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Abstract. A Steiner type formula for continuous translation invariant
Minkowski valuations is established. In combination with a recent result
on the symmetry of rigid motion invariant homogeneous bivaluations, this
new Steiner type formula is used to obtain a family of Brunn–Minkowski
type inequalities for rigid motion intertwining Minkowski valuations.

1. Introduction

The famous Steiner formula, dating back to the 19th century, expresses
the volume of the parallel set of a convex body K at distance r ≥ 0 as a
polynomial in r. Up to constants (depending on the dimension of the ambient
space), the coefficients of this polynomial are the intrinsic volumes of K.
Steiner’s formula is among the most influential results of the early days of
convex geometry. Its ramifications and many applications can be found, even
today, in several mathematical areas such as differential geometry (starting
from Weyl’s tube formula [65]; see e.g. [14, 20] for more recent results),
geometric measure theory (going back to Federer’s seminal work on curvature
measures [13]; see also [15, 16, 51, 53]), convex and stochastic geometry (see
e.g. [28, 54, 56]), geometric functional analysis (see [11, 12]), and recently
also in algebraic geometry (see [26, 62]).

In Euclidean space Rn, the parallel set of K at distance r is equal to the
sum of K and a Euclidean ball of radius r. A fundamental extension of the
classical Steiner formula is Minkowski’s theorem on the polynomial expansion
of the volume of a Minkowski sum of several convex bodies, leading to the
theory of mixed volumes (see e.g. [54]). More recently, McMullen [48] (and
later, independently, Meier [49] and Spiegel [61]) established the existence
of a similar polynomial expansion for functions on convex bodies which are
considerably more general than the ordinary volume, namely continuous
translation invariant (real valued) valuations.

The origins of the notion of valuation (see Section 2 for precise definition)
can be traced back to Dehn’s solution of Hilbert’s Third Problem. However,
the starting point for a systematic investigation of general valuations was
Hadwiger’s [27] fundamental characterization of the linear combinations of
intrinsic volumes as the continuous valuations that are rigid motion invariant
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(see [1, 2, 6, 39] for recent important variants). McMullen’s [48] deep result
on the polynomial expansion of translation invariant valuations is among
the seminal contributions to the structure theory of the space of translation
invariant valuations which has been rapidly evolving over the last decade
(see [2–4, 9, 17]). These recent structural insights in turn provided the
means for a fuller understanding of the integral geometry of groups acting
transitively on the sphere (see e.g. [3, 6, 7, 10] and the survey [8]).

While classical results on valuations were mainly concerned with real
and tensor valued valuations, a very recent development explores the strong
connections between convex body valued valuations and isoperimetric and
related inequalities (see [5, 25, 37, 59]). This new line of research has
its roots in the work of Ludwig [33–36] who first obtained classifications
of convex and star body valued valuations which are compatible with linear
transformations (see also [21–24, 38, 60, 64]). In this area, it is a major
open problem whether a polynomial expansion of translation invariant convex
body valued valuations is also possible (see Section 2 for details).

In this article we establish a Steiner type formula for continuous trans-
lation invariant Minkowski valuations (i.e. valuations taking values in the
topological semigroup of convex bodies endowed with Minkowski addition).
In fact, we obtain a more general polynomial expansion formula for trans-
lation invariant Minkowski valuations when the arguments are Minkowski
sums of zonoids. This follows in part from a connection between Minkowski
valuations and positive scalar valuations. Our new Steiner type formula
gives rise to a Lefschetz operator on Minkowski valuations which we use
together with a recent result on the symmetry of rigid motion intertwining
homogeneous bivaluations [5] to obtain a family of Brunn–Minkowski type
inequalities for intrinsic volumes of rigid motion intertwining Minkowski
valuations. These new inequalities generalize a number of previous partial
results [5, 44, 57, 59].

2. Statement of principal results

The setting for this article is n-dimensional Euclidean space Rn with
n ≥ 3. We denote by Kn the space of convex bodies in Rn endowed with
the Hausdorff metric. A function ϕ defined on Kn and taking values in an
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abelian semigroup is called a valuation if

ϕ(K) + ϕ(L) = ϕ(K ∪ L) + ϕ(K ∩ L)

whenever K ∪ L ∈ Kn. A valuation ϕ is said to be translation invariant if
ϕ(K + x) = ϕ(K) for all x ∈ Rn and K ∈ Kn.

The most familiar real valued valuation is, of course, the ordinary volume
Vn. In fact, the valuation property of volume carries over to a series of basic
functions which are derived from it: By a classical result of Minkowski, the
volume of a Minkowski (or vector) linear combination λ1K1 + · · ·+λmKm of
convex bodies K1, . . . , Km ∈ Kn with real coefficients λ1, . . . , λm ≥ 0 can be
expressed as a homogeneous polynomial of degree n,

Vn(λ1K1 + · · ·+ λmKm) =
m∑

j1,...,jn=1

V (Kj1 , . . . , Kjn)λj1 · · ·λjn , (2.1)

where the coefficients V (Kj1 , . . . , Kjn), called mixed volumes of Kj1 , . . . , Kjn ,
are symmetric in the indices and depend only on Kj1 , . . . , Kjn . Now, if
i ∈ {1, . . . , n} and an (n−i)-tuple L1, . . . , Ln−i of convex bodies is fixed, then
the function φ : Kn → R, defined by φ(K) = V (K, . . . ,K, L1, . . . , Ln−i), is a
continuous translation invariant valuation (see e.g. [54]).

In a highly influential article, Alesker [2] showed (thereby confirming a
conjecture by McMullen) that in fact every continuous translation invariant
real valued valuation is a limit of linear combinations of mixed volumes. One
of the crucial ingredients in the proof of Alesker’s landmark result is the
following significant generalization of the polynomial expansion (2.1):

Theorem 1 (McMullen [48]) Let X be a topological vector space. Suppose
that ϕ : Kn → X is a continuous translation invariant valuation and let
K1, . . . , Km ∈ Kn. Then

ϕ(λ1K1 + · · ·+ λmKm), λ1, . . . , λm ≥ 0,

can be expressed as a polynomial in λ1, . . . , λm of total degree at most n.
Moreover, for each (i1, . . . , im), the coefficient of λi1

1 · · ·λim
m is a continuous

translation invariant and homogeneous valuation of degree ij in Kj.

As a special case of Theorem 1, we note the following extension of the
classical Steiner formula for volume (see Section 5): If K ∈ Kn, then for
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every r ≥ 0,

ϕ(K + rBn) =
n∑

j=0

rn−jϕ(j)(K), (2.2)

where the coefficient functions ϕ(j) : Kn → X, 0 ≤ j ≤ n, defined by (2.2),
are continuous translation invariant valuations. Clearly, ϕ(n) = ϕ.

Definition A map Φ : Kn → Kn is called a Minkowski valuation if

Φ(K) + Φ(L) = Φ(K ∪ L) + Φ(K ∩ L),

whenever K,L,K ∪ L ∈ Kn and addition on Kn is Minkowski addition.

While first results on Minkowski valuations were obtained in the 1970s by
Schneider [52], they have become the focus of increased interest (and acquired
their name) more recently through the work of Ludwig [33, 35]. It was shown
there that such central notions like projection, centroid and difference body
operators can be characterized as unique Minkowski valuations compatible
with affine transformations of Rn (see [23, 24, 38, 60, 64] for related results).

Since the space of convex bodies Kn does not carry a linear structure, it is
an important open problem (cf. [59]) whether the Steiner type formula (2.2),
or even Theorem 1, also hold for continuous translation invariant Minkowski
valuations. As our main result we establish an affirmative answer to the first
question:

Theorem 2 Suppose that Φ : Kn → Kn is a continuous translation invariant
Minkowski valuation and let K ∈ Kn. Then Φ(K + rBn), r ≥ 0, can be
expressed as a polynomial in r of degree at most n whose coefficients are
convex bodies, say

Φ(K + rBn) =
n∑

j=0

rn−jΦ(j)(K). (2.3)

Moreover, the maps Φ(j) : Kn → Kn, 0 ≤ j ≤ n, defined by (2.3), are also
continuous translation invariant Minkowski valuations.

The proof of Theorem 2 makes critical use of an embedding by Klain [31]
of translation invariant continuous even (real valued) valuations in the space
of continuous functions on the Grassmannian. In fact, our proof yields a
stronger result than Theorem 2, see Corollary 4.3, where the Euclidean unit
ball Bn in (2.3) can be replaced by an arbitrary zonoid (i.e. a Hausdorff limit
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of finite Minkowski sums of line segments). Moreover, in Theorem 4.4 we
obtain a polynomial expansion formula for continuous translation invariant
Minkowski valuations when the summands are zonoids. Very recently, during
the review process of this article, Wannerer and the first-named author [50]
showed that a polynomial expansion (analogous to Theorem 1) of continuous
translation invariant Minkowski valuations is in general not possible.

A special case of Theorem 2 was previously obtained by the second-named
author [58], when the Minkowski valuation Φ is in addition SO(n) equivariant
and has degree n−1, i.e. Φ(ϑK) = ϑΦ(K) and Φ(λK) = λn−1Φ(K) for every
K ∈ Kn, ϑ ∈ SO(n) and real λ > 0. As an application of this particular case
of Theorem 2, an array of geometric inequalities for the intrinsic volumes
Vi of the derived Minkowski valuations Φ(j) (of degree j − 1) was obtained
in [57]. In particular, the following Brunn–Minkowski type inequality was
established: If K,L ∈ Kn and 3 ≤ j ≤ n, 1 ≤ i ≤ n, then

Vi(Φ
(j)(K + L))1/i(j−1) ≥ Vi(Φ

(j)(K))1/i(j−1) + Vi(Φ
(j)(L))1/i(j−1). (2.4)

It was also shown in [57] that if Φ is non-trivial, i.e. it does not map every
convex body to the origin, equality holds in (2.4) for convex bodies K and L
with non-empty interior if and only if they are homothetic.

The family of inequalities (2.4) extended at the same time previously
established inequalities for projection bodies by Lutwak [44] and the famous
classical Brunn–Minkowski inequalities for the intrinsic volumes (see e.g. [54]
and the excellent survey [18]). We conjecture that inequality (2.4) holds in
fact for all continuous translation invariant and SO(n) equivariant Minkowski
valuations of a given arbitrary degree j ∈ {2, . . . , n− 1}.

Recently, refining the techniques from the seminal work of Lutwak [44],
this conjecture was confirmed in the case i = j + 1, first for even valuations
in [59] and subsequently for general valuations in [5]. As an application of
Theorem 2, we extend these results to the case 1 ≤ i ≤ j + 1.

Theorem 3 Suppose that Φj : Kn → Kn is a non-trivial continuous trans-
lation invariant and SO(n) equivariant Minkowski valuation of a given degree
j ∈ {2, . . . , n− 1}. If K,L ∈ Kn and 1 ≤ i ≤ j + 1, then

Vi(Φj(K + L))1/ij ≥ Vi(Φj(K))1/ij + Vi(Φj(L))1/ij.

If K and L are of class C2
+, then equality holds if and only if K and L are

homothetic.
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The proof of Theorem 3 also uses a recent result on the symmetry of rigid
motion invariant homogeneous bivaluations which we describe in Section 6.
For a discussion of the smoothness assumption, we refer to Section 7.

3. Background material for the proof of Theorem 2

In this section we first recall some basic facts about convex bodies and,
in particular, zonoids (see, e.g. [54]). Furthermore, we collect results on
translation invariant (mostly real valued) valuations needed in subsequent
sections. In particular, we recall an important embedding of Klain [31] of
even translation invariant continuous valuations in the space of continuous
functions on the Grassmannian.

A convex bodyK ∈ Kn is uniquely determined by the values of its support
function h(K, x) = max{x · y : y ∈ K}, x ∈ Rn. Clearly, h(K, ·) is positively
homogeneous of degree one and subadditive for every K ∈ Kn. Conversely,
every function with these properties is the support function of a convex body.

A Minkowski sum of finitely many line segments is called a zonotope.
A convex body that can be approximated, in the Hausdorff metric, by a
sequence of zonotopes is called a zonoid. Over the past four decades it has
become apparent that zonoids arise naturally in several different contexts
(see e.g. [54, Chapter 3.5] and the references therein). It is not hard to show
that a convex body K ∈ Kn is an origin-centered zonoid if and only if its
support function can be represented in the form

h(K, x) =

∫
Sn−1

|x · u| dµK(u), x ∈ Rn,

with some even (non-negative) measure µK on Sn−1. In this case, the measure
µK is unique and is called the generating measure of K.

We denote by Val the vector space of continuous translation invariant real
valued valuations and we use Vali to denote its subspace of all valuations of
degree i. Recall that a map ϕ from Kn to R (or Kn) is said to have degree i
if ϕ(λK) = λiϕ(K) for every K ∈ Kn and λ > 0. A valuation ϕ ∈ Val is
said to be even (resp. odd) if ϕ(−K) = (−1)εϕ(K) with ε = 0 (resp. ε = 1)
for every K ∈ Kn. We write Val+i ⊆ Vali for the subspace of even valuations
of degree i and Val−i for the subspace of odd valuations of degree i.
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From the important special case m = 1 of Theorem 1, we deduce that if
ϕ ∈ Val, then there exist (unique) ϕi ∈ Vali, 0 ≤ i ≤ n, such that

ϕ(λK) = ϕ0(K) + λϕ1(K) + · · ·+ λnϕn(K) (3.1)

for every K ∈ Kn and λ > 0. In fact, a simple inductive argument, shows
that (3.1) is equivalent with Theorem 1. Since, clearly, every real valued
valuation is the sum of an even and an odd valuation, we immediately obtain
the following corollary, known as McMullen’s decomposition of the space Val:

Corollary 3.1

Val =
n⊕

i=0

(
Val+i ⊕Val−i

)
.

It is easy to show that the space Val0 is one-dimensional and is spanned
by the Euler characteristic V0. The analogous non-trivial statement for Valn
was proved by Hadwiger [27, p. 79]:

Lemma 3.2 If ϕ ∈ Valn, then ϕ is a multiple of the ordinary volume Vn.

Assume now that ϕ ∈ Vali with 1 ≤ i ≤ n− 1. If K1, . . . , Km ∈ Kn and
λ1, . . . , λm > 0, then, by Theorem 1,

ϕ(λ1K1 + · · ·+ λmKm) =
m∑

j1,...,ji=1

ϕ(Kj1 , . . . , Kji
)λj1 · · ·λji

,

where the coefficients are symmetric in the indices and depend only on
Kj1 , . . . , Kji

. Moreover, the coefficient of λi1
1 · · ·λim

m , where i1 + · · ·+ im = i,
is a continuous translation invariant valuation of degree ij in Kj, called a
mixed valuation derived from ϕ. Clearly, we have ϕ(K, . . . ,K) = ϕ(K).

We now turn to Minkowski valuations. Let MVal denote the set of
continuous translation invariant Minkowski valuations, and write MVal±i
for its subset of all even/odd Minkowski valuations of degree i.

From Lemma 3.2 and the special case m = 1 of Theorem 1, applied to
valuations with values in the vector space C(Sn−1) of continuous functions
on Sn−1, one can deduce the following decomposition result (cf. [55, p. 12]):
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Lemma 3.3 If Φ ∈MVal, then for every K ∈ Kn, there exist convex bodies
L0, Ln ∈ Kn such that

h(Φ(K), ·) = h(L0, ·) +
n−1∑
i=1

gi(K, ·) + V (K)h(Ln, ·), (3.2)

where, for each i ∈ {1, . . . , n− 1}:

(i) The function gi(K, ·) is a difference of support functions.

(ii) The map K 7→ gi(K, ·) is a continuous translation invariant valuation
of degree i.

The natural question whether for every K ∈ Kn, each function gi(K, ·) is
the support function of a convex body is equivalent to the following problem.

Problem 3.4 Let Φ ∈ MVal and K ∈ Kn. Are there convex bodies
L0,Φ1(K), . . . ,Φn−1(K), Ln ∈ Kn such that

Φ(λK) = L0 + λΦ1(K) + · · ·+ λn−1Φn−1(K) + λnV (K)Ln (3.3)

for every λ > 0?

During the review process of this article, Wannerer and the first-named
author [50] showed that the answer to Problem 3.4 is in general negativ.
However, in the next section, we show that (3.3) holds for every Φ ∈MVal
and λ > 0 if the body K is a zonoid. A crucial ingredient in the proof of this
result is an embedding Ki of Val+i into the space C(Gri) of continuous func-
tions on the Grassmannian Gri of i-dimensional subspaces of Rn constructed
by Klain [31]:

Suppose that ϕ ∈ Val+i , 1 ≤ i ≤ n − 1. Then, by Lemma 3.2, the
restriction of ϕ to any subspace E ∈ Gri is proportional to the i-dimensional
volume volE on E, say

ϕ|E = (Kiϕ)(E) volE.

The continuous function Kiϕ : Gri → R defined in this way is called the
Klain function of ϕ. The induced map

Ki : Val+i → C(Gri)

is called the Klain embedding.
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Theorem 3.5 (Klain [31]) The Klain embedding is injective.

Theorem 3.5 follows from a volume characterization of Klain [30]. Note,
however, that the map Ki is not onto; its image was described in terms
of the decomposition under the action of the group SO(n) by Alesker and
Bernstein [4].

The natural question how to reconstruct a valuation ϕ ∈ Val+i given
its Klain function Kiϕ, was answered by Klain [31] for centrally symmetric
convex sets. Since we need Klain’s inversion formula for zonoids only, we state
just this special case. To this end, we denote by [u1, . . . , ui] the i-dimensional
volume of the parallelotope spanned by u1, . . . , ui ∈ Sn−1.

Theorem 3.6 (Klain [31]) Suppose that ϕ ∈ Val+i with 1 ≤ i ≤ n − 1.
If Z1 . . . , Zi ∈ Kn are zonoids with generating measures µZ1 , . . . , µZi

, then

ϕ(Z1, . . . , Zi) =
1

i!

∫
Sn−1

· · ·
∫

Sn−1

(K̄iϕ)(u1, . . . , ui)[u1, . . . , ui]dµZ1(u1) · · · dµZi
(ui),

where

(K̄iϕ)(u1, . . . , ui) =

{
(Kiϕ)(span{u1, . . . , ui}) if [u1, . . . , ui] > 0,
0 otherwise.

In particular, for any zonoid Z ∈ Kn, we have

ϕ(Z) =
1

i!

∫
Sn−1

· · ·
∫

Sn−1

(K̄iϕ)(u1, . . . , ui) [u1, . . . , ui] dµZ(u1) · · · dµZ(ui).

4. Proof of Theorem 2

Before we can present the proof of Theorem 2, we need the following
auxiliary result.

Lemma 4.1 For K ∈ Kn, the following statements are equivalent:

(a) For every non-negative ϕ ∈ Val, its homogeneous components ϕi satisfy
ϕi(K) ≥ 0 for 0 ≤ i ≤ n.

(b) For every Φ ∈ MVal, there exist L0, Ln ∈ Kn (depending only on Φ)
and Φ1(K), . . . ,Φn−1(K) ∈ Kn such that (3.3) holds for every λ > 0.
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Proof. Let K ∈ Kn be fixed and first assume that ϕi(K) ≥ 0, 0 ≤ i ≤ n,
for the homogeneous components ϕi of any non-negative ϕ ∈ Val. Suppose
that Φ ∈ MVal. Then, by Lemma 3.3, for every L ∈ Kn, there are convex
bodies L0, Ln ∈ Kn and continuous functions gi(L, ·) such that

h(Φ(λL), ·) = h(L0, ·) +
n−1∑
i=1

λigi(L, ·) + λnV (L)h(Ln, ·) (4.1)

for every λ > 0. In order to prove (b), it remains to show that for each
i ∈ {1, . . . , n − 1}, the function gi(K, ·) is the support function of a convex
body Φi(K). Since, by Lemma 3.3, the functions gi(K, ·) are positively
homogeneous of degree one, it suffices to prove that

gi(K, x+ y) ≤ gi(K, x) + gi(K, y) (4.2)

for every x, y ∈ Rn and i ∈ {1, . . . , n − 1}. To this end, fix x, y ∈ Rn and
define ψ ∈ Val by

ψ(L) = h(Φ(L), x) + h(Φ(L), y)− h(Φ(L), x+ y), L ∈ Kn.

Since support functions are sublinear, ψ is non-negative. Moreover, by (4.1),
the homogeneous components ψi, 1 ≤ i ≤ n− 1, of ψ are given by

ψi(L) = gi(L, x) + gi(L, y)− gi(L, x+ y).

Since ψi(K) ≥ 0 for 0 ≤ i ≤ n, we obtain (4.2). Thus, (a) implies (b).

Assume now that (b) holds. Suppose that ϕ ∈ Val is non-negative and
let ϕi, 0 ≤ i ≤ n denote its homogeneous components. Define a Minkowski
valuation Φ ∈MVal by

Φ(L) = ϕ(L)Bn, L ∈ Kn.

Since ϕ ≥ 0, the valuation Φ is well defined. Using (3.1), it is easy to see
that, on one hand,

h(Φ(λK), ·) = ϕ0(K) + λϕ1(K) + · · ·+ λnϕn(K) (4.3)

for every λ > 0. On the other hand, it follows from (b) that there exist
L0,Φ1(K), . . . ,Φn−1(K), Ln ∈ Kn such that

h(Φ(λK), ·) = h(L0, ·) +
n−1∑
i=1

λih(Φi(K), ·) + λnV (K)h(Ln, ·) (4.4)
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for every λ > 0. Comparing coefficients in (4.3) and (4.4) shows that
ϕ0(K) = h(L0, ·), ϕn(K) = V (K)h(Ln, ·) and ϕi(K) = h(Φi(K), ·) for
1 ≤ i ≤ n− 1. This is possible only if ϕi(K) ≥ 0 for every i ∈ {0, . . . , n}. �

Lemma 4.1 shows that Problem 3.4 is equivalent to the question whether
the homogeneous components of any non-negative valuation in Val are also
non-negative. (A result of the latter type for monotone valuations was
recently established by Bernig and Fu [10]).

Using Theorem 3.6 and Lemma 4.1, we now establish an affirmative
answer to Problem 3.4 for the class of zonoids:

Theorem 4.2 If Φ ∈ MVal, then for every zonoid Z ∈ Kn, there exist
convex bodies L0,Φ1(Z), . . . ,Φn−1(Z), Ln ∈ Kn such that

Φ(λZ) = L0 + λΦ1(Z) + · · ·+ λn−1Φn−1(Z) + λnV (Z)Ln

for every λ > 0.

Proof. By Lemma 4.1, it suffices to show that ϕi(Z) ≥ 0, 0 ≤ i ≤ n, for the
homogeneous components ϕi of any non-negative ϕ ∈ Val and every zonoid
Z ∈ Kn. To this end, first note that, by (3.1), for any K ∈ Kn,

0 ≤ ϕ(λK) = ϕ0(K) + λϕ1(K) + · · ·+ λnϕn(K)

for every λ > 0. By letting λ tend to zero, we therefore, see that ϕ0 is always
non-negative for any non-negative ϕ ∈ Val. Similarly, dividing by λn and
letting λ tend to infinity, it follows that ϕn is always non-negative.

It remains to show that ϕi(Z) ≥ 0, 1 ≤ i ≤ n−1, for any zonoid Z ∈ Kn.
In order to see this, let K ∈ Kn be a centrally symmetric convex body
contained in an i-dimensional subspace E with volE(K) > 0. By Lemma 3.2,
we have ψ(K) = 0 for any ψ ∈ Valj with j > i. Therefore, it follows that
for any non-negative ϕ ∈ Val,

0 ≤ ϕ(λK) = ϕ0(K) + λϕ1(K) + · · ·+ λi−1ϕi−1(K) + λiϕi(K)

for every λ > 0. Again, dividing by λi and letting λ tend to infinity, we see
that ϕi(K) ≥ 0. Let ϕ±i denote the even and odd parts of ϕi, respectively.
Since K is centrally symmetric, we conclude ϕ−i (K) = 0 and

0 ≤ ϕi(K) = ϕ+
i (K) = (Kiϕ

+
i )(E) volE(K).
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Since the subspace E was arbitrary, we see that Kiϕ
+
i ≥ 0. Consequently,

by Theorem 3.6, ϕ+
i (Z) ≥ 0 for any zonoid Z ∈ Kn. Moreover, since zonoids

are centrally symmetric, we have ϕ−i (Z) = 0, and thus ϕi(Z) = ϕ+
i (Z) ≥ 0.

�

Theorem 2 is now a simple consequence of Theorem 4.2. It is the special
case Z = Bn of the following

Corollary 4.3 Suppose that Φ ∈ MVal and let K ∈ Kn. Then for every
zonoid Z ∈ Kn there exist (unique) Φ

(j)
Z ∈MVal such that

Φ(K + rZ) =
n∑

j=0

rn−jΦ
(j)
Z (K) (4.5)

for every r > 0.

Proof. Let K ∈ Kn be fixed and define ΨK : Kn → Kn by

ΨK(L) = Φ(K + L), L ∈ Kn.

It is easy to see that, in fact, ΨK ∈MVal. Thus, by Theorem 4.2, for every
zonoid Z, there exist ΨK

0 (Z), . . . ,ΨK
n (Z) ∈ Kn such that

Φ(K + rZ) = ΨK(rZ) = ΨK
0 (Z) + rΨK

1 (Z) + · · ·+ rn−1ΨK
n−1(Z) + rnΨK

n (Z)

for every r > 0. Define Φ
(j)
Z : Kn → Kn by

Φ
(j)
Z (L) = ΨL

n−j(Z), L ∈ Kn.

Clearly, the maps Φ
(j)
Z satisfy (4.5). Moreover, from an application of the

Steiner formula (2.2) to the valuation ϕ(K) = h(Φ(K), ·) (with values in the
vector space C(Sn−1)) and the uniqueness of the derived valuations ϕ(j), it

follows that Φ
(j)
Z ∈MVal. �

We end this section with a further generalization of Theorem 4.2.

Theorem 4.4 Suppose that Φ ∈MVal and let Z1, . . . , Zm ∈ Kn be zonoids.
Then

Φ(λ1Z1 + · · ·+ λmZm), λ1, . . . , λm ≥ 0,

can be expressed as a polynomial in λ1, . . . , λm of total degree at most n whose
coefficients are convex bodies.
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Proof. Using arguments as in the proof of Lemma 4.1, we see that it is
enough to prove that ϕi(Zj1 , . . . , Zji

) ≥ 0, 1 ≤ j1, . . . , ji ≤ m, holds for
the mixed valuations derived from any non-negative valuation ϕi ∈ Vali
with 1 ≤ i ≤ n − 1. To this end, let ϕ±i denote the even and odd parts of
ϕi, respectively. In the proof of Theorem 4.2, we have seen that Kiϕ

+
i ≥ 0.

Consequently, by Theorem 3.6, ϕ+
i (Zj1 , . . . , Zji

) ≥ 0. Moreover, since zonoids
are centrally symmetric, we have ϕ−i (Zj1 , . . . , Zji

) = 0. Thus, we conclude
ϕi(Zj1 , . . . , Zji

) = ϕ+
i (Zj1 , . . . , Zji

) ≥ 0. �

5. Background material for the proof of Theorem 3

For quick reference, we state in the following the geometric inequalities
(for which we refer the reader to the book by Schneider [54]) and other
ingredients needed in the proof of Theorem 3.

For K,L ∈ Kn and 0 ≤ i ≤ n, we write V (K[i], L[n − i]) for the mixed
volume with i copies of K and n − i copies of L. For K,K1, . . . , Ki ∈ Kn

and C = (K1, . . . , Ki), we denote by Vi(K,C) the mixed volume
V (K, . . . ,K,K1, . . . , Ki) where K appears n− i times. For 0 ≤ i ≤ n−1, we
use Wi(K,L) to denote the mixed volume V (K[n − i − 1], Bn[i], L). The
mixed volume Wi(K,K) will be written as Wi(K) and is called the ith
quermassintegral of K. The ith intrinsic volume Vi(K) of K is defined by

κn−iVi(K) =

(
n

i

)
Wn−i(K), (5.1)

where κm is the m-dimensional volume of the Euclidean unit ball in Rm. A
special case of (2.1) is the classical Steiner formula for the volume of the
parallel set of K at distance r > 0,

V (K + rBn) =
n∑

i=0

ri

(
n

i

)
Wi(K) =

n∑
i=0

rn−iκn−iVi(K).

Associated with a convex body K ∈ Kn is a family of Borel measures
Si(K, ·), 0 ≤ i ≤ n − 1, on Sn−1, called the area measures of order i of K,
such that for each L ∈ Kn,

Wn−1−i(K,L) =
1

n

∫
Sn−1

h(L, u) dSi(K, u). (5.2)

13



In fact, the measure Si(K, ·) is uniquely determined by the property that
(5.2) holds for all L ∈ Kn. The existence of a polynomial expansion of the
translation invariant valuation Wn−1−i(·, L), thus carries over to the surface
area measures. In particular, for r > 0, we have the Steiner type formula

Sj(K + rBn, ·) =

j∑
i=0

rj−i

(
j

i

)
Si(K, ·). (5.3)

Let Kn
o denote the set of convex bodies in Rn with non-empty interior.

One of the fundamental inequalities for mixed volumes is the general
Minkowski inequality: If K,L ∈ Kn

o and 0 ≤ i ≤ n− 2, then

Wi(K,L)n−i ≥ Wi(K)n−i−1Wi(L), (5.4)

with equality if and only if K and L are homothetic.
A consequence of the Minkowski inequality (5.4) is the Brunn–Minkowski

inequality for quermassintegrals: If K,L ∈ Kn
o and 0 ≤ i ≤ n− 2, then

Wi(K + L)1/(n−i) ≥ Wi(K)1/(n−i) +Wi(L)1/(n−i), (5.5)

with equality if and only if K and L are homothetic.
A further generalization of inequality (5.5) (where the equality conditions

are not yet known) is the following: If 0 ≤ i ≤ n− 2, K,L,K1, . . . , Ki ∈ Kn

and C = (K1, ..., Ki), then

Vi(K + L,C)1/(n−i) ≥ Vi(K,C)1/(n−i) + Vi(L,C)1/(n−i). (5.6)

The Steiner point s(K) of K ∈ Kn is the point in K defined by

s(K) = n

∫
Sn−1

h(K, u)u du,

where the integration is with respect to the rotation invariant probability
measure on Sn−1. It is not hard to show that s is continuous, rigid motion
equivariant and Minkowski additive.

Theorem 5.1 (see e.g., [54, p. 307]) The Steiner point map s : Kn → Rn is
the unique vector valued rigid motion equivariant and continuous valuation.

A convex body K is said to be of class C2
+ if the boundary of K is a

C2 submanifold of Rn with everywhere positive Gaussian curvature. The
following property of bodies of class C2

+ will be useful (see [54, p. 150]):

14



Lemma 5.2 If K ∈ Kn is a convex body of class C2
+, then there exist a

convex body L ∈ Kn and a real number r > 0 such that K = L+ rBn.

In the remaining part of this section we recall the notion of smooth
valuations as well as the definition of an important derivation operator on
the space Val needed in the next section. In order to do this, we first endow
the space Val with the norm

‖ϕ‖ = sup{|ϕ(K)| : K ⊆ Bn}, ϕ ∈ Val.

It is well known that Val thus becomes a Banach space. The group GL(n)
acts on Val continuously by

(Aϕ)(K) = ϕ(A−1K), A ∈ GL(n), ϕ ∈ Val.

Note that the subspaces Val±i ⊆ Val are invariant under this GL(n) action.
Actually they are also irreducible. This important fact was established by
Alesker [2]; it directly implies a conjecture by McMullen that the linear
combinations of mixed volumes are dense in Val. A different dense subset of
Val can be defined as follows:

Definition A valuation ϕ ∈ Val is called smooth if the map GL(n) → Val
defined by A 7→ Aϕ is infinitely differentiable.

We use Val∞ to denote the space of continuous translation invariant and
smooth valuations. For the subspaces of homogeneous valuations of given
parity in Val∞ we write Val±,∞

i . It is well known (cf. [63, p. 32]) that Val±,∞
i

is a dense GL(n) invariant subspace of Val±i . Moreover, from Corollary 3.1
one deduces that the space Val∞ admits a direct sum decomposition into its
subspaces of homogeneous valuations of given parity.

The Steiner formula (2.2) gives rise to an important derivation operator
Λ : Val→ Val defined by

(Λϕ)(K) =
d

dt

∣∣∣∣
t=0

ϕ(K + tBn).

Note that Λ commutes with the action of the orthogonal group O(n).
Moreover, if ϕ ∈ Vali then Λϕ ∈ Vali−1.

The significance of the linear operator Λ can be seen from the following
Hard Lefschetz type theorem established for even valuations by Alesker [3]
and for general valuations by Bernig and Bröcker [9]:
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Theorem 5.3 If 2i ≥ n, then Λ2i−n : Val∞i → Val∞n−i is an isomorphism.
In particular, Λ : Val∞i → Val∞i−1 is injective if 2i− 1 ≥ n and surjective if
2i− 1 ≤ n.

Theorem 5.3 suggests that it is (sometimes) possible to deduce results on
valuations of degree i from result on valuations of a degree j > i. We will
exploit this idea in the proof of Theorem 3. To this end, we use Theorem 2
to define the derivation operator Λ for translation invariant continuous
Minkowski valuations:

Corollary 5.4 Suppose that Φ ∈ MVal. Then there exists a ΛΦ ∈ MVal
such that for every K ∈ Kn and u ∈ Sn−1,

h((ΛΦ)(K), u) =
d

dt

∣∣∣∣
t=0

h(Φ(K + tBn), u).

Moreover, if Φ ∈MVali with 1 ≤ i ≤ n, then ΛΦ ∈MVali−1.

We remark that a Hard Lefschetz type theorem similar to Theorem 5.3
does not hold for the sets MVali in general. This follows from results of
Kiderlen [29] and the second-named author [58] on translation invariant and
SO(n) equivariant Minkowski valuations of degree 1 and n− 1, respectively.

6. The symmetry of bivaluations

We recall here the notion of bivaluations and, in particular, a recent result
on the symmetry of rigid motion invariant homogeneous bivaluations. As a
reference for the material in this section we refer to the recent article [5].

Definition A map φ : Kn×Kn → R is called a bivaluation if φ is a valuation
in each argument. A bivaluation φ is called translation biinvariant if φ is
invariant under independent translations of its arguments and φ is said to be
O(n) invariant if φ(ϑK, ϑL) = ϕ(K,L) for all K,L ∈ Kn and ϑ ∈ O(n). We
say φ has bidegree (i, j) if φ(αK, βL) = αiβjφ(K,L) for all K,L ∈ Kn and
α, β > 0.

Important examples of invariant bivaluations can be constructed using
mixed volumes and Minkowski valuations:
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Examples:

(a) For 0 ≤ i ≤ n, the bivaluation φ : Kn ×Kn → R, defined by

φ(K,L) = V (K[i], L[n− i]), K, L ∈ Kn,

is translation biinvariant and O(n) invariant and has bidegree (i, n− i).

(b) Suppose that 0 ≤ i, j ≤ n and let Φj ∈MValj be O(n) equivariant, i.e.
Φj(ϑK) = ϑΦj(K) for all K ∈ Kn and ϑ ∈ O(n). Then the bivaluation
ψ : Kn ×Kn → R, defined by

ψ(K,L) = Wn−i−1(K,Φj(L)), K, L ∈ Kn,

is translation biinvariant and O(n) invariant and has bidegree (i, j).

First classification results for invariant bivaluations were obtained only
recently by Ludwig [38]. Systematic investigations of continuous translation
biinvariant bivaluations were started in [5]. In order to describe some of the
results obtained there, let BVal denote the vector space of all continuous
translation biinvariant (real valued) bivaluations. We write BVali,j for its

subspace of all bivaluations of bidegree (i, j) and we use BValO(n) and

BVal
O(n)
i,j to denote the respective subspaces of O(n) invariant bivaluations.

From McMullen’s decomposition of the space Val stated in Corollary 3.1,
one immediately deduces a corresponding result for the space BVal:

Corollary 6.1

BVal =
n⊕

i,j=0

BVali,j.

Minkowski valuations arise naturally from data about projections or
sections of convex bodies. For example, the projection body operator
Π ∈ MValn−1 is defined as follows: The projection body Π(K) of K is the
convex body defined by h(Π(K), u) = voln−1(K|u⊥), u ∈ Sn−1, where K|u⊥
denotes the projection of K onto the hyperplane orthogonal to u. Introduced
already by Minkowski, projection bodies have become an important tool in
several areas over the last decades (see, e.g. [25, 40, 44, 45, 54, 56]; for
their special role in the theory of valuations see [33, 38, 60]).
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An extremely useful and well known symmetry property of the projection
body operator is the following: If K,L ∈ Kn, then

V (Π(K), L, . . . , L) = V (Π(L), K, . . . ,K). (6.1)

Variants of this identity and its generalizations have been used extensively
for establishing geometric inequalities related to convex and star body valued
valuations (see e.g. [19, 21, 25, 37, 40–47, 57–59]).

In [5] the following generalization of the symmetry property (6.1) was
established:

Theorem 6.2 If φ ∈ BVal
O(n)
i,i , 0 ≤ i ≤ n, then

φ(K,L) = φ(L,K)

for every K,L ∈ Kn.

For m = 1, 2 let the partial derivation operators Λm : BVal → BVal be
defined by (cf. Corollary 5.4)

(Λ1φ)(K,L) =
d

dt

∣∣∣∣
t=0

φ(K + tBn, L). (6.2)

and

(Λ2φ)(K,L) =
d

dt

∣∣∣∣
t=0

φ(K,L+ tBn). (6.3)

Clearly, if φ ∈ BVali,j, then Λ1φ ∈ BVali−1,j and Λ2φ ∈ BVali,j−1.
Also define an operator T : BVal→ BVal by

(Tφ)(K,L) = φ(L,K).

By Theorem 6.2, the restriction of T to BVal
O(n)
i,i acts as the identity. Thus,

we obtain the following immediate consequence of Theorem 6.2:

Corollary 6.3 Suppose that 0 ≤ j ≤ n and 0 ≤ i ≤ j. Then the following
diagram is commutative:

BVal
O(n)
j,j

Λj−i
2

��

T = Id // BVal
O(n)
j,j

Λj−i
1

��

BVal
O(n)
j,i

T // BVal
O(n)
i,j
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Proof. Suppose that φ ∈ BVal
O(n)
j,j , 0 ≤ j ≤ n and let K,L ∈ Kn. Then, by

Theorem 6.2, we have

φ(L,K + tBn) = φ(K + tBn, L)

for every t > 0. Consequently, by definitions (6.2) and (6.3), we obtain

(TΛj−i
2 φ)(K,L) = (Λj−i

1 φ)(K,L). �

In the proof of Theorem 3 we will repeatedly make critical use of the
following consequence of Corollary 6.3:

Corollary 6.4 Let Φj ∈ MValj, 2 ≤ j ≤ n − 1, be SO(n) equivariant. If
1 ≤ i ≤ j + 1, then

Wn−i(K,Φj(L)) =
(i− 1)!

j!
Wn−1−j(L, (Λ

j+1−iΦj)(K))

for every K,L ∈ Kn.

Proof. We first note that any SO(n) equivariant Φ ∈ MVal is also O(n)

equivariant (see [5, Lemma 7.1]). Define φ ∈ BVal
O(n)
j,j by

φ(K,L) = Wn−1−j(K,Φj(L)), K, L ∈ Kn.

From (5.2) and (5.3), it follows that

Wn−i(K,Φj(L)) =
(i− 1)!

j!
(Λj+1−i

1 φ)(K,L).

Thus, applications of Corollary 6.3 and Corollary 5.4 complete the proof. �

7. Brunn–Minkowski type inequalities

In this final section we present the proof of Theorem 3. Special cases of
this result for j = n− 1 were obtained in [57] and for j ∈ {2, . . . , n− 1} and
i = j + 1 in [5] and [59]. The equality conditions for bodies of class C2

+ are
new for j ≤ n− 2.
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Theorem 7.1 Let Φj ∈ MValj, 2 ≤ j ≤ n − 1, be SO(n) equivariant and
non-trivial. If K,L ∈ Kn and 1 ≤ i ≤ j + 1, then

Wn−i(Φj(K + L))1/ij ≥ Wn−i(Φj(K))1/ij +Wn−i(Φj(L))1/ij. (7.1)

If K and L are of class C2
+, then equality holds if and only if K and L are

homothetic.

Proof. By Corollary 6.4, we have for Q ∈ Kn,

Wn−i(Q,Φj(K + L)) =
(i− 1)!

j!
Wn−1−j(K + L, (Λj+1−iΦj)(Q)). (7.2)

From an application of inequality (5.6), we obtain

Wn−1−j(K + L, (Λj+1−iΦj)(Q))1/j

≥ Wn−1−j(K, (Λ
j+1−iΦj)(Q))1/j +Wn−1−j(L, (Λ

j+1−iΦj)(Q))1/j.
(7.3)

A combination of (7.2) and (7.3) and another application of Corollary 6.4,
therefore show that

Wn−i(Q,Φj(K + L))1/j ≥ Wn−i(Q,Φj(K))1/j +Wn−i(Q,Φj(L))1/j. (7.4)

It follows from Minkowski’s inequality (5.4), that

Wn−i(Q,Φj(K))i ≥ Wn−i(Q)i−1Wn−i(Φj(K)), (7.5)

and, similarly,

Wn−i(Q,Φj(L))i ≥ Wn−i(Q)i−1Wn−i(Φj(L)). (7.6)

Plugging (7.5) and (7.6) into (7.4), and putting Q = Φj(K + L), now yields
the desired inequality (7.1).

In order to derive the equality conditions for convex bodies of class C2
+,

we first show that such bodies are mapped by Φj to bodies with non-empty
interior. For the following argument, the authors are obliged to T. Wannerer.
Let Q ∈ Kn be of class C2

+. By Lemma 5.2, there exist a convex body M ∈ Kn

and a number r > 0 such that Q = M + rBn. Using that Φj has degree j,
we thus obtain from Theorem 2 that

Φj(Q) = Φj(M + rBn) = rjΦ
(0)
j (M) + · · ·+ Φ

(j)
j (M),
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where Φ
(m)
j ∈ MValm, 1 ≤ m ≤ j, and Φ

(0)
j (M) = Φj(B

n). Since Φj is
SO(n) equivariant, we must have Φj(B

n) = tBn for some t ≥ 0. Since Φj is
non-trivial, it follows from an application of Corollary 6.4 (with i = 1 and
K = Bn) that in fact t > 0. Consequently, Φj(Q) ∈ Kn

o .
Now assume that K,L ∈ Kn are of class C2

+ and that equality holds
in (7.1). Let s be the Steiner point map. Since Q 7→ s(Φj(Q)) + s(Q) is
a continuous and rigid motion equivariant valuation, Theorem 5.1 implies
that s(Φj(Q)) = 0 for every Q ∈ Kn. Thus, we deduce from the equality
conditions of (7.5) and (7.6), that there exist λ1, λ2 > 0 such that

Φj(K) = λ1Φj(K + L) and ΦjL = λ2Φj(K + L) (7.7)

and
λ

1/j
1 + λ

1/j
2 = 1.

Moreover, (7.7) and another application of Corollary 6.4 (with i = 1 and
K = Bn) imply that

Wn−j(K) = λ1Wn−j(K + L) and Wn−j(L) = λ2Wn−j(K + L).

Hence, we have

Wn−j(K + L)1/j = Wn−j(K)1/j +Wn−j(L)1/j,

which, by (5.5), implies that K and L are homothetic. �

We remark that our proof shows that the smoothness assumption in the
equality conditions can be omitted for bodies with non-empty interior in case
Φj maps those bodies again to convex bodies with non-empty interior. This
is always the case if j = n− 1 (cf. [57]), but is not known in general.

We also note that since translation invariant continuous Minkowski
valuations of degree one are linear with respect to Minkowski addition (see
e.g. [27]), inequality (7.1) also holds in the case j = 1 (this follows from
(5.5)). The equality conditions, however, are different in this case.
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