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Abstract. Analogs of the classical inequalities from the Brunn Minkowski Theory
for rotation intertwining additive maps of convex bodies are developed. We also
prove analogs of inequalities from the dual Brunn Minkowski Theory for intertwining
additive maps of star bodies. These inequalities provide generalizations of results for
projection and intersection bodies. As a corollary we obtain a new Brunn Minkowski
inequality for the volume of polar projection bodies.
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1. Introduction and Statement of Main Results

For n ≥ 3 let Kn denote the space of convex bodies (i.e. compact, convex sets with
nonempty interior) in Rn endowed with the Hausdorff topology. A compact, convex
set K is uniquely determined by its support function h(K, ·) on the unit sphere
Sn−1, defined by h(K, u) = max{u · x : x ∈ K}. If K ∈ Kn contains the origin in
its interior, the convex body K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K} is called the
polar body of K.

The projection body ΠK of K ∈ Kn is the convex body whose support function
is given for u ∈ Sn−1 by

h(ΠK, u) = voln−1(K|u⊥),

where voln−1 denotes (n − 1)-dimensional volume and K|u⊥ is the image of the
orthogonal projection of K onto the subspace orthogonal to u. Important volume
inequalities for the polars of projection bodies are the Petty projection inequality
[31] and the Zhang projection inequality [38]: Among bodies of given volume the
polar projection bodies have maximal volume precisely for ellipsoids and minimal
volume precisely for simplices. The corresponding results for the volume of the pro-
jection body itself are major open problems in convex geometry, see [28]. Projection
bodies and their polars have received considerable attention over the last decades
due to their connection to different areas such as geometric tomography, stereology,
combinatorics, computational and stochastic geometry, see for example [1], [2], [8],
[11], [12], [20], [21], [23], [27], [36].

Mixed projection bodies were introduced in the classic volume of Bonnesen-
Fenchel [3]. They are related to ordinary projection bodies in the same way that
mixed volumes are related to ordinary volume. In [23] and [27] Lutwak considered
the volume of mixed projection bodies and their polars and established analogs of
the classical mixed volume inequalities.



We will show that the following well known properties of the projection body
operator Π : Kn → Kn are responsible not only for its behaviour under Minkowski
linear combinations but also for most of the inequalities established in [23] and [27]:

(a) Π is continuous.

(b) Π is Blaschke Minkowski additive, i.e. Π(K#L) = ΠK+ΠL for all K,L ∈ Kn.

(c) Π intertwines rotations, i.e. Π(ϑK) = ϑΠK for all K ∈ Kn and all ϑ ∈ SO(n).

Here ΠK + ΠL denotes the Minkowski sum of the projection bodies ΠK and ΠL
and K#L is the Blaschke sum of the convex bodies K and L (see Section 2). SO(n)
is the group of rotations in n dimensions.

Definition 1.1 A map Φ : Kn → Kn satisfying (a), (b) and (c) is called a Blaschke
Minkowski homomorphism.

In Section 4 we will see that there are many examples of Blaschke Minkowski
homomorphisms, see also [10], [13] and [37]. The main purpose of this article is to
extend Lutwak’s Brunn Minkowski Theory for mixed projection operators to general
Blaschke Minkowski homomorphisms. To this end, let in the following Φ : Kn → Kn

denote a Blaschke Minkowski homomorphism.

Theorem 1.2 There is a continuous operator

Φ : Kn × · · · × Kn︸ ︷︷ ︸
n−1

→ Kn,

symmetric in its arguments such that, for K1, . . . , Km ∈ Kn and λ1, . . . , λm ≥ 0,

Φ(λ1K1 + . . .+ λmKm) =
∑

i1,...,in−1

λi1 · · ·λin−1Φ(Ki1 , . . . , Kin−1), (1.1)

where the sum is with respect to Minkowski addition.

Theorem 1.2 generalizes the notion of mixed projection bodies. We will prove a
Minkowski inequality for the volume of mixed Blaschke Minkowski homomorphisms:

Theorem 1.3 If K,L ∈ Kn, then

V (Φ(K, . . . ,K, L))n−1 ≥ V (ΦK)n−2V (ΦL),

with equality if and only if K and L are homothetic.

An Aleksandrov Fenchel type inequality for the volume of mixed Blaschke Minkowski
homomorphisms is provided by:

Theorem 1.4 If K1, . . . , Kn−1 ∈ Kn, then

V (Φ(K1, . . . , Kn−1))
2 ≥ V (Φ(K1, K1, K3, . . . , Kn−1))V (Φ(K2, K2, K3, . . . , Kn−1)).
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We also prove that the volume of a Blaschke Minkowski homomorphism satisfies a
Brunn Minkowski inequality:

Theorem 1.5 If K,L ∈ Kn, then

V (Φ(K + L))1/n(n−1) ≥ V (ΦK)1/n(n−1) + V (ΦL)1/n(n−1),

with equality if and only if K and L are homothetic.

If we restrict ourselves to even operators, i.e. ΦK = Φ(−K) for all K ∈ Kn,
we can also prove volume inequalities for the polars of mixed Blaschke Minkowski
homomorphisms. In the following we write Φ∗K for the polar of ΦK.

Theorem 1.3p If Φ is even and K,L ∈ Kn, then

V (Φ∗(K, . . . ,K, L))n−1 ≤ V (Φ∗K)n−2V (Φ∗L),

with equality if and only if K and L are homothetic.

This result is again generalized by an Aleksandrov Fenchel type inequality:

Theorem 1.4p If Φ is even and K1, . . . , Kn−1 ∈ Kn, then

V (Φ∗(K1, . . . , Kn−1))
2 ≤ V (Φ∗(K1, K1, K3, . . . , Kn−1))V (Φ∗(K2, K2, K3, . . . , Kn−1)).

The next theorem shows that polars of even Blaschke Minkowski homomorphisms
also satisfy a Brunn Minkowski inequality:

Theorem 1.5p If Φ is even and K,L ∈ Kn, then

V (Φ∗(K + L))−1/n(n−1) ≥ V (Φ∗K)−1/n(n−1) + V (Φ∗L)−1/n(n−1),

with equality if and only if K and L are homothetic.

Note that the special case Φ = Π of Theorem 1.5p provides a new Brunn Minkowski
inequality for the volume of polar projection bodies:

Corollary 1.6p If K,L ∈ Kn, then

V (Π∗(K + L))−1/n(n−1) ≥ V (Π∗K)−1/n(n−1) + V (Π∗L)−1/n(n−1),

with equality if and only if K and L are homothetic.

In recent years a dual theory to the Brunn Minkowski Theory of convex bodies
was established. Mixed volumes are replaced by dual mixed volumes, which were
introduced by Lutwak in [22]. The natural domain of dual mixed volumes is the
space Sn of star bodies (i.e. compact sets, starshaped with respect to the origin with
continuous radial functions) in Rn endowed with the Hausdorff topology. The radial
function ρ(L, ·) of a set L starshaped with respect to the origin is defined on Sn−1

by ρ(L, u) = max{λ ≥ 0 : λu ∈ L}.
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The intersection body IL of L ∈ Sn is the star body whose radial function is
given for u ∈ Sn−1 by

ρ(IL, u) = voln−1(L ∩ u⊥).

Intersection bodies have attracted increased interest in recent years. They appear
already in a paper by Busemann [4] but were first explicitly defined and named by
Lutwak [25]. Intersection bodies turned out to be critical for the solution of the
Busemann-Petty problem, see [6], [7], [9], [14], [16], [17], [40]. The fundamental
volume inequality for intersection bodies is the Busemann intersection inequality
[4]: Among bodies of given volume the intersection bodies have maximal volume
precisely for ellipsoids centered in the origin. A corresponding result for the minimal
volume of intersection bodies of a given volume is another major open problem in
convex geometry.

The operator I : Sn → Sn has the following well known properties:

(a)d I is continuous.

(b)d I(K #̃ L) = IK +̃ IL for all K,L ∈ Sn.

(c)d I intertwines rotations.

Here IK +̃ IL is the radial Minkowski sum of the intersection bodies IK and IL
and K #̃ L is the radial Blaschke sum of the star bodies K and L (see Section 3).

Definition 1.1d A map Ψ : Sn → Sn is called radial Blaschke Minkowski homo-
morphism if it satisfies (a)d, (b)d and (c)d.

As Lutwak shows in [25], see also [8], there is a duality between projection and in-
tersection bodies, that is at present not yet well understood. We will show that there
is a similar duality for general Blaschke Minkowski and radial Blaschke Minkowski
homomorphisms. In analogy to the inequalities of Theorems 1.3, 1.4 and 1.5 we will
establish dual inequalities for radial Blaschke Minkowski homomorphisms. To this
end, let Ψ : Sn → Sn denote a nontrivial radial Blaschke Minkowski homomorphism,
where the operator that maps every star body to the origin is called the trivial radial
Blaschke Minkowski homomorphism.

Theorem 1.2d There is a continuous operator

Ψ : Sn × · · · × Sn︸ ︷︷ ︸
n−1

→ Sn,

symmetric in its arguments such that, for L1, . . . , Lm ∈ Sn and λ1, . . . , λm ≥ 0,

Ψ(λ1L1 +̃ . . . +̃ λmLm) =
∼∑

i1,...,in−1

λi1 · · ·λin−1Ψ(Li1 , . . . , Lin−1),

where the sum is with respect to radial Minkowski addition.

Mixed intersection bodies were introduced in [39]. The dual Minkowski inequality
for radial Blaschke Minkowski homomorphisms is:
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Theorem 1.3d If K,L ∈ Sn, then

V (Ψ(K, . . . ,K, L))n−1 ≤ V (ΨK)n−2V (ΨL),

with equality if and only if K and L are dilates.

Theorem 1.3d is a special case of the dual Aleksandrov Fenchel inequality for the
volume of radial Blaschke Minkowski homomorphisms:

Theorem 1.4d If L1, . . . , Ln−1 ∈ Sn, then

V (Ψ(L1, . . . , Ln−1))
2 ≤ V (Ψ(L1, L1, L3, . . . , Ln−1))V (Ψ(L2, L2, L3, . . . , Ln−1)),

with equality if and only if L1 and L2 are dilates.

The volume of a radial Blaschke Minkowski homomorphism satisfies the following
dual Brunn Minkowski inequality:

Theorem 1.5d If K,L ∈ Sn, then

V (Ψ(K + L))1/n(n−1) ≤ V (ΨK)1/n(n−1) + V (ΨL)1/n(n−1),

with equality if and only if K and L are dilates.

Theorems 1.3d, 1.4d and 1.5d for the intersection body operator were recently es-
tablished in [18] and [19].

2. Mixed Volumes

We collect in this section the background material and notation from the Brunn
Minkowski Theory that is needed in the proofs of the main theorems. As a general
reference we recommend the book by Schneider [35].

The most important algebraic structure on the space Kn is Minkowski addition.
For K1, K2 ∈ Kn and λ1, λ2 ≥ 0, the support function of the Minkowski linear
combination λ1K1 + λ2K2 is

h(λ1K1 + λ2K2, ·) = λ1h(K1, ·) + λ2h(K2, ·).

The volume of a Minkowski linear combination λ1K1 + . . .+λmKm of convex bodies
K1, . . . , Km can be expressed as a homogeneous polynomial of degree n:

V (λ1K1 + . . .+ λmKm) =
∑

i1,...,in

V (Ki1 , . . . , Kin)λi1 · · ·λin .

The coefficients V (Ki1 , . . . , Kin) are called mixed volumes of Ki1 , . . . , Kin . These
functionals are nonnegative, symmetric and translation invariant. Moreover, they
are monotone (with respect to set inclusion), multilinear with respect to Minkowski
addition and their diagonal form is ordinary volume, i.e. V (K, . . . ,K) = V (K).
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Denote by Vi(K,L) the mixed volume V (K, . . . ,K, L, . . . , L), where K appears
n − i times and L appears i times. For 0 ≤ i ≤ n − 1, write Wi(K,L) for the
mixed volume V (K, . . . ,K,B, . . . , B, L), where K appears n− i− 1 times and the
Euclidean unit ball B appears i times. The mixed volume Wi(K,K) will be written
as Wi(K) and is called the ith quermassintegral of K. If C = (K1, . . . , Ki), then
Vi(K,C) denotes the mixed volume V (K, . . . ,K,K1, . . . , Ki) with n− i copies of K.

Associated with K1, . . . , Kn−1 ∈ Kn is a Borel measure, S(K1, . . . , Kn−1, ·), on
Sn−1, called the mixed surface area measure of K1, . . . , Kn−1. It is symmetric and
has the property that, for each K ∈ Kn,

V (K,K1, . . . , Kn−1) =
1

n

∫
Sn−1

h(K, u)dS(K1, . . . , Kn−1, u). (2.1)

The measures Sj(K, ·) := S(K, . . . ,K,B, . . . , B, ·), where K appears j times and
B appears n− 1− j times, are called the surface area measures of order j of K. Of
particular importance for our purposes is the surface area measure (of order n− 1)
Sn−1(K, ·) of K. It is not concentrated on any great sphere and has its center of
mass in the origin. Conversely, by Minkowski’s existence theorem, every measure in
M+(Sn−1), the space of nonnegative Borel measures on the sphere with the weak∗

topology, with these properties is the surface area measure of a convex body, unique
up to translation. Hence, if K1, K2 ∈ Kn and λ1, λ2 ≥ 0 (not both 0), then there
exists a convex body λ1 ·K1 # λ2 ·K2, unique up to translation, such that

Sn−1(λ1 ·K1 # λ2 ·K2, ·) = λ1Sn−1(K1, ·) + λ2Sn−1(K2, ·). (2.2)

This addition and scalar multiplication are called Blaschke addition and scalar mul-
tiplication. For K ∈ Kn and λ ≥ 0, we have λ ·K = λ1/(n−1)K.

Blaschke addition is an additive structure on the space [Kn] of translation classes
of convex bodies. Thus, the natural domain of an operator Φ with the additivity
property Φ(K # L) = ΦK + ΦL is the space [Kn]. In Definition 1.1 the domain of
a Blaschke Minkowski homomorphism is Kn, because we identify operators on [Kn]
with translation invariant operators on Kn.

The surface area measure of a Minkowski linear combination of convex bodies
K1, . . . , Km can be expressed as a polynomial homogeneous of degree n− 1:

Sn−1(λ1K1 + . . .+ λmKm, ·) =
∑

i1,...,in−1

λi1 · · ·λin−1S(Ki1 , . . . , Kin−1 , ·). (2.3)

One of the most general and fundamental inequalities for mixed volumes is the
Aleksandrov Fenchel inequality: If K1, . . . , Kn ∈ Kn and 1 ≤ m ≤ n, then

V (K1, . . . , Kn)m ≥
m∏

j=1

V (Kj, . . . , Kj, Km+1, . . . , Kn). (2.4)

Unfortunately, the equality conditions of this inequality are, in general, unknown.
An important special case of inequality (2.4), where the equality conditions are

known, is the Minkowski inequality: If K,L ∈ Kn, then

V1(K,L)n ≥ V (K)n−1V (L), (2.5)
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with equality if and only if K and L are homothetic. In fact, a more general version
of Minkowski’s inequality holds: If 0 ≤ i ≤ n− 2, then

Wi(K,L)n−i ≥ Wi(K)n−i−1Wi(L), (2.6)

with equality if and only if K and L are homothetic.
A consequence of the Minkowski inequality is the Brunn Minkowski inequality:

If K,L ∈ Kn, then
V (K + L)1/n ≥ V (K)1/n + V (L)1/n, (2.7)

with equality if and only if K and L are homothetic. This is a special case of the
more general inequality: If 0 ≤ i ≤ n− 2, then

Wi(K + L)1/(n−i) ≥ Wi(K)1/(n−i) +Wi(L)1/(n−i), (2.8)

with equality if and only if K and L are homothetic.
A further generalization of inequality (2.7) is also known (but without equality

conditions): If 0 ≤ i ≤ n− 2, K,L,K1, . . . , Ki ∈ Kn and C = (K1, ..., Ki), then

Vi(K + L,C)1/(n−i) ≥ Vi(K,C)1/(n−i) + Vi(L,C)1/(n−i). (2.9)

3. Dual Mixed Volumes

In this section we summarize results from the dual Brunn Minkowski Theory, see
[22]. For L1, L2 ∈ Sn and λ1, λ2 ≥ 0, the radial Minkowski linear combination
λ1L1 +̃ λ2L2 is the star body defined by

ρ(λ1L1 +̃ λ2L2, ·) = λ1ρ(L1, ·) + λ2ρ(L2, ·). (3.1)

The volume of a radial Minkowski linear combination λ1L1 +̃ . . . +̃λmLm of star
bodies L1, . . . , Lm can be expressed as a homogeneous polynomial of degree n:

V (λ1L1 +̃ . . . +̃ λmLm) =
∑

i1,...,in

Ṽ (Li1 , . . . , Lin)λi1 · · ·λin .

The coefficients Ṽ (Li1 , . . . , Lin) are called dual mixed volumes of Li1 , . . . , Lin . They
are nonnegative, symmetric and monotone (with respect to set inclusion). They are
also multilinear with respect to radial Minkowski addition and Ṽ (L, . . . , L) = V (L).
The following integral representation of dual mixed volumes holds:

Ṽ (L1, . . . , Ln) =
1

n

∫
Sn−1

ρ(L1, u) · · · ρ(Ln, u)du, (3.2)

where du is the spherical Lebesgue measure of Sn−1. The definitions of Ṽi(K,L),
W̃i(K,L), etc. are analogous to the ones for mixed volumes in Section 2. A slight
extension of the notation Ṽi(K,L) is for r ∈ R

Ṽr(K,L) =
1

n

∫
Sn−1

ρn−r(K,u)ρr(L, u)du. (3.3)

Obviously we have Ṽr(L,L) = V (L) for every r ∈ R and every L ∈ Sn.
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If λ1, λ2 ≥ 0, then the radial Blaschke linear combination λ1 · L1 #̃ λ2 · L2 of the
star bodies L1 and L2 is the star body whose radial function satisfies

ρn−1(λ1 · L1 #̃ λ2 · L2, ·) = λ1ρ
n−1(L1, ·) + λ2ρ

n−1(L2, ·). (3.4)

For L1, . . . , Lm ∈ Sn and λ1, . . . , λm ≥ 0, the function ρn−1(λ1L1 +̃ . . . +̃λmLm, ·)
can be expressed as a polynomial homogeneous of degree n− 1:

ρn−1(λ1L1 +̃ . . . +̃ λmLm, ·) =
∑

i1,...,in−1

λi1 · · ·λin−1ρ(Li1 , ·) · · · ρ(Lin−1 , ·). (3.5)

The most general inequality for dual mixed volumes is the dual Aleksandrov
Fenchel inequality: If L1, . . . , Ln ∈ Sn and 1 ≤ m ≤ n, then

Ṽ (L1, . . . , Ln)m ≤
m∏

j=1

Ṽ (Lj, . . . , Lj, Lm+1, . . . , Ln), (3.6)

with equality if and only if L1, . . . , Lm are dilates. A special case of inequality (3.6)
is the dual Minkowski inequality: If K,L ∈ Sn, then

Ṽ1(K,L) ≤ V (K)n−1V (L), (3.7)

with equality if and only if K and L are dilates. A more general version of the dual
Minkowski inequality is: If 0 ≤ i ≤ n− 2, then

W̃i(K,L)n−i ≤ W̃i(K)n−i−1W̃i(L), (3.8)

with equality if and only if K and L are dilates.
We will also need the following Minkowski type inequality: If K,L ∈ Sn, then

Ṽ−1(K,L)n ≥ V (K)n+1V (L)−1, (3.9)

with equality if and only if K and L are dilates.
A consequence of the dual Minkowski inequality is the dual Brunn Minkowski

inequality: If K,L ∈ Sn, then

V (K +̃ L)1/n ≤ V (K)1/n + V (L)1/n, (3.10)

with equality if and only if K and L are dilates. Using Minkowski’s integral inequal-
ity, this can be further generalized: If 0 ≤ i ≤ n− 2, then

W̃i(K +̃ L)1/(n−i) ≤ W̃i(K)1/(n−i) + W̃i(L)1/(n−i), (3.11)

with equality if and only if K and L are dilates. If 0 ≤ i ≤ n− 2, K,L, L1, . . . , Li ∈
Sn and C = (L1, ..., Li), then

Ṽi(K +̃ L,C)1/(n−i) ≤ Ṽi(K,C)1/(n−i) + Ṽi(L,C)1/(n−i), (3.12)

with equality if and only if K and L are dilates.
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4. Blaschke Minkowski homomorphisms

In [33], [34] Schneider started a systematic investigation of Minkowski endomor-
phisms, i.e. continuous, rotation intertwining and Minkowski additive maps of con-
vex bodies. Among other results he obtained a complete classification of all such
maps in R2. Kiderlen [15] continued these investigations and extended Schneider’s
classification to higher dimensions under a weak monotonicity assumption. He also
classified all Blaschke endomorphisms, i.e. continuous, rotation intertwining and
Blaschke additive maps, in arbitrary dimension. Following the work of Schneider
and Kiderlen the author studied Blaschke Minkowski homomorphisms in [37]. The
main results established there are a representation theorem for general and a com-
plete classification of all even Blaschke Minkowski homomorphisms. These results
will form the main ingredients for the proofs of Theorems 1.2 to 1.5 and Theorems
1.3p to 1.5p. In order to state them, we introduce further notation.
SO(n) will be equipped with the invariant probability measure. As SO(n) is a

compact Lie group, the space M(SO(n)) of finite Borel measures on SO(n) with
the weak∗ topology carries a natural convolution structure. The convolution µ ∗ ν
of µ, σ ∈M(SO(n)) is defined by∫

SO(n)

f(ϑ)d(µ ∗ σ)(ϑ) =

∫
SO(n)

f(ητ)dµ(η)dσ(τ),

for every f ∈ C(SO(n)), the space of continuous functions on SO(n) with the
uniform topology. By identifying a continuous function f with the absolute con-
tinuous measure with density f , the space C(SO(n)) can be viewed as subspace of
M(SO(n)). Thus the convolution onM(SO(n)) induces a convolution on C(SO(n)).
Of particular importance for us is the following Lemma, see [12], p.85.

Lemma 4.1 Let µm, µ ∈ M(SO(n)), m = 1, 2, . . . and let f ∈ C(SO(n)). If
µm → µ weakly, then f ∗ µm → f ∗ µ and µm ∗ f → µ ∗ f uniformly.

Identifying Sn−1 with the homogeneous space SO(n)/SO(n−1), where SO(n−1)
denotes the group of rotations leaving the point

_
e (the pole) of Sn−1 fixed, leads to a

one-to-one correspondence of C(Sn−1) and M(Sn−1) with right SO(n− 1)-invariant
functions and measures on SO(n), see [12], [37]. Using this correspondence, the
convolution structure on M(SO(n)) carries over to M(Sn−1).

In particular, the convolution µ ∗ f ∈ C(Sn−1) of a measure µ ∈ M(SO(n)) and
a function f ∈ C(Sn−1) is defined by

(µ ∗ f)(u) =

∫
SO(n)

f(ϑ−1u)dµ(ϑ). (4.1)

If f = h(K, ·) is the support function of a compact, convex setK, we have f(ϑ−1u) =
h(ϑK, u) for every u ∈ Sn−1. Thus, if µ ∈ M(SO(n)) is a nonnegative measure,
µ∗f is again the support function of a compact, convex set which can be interpreted
as a weighted Minkowski rotation mean of the set K.

An essential role play convolution operators on C(Sn−1) and M(Sn−1), which are
generated by SO(n−1) invariant functions and measures. A measure µ ∈M(Sn−1)
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is called zonal, if ϑµ = µ for every ϑ ∈ SO(n − 1), where ϑµ is the image measure
under the rotation ϑ. The set of continuous zonal functions on Sn−1 will be denoted
by C(Sn−1,

_
e), the definition of M(Sn−1,

_
e) is analogous. If f ∈ C(Sn−1), µ ∈

M(Sn−1,
_
e) and η ∈ SO(n), we have

(f ∗ µ)(η
_
e) =

∫
Sn−1

f(ηu)dµ(u). (4.2)

Note that, if µ ∈M(Sn−1,
_
e), then, by (4.2), for every f ∈ C(Sn−1),

(ϑf) ∗ µ = ϑ(f ∗ µ) (4.3)

for every ϑ ∈ SO(n). Thus, the spherical convolution from the right is a rotation
intertwining operator on C(Sn−1) and M(Sn−1). It is also not difficult to check from
(4.2) that the convolution of zonal functions and measures is abelian.

The representation theorem for Blaschke Minkowski homomorphisms is, see [37]:

Theorem 4.2 If Φ : Kn → Kn is a Blaschke Minkowski homomorphism, then there
is a function g ∈ C(Sn−1,

_
e) such that

h(ΦK, ·) = Sn−1(K, ·) ∗ g. (4.4)

The function g is unique up to addition of a function of the form u 7→ x · u, x ∈ Rn.

We call a compact, convex set F ⊆ Rn a figure of revolution if F is invariant under
rotations of SO(n−1). A further investigation of properties of generating functions
of Blaschke Minkowski homomorphisms in [37] led to the following classification of
even Blaschke Minkowski homomorphisms:

Theorem 4.3 A map Φ : Kn → Kn is an even Blaschke Minkowski homomorphism
if and only if there is a centrally symmetric figure of revolution F ⊆ Rn, which is
not a singleton, such that

h(ΦK, ·) = Sn−1(K, ·) ∗ h(F, ·).

The set F is unique up to translations.

The projection body operator Π : Kn → Kn is an even Blaschke Minkowski
homomorphism. Its generating figure of revolution is a dilate of the segment [−_

e,
_
e]:

h(ΠK, ·) =
1

2
Sn−1(K, ·) ∗ h([−

_
e,

_
e], ·). (4.5)

The operator Π maps polytopes to finite Minkowski linear combinations of rotated
and dilated copies of the line segment [−_

e,
_
e]. A general convex body K is mapped

to a limit of such Minkowski sums of line segments.
Another well known example of an even Blaschke Minkowski homomorphism is

provided by the sine transform of the surface area measure of a convex body K, see
[13], [32]: Define an operator Θ : Kn → Kn by

h(ΘK, ·) = Sn−1(K, ·) ∗ h(B ∩ _
e
⊥
, ·).
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Then Θ is an even Blaschke Minkowski homomorphism whose images are (limits

of) Minkowski sums of rotated and dilated copies of the disc B ∩ _
e
⊥
. The value

h(ΘK, u) is up to a factor the integrated surface area of parallel hyperplane sections
of K in the direction u.

Every map Φ : Kn → Kn of the form h(ΦK, ·) = Sn−1(K, ·) ∗ h(L, ·), for some
figure of revolution L, is by (4.1) a Blaschke Minkowski homomorphism, but in
general there are generating functions g of Blaschke Minkowski homomorphisms
that are not support functions. An example of such a map is the (normalized)
second mean section operator M2 introduced in [10] and further investigated in [13]:
Let En

2 be the affine Grassmanian of two-dimensional planes in Rn and µ2 its motion
invariant measure, normalized such that µ2({E ∈ En

2 : E ∩Bn 6= ∅}) = κn−2. Then

h(M2K, ·) = (n− 1)

∫
En
2

h(K ∩ E, ·)dµ2(E)− h({zn−1(K)}, ·), (4.6)

where zn−1(K) is the (n− 1)st intrinsic moment vector of K, see [35], p.304.
An immediate consequence of Theorem 4.2 is Theorem 1.2. Let Φ : Kn → Kn be

a Blaschke Minkowski homomorphism with generating function g ∈ C(Sn−1,
_
e). If

we define an operator
Φ : Kn × · · · × Kn︸ ︷︷ ︸

n−1

→ Kn,

by
h(Φ(K1, . . . , Kn−1), ·) = S(K1, . . . , Kn−1, ·) ∗ g, (4.7)

then (2.3) and the linearity of convolution imply (1.1). The mixed operator Φ is
well defined as, by Minkowski’s existence theorem, the mixed surface area measure
S(K1, . . . , Kn−1, ·) is the surface area measure (of order n − 1) of a convex body
[K1, . . . , Kn−1], see [24], and thus Φ(K1, . . . , Kn−1) = Φ[K1, . . . , Kn−1].

By Lemma 4.1 and the weak continuity of mixed surface area measures, see
[35], p.276, the mixed operators defined by (4.7) are continuous and symmetric.
Moreover, they have the following properties which are immediate consequences of
the corresponding properties of mixed surface area measures and the convolution
representation (4.7):

(i) They are multilinear with respect to Minkowski linear combinations.

(ii) Their diagonal form reduces to the Blaschke Minkowski homomorphism:

Φ(K, . . . ,K) = ΦK.

(iii) They intertwine simultaneous rotations, i.e. if ϑ ∈ SO(n), then

Φ(ϑK1, . . . , ϑKn−1) = ϑΦ(K1, . . . , Kn−1).

For K,L ∈ Kn, let Φi(K,L) denote the mixed operator Φ(K, . . . ,K, L, . . . , L), with
i copies of L and n− i−1 copies of K. For the body Φi(K,B) we simply write ΦiK.
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The Steiner point map s : Kn → Rn is defined by

h({s(K)}, ·) = nh(K, ·) ∗ (
_
e · . ).

The map s is the unique vector valued continuous, rigid motion intertwining and
Minkowski additive map on Kn. From the fact that S(K1, . . . , Kn−1, ·) ∗ (

_
e · . ) = 0

for K1, . . . , Kn−1 ∈ Kn, see [35], p.281, we obtain by (4.7) and the commutativity of
zonal convolution

h({s(Φ(K1, . . . , Kn−1))}, ·) = nS(K1, . . . , Kn−1, ·) ∗ (
_
e · . ) ∗ g = 0.

Hence,
s(Φ(K1, . . . , Kn−1)) = o. (4.8)

Since s(Φ(K1, . . . , Kn−1)) ∈ int Φ(K1, . . . , Kn−1), see [35], p.43, we see that the
convex body Φ(K1, . . . , Kn−1) contains the origin in its interior. Thus, the polar
body Φ∗(K1, . . . , Kn−1), in particular Φ∗K, is well defined.

For K ∈ Kn containing the origin in its interior, we have the relation h(K, ·) =
ρ−1(K∗, ·). Thus, by (4.7), we obtain for the polar of a mixed Blaschke Minkowski
homomorphism Φ with generating function g ∈ C(Sn−1,

_
e) the representation

ρ−1(Φ∗(K1, . . . , Kn−1), ·) = S(K1, . . . , Kn−1, ·) ∗ g. (4.9)

5. Radial Blaschke Minkowski homomorphisms

In the last section we collected the representation theorems on Blaschke Minkowski
homomorphisms that are critical in the proofs of Theorems 1.2 to 1.5 and Theorems
1.3p to 1.5p. In the following we will show that there is a corresponding character-
ization of radial Blaschke Minkowski homomorphisms that will be needed to prove
the dual Theorems 1.3d, 1.4d and 1.5d.

We call a map Ψ : C(Sn−1) → C(Sn−1) monotone, if nonnegative functions are
mapped to nonnegative ones. The following theorem is a slight variation of a result
by Dunkl [5]:

Theorem 5.1 A map Ψ : C(Sn−1) → C(Sn−1) is a monotone, linear map that
intertwines rotations if and only if there is a measure µ ∈M+(Sn−1,

_
e) such that

Ψf = f ∗ µ. (5.1)

Proof: From the definition of spherical convolution and (4.3), it follows that map-
pings of the form (5.1) have the desired properties.

Conversely, let Ψ be monotone, linear and rotation intertwining. Consider the
map ψ : C(Sn−1) → R, f 7→ Ψf(

_
e). By the properties of Ψ, the functional ψ is

positive and linear on C(Sn−1), thus, by the Riesz representation theorem, there is
a measure µ ∈M+(Sn−1) such that

ψ(f) =

∫
Sn−1

f(u)dµ(u).

12



Since ψ is SO(n−1) invariant, the measure µ is zonal. Thus, we have for η ∈ SO(n)

Ψf(η
_
e) = Ψ(η−1f)(

_
e) = ψ(η−1f) =

∫
Sn−1

f(ηu)dµ(u).

The theorem follows now from (4.2). �

The following consequence of Theorem 5.1 is a dual version of Theorem 4.2:

Theorem 5.2 A map Ψ : Sn → Sn is a radial Blaschke Minkowski homomorphism
if and only if there is a nonnegative measure µ ∈M+(Sn−1,

_
e) such that

ρ(ΨL, ·) = ρn−1(L, ·) ∗ µ. (5.2)

Proof: From Lemma 4.1, (4.3) and the properties of spherical convolution, it is clear
that mappings of the form of (5.2) are radial Blaschke Minkowski homomorphisms.
Thus, we have to show that for every such operator Ψ, there is a measure µ ∈
M+(Sn−1,

_
e) such that (5.2) holds.

Since every positive continuous function on Sn−1 is a radial function, the vector
space {ρn−1(K, ·) − ρn−1(L, ·) : K,L ∈ Sn} coincides with C(Sn−1). The operator
Ψ̄ : C(Sn−1) → C(Sn−1) defined by

Ψ̄f = ρ(ΨL1, ·)− ρ(ΨL2, ·),

where f = ρn−1(L1, ·)− ρn−1(L2, ·), is a linear extension of Ψ to C(Sn−1) that inter-
twines rotations. Since the cone of radial functions is invariant under Ψ̄, it is also
monotone. Hence, by Theorem 5.1, there is a nonnegative measure µ ∈M+(Sn−1,

_
e)

such that Ψ̄f = f ∗ µ. The statement now follows from Ψ̄ρn−1(L, ·) = ρ(ΨL, ·). �

The generating measure of the intersection body operator I : Sn → Sn is the

invariant measure µSn−2
0

concentrated on Sn−2
0 := Sn−1 ∩ _

e
⊥

with total mass κn−1:

ρ(IL, ·) = ρn−1(L, ·) ∗ µSn−2
0

.

Let Ψ : Sn → Sn be a radial Blaschke Minkowski homomorphism with generating
measure µ ∈M+(Sn−1,

_
e) and define a mixed operator Ψ : Sn × · · · × Sn → Sn by

ρ(Ψ(L1, . . . , Ln−1), ·) = ρ(L1, ·) · · · ρ(Ln−1, ·) ∗ µ. (5.3)

The mixed radial Blaschke Minkowski homomorphisms defined in this way are sym-
metric and by Lemma 4.1 continuous. Moreover, Theorem 1.2d is a direct conse-
quence of Theorem 5.2 and (3.5). The properties (ii) and (iii) of mixed Blaschke
Minkowski homomorphisms also hold for mixed radial Blaschke Minkowski homo-
morphisms but property (i) has to be replaced by:

(i)d They are multilinear with respect to radial Minkowski linear combinations.

For K,L ∈ Sn, the definitions of Ψi(K,L) and ΨiK are analogous to the ones for
mixed Blaschke Minkowski homomorphisms.
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6. Inequalities for Blaschke Minkowski homomorphisms

In this section we will prove Theorems 1.3, 1.4 and 1.5 as well as their polar versions.
To this end, let Φ : Kn → Kn always denote a Blaschke Minkowski homomorphism
with generating function g ∈ C(Sn−1,

_
e). The proofs are based on techniques devel-

oped by Lutwak in [27].
It will be convenient to introduce the following notation for the canonical pairing

of f ∈ C(Sn−1) and µ ∈M(Sn−1)

〈µ, f〉 = 〈f, µ〉 =

∫
Sn−1

f(u)dµ(u).

One very useful tool is the following easy Lemma, see [37], p.7:

Lemma 6.1 Let µ, ν ∈M(Sn−1) and f ∈ C(Sn−1), then

〈µ ∗ ν, f〉 = 〈µ, f ∗ ν〉.

We summarize geometric consequences of Lemma 6.1 in the following two Lemmas:

Lemma 6.2 If K1, . . . , Kn−1, L1, . . . , Ln−1 ∈ Kn, then

V (K1, . . . , Kn−1,Φ(L1, . . . , Ln−1)) = V (L1, . . . , Ln−1,Φ(K1, . . . , Kn−1)). (6.1)

In particular, for K,L ∈ Kn and 0 ≤ i, j ≤ n− 2,

Wi(K,Φ(L1, . . . , Ln−1)) = V (L1, . . . , Ln−1,ΦiK) (6.2)

and
Wi(K,ΦjL) = Wj(L,ΦiK). (6.3)

Proof: By (2.1), we have

V (K1, . . . , Kn−1,Φ(L1, . . . , Ln−1)) = 〈h(Φ(L1, . . . , Ln−1), ·), S(K1, . . . , Kn−1)〉.

Hence, identity (6.1) follows from (4.7) and Lemma 6.1.
For K1 = . . . = Kn−i−1 = K and Kn−i = . . . = Kn−1 = B, identity (6.1) reduces

to (6.2). Finally put L1 = . . . = Ln−j−1 = L and Ln−j = . . . = Ln−1 = B in (6.2),
to obtain identity (6.3). �

In the next Lemma we summarize further special cases of identity (6.1). These
make use of the fact that the image of a ball under a Blaschke Minkowski homo-
morphism is again a ball. To see this, note that dSn−1(B, v) = dv, where dv is the
ordinary spherical Lebesgue measure. Thus, by Theorem 4.2,

h(ΦB, u) = (Sn−1(B, ·) ∗ g)(u) =

∫
Sn−1

g(v)dv =: rΦ.

So let rΦ denote the radius of the ball ΦB.
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Lemma 6.3 If K1, . . . , Kn−1 ∈ Kn, then

Wn−1(Φ(K1, . . . , Kn−1)) = rΦV (K1, . . . , Kn−1, B). (6.4)

In particular, for K,L ∈ Kn,

Wn−1(Φ1(K,L)) = rΦW1(K,L), (6.5)

and, for 0 ≤ i ≤ n− 2,
Wn−1(ΦiK) = rΦWi+1(K). (6.6)

Lemma 6.2 is the critical tool in the proofs of the inequalities of Theorems 1.3,
1.4 and 1.5 without the equality conditions, compare Lutwak [24]. Lemma 6.3 will
be needed to settle the cases of equality. In fact more general inequalities can be
proved. The following result is a generalization of Theorem 1.3:

Theorem 6.4 If K,L ∈ Kn and 0 ≤ i ≤ n− 1, then

Wi(Φ1(K,L))n−1 ≥ Wi(ΦK)n−2Wi(ΦL), (6.7)

with equality if and only if K and L are homothetic.

Proof: By (6.5) and (6.6), the case i = n − 1 follows from inequality (2.6). Let
therefore 0 ≤ i ≤ n− 2 and Q ∈ Kn. By (6.2) and (2.4),

Wi(Q,Φ1(K,L))n−1 = V (K, . . . ,K, L,ΦiQ)n−1 ≥ V1(K,ΦiQ)n−2V1(L,ΦiQ)

= Wi(Q,ΦK)n−2Wi(Q,ΦL).

Inequality (2.6) implies

Wi(Q,ΦK)(n−2)(n−i)Wi(Q,ΦL)n−i ≥ Wi(Q)(n−1)(n−i−1)Wi(ΦK)n−2Wi(ΦL)

and thus,

Wi(Q,Φ1(K,L))(n−1)(n−i) ≥ Wi(Q)(n−1)(n−i−1)Wi(ΦK)n−2Wi(ΦL), (6.8)

with equality if and only if Q,ΦK and ΦL are homothetic. Setting Q = Φ1(K,L), we
obtain the desired inequality. If there is equality in (6.7), we have equality in (6.8).
From the fact that the Steiner point of mixed Blaschke Minkowski homomorphisms
is the origin, compare (4.8), it follows that there exist λ1, λ2 > 0 such that

Φ1(K,L) = λ1ΦK = λ2ΦL. (6.9)

From the equality in (6.7), it follows that

λn−2
1 λ2 = 1.

Moreover, (6.5), (6.6) and (6.9) give

W1(K,L) = λ1W1(K) = λ2W1(L).
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Hence, we have
W1(K,L)n−1 = W1(K)n−2W1(L),

which implies, by (2.6), that K and L are homothetic. �

Of course, Theorem 1.3 is the special case i = 0 of Theorem 6.4.
Much more general then the Minkowski inequality is the Aleksandrov Fenchel

inequality for mixed operators:

Theorem 6.5 If K1, . . . , Kn−1 ∈ Kn and 1 ≤ m ≤ n− 1, then

Wi(Φ(K1, . . . , Kn−1))
m ≥

m∏
j=1

Wi(Φ(Kj, . . . , Kj︸ ︷︷ ︸
m

, Km+1, . . . , Kn−1)).

Proof: The case i = n−1 reduces by (6.4) to inequality (2.4). Hence, we can assume
i ≤ n− 2. From (6.2) and (2.4), it follows that for Q ∈ Kn,

Wi(Q,Φ(K1, . . . , Kn−1))
m = V (K1, . . . , Kn−1,ΦiQ)m

≥
m∏

j=1

V (Kj, . . . , Kj, Km+1, . . . , Kn−1,ΦiQ)

=
m∏

j=1

Wi(Q,Φ(Kj, . . . , Kj, Km+1, . . . , Kn−1)).

Write Φm′(Kj,C) for the mixed operator Φ(Kj, . . . , Kj, Km+1, . . . , Kn−1). Then, by
inequality (2.6), we have

Wi(Q,Φm′(Kj,C))n−i ≥ Wi(Q)n−i−1Wi(Φm′(Kj,C)).

Hence, we obtain

Wi(Q,Φ(K1, . . . , Kn−1))
m(n−i) ≥ Wi(Q)m(n−i−1)

m∏
j=1

Wi(Φm′(Kj,C)).

By setting Q = Φ(K1, . . . , Kn−1), this becomes the desired inequality. �

Theorem 1.4 is the special case m = 2 and i = 0 of Theorem 6.5. If we combine
the special case m = n− 2 of Theorem 6.5 and Theorem 6.4 we obtain:

Corollary 6.6 If K1, . . . , Kn−1 ∈ Kn and 0 ≤ i ≤ n− 1, then

Wi(Φ(K1, . . . , Kn−1))
n−1 ≥ Wi(ΦK1) · · ·Wi(ΦKn−1),

with equality if and only if the Kj are homothetic.

The special case K1 = . . . = Kn−1−j = K and Kn−j = . . . = Kn−1 = L of
Corollary 6.6 leads to a further generalization of Theorem 1.3:
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Corollary 6.7 If K,L ∈ Kn and 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2, then

Wi(Φj(K,L))n−1 ≥ Wi(ΦK)n−j−1Wi(ΦL)j,

with equality if and only if K and L are homothetic.

The following theorem provides a general Brunn Minkowski inequality for the
operators Φj.

Theorem 6.8 If K,L ∈ Kn and 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 3, then

Wi(Φj(K+L))1/(n−i)(n−j−1) ≥ Wi(ΦjK)1/(n−i)(n−j−1)+Wi(ΦjL)1/(n−i)(n−j−1), (6.10)

with equality if and only if K and L are homothetic.

Proof: By (6.3) and (2.9), we have for Q ∈ Kn,

Wi(Q,Φj(K + L))1/(n−j−1) = Wj(K + L,ΦiQ)1/(n−j−1)

≥ Wj(K,ΦiQ)1/(n−j−1) +Wj(L,ΦiQ)1/(n−j−1)

= Wi(Q,ΦjK)1/(n−j−1) +Wi(Q,ΦjL)1/(n−j−1).

By inequality (2.6),

Wi(Q,ΦjK)n−i ≥ Wi(Q)n−i−1Wi(ΦjK),

with equality if and only if Q and ΦjK are homothetic, and

Wi(Q,ΦjL)n−i ≥ Wi(Q)n−i−1Wi(ΦjL),

with equality if and only if Q and ΦjL are homothetic. Thus, we obtain

Wi(Q,Φj(K + L))1/(n−j−1)Wi(Q)−(n−i−1)/(n−i)(n−j−1)

≥ Wi(ΦjK)1/(n−i)(n−j−1) +Wi(ΦjL)1/(n−i)(n−j−1),

with equality if and only ifQ,ΦjK and ΦjL are homothetic. If we setQ = Φj(K+L),
we obtain (6.10). If there is equality in (6.10), then, by (4.8), there exist λ1, λ2 > 0
such that

ΦjK = λ1Φj(K + L) and ΦjL = λ2Φj(K + L). (6.11)

From equality in (6.10), it follows that

λ
1/(n−j−1)
1 + λ

1/(n−j−1)
2 = 1.

Moreover, (6.6) and (6.11) imply

Wj+1(K) = λ1Wj+1(K + L) and Wj+1(L) = λ2Wj+1(K + L).

Hence, we have

Wj+1(K + L)1/(n−j−1) = Wj+1(K)1/(n−j−1) +Wj+1(L)1/(n−j−1),

which implies, by (2.8), that K and L are homothetic. �
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We turn now to the proofs of Theorems 1.3p, 1.4p and 1.5p. To this end, we
will restrict ourselves to Blaschke Minkowski homomorphisms Φ with a generating
function of the form g = h(F, ·), where F ⊆ Rn is a figure of revolution which is not
a singleton. Note that, by (4.1), every function of that form is generating function
of a Blaschke Minkowski homomorphism. In particular, by Theorem 4.3, every even
Blaschke Minkowski homomorphism has a generating function of that type.

We now associate with each such Blaschke Minkowski homomorphism Φ a new
operator MΦ : Sn → Kn, defined by

h(MΦL, ·) = ρn+1(L, ·) ∗ h(F, ·). (6.12)

By (4.1), the operator MΦ is well defined. Note that MΦ depends, in contrast to Φ,
on the position of F but that by Theorem 4.2, we may assume that s(F ) = o. In this
way we associate to each Blaschke Minkowski homomorphism a unique operator MΦ.

The next lemma will play the role of Lemma 6.2.

Lemma 6.2p If K1, . . . , Kn−1 ∈ Kn and L ∈ Sn, then

Ṽ−1(L,Φ
∗(K1, . . . , Kn−1)) = V (K1, . . . , Kn−1,MΦL). (6.13)

In particular, for K ∈ Kn,

Ṽ−1(L,Φ
∗
iK) = Wi(K,MΦL). (6.14)

Proof: By (3.3), we have

Ṽ−1(K,Φ
∗(K1, . . . , Kn−1)) = 〈ρn+1(K, ·), ρ−1(Φ∗(K1, . . . , Kn−1), ·)〉.

Hence, identity (6.13) follows from (4.9) and Lemma 6.1. For K1 = . . . = Kn−i−1 =
K and Kn−i = . . . = Kn−1 = B, identity (6.13) reduces to (6.14). �

We now immediately get the following Minkowski type inequality for the volume
of polar Blaschke Minkowski homomorphisms Φ with a generating function of the
form g = h(F, ·). This, in particular, proves Theorem 1.3p:

Theorem 6.4p If K,L ∈ Kn, then

V (Φ∗
1(K,L))n−1 ≤ V (Φ∗K)n−2V (Φ∗L), (6.15)

with equality if and only if K and L are homothetic.

Proof: Let Q ∈ Sn. Then, by (6.13) and (2.4),

Ṽ−1(Q,Φ
∗
1(K,L))n−1 = V (K, . . . ,K, L,MΦQ)n−1 ≥ V1(K,MΦQ)n−2V1(L,MΦQ)

= Ṽ−1(Q,Φ
∗K)n−2Ṽ−1(Q,Φ

∗L).

By inequality (3.9), we have

Ṽ−1(Q,Φ
∗K)(n−2)nṼ−1(Q,Φ

∗L)n ≥ V (Q)(n+1)(n−1)V (Φ∗K)−(n−2)V (Φ∗L)−1,
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and thus,

Ṽ−1(Q,Φ
∗
1(K,L))(n−1)n ≥ V (Q)(n+1)(n−1)V (Φ∗K)−(n−2)V (Φ∗L)−1,

with equality if and only if Q,Φ∗K and Φ∗L are dilates. Setting Q = Φ∗
1(K,L), we

obtain the desired inequality. If there is equality in (6.15), then there exist λ1, λ2 > 0
such that

Φ∗
1(K,L) = λ1Φ

∗K = λ2Φ
∗L. (6.16)

For every convex body K ∈ Kn containing the origin and for every λ > 0, we have
(λK)∗ = λ−1K∗, and thus

Φ1(K,L) = λ−1
1 ΦK = λ−1

2 ΦL.

From the equality in (6.15), it follows that

λ
−(n−2)
1 λ−1

2 = 1.

By (6.5), (6.6) and (6.16), we obtain

W1(K,L) = λ−1
1 W1(K) = λ−1

2 W1(L).

Hence, we have
W1(K,L)n−1 = W1(K)n−2W1(L),

which implies, by (2.6), that K and L are homothetic. �

Theorem 6.5p If K1, . . . , Kn−1 ∈ Kn and 1 ≤ m ≤ n− 1, then

V (Φ∗(K1, . . . , Kn−1))
m ≤

m∏
j=1

V (Φ∗(Kj, . . . , Kj︸ ︷︷ ︸
m

, Km+1, . . . , Kn−1)).

Proof: From (6.13), it follows that for Q ∈ Sn,

Ṽ−1(Q,Φ
∗(K1, . . . , Kn−1))

m = V (K1, . . . , Kn−1,MΦQ)m

≥
m∏

j=1

V (Kj, . . . , Kj, Km+1, . . . , Kn−1,MΦQ)

=
m∏

j=1

Ṽ−1(Q,Φ
∗(Kj, . . . , Kj, Km+1, . . . , Kn−1)).

Write Φ∗
m′(Kj,C) for the mixed operator Φ∗(Kj, . . . , Kj, Km+1, . . . , Kn−1). Then,

by inequality (3.9), we have

Ṽ−1(Q,Φ
∗
m′(Kj,C))n ≥ V (Q)n+1V (Φ∗

m′(Kj,C))−1.

Hence, we obtain

V (Q,Φ∗(K1, . . . , Kn−1))
mn ≥ V (Q)m(n+1)

m∏
j=1

V (Φ∗
m′(Kj,C))−1.

Setting Q = Φ∗(K1, . . . , Kn−1), this becomes the desired inequality. �
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Theorem 1.3p is the special case m = 2 of Theorem 6.5 for even Blaschke
Minkowski homomorphisms. Combine the special case m = n− 2 of Theorem 6.5p

and Theorem 6.4p, to obtain:

Corollary 6.6p If K1, . . . , Kn−1 ∈ Kn, then

V (Φ∗(K1, . . . , Kn−1))
n−1 ≤ V (Φ∗K1) · · ·V (Φ∗Kn−1),

with equality if and only if the Kj are homothetic.

The special case, K1 = . . . = Kn−1−j = K and Kn−j = . . . = Kn−1 = L, of
Corollary 6.6p leads to a generalization of Theorem 6.4p:

Corollary 6.7p If K,L ∈ Kn and 1 ≤ j ≤ n− 2, then

V (Φ∗
j(K,L))n−1 ≤ V (Φ∗K)n−j−1V (Φ∗L)j,

with equality if and only if K and L are homothetic.

The last theorem in this section provides a Brunn Minkowski inequality for the
volume of the polar Blaschke Minkowski homomorphisms under consideration:

Theorem 6.8p If K,L ∈ Kn and 0 ≤ j ≤ n− 3, then

V (Φ∗
j(K + L))−1/n(n−j−1) ≥ V (Φ∗

jK)−1/n(n−j−1) + V (Φ∗
jL)−1/n(n−j−1), (6.17)

with equality if and only if K and L are homothetic.

Proof: By (6.14) and (2.9), we have for Q ∈ Sn,

Ṽ−1(Q,Φ
∗
j(K + L))1/(n−j−1) = Wj(K + L,MΦQ)1/(n−j−1)

≥ Wj(K,MΦQ)1/(n−j−1) +Wj(L,MΦQ)1/(n−j−1)

= Ṽ−1(Q,Φ
∗
jK)1/(n−j−1) + Ṽ−1(Q,Φ

∗
jL)1/(n−j−1).

By inequality (3.9),

Ṽ−1(Q,Φ
∗
jK)n ≥ V (Q)n+1V (Φ∗

jK)−1,

with equality if and only if Q and Φ∗
jK are dilates, and

Ṽ−1(Q,Φ
∗
jL)n ≥ V (Q)n+1V (Φ∗

jL)−1,

with equality if and only if Q and Φ∗
jL are dilates. Thus, we obtain

Ṽ−1(Q,Φ
∗
j(K + L))1/(n−j−1)V (Q)−(n+1)/n(n−j−1)

≥ V (Φ∗
jK)−1/n(n−j−1) + V (Φ∗

jL)−1/n(n−j−1),

with equality if and only if Q,ΦjK and ΦjL are dilates. If we set Q = Φ∗
j(K + L),

we obtain (6.17). Suppose equality holds in (6.17), then there exist λ1, λ2 > 0 such
that

Φ∗
jK = λ1Φ

∗
j(K + L) and Φ∗

jL = λ2Φ
∗
j(K + L),
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and thus,

ΦjK = λ−1
1 Φj(K + L) and ΦjL = λ−1

2 Φj(K + L). (6.18)

From the equality in (6.17), it follows that

λ
−1/(n−j−1)
1 + λ

−1/(n−j−1)
2 = 1,

and (6.6) and (6.18) imply

Wj+1(K) = λ−1
1 Wj+1(K + L) and Wj+1(L) = λ−1

2 Wj+1(K + L).

Hence, we have

Wj+1(K + L)1/(n−j−1) = Wj+1(K)1/(n−j−1) +Wj+1(L)1/(n−j−1),

which implies, by (2.8), that K and L are homothetic. �

7. Inequalities for radial Blaschke Minkowski homomorphisms

The main tools in the proofs of Theorems 1.3, 1.4 and 1.5 are Lemmas 6.2 and 6.3.
These were immediate consequences of the convolution representation of Blaschke
Minkowski homomorphisms provided by Theorem 4.2. In Section 5, we have shown
that there is a corresponding representation for radial Blaschke Minkowski homo-
morphisms, which will now lead to dual versions of Lemmas 6.2 and 6.3. In the
following let Ψ : Sn → Sn denote a nontrivial radial Blaschke Minkowski homomor-
phism. In the same way as Lemmas 6.2 and 6.3 were consequences of Theorem 4.2
and Lemma 6.1, we obtain from Theorem 5.2:

Lemma 7.1 If K1, . . . , Kn−1, L1, . . . , Ln−1 ∈ Sn, then

Ṽ (K1, . . . , Kn−1,Ψ(L1, . . . , Ln−1)) = Ṽ (L1, . . . , Ln−1,Ψ(K1, . . . , Kn−1)). (7.1)

In particular, for K,L ∈ Sn and 0 ≤ i, j ≤ n− 2,

W̃i(K,Ψ(L1, . . . , Ln−1)) = Ṽ (L1, . . . , Ln−1,ΨiK) (7.2)

and
W̃i(K,ΨjL) = W̃j(L,ΨiK). (7.3)

It follows from Theorem 5.2 that the image of the Euclidean unit ball under a
radial Blaschke Minkowski homomorphism Ψ is again a ball. Let rΨ denote the
radius of this ball. Then the dual version of Lemma 6.3 is:

Lemma 7.2 If L1, . . . , Ln−1 ∈ Sn, then

W̃n−1(Ψ(L1, . . . , Ln−1)) = rΨṼ (L1, . . . , Ln−1, B). (7.4)

In particular, for K,L ∈ Sn,

W̃n−1(Ψ1(K,L)) = rΨW̃1(K,L) (7.5)

and, for 0 ≤ i ≤ n− 2,
W̃n−1(ΨiL) = rΨW̃i+1(L). (7.6)
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The proofs of Theorems 1.3d, 1.4d and 1.5d are now analogous to the proofs of
Theorems 1.3, 1.4 and 1.5. We just have to replace Lemmas 6.2 and 6.3 by Lemmas
7.1 and 7.2, and use the inequalities for dual mixed volumes from Section 3 instead
of the inequalities for mixed volumes from Section 2. For this reason we will omit
all the proofs except one in this section:

Theorem 7.3 If L1, . . . , Ln−1 ∈ Sn and 2 ≤ m ≤ n− 1, then

W̃i(Ψ(L1, . . . , Ln−1))
m ≤

m∏
j=1

W̃i(Ψ(Lj, . . . , Lj︸ ︷︷ ︸
m

, Lm+1, . . . , Ln−1)),

with equality if and only if L1, . . . , Lm are dilates.

Proof: The case i = n − 1 reduces by (6.13) to inequality (3.6). Hence, assume
i ≤ n− 2. From (7.1), it follows that for Q ∈ Sn,

W̃i(Q,Ψ(L1, . . . , Ln−1))
m = Ṽ (L1, . . . , Ln−1,ΨiQ)m

≤
m∏

j=1

Ṽ (Lj, . . . , Lj, Lm+1, . . . , Ln−1,ΨiQ)

=
m∏

j=1

W̃i(Q,Ψ(Lj, . . . , Lj, Lm+1, . . . , Ln−1)),

with equality if and only if L1, . . . , Lm are dilates. Let Ψm′(Lj,C) denote the body
Ψ(Lj, . . . , Lj, Lm+1, . . . , Ln−1). Then, by inequality (3.8), we have

W̃i(Q,Ψm′(Lj,C))n−i ≤ W̃i(Q)n−i−1W̃i(Ψm′(Lj,C)),

with equality if and only if Q and Ψm′(Lj,C) are dilates. Hence,

W̃i(Q,Ψ
∗(L1, . . . , Ln−1))

m(n−i) ≤ W̃i(Q)m(n−i−1)

m∏
j=1

W̃i(Ψm′(Lj,C)).

By setting Q = Ψ(L1, . . . , Ln−1), the statement follows. �

Theorem 1.3d and 1.4d are now just special cases of Theorem 7.3. Further con-
sequences are the dual versions of Corollaries 6.6 and 6.7:

Corollary 7.4 If L1, . . . , Ln−1 ∈ Sn and 0 ≤ i ≤ n− 1, then

W̃i(Ψ(L1, . . . , Ln−1))
n−1 ≤ W̃i(ΨL1) · · · W̃i(ΨLn−1),

with equality if and only if the Lj are dilates.

Corollary 7.5 If K,L ∈ Sn and 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2, then

W̃i(Ψj(K,L))n−1 ≤ W̃i(ΨK)n−j−1W̃i(ΨL)j,

with equality if and only if K and L are dilates.

The dual counterpart of Theorem 6.8 is:

Theorem 7.6 If K,L ∈ Sn and 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 3, then

W̃i(Ψj(K+L))1/(n−i)(n−j−1) ≤ W̃i(ΨjK)1/(n−i)(n−j−1) +W̃i(ΦjL)1/(n−i)(n−j−1), (7.7)

with equality if and only if K and L are dilates.

22



8. Final remarks

In Theorems 6.4p, 6.5p and 6.8p, we restrict ourselves to Blaschke Minkowski homo-
morphisms Φ with generating functions g that are support functions. We did this to
ensure that star bodies are mapped to convex bodies by the operators MΦ defined in
(6.12). An example of a Blaschke Minkowski homomorphism whose generating func-
tion is not a support function is the second mean section operator M2, see (4.6). A
natural question is whether Theorems 6.4p, 6.5p and 6.8p hold for general Blaschke
Minkowski homomorphisms.

If Φ is the projection body operator, the map MΦ becomes a multiple of the
moment body operator which is (up to volume normalization) the well known cen-
troid body operator Γ : Sn → Kn. Centroid bodies were defined and investigated
by Petty [30]. They have proven to be an important tool in establishing fundamen-
tal affine isoperimetric inequalities, see [8], [26], [29], [31]. The Busemann-Petty
centroid inequality, for example, states that

V (ΓK) ≥
(

2κn−1

(n+ 1)κn

)n

V (K), (8.1)

where κn is the volume of the Euclidean unit ball in n dimensions. Inequality (8.1)
is critical for the proof of Petty’s projection inequality

V (K)n−1V (Π∗K) ≤
(

κn

κn−1

)n

. (8.2)

It is the author’s belief that an inequality corresponding to (8.1) holds for all op-
erators MΦ. This would immediately provide a generalization of Petty’s inequality
to general Blaschke Minkowski homomorphisms and would show that the affine
invariant inequality (8.2) holds in a more general setting.
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