3) is sharp, take for smooth K ∈ Kno ,

f(x) =
(

1 + ρ(K,x)p/(1−p)
)1−n/p

. (5.12)

Then, a straightforward (but tedious) calculation shows that inequality (1.3)
reduces to the Lp affine isoperimetric inequality (3.8), where equality holds if
K is an ellipsoid centered at the origin.

Clearly, the case p = 1 of inequality (1.3) can be obtained from a limit of
inequality (5.11) as p→ 1:(

1
n

∫
Sn−1

‖D+
u f‖−n1 du

)−1/n

≥ κn−1

κn
‖f‖1∗ . (5.13)

Noting that Π+
1 = Π, one can show (cf. [38]) that for characteristic functions

of convex bodies, inequality (5.13) reduces to the Petty projection inequality,
where equality is attained for ellipsoids. �

We remark that for p > 1 the affine Lp Sobolev inequality (1.2) of Lutwak,
Yang, and Zhang reduces to the Lp Petty projection inequality (3.7) if we take
f as in (5.12). Thus, it follows from (3.9) that the new inequality (1.3) is in
general stronger than (1.2). We will make this fact even more explicit in the
next section.
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6. A Stronger Inequality

In this last section we show that Theorem 1 provides a stronger result than
the affine Lp Sobolev inequality (1.2) of Zhang and Lutwak, Yang, and Zhang.
The basic concept behind this observation is a convex body associated with a
given function f .

For p ≥ 1 and f ∈W 1,p(Rn), let B+
p (f) be the convex body defined by

h(B+
p (f), u) =

(∫
Rn

(D+
u f(x))p dx

)1/p

=
(∫

Rn

(u · ∇f(x))p+ dx
)1/p

.

From Minkowski’s integral inequality, we deduce that h(B+
p (f), ·) is sublinear

and therefore the support function of a unique convex body B+
p (f). Moreover,

by Lemma 2, this body contains the origin in its interior. By (2.1) and the polar
coordinate formula for volume, the volume of its polar body is given by

V (B+,∗
p (f)) =

1
n

∫
Sn−1

‖D+
u f‖−np du.

Therefore, we can rewrite our main theorem as follows:

Theorem 1′ If f ∈W 1,p(Rn), with 1 ≤ p < n, then

V (B+,∗
p (f))−1/n ≥ kn,p ‖f‖p∗ .

The optimal constant kn,p is given by

kn,p = 2−1/p(n−pp−1 )1−1/p
(

Γ( n
p )Γ(n+1−n

p )

Γ(n)

)1/n (
nΓ( n

2 )Γ( p+1
2 )

√
πΓ( n+p

2 )

)1/p

.

From the definition of Lp Minkowski addition, it follows that

h(B+
p (f) +p B

+
p (−f), u) =

(∫
Rn

|Duf(x)|p dx
)1/p

. (6.1)

Thus, the following reformulation of inequality (1.4) shows that Theorem 1 is
stronger than inequality (1.2):

Theorem 4. If p ≥ 1 and f ∈W 1,p(Rn), then

V ((B+
p (f) +p B

+
p (−f))∗) ≤ 2−n/pV (B+,∗

p (f)),

with equality if and only if B+
p (f) is origin symmetric.

In order to prove this theorem, we need a result from the dual Lp Brunn–
Minkowski theory. The basis of this theory is the following addition on convex
bodies. For α, β ≥ 0 (not both zero), Firey’s Lp harmonic radial combination
α ·K +̃p β · L of K,L ∈ Kno is the convex body defined by

ρ(α ·K +̃p β · L, ·)−p = αρ(K, ·)−p + βρ(L, ·)−p.
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Firey started investigations of harmonic Lp combinations in the 1960’s which
were continued by Lutwak leading to a dual Lp Brunn–Minkowski theory.
A cornerstone of this theory is the dual Lp Brunn–Minkowski inequality [23]: If
K,L ∈ Kno , then

V (K +̃p L)−p/n ≥ V (K)−p/n + V (L)−p/n, (6.2)

with equality if and only if K and L are dilates.

Proof of Theorem 4 : From (2.1), (6.1) and the definition of Lp harmonic radial
addition, it follows that

(B+
p (f) +p B

+
p (−f))∗ = B+,∗

p (f) +̃pB
+,∗
p (−f).

Since V (B+,∗
p (f)) = V (B+,∗

p (−f)), an application of (6.2) yields the desired
inequality along with its equality conditions. �
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[14] G. Hardy, J.E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, Cam-
bridge, 1952.

[15] D. Hug, E. Lutwak, D. Yang, and G. Zhang, On the Lp Minkowski problem for polytopes,
Discrete Comput. Geom. 33 (2005), 699–715.

[16] E.H. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities,
Ann. Math. 118 (1983), 349–374.

[17] M. Ludwig, Projection bodies and valuations, Adv. Math. 172 (2002), 158–168.

[18] M. Ludwig, Ellipsoids and matrix-valued valuations, Duke Math. J. 119 (2003), 159–
188.

[19] M. Ludwig, Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), 4191–4213.

[20] M. Ludwig and M. Reitzner, A classification of SL(n) invariant valuations, Ann. Math.,
in press.

[21] E. Lutwak, On some affine isoperimetric inequalities, J. Differential Geom. 23 (1986),
1–13.

[22] E. Lutwak, The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski
problem, J. Differential Geom. 38 (1993), 131–150.

[23] E. Lutwak, The Brunn-Minkowski-Firey theory. II: Affine and geominimal surface areas,
Adv. Math. 118 (1996), 244–294.

[24] E. Lutwak and V. Oliker, On the regularity of solutions to a generalization of the
Minkowski problem, J. Differential Geom. 41 (1995), 227–246.

[25] E. Lutwak, D. Yang, and G. Zhang, Lp affine isoperimetric inequalities, J. Differential
Geom. 56 (2000), 111–132.

[26] E. Lutwak, D. Yang, and G. Zhang, A new ellipsoid associated with convex bodies, Duke
Math. J. 104 (2000), 375–390.

[27] E. Lutwak, D. Yang, and G. Zhang, Sharp affine Lp Sobolev inequalities, J. Differential
Geom. 62 (2002), 17–38.

[28] E. Lutwak, D. Yang, and G. Zhang, On the Lp Minkowski problem, Trans. Amer. Math.
Soc. 356 (2004), 4359–4370.

[29] E. Lutwak, D. Yang, and G. Zhang, Optimal Sobolev norms and the Lp Minkowski
problem, Int. Math. Res. Not. 65 (2006), 1–21.
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