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Abstract. Birkhoff’s ergodic theorem roughly says that along orbits
convergence of averages is typical. This is to be understood in the mea-
sure theoretic sense, i.e. with exceptional sets of measure zero. In the
topological sense, however, averages typically, i.e. with meager excep-
tional sets, do not converge in an extreme way.

Such a topological counterpart of Birkhoff’s theorem can be derived
from semicontinuity properties of set valued functions, cf. Akin’s com-
prehensive textbook [A 93]. The object of this note is to present this
approach in a direct and self-contained way. The semicontinuity theo-
rem in the persented version can be used to derive further old and new
results of similar flavour.

1. Introduction

Preliminary remark: This version of the paper is not the final one. A
relatively direct and self-contained approach for material much of which can
be found in the textbook [A 93] is given. In a later version of the paper
further applications to other topics are to be included.

We start by reviewing the well-known measure theoretic Birkoff ergodic
theorem in a topological context. Let X be a compact metric space, T :
X → X continuous, M(X) the (compact metrizable) space of all Borel
probability measures on X and M(X,T ) its (nonempty and closed) subset
consisting of all T -invariant µ ∈ M(X). For f : X → R let XT,f ⊆ X be
the set of all x ∈ X for which the limit

f∗(x) = lim
n→∞

1

n

n−1∑
k=0

f(T k(x))

of time averages exists in R. If µ ∈ M(X,T ) and f ∈ L1(µ) then, by
Birkhoff’s ergodic theorem, the set XT,f has full measure µ(XT,f ) = 1.
Furthermore the µ-almost everywhere defined function f∗ is in L1(µ) as
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well, T -invariant (i.e. f∗ ◦ T = f∗) and has the same space average∫
f∗ dµ =

∫
f dµ

as f . Since X is compact metric, the space C(X) of all continuous f : X → R
is separable. As an easy consequence, the intersection XT of all XT,f , f ∈
C(X), has full measure µ(XT ) = 1 as well. For each x ∈ XT the mapping
f 7→ f∗(x) is a positive linear functional on C(X) and, by Riesz’ Theorem,
corresponds to a measure µ∗(x) ∈ M(X) (in fact µ∗(x) ∈ M(X,T )). In
other words, for each x ∈ XT the orbit (Tn(x))n∈N is a sequence which is
uniformly distributed according to a measure µ∗(x) ∈M(X). Let us take a
look at the mapping

φ∗ : X ⊇ XT →M(X),

x 7→ µ∗(x).

Clearly φ∗ is T -invariant. For an ergodic (i.e. measure theoretically irre-
ducible) system (X,T, µ) this implies that φ∗ has to take µ-almost every-
where the same constant value, namely µ. This means that φ∗, as a function
on the measure space on X given by µ ∈M(X,T ), extremely varies its ap-
pearence if µ changes. (And such a variation in fact is possible whenever T
is not uniquely ergodic.)

Thus the question arises if φ∗ has any typical behaviour in a sense which
does not depend on the particular choice of µ ∈ M(X,T ). In other words,
we ask if there is a notion of typical distribution behaviour of T -orbits which
depends only on T . It is natural to look at the situation under a topological
point of view, i.e. in terms of Baire categories1. This is the topic of the
present article. The results show a remarkable contrast to the purely mea-
sure theoretic point of view. This contrast, roughly spoken, is the following
one.

The set XT is big in the measure theoretic sense but negligible from the
topological point of view, i.e. the topologically big part X0 is contained in the
complement X \XT . While the typical probabilistic phenomenon (on XT ) is
regular distribution (convergence to averages corresponding to a unique limit
measure), the typical phenomenon in terms of Baire categories (on X0) is a
set of limit measures (accumulation points of sequences of measures) which,
in a certain sense, is as big as possible. This sense, indicating an extreme
irregularity of distribution behaviour, can be made precise in terms of upper
semicontinuity of the set valued function

φ : X →M(X),

x 7→ M(T, x),

which assigns to each x ∈ X (not only to x ∈ XT ) the set M(T, x) of limit
measures induced by the T -orbit of x. Upper semicontinuity of φ in a point

1cf. [O 80] as the classical reference for the analogies and differences between measure
and category



SEMICONTINUITY 3

x0 ∈ X means that φ(x0) contains all accumulation points of the sets φ(x)
with x arbitrarily close to x0. Thus upper semicontinuity in x0 may be
interpreted in the sense that φ(x0) is typically as big as locally possible. In
a more precise formulation our main result (cf. Theorem 2, mainly based on
Theorem 1) claims that φ is upper semicontinuous on a residual (comeager)
subset of X.2

The contrast between measure and Baire category is particularly striking
in the special case of irreducible systems. The topological irreducibility
assumption which corresponds to ergodicity is that there exists a transitive
and recurrent orbit. The upper semicontinuity result presented here turns
out to easily imply the main result from [Wi 10]: there is a set M0(T ) of
T -invariant measures such that φ(x) = M0(T ) for all x outside a meager
exceptional subset of X. The set M0(T ) is very big in the sense that it
contains all limit measures of all dense orbits.

Our results have several further consequences describing the topologically
typical irregularity of the distribution behaviour of sequences. Some of these
consequences as well as related results can also be found in [D 53], [H 56],
[G 83], [Wi 97], [GSW 00], [GSW 07] and [TZ 10] and also in the textbook
[DGS 76]. Thus the approach via semicontinuity as presented here seems to
provide the natural unified viewpoint to understand such phenomena.

The paper is organized as follows. In Section 2 we introduce some notation
and collect auxiliary tools on semicontinuity. Section 3 is devoted to what is
here called set limits of continuous functions (Theorem 1) and provides the
general and common background for Section 4, which collects applications
to dynamical systems (Theorem 2) and related situations.

2. Notation and auxiliary results on semicontinuity

Throughout the paper the symbols X,T,M(X) and M(X,T ) are used
as in the introduction. For each x ∈ X, let δx ∈ M(X) denote the point
probability measure concentrated in x ∈ X and M(T, x) the set of limit
measures of the orbit of x. More explicitly:

M(T, x) =
⋂
N∈N
{µn(T, x) : n ≥ N}

is the set of accumulation points of the sequence of the measures

µn(T, x) =
1

n

n−1∑
k=0

δTkx ∈M(X).

Furthermore we use standard terminology in the context of Baire cate-
gories: Countable unions of nowhere dense sets are called meager or of first
Baire category while their complements are called comeager or residual. A

2Semicontinuity of set valued functions plays an important role also in the work on
topological ergodic decompositions of E. Glasner and others, cf. for instance [AG 98], first
paragraph.
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property depending on x ∈ X holds residually if it holds for all x from a
residual subset of X. Alternatively we say that a (topologically) typical x
has this property.

If d is a metric for the topology on X, the ball with center x0 and radius
ε > 0 is denoted by B(x0, ε) = {x ∈ X : d(x, x0) < ε}. The neighbourhood
filter U(x) consists of all U ⊆ X such that B(x, ε) ⊆ U for some ε > 0.
K(X) denotes the set of all nonempty closed (hence compact) subsets of X,

d(A,B) = inf
a∈A,b∈B

d(a, b)

the distance between two nonempty sets A,B ⊆ X. For disjoint A,B ∈
K(X) one has d(A,B) > 0. There is another notion of distance which
makes K(X) a compact metric space, the Hausdorff metric dH . In order to
define dH let, for A ⊆ X and ε > 0,

Aε =
⋃
a∈A

B(a, ε).

By compactness of X there is, for arbitrary A,B ∈ K(X), an ε > 0 such
that A ⊆ Bε. Let the infimum over all such ε be denoted by d0(A,B). Then

dH(A,B) = max{d0(A,B), d0(B,A)}
defines the Hausdorff metric on K(X).3 Using this notation we turn to
semicontinuity of set valued functions.

Let X and Y be topological spaces, Y compact metrizable. Then a map-
ping φ : X → K(Y ) is called a set valued function on X. φ is called
upper respectively lower semicontinuous in x0 ∈ X if, for every ε > 0,
there is a neighbourhood U ∈ U(x0) of x0 such that φ(x) ⊆ φ(x0)

ε respec-
tively φ(x0) ⊆ φ(x)ε for all x ∈ U . φ is called upper respectively lower
semicontinuous on X if it is upper respectively lower semicontinuous in x
for all x ∈ X. For given φ, the function φ : X → K(Y ) is defined by

φ(x0) =
⋂

U∈U(x0)

⋃
x∈U

φ(x)

and is called the upper regularization of φ.
We refer the reader to [Ku 66] for more material on semicontinuity of set

valued functions. The following facts will be used in the sequel. For the
convenience of the reader and for keeping the presentation self-contained
proofs are included for those statements which are not obvious.

Proposition 1. Let X and Y be compact metric spaces.

(1) A set valued function φ : X → K(Y ) is continuous in x0 ∈ X if and
only if it is both, upper and lower semicontinuous in x0.

(2) For a set valued function φ : X → K(Y ) and x0 ∈ X the following
conditions are equivalent.

3The topology induced by dH does not depend on the special choice of the metric d for
the topology on X. For more information cf. for instance [Ku 66] or [Ke 95].
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(a) φ is upper semicontinuous in x0.
(b) φ(x0) ⊆ φ(x0).
(c) φ(x0) = φ(x0).

(3) For any set valued function φ : X → K(Y ) its upper regularization
φ : X → K(Y ) is upper semicontinuous.

(4) Let the set valued function φ : X → K(Y ) be upper semicontinuous.
Then φ has a residual set of continuity points.

Proof. (1) and (2) are obvious. For (3) pick any x0 ∈ X, and note that
U1 ⊆ U0 ∈ U(x0) implies

⋃
x∈U1

φ(x) ⊆
⋃
x∈U0

φ(x). For open U0 this
implies

φ(x) =
⋂

U∈U(x)

⋃
x′∈U

φ(x′) ⊆
⋃
x′∈U0

φ(x′)

for all x ∈ U0. Thus ⋃
x∈U0

φ(x) ⊆
⋃
x′∈U0

φ(x′)

and ⋃
x∈U0

φ(x) ⊆
⋃
x′∈U0

φ(x′).

Since this holds for all open U0 ∈ U(x0) we conclude

φ(x0) =
⋂

U0∈U(x0)

⋃
x∈U0

φ(x) ⊆
⋂

U0∈U(x0)

⋃
x′∈U0

φ(x′) = φ(x0).

By (2) this shows upper semicontinuity of φ at x0. Since x0 ∈ X was arbi-
trary, (3) is proved.

In order to prove (4) let D ⊆ X denote the set of all points where φ is not
continuous and, for each ε > 0, Dε the set of all x0 ∈ X such that for each
U ∈ U(x0) there is an xU ∈ U such that φ(x0) is not contained in φ(xU )ε.
Note that, by upper semicontinuity of φ,

D =
⋃
ε>0

Dε =
∞⋃
k=1

D 1
k
.

Assume, by contradiction, that D is not meager. Then, by Baire’s theo-
rem, there is an integer k0 ≥ 1 and a nonempty open set O ⊆ X such that
O ⊆ Dε with ε = 1

k0
. For every x0 ∈ Dε and U ∈ U(x0) there are

xU ∈ U
yU ∈ φ(x0) \ φ(xU )ε.
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Fix such an x0 ∈ O ∩ Dε. Starting with this x0 and U0 = O one can
recursively define sequences of points

x0, x1, . . . ∈ Dε ⊆ X,
x′0, x

′
1, . . . ∈ Dε ⊆ X,

y0, y1, . . . ∈ Y

and of open sets

X ⊇ U0 ⊇ U ′0 ⊇ U1 ⊇ U ′1 ⊇ . . .
in the following way. Since xn ∈ Dε, x

′
n ∈ Un can be taken such that φ(xn)

is not contained in φ(x′n)ε, i.e. there is a

yn ∈ φ(xn) \ φ(x′n)ε.

Upper semicontinuity of φ in x′n guarantees that there is an open U ′n ∈ U(x′n)

such that U ′n ⊆ Un and φ(x) ⊆ φ(x′n)
ε
2 for all x ∈ U ′n. U ′n ⊆ O ⊆ Dε, hence

there is an xn+1 ∈ U ′n ∩ Dε and, by upper semicontinuity of φ in xn+1, a

Un+1 ∈ U(xn+1) with Un+1 ⊆ U ′n and φ(x) ⊆ φ(xn+1)
ε
2 for all x ∈ Un+1.

Let now k ≥ 1. Since xn+k ∈ U ′n we get the inclusion

yn+k ∈ φ(xn+k) ⊆ φ(x′n)
ε
2

which means d(yn+k, φ(x′n)) < ε
2 . Furthermore, since yn /∈ φ(x′n)ε we have

d(yn, φ(x′n)) ≥ ε. Combining these two facts we conclude

d(yn, yn+k) ≥
ε

2
.

Thus {yn : n ∈ N} is an infinite discrete and closed subset of the compact
space Y which is impossible. This contradiction shows that our assumption
is wrong, hence the set D of discontinuities of φ is meager. �

Remark. Consider real valued functions ϕ on X, i.e. ϕ : X → Y =
[−∞,∞] = R ∪ {−∞,∞} (two point compactification of R). If φ : X →
K(Y ) is defined by φ(x) = [−∞, ϕ(x)], then φ is upper semicontinuous in
the sense of set valued functions if and only if ϕ is upper semicontinuous in
the classical, real valued sense. Thus our considerations apply to real valued
functions as well.

3. Set limits of continuous functions

Let again X and Y be compact metric spaces. For any sequence f =
(fn)n∈N of functions fn : X → Y let

φf (x) =
⋂
N∈N
{fn(x) : n ≥ N}

be the set valued function which assigns to each x ∈ X the set φf (x) of
all accumulation points of the sequence f(x) = (fn(x))n∈N. Let us call a
set valued function φ a set limit of continuous functions if there are
continuous fn such that φ = φf .
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For a fixed set valued function φ : X → K(Y ), let us use the following
notation. For all A ∈ K(Y ) we consider the sets

M(A) = M(A, φ) = {x ∈ X : φ(x) ∩A 6= ∅},

their topological boundaries ∂M(A) = M(A) \ M(A), the complements
RA = RA(φ) = X \ ∂M(A) and their intersection R = R(φ) =

⋂
A∈K(Y )RA.

A point x ∈ X is called A-regular (with respect to φ) if x ∈ RA and
φ-regular if x ∈ R.

Lemma 2. Given a set limit φ = φf (f = (fn)n∈N) of continuous functions
fn : X → Y , then for each A ∈ K(Y ) the set RA of A-regular points is
residual.

Proof. Note that M(A) =
⋂
N∈N,k≥1ON,k with ON,k =

⋃
n≥N f

−1
n (A

1
k ). By

definition, each ON,k is dense in M(A). Since the A
1
k are open and the fn

are continuous, the ON,k are open as well. Thus M(A) is residual in M(A)

which means that the set ∂M(A) = M(A) \M(A) of A-singular points is

meager in the compact set M(A) ⊆ X and thus in X. This means that RA
is residual. �

Although K(Y ) is uncountable in general, for a continuous limit φ the
intersection R =

⋂
A∈K(Y )RA nevertheless turns out to be residual as well.

Proposition 3. For a set limit φ of continuous functions, the set R of
φ-regular points is residual.

Proof. Since Y is a compact metric space there is a countable open basis
B = {Bn : n ∈ N} for the topology on Y . Since B is countable, Lemma 2
implies that the set RB =

⋂
n∈NRBn

is residual. We have to show RB = R,

i.e. that every x ∈ RB is φ-regular. Pick therefore any A ∈ K(Y ) and

x0 ∈ RB. In order to see that x0 ∈ RA = (X \M(A)) ∪M(A) we assume

x0 ∈ M(A) and derive from that x0 ∈ M(A). Consider the system K0

of all K ∈ K(Y ) such that x0 ∈ RK . K0 contains all Bn ∈ B and is
closed under finite unions. By compactness, for each ε > 0 there is a finite

covering A ⊆ Bε =
⋃k
i=1Bni with Bε =

⋃k
i=1Bni ⊆ Aε and Bε ∈ K0. Since

x0 ∈M(A) ⊆M(Bε) is Bε-regular we conclude that x0 ∈M(Bε), i.e. there
is a yε ∈ φ(x0) ∩ Bε ⊆ Aε. The sequence (y2−m)m∈N has an accumulation

point y0 ∈ φ(x0) ∩
⋂
m∈NA

2−m
= φ(x0) ∩ A. Thus x0 ∈ M(A) and we are

done. �

Proposition 4. Given the set valued function φ : X → K(Y ), let x0 be
φ-regular. Then φ is upper semicontinuous in x0.

Proof. For arbitrary ε > 0 we have to find a U ∈ U(x0) such that φ(x) ⊆
φ(x0)

ε for all x ∈ U . Assume, by contradiction, that for each U ∈ U(x0)
there are xU ∈ U and yU ∈ φ(xU )\φ(x0)

ε. Consider A = Y \φ(x0)
ε ∈ K(Y ).
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Then xU ∈ M(A) ∩ U for all U ∈ U(x0), showing that x0 ∈ M(A). By
regularity of x0 this is possible only if x0 ∈M(A), yielding the contradiction

∅ = φ(x0) ∩ Y \ φ(x0)
ε = φ(x0) ∩A 6= ∅.

�

Example. Note that Proposition 4 does not hold for lower instead of
upper semicontinuity. As a simple example take X = [0, 1], Y containing
at least two points y0 6= y1 and φ : X → K(Y ) defined by φ(x0) = φ(0) =
{y0, y1} and φ(x) = {y0} for x 6= x0 = 0. For A ∈ K(Y ) we have M(A) = X
if y0 ∈ A, M(A) = {0} if y0 /∈ A and y1 ∈ A, and M(A) = ∅ if y0, y1 /∈ A. In

all cases M(A) is closed, hence M(A) = M(A) and all x ∈ X are φ-regular.
But φ is not lower semicontinuous in x0 = 0.

Theorem 1. Let X and Y be compact metric spaces and the set valued
function φ : X → K(Y ) be a set limit of continuous functions. Then φ has
a residual set of points of upper semicontinuity.

Proof. Follows immediately by combination of Propositions 3 and 4. �

Example. Theorem 1 does not hold if upper is replaced by lower semi-
continuity. As an illustration consider X = Y = [0, 1] (with the natural
metric) and two sequences b0, b1, b2, . . . and c0, c1, c2, . . . in X such that
B = {bn : n ∈ N} and C = {cn : n ∈ N} are disjoint and dense sub-
sets of X = [0, 1]. Let fn : X → Y , n ∈ N, be continuous functions with
fn(bi) = 0 and fn(ci) = 1 for i = 0, 1, 2, . . . , n and φ = φf the correspond-
ing set limit of continuous functions. We are going to show that φ is not
lower semicontinuous at any point x0 ∈ X. First note that φ(bn) = {0}
and φ(cn) = {1} for all n ∈ N. Fix an ε with 0 < ε < 1

2 and pick any
x0 ∈ X. Since ∅ 6= φ(x0) ⊆ [0, 1] we have φ(x0) ∩ [ε, 1] 6= ∅ (first case) or
φ(x0) ∩ [0, 1 − ε] 6= ∅ (second case). Take any U ∈ U(x0). Then there are
bU ∈ B ∩ U and cU ∈ C ∩ U . The choice x = bU (first case) resp. x = cU
(second case) shows that φ(x0) is not contained in φ(x)ε. Thus φ is not
lower semicontinuous in x0.

4

4. Applications

Let us now focus on topological dynamics, i.e. we consider a continuous
transformation T : X → X of the compact metric space X. For each x ∈ X,
we write

O(x) = {Tnx : n ∈ N}

4Recall that functions of Baire class 1, i.e. functions which are a pointwise limit of
continuous functions, have a residual set of continuity points, cf. Theorem 1 on p. 394
in [Ku 66]. As a consequence we see that set limits of continuous functions, in general,
cannot be represented as pointwise limits in K(Y ).
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for the orbit closure and

ω(x) =
⋂
N∈N
{Tnx : n ≥ N}

for the ω-limit set of x. Recall that x is called transitive if O(x) = X and
recurrent if x ∈ ω(x). Note that O(x) = ω(x) whenever x is recurrent.

The set valued function

φ : X → Y = K(X),

x 7→ ω(x),

is a set limit φ = φf , f = (Tn)n∈N, of the continuous functions Tn and
thus, by Theorem 1, has a residual set of points of upper semicontinuity.
Suppose now that there is at least one transitive and recurrent point x0 ∈
X, i.e. O(x0) = ω(x0) = X.5 Obviously φ = φ ◦ T is T -invariant, hence
ω(Tnx0) = ω(x0) = X for all n ∈ N, yielding that the upper regularization
φ of φ takes the constant value X. Since φ has a residual set of points of
upper semicontinuity we have

ω(x) = φ(x) = φ(x) = X

for all x from a residual subset of X. (Note that in our case all transitive
points are recurrent as well.) Thus we have derived from our previous results
the following well known fact.6

Corollary 5. Let X be a compact metric space, T : X → X continuous,
and assume ω(x0) = X for some x0 ∈ X. Then ω(x) = X for all x from a
residual subset of X.

If we omit the assumption on x0, we still can apply Theorem 1. This
means that the equation φ(x) = φ(x) = ω(x) holds residually. Furthermore,
by Proposition 1, φ is upper semicontinuous (assertion (3)) and thus has a
residual set of continuity points (assertion (4)). Combination of these facts
yields:

Corollary 6. Let X be a compact metric space and T : X → X continuous.
Then the mapping

φ : X → K(X),

x 7→ ω(x),

is T -invariant and has a residual set of points of upper semicontinuity, i.e.
residually fulfills φ(x) = φ(x) (φ, by Proposition 1, having a residual set of
continuity points).

Example. Let us, for illustration, consider the example of the two di-
mensional torus X = T2, T = R/Z, and the transformation T : X → X,
(x, y) 7→ (x, y + x). Then ω(x, y) = φ(x, y) = {x} × T for irrational x and

5Note that, given transitivity of x0, the recurrence condition is relevant only if x0 is an
isolated point of X in which case X is finite.

6Cf., for a homeomorphism T , for instance [Wa 79], Theorem 5.8.
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φ(x, y) = {x} × (y + Cn) with Cn = {0, 1n , . . . , 1 −
1
n} if x = k

n ∈ Q with
coprime integers n 6= 0, k. In the space K(T) we have limn→∞Cn = T. This
easily implies that φ is continuous at (x, y) if x /∈ Q. But φ is not upper
semicontinuous on the meager set of all (x, y) where x is rational. Thus the
upper regularization φ : (x, y) 7→ {x}×T coincides with φ if and only if x is
irrational.

If we are interested in limit measures instead of ω-limit sets we have to
take Y = M(X) (instead of Y = X). Apart from this all arguments are
very similar. The announced topological counterpart of Birkhoff’s ergodic
theorem can be formulated as follows.

Theorem 2. Let X be a compact metric space and T : X → X continuous.
Then the mapping

φ : X → K(M(X,T )),

x 7→ M(T, x),

is T -invariant and has a residual set of points of upper semicontinuity, i.e.
residually fulfills φ(x) = φ(x) (φ, by Proposition 1, having a residual set of
continuity points).

If ω(x0) = X for some x0 ∈ X, then there is a set M0(T ) ⊆ M(X,T )
(only depending on T ) such that φ(x) =M0(T ) holds residually. M0(T ) is
the union over all M(T, x) with transitive x.

Proof. The T -invariance of φ is obvious. For the convenience of the reader
let us first recall here the argument from [GSW 07], Lemma 2.17., in order
to justify that φ : X → K(M(X,T )), i.e. that all µ ∈ φ(x) = M(T, x)
are T -invariant: µ ∈ M(T, x) implies that, for the sequence of points xj =
T jx ∈ X, j ∈ N, and a suitable sequence N0 < N1 < N2 < . . . ∈ N, we have

lim
k→∞

1

Nk

Nk−1∑
j=0

δT jx = µ.

It suffices to show that, for arbitrary continuous f : X → R, one has
∫
f dµ =∫

f ◦ T dµ. Indeed this follows since the two limits∫
f dµ = lim

k→∞

1

Nk

Nk−1∑
j=0

f(T jx)

and ∫
f ◦ T dµ = lim

k→∞

1

Nk

Nk−1∑
j=0

f ◦ T (T jx) = lim
k→∞

1

Nk

Nk∑
j=1

f(T jx)

coincide (use that the first limit exists and that f is bounded).
After the above considerations it remains to prove the second assertion

in the theorem which concerns the case ω(x0) = X. Let, at this point by
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definition,

M0(T ) =
⋃

x: transitive

M(T, x).

Note that, by T -invariance of φ,M(T, Tnx) =M(T, x) for all x ∈ X and n ∈
N. For each transitive x this implies that the set of all x′ ∈ X with φ(x′) ⊇
M(T, x) is dense in X, yielding φ(x) ⊇M0(T ) for all x ∈ X. By Corollary
5 the set of all transitive x is residual. Since φ(x) = M(T, x) ⊆ M0(T )
for all transitive x we also have the inclusion φ(x) ⊆ M0(T ) residually.
Hence, by a combination of Proposition 1 and Theorem 1, we residually
have φ(x) ⊆M0(T ) ⊆ φ(x) = φ(x), proving the theorem. �

Example. In the case ω(x0) = X not every transitive and recurrent
x ∈ X has to satisfy M(T, x) = M0(T ). Consider the one sided full shift
on the two letters 0 and 1, i.e. X = {0, 1}N and

T = σ : {0, 1}N → {0, 1}N,
x = (an)n∈N 7→ σ(x) = (an+1)n∈N.

If x is a sequence containing all finite binary words but seperated by very
long blocks of 0’s, then x is transitive and recurrent. For sufficiently long
blocks of 0’s M(T, x) is a singleton, only containing the point measure δx0
concentrated in the constant sequence x0 = 000 . . .. ButM0(T ) =M(X,T )
is much bigger (cf. also [Wi 10] or [DGS 76].)

Example. To see that Theorem 2 does not hold with lower instead of
upper continuity consider again the shift space X = {0, 1}N with T = σ :
X → X, (an)n∈N 7→ (an+1)n∈N, and let φ be as in Theorem 2. Consider
the point measures δx0 = y0, δx1 = y1 ∈ Y = M(X,T ) concentrated in the
constant sequences x0 = 000 . . . resp. x1 = 111 . . . ∈ X. In order to imitate
the situation in the example after Theorem 1, let the sets B,C ⊆ X consist
of all eventually constant sequences finally taking the value 0 resp. 1. The
sets B and C are dense in X with φ(b) = {y0} for all b ∈ B and φ(c) = {y1}
for all c ∈ C. One picks an ε < d(y0,y1)

2 where d is a compatible metric for
the topology on Y and argues as in the example after Theorem 1 in order
to conclude that φ is not lower semicontinuous at any point x ∈ X.

Example. For illustration of the nontransitive case consider once more
the example given after Corollary 6 with the transformation T : (x, y) 7→
(x, y + x) on X = T2. The values φ(x, y) = M(T, (x, y)) are singletons in
M(X), namely the uniform distribution measures on {x} × T for irrational
x and on { kn} × (y + Cn) for x = k

n with coprime integers n 6= 0, k. The

upper regularization φ coincides with φ whenever x is irrational. For rational
x = k

n with coprime k, n the set φ(x, y) consists of two members, namely
the uniform distribution measures on {x} × (y + Cn) and on {x} × T.

Example. The set M0(T ) in Theorem 2 is a subset of M(X,T ) which
(in contrast to several other simple examples where equality holds) does not
necessarily contain all T -invariant measures µ ∈ M(X,T ). An example is
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the shift T = σ on the shift orbit closure X = O(x) = {Tnx : n ∈ N} of the
one-sided infinite sequence x = (an)n∈N ∈ {0, 1}N which is uniquely defined
by the implicit equation

x = a0a1a2 . . . = 0111a00
212a0a10

313a0a1a2 . . . .

(The notation 0n, 1n is for a block of n times the symbol 0 resp. 1.) If
x1 = 111 . . . denotes the constant sequence of infinitely many 1’s then the
point measure δx1 concentrated in x1 turns out to be T -invariant but not a
member of M0(T ) (cf. [Wi 10]).

The step from Corollary 6 to Theorem 2 can be iterated by investigating
not just the accumulation points but the distribution of the sequence of
the measures µn ∈ Y = M(X) and so on. Then the spaces M(M(X)),
M(M(M(X))) etc. come into play and quite similar results in terms of Baire
categories and upper semicontinuity follow. All of them would reflect the
principle mentioned in the introduction: toplogically the typical behaviour
is as irregular as possible.

As a further application of Theorem 1 let us look at the typical behaviour
of arbitrary sequences, not necessarily induced by iteration of a transforma-
tion T . Instead of the space X itself we accordingly consider the compact
metric space XN of all sequences x = (xn)n∈N on X. An open set O is deter-
mined by restrictions to finitely many coordinates, the tail of the sequence
remaining arbitrary. Thus, for each nonempty open set O ⊆ XN and x ∈ X
there is a sequence contained in O which finally takes the constant value x.
Consider the continuous mappings (projections)

fn : XN → X,

x = (xk)k∈N 7→ xn,

and their set limit φ in the sense of Section 3. Then for each x ∈ X the
set of all x ∈ XN with x ∈ φ(x) is dense. Hence x ∈ φ(x) for all x ∈ XN.
This holds for all x ∈ X, hence φ takes the constant value X, and Theorem
1 implies that sequences in X are residually dense in X. Similar arguments
applied to

fn : XN →M(X)

(xk)k∈N 7→ µn =
1

n

n−1∑
k=0

δxk

for n ≥ 1 show that a topologically typical sequence has all µ ∈ M(X) as
limit measures. This has been proved in [Wi 97] where such sequences have
been called maldistributed.

Corollary 7. For a compact metric space X, the set of all dense sequences
and (even stronger) the set of all maldistributed sequences on X are residual
subsets of XN.
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Slight modifications of the above arguments can also be used to derive
Baire results on certain spaces S of subsequences as treated in [GSW 07].
We conclude with a result of this type (observed by G. Barat, oral commu-
nication) which shows that there is a typical set of limit measures, provided
that S is, in a rather weak sense, stable under changes of finitely many
members of its sequences.

Corollary 8. Let X be a compact metric space and S a closed or, more
generally, a Gδ (hence Baire) subspace of the space XN of all sequences on
X. Assume that S has the following property: for all x ∈ S and nonempty
open sets O0, . . . , On−1 ⊆ X there is an x′ = (x′n)n∈N with (x′0, . . . , x

′
n−1) ∈

O0 × . . .×On−1 and M(x′) ⊇M(x).
Then there is a set M0 ⊆ M(X) such that M(x) = M0 holds for all x

from a residual subset of S.

Proof. For φ = φf with f = (fn)n∈N, fn : x = (xn)n∈N 7→ µn = 1
n

∑n−1
k=0 δxk ,

the assumption on S guarantees that φ takes a constant valueM0 with the
desired properties. �
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