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1. Some history and motivation

The aim of this survey is to present the principal ideas and results of the
theory of semifilters from the book “Coherence of Semifilters” [6], which will
be our basic reference. In spite of the fact that the term “semifilter” is new,
many results about semifilters are well-known in the framework of filters or
ultrafilters.

Our starting point is the principle NCF, the Near Coherence of Filters.
It was introduced by Blass [9] and belongs to the most exciting and counter-
intuitive set-theoretic principles (with many applications in various fields of
mathematics). This principle asserts that any two filters F1,F2 on the set ω
of non-negative numbers are near coherent in the sense that for some finite-
to-one surjection ϕ : ω → ω the union ϕ(F1) ∪ ϕ(F2) lies in some filter. This
is equivalent to saying that any two ultrafilters U1, U2 are coherent in the
sense that ϕ(U1) = ϕ(U2) for some finite-to-one surjection ϕ : ω → ω (here
ϕ(U) = {ϕ(U) : U ∈ U}). For those familiar with many different sorts of ul-
trafilters (selective, Ramsey, P -points, Q-points, etc.) the principle NCF may
look suspicious. Indeed, it is false under the Continuum Hypothesis (as well
as under Martin’s Axiom). Nonetheless, NCF does not contradict ZFC and is
true in some models of ZFC constructed by Blass, Shelah [15], [16]. Thus, like
many other set-theoretic principles, NCF is independent of ZFC.

The principle NCF arose from the joint work of Blass, Weiss [18] on a prob-
lem of Brown, Pearcy and Salinas [20] asking if the ideal of compact operators
in the ring of bounded operators on the Hilbert space is the sum of two prop-
erly smaller ideals. It turned out that this problem has an affirmative answer
if and only if NCF is false and thus is independent of the axiom system ZFC,
see Blass [10]. Another important application of NCF concerns the Stone-Čech
remainder βH \ H of the half-line H = [0,∞). According to a combined re-
sult of Rudin [38], Mioduszewski [31] and Blass [10], NCF is equivalent to the
statement that the indecomposable continuum βH \H has only one composant
(this contrasts with the classical Mazurkiewicz result that each metrizable in-
decomposable continuum has uncountably many composants). Quite recently
NCF has found applications in Topological Algebra, see Banakh, Nikolas, San-
chis [5] and Selection Principles, see Bartoszyński, Shelah, Tsaban [8], Tsaban,
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Zdomskyy [42], Eisworth, Just [23]. Some weaker forms of NCF appear in the
theory of separately continuous functions. Namely, the existence of a discon-
tinuous separately continuous function f : X × Y → R defined on the product
of arbitrary non-discrete separable Tychonov spaces X,Y is equivalent to the
near coherence of any two P -filters, see Banakh, Maslyuchenko, Mykhaylyuk
[4].

It should be mentioned that all known models of NCF satisfy two formally
stronger principles called the Filter Dichotomy and the Semifilter Trichotomy.
The Filter Dichotomy says that any filter F on ω is coherent either to some
fixed ultrafilter U0 or to the Fréchet filter Fr consisting of all cofinite subsets
of ω. The Semifilter Trichotomy treats families of infinite subsets of ω closed
under taking almost supersets and says that any such a family is coherent either
to the Fréchet filter Fr or to any fixed ultrafilter U0 or to the family [ω]ω of all
infinite subsets of ω.

2. Introducing semifilters

Families of infinite subsets of ω, closed under taking almost supersets, play
a crucial role in the whole theory so we have decided to give them a special
name: semifilters. In other words, a non-empty family F of infinite subsets of
a set X is called a semifilter if

i. F is closed under taking supersets and

ii. for each element F ∈ F and each cofinite set C ⊂ ω the intersection
C ∩ F ∈ F .

Replacing the condition ii by the more familiar

ii’. F1 ∩ F2 ∈ F for any F1, F2 ∈ F

we get the well-known definition of a filter. This explains the choice of the term
“semifilter”.

It should be mentioned that a filter F is a semifilter if and only if F is free
that is ∩F = ∅ which is equivalent to the inclusion Fr ⊂ F . Thus the Fréchet
filter Fr is the smallest element of the family FF of all free filters on ω. This
family has no largest element but has 2c maximal elements called ultrafilters.
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3. The lattice SF of semifilters

In contrast to this, the set SF of all semifilters on ω ordered by the ordi-
nary inclusion relation has both a smallest element, the Fréchet filter Fr, and
a largest element, the co-Fréchet semifilter Fr⊥ = [ω]ω consisting of all infinite
subsets of ω. Semifilters have some advantages compared to filters. In particu-
lar, arbitrary unions as well as intersections of semifilters are semifilters. Thus
SF is a sublattice of the double power-set P(P(ω)) considered as a (complete
distributive) lattice with respect to the operations of intersection and union.
Being closed under arbitary intersections and unions, SF is a complete dis-
tributive lattice. Endowed with the Lawson topology (equivalently, with the
Tychonov product topology inherited from 22ω

= P(P(ω)) ⊃ SF) this lattice
is a supercompact Hausdorff space. The Lawson topology on SF is generated
by the binary sub-base B consisting of the sets F+ = {F ∈ SF : F ∈ F} and
F− = {F ∈ SF : F /∈ F} where F runs over the subsets of ω. The binary
property of B means that each cover of SF by elements of B contains a two-
element subcover (topological spaces possessing a binary sub-base are called
supercompact).

Besides the two lattice operations ∩ and ∪, the lattice SF possesses the im-
portant continuous unary operation of transversal which assigns to a semifilter
F the semifilter

F⊥ =
{
E ⊂ ω : ∀F ∈ F E ∩ F 6= ∅

}
called the dual semifilter to F . It can be easily shown that (F⊥)⊥ = F and
(F ∩U)⊥ = F⊥ ∪U⊥, (F ∪U)⊥ = F⊥ ∩U⊥ and thus the transversal operation
⊥: SF → SF is an involutive topological antiisomorphism of SF. Let us observe
that the semifilters Fr and [ω]ω are dual each to the other. That is why we
often denote the semifilter [ω]ω by Fr⊥.

Now let us consider the structure of the self-dual semifilters, that is semi-
filters F equal to their duals F⊥. Important examples of such semifilters are
ultrafilters. However ultrafilters do not exhaust all possible self-dual semifilters.
Let us observe that the inclusion F ⊂ F⊥ is equivalent to the linkedness of F
which means that F1 ∩F2 6= ∅ for all F1, F2 ∈ F while the inclusion F⊥ ⊂ F is
equivalent to the unsplit property of F which means that for each subset A ⊂ ω
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either A ∈ F or ω \ A ∈ F . Consequently, a semifilter F is self-dual if and
only if F is unsplit and linked if and only if F is maximal linked. Because of
this self-duality property, the maximal linked semifilters will play an important
role in studying semifilters. In particular, they have the following approxima-
tion property: for any semifilter F there is a maximal linked semifilter L with
F ∩F⊥ ⊂ L ⊂ F ∪F⊥. The set ML of maximal linked semifilters is closed with
respect to the Lawson topology on SF and moreover, is supercompact, which
makes ML similar to the superextensions considered in van Mill [30]. Other
interesting subsets of SF are also closed with respect to the Lawson topology.
In particular, so are the sets

– UF of all ultrafilters;

– FF of all free filters;

– CEN of all centered semifilters;

– Lk of k-linked semifilters for k ≥ 2.

Besides the considered algebraic operations on semifilters, there is an oper-
ation of support. By definition, the support of a semifilter F is the filter

supp(F) =
{
E ⊂ ω : ∀F ∈ F F ∩ E ∈ F

}
⊂ F .

It is clear that supp(F) = F if and only if F is a filter; so the difference
F \ supp(F) shows how far a semifilter F is from being a filter. It is interesting
to note that the support supp(L) of a maximal linked semifilter is a filter
equal to (L∧L)⊥ where L∧L = {A∩B : A,B ∈ L}. Unlike the transversality
operation, the operation of support is discontinuous with respect to the Lawson
topology on SF. Its continuity points are semifilters F with the smallest possible
support supp(F) = Fr.

One can show that the lattice SF is topologically isomorphic to the lattice of
non-constant monotone Boolean functions on the powerset (P(ω),⊂∗) endowed
with the almost inclusion preorder.
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4. The limit operator on SF

Since SF is a compact Hausdorff space, for any sequence (Un)n∈ω ⊂ SF and
any ultrafilter F we can consider the limit limF Un of (Un) along F . This is a
unique point U∞ ∈ SF such that for any neighborhood O(U∞) ⊂ SF there is an
element F ∈ F such that Un ∈ O(U∞) for all n ∈ F . In fact, the limit semifilter
limF Un admits a direct description: it is generated by the sets

⋃
n∈F Un where

F ∈ F and Un ∈ Un for n ∈ F .
We can take this direct description as a definition of limF Un for any se-

quence (Un) of semifilters and any semifilter F (not necessarily an ultrafilter).
In such a way we define the limit operator lim : SF × SFω → SF assigning to
a pair (F , (Un)) the limit semifilter limF Un generated by the sets

⋃
n∈F Un

where F ∈ F and Un ∈ Un for n ∈ F . This operator has many nice proper-
ties. In particular, it nicely agrees with the duality: (limF Un)⊥ = limF⊥ U⊥n .
Also it preserves some important subsets of SF: lim(X × Xω) ⊂ X, where
X ∈ {UF,ML,FF,CEN, Lk : k ≥ 2}.

For each fixed sequence (Un) of semifilters we can look at the limit operator
as a function lim(Un) : SF → SF, lim(Un) : F 7→ limF Un of one variable F . This
function turns to be a continuous lattice homomorphism on SF. Moreover, if
all the semifilters Un are maximal linked, then this homomorphism preserves
the transversality operation in the sense that (lim(Un)(F))⊥ = lim(Un)(F⊥).

The homomorphism lim(Un) : SF → SF is injective if the sequence (Un) is
separated in the sense that there is a disjoint sequence of sets (Sn)n∈ω such
that Sn ∈ supp(Un) for all n ∈ ω. Separated sequences of ultrafilters (Un)
can be characterized in topological terms as discrete subspaces of UF. For
such sequences of ultrafilters, the operator lim(Un) : SF → SF is an isomorphic
embedding of the lattice SF into SF such that (lim(Un))−1(X) = X for any
X ∈ {UF,ML,FF,CEN, Lk : k ≥ 2}.

5. Algebraic operations on the lattice SF

As we already know the lattice of semifilters SF contains the set UF = βω\ω
of all (free) ultrafilters. The latter set is well studied from various points of
view. One of very fruitful approaches to studying UF consists in looking at
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the Stone-Čech remainder UF = βω \ ω as an algebro-topological object, see
Protasov [35] or Hindman, Strauss [25]. Such a point of view is based on the
fact that each algebraic operation ∗ : ω × ω → ω on ω can be extended to
an operation ◦ : βω × βω → βω as follows: given two ultrafilters F ,U let
F ◦ U be the ultrafilter generated by the sets of the form

⋃
x∈F x ∗ Ux where

F ∈ F and Ux ∈ U for each x ∈ F . Here for subsets A,B ⊂ ω we put
A ∗B = {a ∗ b : a ∈ A, b ∈ B}.

Exploiting the so extended algebraic operation ◦ : βω × βω → βω yielded
new and transparent proofs of many difficult combinatorial results like van der
Waerden or Hindman Theorems, see Protasov [35], Hindman, Strauss [25].

The product F ◦U of two free ultrafilters is again a free ultrafilter provided
the operation ∗ has finite-to-one left shifts in the sense that for each a ∈ ω the
left shift la : x 7→ a ∗ x is finite-to-one. It turns out that any such an operation
∗ : ω × ω → ω induces a binary operation ◦ on SF in the same way as it does
on the Stone-Čech compactification of ω.

Namely, given two semifilters F ,U let F ◦ U be the semifilter generated by
the sets of the form

⋃
x∈F x∗Ux where F ∈ F and Ux ∈ U for each x ∈ F . The

operation ◦ : SF × SF → SF is associative provided so is the operation ∗ on ω

(in contrast, the operation ◦ need not be commutative even for commutative
∗). Alternatively, F ◦U can be defined as the limit semifilter limF n ∗U , where
n ∗ U is the semifilter generated by the sets n ∗U , U ∈ U . Applying the known
properties of the limit operator, we see that for any fixed semifilter U the right
shift rU : F 7→ F ◦ U is a continuous homomorphism of the lattice SF. Thus
the operation ◦ turns SF into right topological semigroup. The operation ◦ can
have points of joint continuity: for each P -point U and each semifilter F the
operation ◦ is jointly continuous at (F ,U).

It is interesting to notice that the sets UF,ML,FF,CEN, Lk, k ≥ 2, are
subsemigroups of (SF, ◦).

6. (Sub)coherence relation

What makes the study of semifilters truly exciting is the coherence relation.
Trying to find a true definition of a coherence equivalence on SF one can proceed
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by the most obvious way and define two semifilters F ,U to be coherent if
ϕ(F) = ϕ(U) for some finite-to-one surjection ϕ : ω → ω. Such a definition
determines an equivalence relation on the set of ultrafilters however it is not
clear why it is transitive of the lattice SF of all semifilters.

After some attempts we came to the conclusion that the most efficient
way to define a coherence relation is to use finite-to-finite multifunctions in
place of finite-to-one functions. By a multifunction from a set X to a set Y
we understand a subset Φ ⊂ X × Y which can be thought as a multi-valued
function assigning to a point x ∈ X the subset Φ(x) = {y ∈ Y : (x, y) ∈ Φ}.
In such a way multifunctions are identified with their graphs. Often we shall
write Φ : X ⇒ Y to stress that Φ is interpreted as a multivalued function. For
a subset A ⊂ X we put Φ(A) =

⋃
x∈A Φ(x). The inverse to a multifunction

Φ ⊂ X × Y is the multifunction Φ−1 = {(y, x) : (x, y) ∈ Φ} : Y ⇒ X assigning
to each y ∈ Y the set Φ−1(y) = {x ∈ X : y ∈ Φ(x)}.

A multivalued function Φ : X ⇒ Y is called finite-to-finite if for any finite
non-empty sets A ⊂ X, B ⊂ Y the sets Φ(A) and Φ−1(B) are finite and non-
empty. In the sequel we shall consider exclusively multifunctions from ω to
ω.

The class of finite-to-finite multifunctions has some advantages compared
to the class of finite-to-one functions because the former class is closed under
unions, compositions, and taking the inverse.

Now we are able to define the principal concept of the book – the subcoher-
ence relation on the lattice SF. We shall say that a semifilter F is subcoherent
to a semifilter U and denote this by F b U if there is a finite-to-finite mul-
tifunction Φ : ω ⇒ ω such that Φ(F) ⊂ U where Φ(F) = {Φ(F ) : F ∈ F}.
Two semifilters F and U are defined to be coherent (denoted by F � U) if
F b U and U b F . It is easy to see that the subcoherence relation, being
reflexive and transitive, is a preorder on SF and hence the coherence relation
is an equivalence relation on SF. By its definition the subcoherence relation
resembles the preordering introduced by Rudin [38]: F ≤BR U if ϕ−1(F) ⊂ U
for some finite-to-one function ϕ : ω → ω.

There is a more cumbersome but maybe intuitively more acceptable way
to define the subcoherence relation using the interval partitions, a standard
instrument in studying the coherence of filters. Namely, a semifilter F is sub-
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coherent to a semifilter U if and only if there is an increasing number sequence
(nk) such that ⋃ {

[nk, nk+3) : [nk+1, nk+2) ∩ F 6= ∅
}
∈ U

for each F ∈ F .
By its spirit, the coherence of filters is a particular case of parallel filters in

balleans, the theory created recently by I. Protasov, see Protasov, Banakh [36]
and Protasov, Zarichnyi [37]. The coherence of semifilters can also be naturally
considered in the framework of multicovered spaces, see Banakh, Zdomskyy [7].
It should be mentioned that our concept of the coherence differs from that of
A.Blass [9], [10] who defined two filters F ,U to be coherent if their union F ∪U
can be enlarged to a filter.

7. Near coherence of semifilters

The machinery of finite-to-finite multifunctions allows to extend the notion
of near coherence from filters to semifilters. We define two semifilters F ,U to
be nearly coherent if there is a finite-to-finite multifunction Φ : ω ⇒ ω such
that Φ(F ) ∩ Φ(U) 6= ∅ for any elements F ∈ F , U ∈ U . It can be shown that
two semifilters F ,U are nearly coherent if and only if F b U⊥ if and only if
U b F⊥. Hence the near coherence can be expressed via the subcoherence
relation.

Note that two maximal linked semifilters L,U are coherent if and only if
they are nearly coherent.

8. A characterization of the semifilters coherent to Fr or Fr⊥

A characterization of the semifilters coherent to the extremal semifilters Fr

and Fr⊥ was given by Talagrand [41] in topological terms. Namely, he has
shown that for a semifilter F the following conditions are equivalent:

1. F is coherent to the Fréchet filter;
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2. F is a meager subspace of the power-set P(ω) endowed with the natural
compact metrizable topology;

3. F lies in a σ-compact semifilter;

4. ϕ(F) = Fr for some monotone surjection ϕ : ω → ω;

5. for each infinite subset Ω ⊂ ω there is an increasing number sequence
(nk) ⊂ Ω such that each set F ∈ F meets almost all the half-intervals
[nk, nk+1).

By duality, this characterization implies a characterization of the semifilters
coherent to Fr⊥: A semifilter F is coherent to Fr⊥ if and only if F is comeager
in P(ω) if and only if F⊥ is meager if and only if ϕ(F) = Fr⊥ for some
monotone surjection ϕ : ω → ω.

A semifilter F is defined to be bi-Baire if both F and F⊥ are Baire, equiv-
alently, if Fr 6� F 6� Fr⊥. Each maximal linked semifilter (in particular, each
ultrafilter) is bi-Baire. Bi-Baire semifilters fail to have the Baire property in
P(ω). Consequently, each semifilter F which is Borel or analytic as a subspace
of P(ω) is coherent either to Fr or to Fr⊥.

Looking at Talagrand’s characterizations one can see that in some cases the
(sub)coherence relation can be expressed via monotone surjections (which are
finite-to-one functions). This lead us to the notion of strict subcoherence.

9. The strict subcoherence and regularity of semifilters

We shall say that a semifilter F is strictly subcoherent to a semifilter U
and denote this by F v U if for any monotone surjection ϕ : ω → ω there is
a monotone surjection ψ : ω → ω such that ψ ◦ ϕ(F) ⊂ ψ ◦ ϕ(U). The strict
subcoherence is the strongest among many possible definitions of subcoherence.
Like the subcoherence relation, the strict subcoherence is a preorder on SF.

It is clear that F v U implies F b U . If the converse happens, then we
say that a semifilter is regular. More precisely, we define a semifilter F to be
regular if for any semifilter U the relation F b U (resp. U b F) is equivalent to
F v U (resp. U v F). The class of regular semifilters is quite wide and includes
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many important semifilters. Namely, a semifilter F is regular if F satisfies one
of the conditions: (i) F is meager or comeager; (ii) F⊥ is regular; (iii) F is
coherent to a regular semifilter; (iv) F has non-meager support supp(F); (v)
F is coherent to a filter.

One may suggest that each semifilter is regular. However this is not so:
under the assumption (r = c) there are coherent centered semifilters F ,U such
that F b U but F 6v U . Here r, the reaping number, is the smallest size |R|
of an unsplit family R ⊂ [ω]ω (which means that for any subset A ⊂ ω there is
R ∈ R such that either R ⊂∗ A or R ⊂∗ ω \A).

We do not know if any maximal linked semifilter is regular. This would be
so if any maximal linked semifilter would have non-meager support. However,
under r = c there are maximal linked semifilters with meager support, see
Theorem 5.5.9 of [6].

10. The coherence lattice [SF]

Taking the quotient set [SF] of SF by the coherence equivalence � we arrive
to an extremely interesting object called the coherence lattice. Its elements are
the coherence classes [F ] = {U ∈ SF : U � F} of semifilters F ∈ SF.

To introduce lattice operations on [SF] we remark that the (sub)coherence
relation nicely agrees with the algebraic structure of the lattice SF. Namely,
for semifilters F1 b F2 and U1 b U2 we get F⊥1 c F⊥2 , F1 ∪ U1 b F2 ∪ U2 and
F1 ∩ U1 b F2 ∩ U2, see Proposition 5.1.5 of [6]. Thus � is a congruence on
[SF] which allows us to introduce the partial order and the lattice operations
on [SF] in a standard way:

– [F ] ∨ [U ] = [F ∪ U ];

– [F ] ∧ [U ] = [F ∩ U ];

– [F ]⊥ = [F⊥];

– [F ] ≤ [U ] if and only if F b U .

Being a quotient lattice of the distributive lattice SF, the coherence lattice [SF]
is distributive. The smallest element of this lattice is the coherence class [Fr]
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of the Fréchet filter while the largest element is [Fr⊥], the coherence class of
the co-Fréchet semifilter. Besides these extreme elements the coherence lattice
contains the coherence class [U ] of an ultrafilter. This is all the information
on the structure of the coherence lattice that can be proved in ZFC: it is
consistent that |[SF]| = 3. On the other hand, it is also consistent that this
lattice contains an isomorphic copy of SF and thus has 2c elements. Thus,
like a set-theoretic chameleon the coherence lattice [SF] changes its properties
depending on additional set-theoretic assumptions.

The embedding of the lattice SF into [SF] is constructed with the help
of the limit operator lim(Un) : SF → SF composed with the quotient map
q : SF → [SF]. Such a composition q ◦ lim(Un) : SF → [SF] is injective if the
sequence of ultrafilters (Un) is totally separated in the sense that for any finite-
to-one map ϕ : ω → ω the sequence of ultrafilters (ϕ(Un))n∈ω is separated
or, equivalently, discrete in UF. Therefore, for a totally separated sequence
(Un) of ultrafilters the map h = [lim(Un)] : SF → [SF] is an injective lattice
homomorphism preserving the transversality operation and such that h(X) =
[X] and h(SF \ X) = [SF] \ [X] for any X ∈ {UF,ML,FF,CEN, Lk : k ≥ 2}.
Constructing totally separated sequences of ultrafilters is a rather non-trivial
task and is connected with some topological properties of the lattice [SF].

11. Topologizing the coherence lattice [SF]

The natural idea to topologize the lattice [SF] with the quotient topology
fails because each coherence class [F ] is dense in SF and thus the quotient
topology on [SF] is antidiscrete. Nonetheless, the coherence classes are closed
with respect to a stronger topology on SF, coinciding with the Lawson topology
on all subsets of size < b, where b, the bounding number, is the smallest size
of an unbounded subset in (Nω,≤∗). This topology on SF consists of so-called
b<-open sets, where a subset U of a topological space X is called κ<-open if for
each subset C ⊂ X of size |C| < κ the intersection C∩U is relatively open in C.
Now for any uncountable regular cardinal κ ≤ b we can consider the topology
[τκ] on [SF] consisting of subsets U ⊂ [SF] whose preimages q−1(U) under the
quotient map are κ<-open in SF. It turns out that [τκ] is a well-defined T1-
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topology on [SF] which is κ<-tight (in the sense that for any subset A ⊂ [SF]
and any point a in the closure of A there is a subset C ⊂ A of size |C| < κ

whose closure contains a) and κ<-bounded (in the sense that for any subset
C ⊂ [SF] of size |C| < κ and any open cover U of [SF] some finite subfamily of
U covers the set C). Among the κ-topologies [τκ] on [SF] the most interesting
are extremal ones for κ = ℵ1 and κ = b: the topology [τb] is the closest to being
compact while [τω1 ] is the closest to being Hausdorff. However both topologies
coincide on countable subspaces of [SF].

Returning to totally separated sequences of ultrafilters, one can show that
a sequence of ultrafilters (Un)n∈ω is totally separated if and only if the se-
quence ([Un])n∈ω of their coherence classes is discrete in ([SF], [τω1 ]), see Propo-
sition 6.4.4 of [6]. Now, if the space ([SF], [τω1 ]) were Hausdorff, then the ex-
istence of a totally separated sequence of ultrafilters would be equivalent to
the infinity of the set [UF] = {[U ] : U ∈ UF} of coherence classes of ultrafilters.
Unfortunately, the space [SF] does not look to be Hausdorff. Nonetheless, using
the powerful machinery of cardinal characteristics on the lattice [SF], one can
prove the above equivalence, implying a striking Finite-2c Dichotomy: the size
of the set [UF] either is finite or 2c. Unfortunately, we do not know if the same
dichotomy is true for the lattice [SF].

12. Algebraic operations on [SF]

As we already know each binary (associative) operation ∗ : ω×ω → ω with
finite-to-one left shifts induces an (associative) binary operation ◦ : SF× SF →
SF with continuous right shifts. It turns out that the coherence relation � is
a congruence on (SF, ◦) and thus we can define the quotient operation • on
the coherence lattice [SF]. However this quotient operation is not interesting:
([SF], •) is a semigroup of right zeros. This follows from the coherence F◦U � U
holding for any semifilters F ,U . This simple fact allows us two make two obser-
vations on the structure of the semigroup (SF, ◦): (1) non-coherent semifilters
cannot commute and (2) each left ideal in (SF, ◦) meets each coherence class
and thus is rather large.
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13. Cardinal characteristics of semifilters: general theory

An important role in the theory belongs to the cardinal characteristics of
semifilters, that is cardinal-valued functions on the lattice SF. Cardinal char-
acteristics carry a valuable information on a semifilter and in some cases allow
to identify the semifilter up to the coherence. Before considering some concrete
cardinal functions on SF we develop their general theory in order to give an ab-
stract idea of exploiting cardinal characteristics for studying the (sub)coherence
relation.

Cardinal functions on the lattice SF can have additional algebraic proper-
ties. Namely, we define a cardinal function ξ(−) on SF to be

– ⊂-monotone if ξ(F) ≤ ξ(U) for any semifilters F ⊂ U ;

– a ∪-homomorphism if ξ(F ∪ U) = max{ξ(F), ξ(U)} for any semifilters
F ,U ;

– a ∩-homomorphism if ξ(F ∩ U) = min{ξ(F), ξ(U)} for any semifilters
F ,U ;

– a lattice homomorphism if ξ is both a ∪- and a ∩-homomorphism;

– a ∩<κ-homomorphism (resp. ∪<κ-homomorphism) if
ξ(∩F) = min{ξ(F) : F ∈ F} (resp. ξ(∪F) = sup{ξ(F) : F ∈ F}) for any
family F of semifilters with |F| < κ;

– b-monotone if ξ(F) ≤ ξ(U) for any semifilters F b U ;

– �-invariant if ξ(F) = ξ(U) for any coherent semifilters F � U .

It is easy to see that a cardinal function ξ(−) is ⊂-monotone if it is a ∩- or
a ∪-homomorphism. Also ξ(−) is b-monotone if and only if it is ⊂-monotone
and �-invariant.

In the sequel we shall be mostly interested in �-invariant cardinal character-
istics on SF because every �-invariant cardinal function ξ(−) induces a cardinal
function ξ[−] on the coherence lattice [SF]. So working with �-invariant car-
dinal functions we shall often write ξ[F ] in place of ξ(F) to stress that the
value of ξ(F) does not depend on the choice of a particular semifilter from
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the coherence class [F ]. If an �-invariant cardinal characteristic ξ(−) is a
∪<κ-homomorphism (resp. a ∩<κ-homomorphism) for some uncountable reg-
ular cardinal κ ≤ b, then the induced cardinal characteristic ξ[−] on [SF] is
upper (resp. lower) semicontinuous in the sense that for any cardinal λ the
set {[F ] ∈ [SF] : ξ[F ] > λ} (resp. {[F ] ∈ [SF] : ξ[F ] < λ}) is open in the
κ-topology [τκ] on [SF].

Given a cardinal function ξ(−) on SF there are (at least) three ways to
produce an �-invariant cardinal function:

– ξ[F ] = min{ξ(U) : U ∈ [F ]}, the minimization,

– ξ[F ] = sup{ξ(U) : U ∈ [F ]}, the supremization, and

– ξ̂[F ] = min{supS∈SF ξ(S), ξ(U) : U 6b F}, the nonification of ξ(−).

Both the minimization ξ[−] and supremization ξ[−] of a ∪-homomorphism
ξ(−) on SF lead to �-invariant ∪-homomorphisms, while the nonification of
any cardinal function ξ(−) on SF yields a b-monotone ∩<b-homomorphism
ξ̂[−] on SF.

All applications of cardinal functions to studying the subcoherence relation
are based on the following simple fact (actually, a tautology): a semifilter F is
subcoherent to a semifilter U if ξ[F ] < ξ̂[U ] for some cardinal function ξ(−) on
SF.

This simple observation will be used to detect the coherence of all semi-
filters belonging to some fixed class F ⊂ SF of semifilters. Very often this is
equivalent to the strict inequality between suitable small cardinals. As a rule
these cardinals are the smallest or largest possible values of suitable cardinal
characteristics on the class F. Given a cardinal characteristic ξ(−) on SF and
a class of semifilters F ⊂ SF let

ξF =min
{
ξ(F) : F ∈ F

}
,

ξF =sup
{
ξ(F) : F ∈ F

}
be the critical values of ξ(−) on F. Observe that the minimization ξ[F ] and the
supremization ξ[F ] are just critical values of ξ(−) on the coherence class [F ] of
a semifilter F .
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In case of strict inequality ξF < ξ̂F the coherence of all semifilters of a class
F ⊂ SF can be characterized very easily: the latter happens if and only if
ξF < ξ̂F.

This characterization will be applied to establish the coherence of all semi-
filters belonging to some concrete classes. Among such concrete classes the
most important classes are:

– the class BS of bi-Baire semifilters (that is semifilters F /∈ [Fr] ∪ [Fr⊥]);

– the class BF of Baire filters (that is, filters F /∈ [Fr]);

– the class ML of maximal linked semifilters;

– the class UF of ultrafilters.

It is clear that UF ⊂ ML ∩ BF ⊂ ML ∪ BF ⊂ BS.
Given a cardinal characteristic ξ on SF we shall write ξb, ξf , ξu, ξl in place

of ξBS, ξBF, ξUF, ξML, respectively. Also we write ξb, ξf , ξu, ξl in place of ξBS,
ξBF, ξUF, ξML, respectively.

The following diagram describes the interplay between these cardinals.

ξb
�@

ξf ξl

ξu
@�

ξu
�@

ξf ξl

ξb

@�

Among these cardinals the critical values ξl and ξl occupy a special place
because of the following two

Polarization Formulas. Let ξ(−) be a ⊂-monotone cardinal function on SF.
Then for any semifilter F

min
{
ξ[F ], ξ̂[F⊥]

}
≤ ξl and max

{
ξ[F ], ξ̂[F⊥]

}
≥ ξ̂l.

The critical values ξl and ξ̂l have the following extremal property:
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– ξl = min
{

max{ξ(F), ξ(F⊥)} : F ∈ SF
}

if ξ(−) is a ∪-homomorphism;

– ξl = sup
{

min{ξ(F), ξ(F⊥)} : F ∈ SF
}

if ξ(−) is a ∩-homomorphism.

This extremal property of ξl and ξl can be easily derived from the approxi-
mation property of maximal linked semifilters (asserting that for any semifilter
F there is a maximal linked semifilter L with F ∩ F⊥ ⊂ L ⊂ F ∪ F⊥).

In light of the extremal properties of the cardinals ξl and ξl it is natural to
call a semifilter F

– ξ-minimal if max{ξ(F), ξ(F⊥)} ≤ ξl;

– ξ-maximal if min{ξ(F), ξ(F⊥)} ≥ ξl.

It turns out that under the assumption (ξl < ξ̂l) ξ-minimal and ξ̂-maximal
semifilters are unique up to coherence and can characterized as follows, see
Theorem 7.4.5 in [6].

Theorem 13.1 ((The First Fundamental Theorem). If ξl < ξ̂l for some
�-invariant cardinal function ξ[−] on SF, then for any semifilter F the following
conditions are equivalent:

1. F is ξ-minimal;

2. F is ξ̂-maximal;

3. max{ξ[F ], ξ[F⊥]} < ξ̂l;

4. min{ξ̂[F ], ξ̂[F⊥]} > ξl.

Moreover any two semifilters satisfying the conditions 1 – 4 are coherent.

In fact, for an �-invariant ∪-homomorphism ξ[−] on SF the strict inequality
ξl < ξ̂l is equivalent to the coherence of all ξ-minimal semifilters, see Theorem
7.4.6 of [6].

The First Fundamental Theorem implies that under ξl < ξ̂l all the semi-
filters from a class F ⊂ SF containing a ξ-minimal semifilter are coherent if
and only if max{ξ[F ], ξ[F⊥]} < ξ̂l for any semifilter F ∈ F if and only if
min{ξ̂[F ], ξ̂[F⊥]} > ξl for any F ∈ F.

Even more interesting situation appears under the inequality ξl <
̂̂
ξ

l

.
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Theorem 13.2 ((The Second Fundamental Theorem). If ξl <
̂̂
ξ

l

for some
cardinal function ξ(−) on SF, then the lattice SF contains at most two non-
coherent maximal linked semifilters. More precisely, a maximal linked semifilter
L is coherent to

– a unique ξ-minimal semifilter if ξ̂[L] > ξl;

– a unique ξ̂-minimal semifilter if ξ̂[L] < ̂̂
ξ

l

.

This theorem explains the nature of the striking result of Blass, Milden-
berger [14] who proved that under r < s there are at most two noncoherent
ultrafilters. To derive the Blass-Mildenberger dichotomy from the Second Fun-
damental Theorem it suffices to find an �-invariant cardinal characteristic ξ[−]

on SF with ξl = r and ̂̂
ξ

l

≥ s. It turns out that for such a cardinal charac-
teristic it suffices to take the minimization πχ[−] of the π-character πχ(−) of a
semifilter. At this point we leave the general theory of cardinal characteristics
and turn to their concrete representatives.

14. Cardinal characteristics of semifilters: the four levels of complexity

The cardinal characteristics of semifilters appearing in practice fall into four
complexity categories:

1. Cardinal characteristics of semifilters determined by their inner structure
(as a rule they are not �-invariant);

2. �-Invariant cardinal characteristics obtained after minimizations or
supremizations of some cardinal characteristics of the first complexity
level;

3. Cardinal characteristics obtained by nonifications of the cardinal charac-
teristics of the second complexity level;

3’. Cardinal characteristics of some external objects determined by a semi-
filter, close by their properties to the cardinal characteristics of the third
level;
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4. Cardinal characteristics obtained after nonifications of the cardinal char-
acteristics of the third complexity level.

15. Cardinal characteristics of the first complexity level

On the first complexity level we shall encounter 7 cardinal characteristics
of a semifilter F :

– χ(F) = min{|B| : B ⊂ F ∀F ∈ F ∃B ∈ B [B ⊂∗ F ]}, the character,
equal to the smallest size of a base for F ;

– πχ(F) = min{|B| : B ⊂ [ω]ω ∀F ∈ F ∃B ∈ B [B ⊂∗ F ]}, the π-character,
equal to the smallest size of a π-base for F ;

– p(F) = min{c+, |B| : B ⊂ F ∀F ∈ F ∃B ∈ B [F 6⊂∗ B]}, the filter
number, equal to the smallest size of a subfamily B ⊂ F having no infinite
pseudointersection in F or c+ if F has an infinite pseudointersection in
F ;

– πp(F) = min{c+, |B| : B ⊂ F ∀F ∈ [ω]ω ∃B ∈ B [F 6⊂∗ B]}, the linked-
ness number, equal to the smallest size of a subfamily B ⊂ F having no
infinite pseudointersection, or c+ if F has an infinite pseudointersection;

– the tower number t(F) is the smallest length λ of a ⊂∗-decreasing se-
quence (Tα)α<λ ⊂ F having no pseudointersection in F ; if no such a
sequence exists, we put t(F) = c+;

– the unilink number ul(F) equal to the minimal size |L| of a family L of
linked semifilters with F ⊂ ∪L;

– the almost disjointness number ad(F) = sup{|A| : A ⊂ F is almost
disjoint}, where a family A is almost disjoint if any two distinct members
A,B ∈ A have finite intersection.

Let us note that p(F) and χ(F) as well as πp(F) and πχ(F) form two dual
pairs. Observe also that the filter and linkedness numbers p(F) and πp(F)
allow to estimate the linkedness level of linked semifilters while the unilink
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and almost disjointness numbers ul(F) and ad(F) help to classify non-linked
semifilters.

For each semifilter F these cardinal characteristics are related as follows:

ad(F) ≤ ul(F) ≤ πχ(F) ≤ χ(F) and p(F) ≤ min{t(F), πp(F)}.

For any filter p(F) = t(F). The equality χ(F) = 1, equivalent to p(F) = c+,
means that F is generated by some infinite set B ⊂ ω in the sense that F =
{F ∈ [ω]ω : B ⊂∗ F}. On the other hand, the equality πχ(F) = 1, equivalent
to πp(F) = c+, means that F has an infinite pseudointersection B ⊂ ω in the
sense that B ⊂∗ F for each F ∈ F .

For the extremal semifilters Fr,Fr⊥ these cardinal characteristics take ex-
tremal values:

ad(Fr) = ul(Fr) = πχ(Fr) = χ(Fr) = 1, t(Fr) = p(Fr) = πp(Fr) = c+

and
ad(Fr⊥) = ul(Fr⊥) = πχ(Fr⊥) = χ(Fr⊥) = c,

p(Fr⊥) = πp(Fr⊥) = 2, t(Fr⊥) = t.

Among these seven cardinal characteristics the π-character πχ(−) and the
linkedness number πp(−) are the most important. The first of them is ⊂-
increasing while the second is a ⊂-decreasing cardinal function on SF. More
precisely, we shall be interested in the minimization πχ[−] of the π-character
and the supremization πp[−] of the linkedness number πp(−). Thus we obtain
two �-invariant cardinal functions πχ[−] and πp[−] having parallel properties.
We start with the cardinal characteristic πχ[−].

16. The minimization πχ[−] of the π-character

For typographical reasons, given a semifilter F we shall write πχ[F ] instead
of πχ[F ], where πχ[F ] = min{πχ(U) : U ∈ [F ]}. After the minimization, the
π-character becomes a b-monotone ∪-homomorphism πχ[−] on SF. On the
extremal semifilters Fr and Fr⊥ the cardinal function πχ[−] takes its extremal
values: πχ[Fr] = 1 and πχ[Fr⊥] = ul[Fr⊥] = ad[Fr⊥] = c.
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As an application of the equality ul[Fr⊥] = c we obtain a simple proof of
Plewik’s Theorem [33] stating that the intersection F =

⋂
α<κ Uα of κ < c

ultrafilters is non-meager. Indeed, assuming that F is meager, we will get that
its dual F⊥ =

⋃
α<κ U⊥α is comeager and has ul(F⊥) ≤ κ < c, which contradicts

ul[Fr⊥] = c.
The cardinal characteristic πχ[−] is a ∪<b-homomorphism while

min{d, πχ[−]} is a ∩≤ω-homomorphism on SF. Thus min{d, πχ[−]} is continu-
ous with respect to the ω1-topology [τω1 ] on [SF].

The critical values of the cardinal function πχ[−] coincide with the two
classical small cardinals b and r. More precisely, πχb = πχf = b and πχl =
πχu = r. The equality πχb = πχf = b is the combined result of Solomon
[40] (who proved that each semifilter F with πχ(F) < b is meager) and P.
Simon (who constructed a non-meager filter F with πχ(F) = b). The quality
πχl = πχu = r follows from the inequality πχ[U ] ≥ r held for any unsplit (in
particular, any maximal linked) semifilter and the existence of an ultrafilter
U with πχ(U) = r (the latter was proved by Balcar, Simon [2]). Actually a
more general result is true: each filter F can be enlarged to a ultrafilter U with
πχ(U) ≤ max{χ(F), r}, see Theorem 8.4.4 of [6].

In contrast to the lower critical values πχb = πχf , πχl = πχu the critical
values πχb, πχf , πχl, πχu of the cardinal function πχ[−] are not so definite and
depend on additional set-theoretic assumptions. For example, the inequality
πχu < d is equivalent to NCF, see Theorem 12.3.3 of [6].

There is an interesting interplay between πχ[F ] from one side and πχ[F⊥]
and ad[F⊥] from the other. Namely, we have two Polarization Formulas:

max
{
πχ[F ], πχ[F⊥]

}
≥ r and max

{
πχ[F ], ad[F⊥]

}
≥ min{r, d}

holding for any semifilter F . The latter polarization formula is a motivation
for introducing versions rκ and uκ of the classical small cardinals r and u,
parametrized by a cardinal κ:

rκ =min
{
πχ(F) : F is a semifilter with ad(F⊥) < κ

}
and

uκ =min
{
χ(F) : F is a filter with ad(F⊥) < κ

}
.

The values of the cardinals rκ and uκ will not change if we replace the cardinal
functions χ(−) and ad(−) by their minimizations χ[−] = χ[−] and ad[−] =
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ad[−], so that

rκ =min
{
πχ[F ] : F is a semifilter with ad[F⊥] < κ

}
;

uκ =min
{
χ[F ] : F is a filter with ad[F⊥] < κ

}
,

see Proposition 8.8.2 of [6]. By Theorem 8.8.2 [6], min{r, d} ≤ rk ≤ u for each
cardinal κ ≤ c. Studying the interplay between the cardinals rκ and uκ we
prove the inequality min{uκ, d} ≤ rκ, see Theorem 8.8.3 of [6]. For κ = 2 this
inequality turns into the inequality min{u, d} ≤ r discovered by Aubrey [1].

17. The function representation↗F of a semifilter

It turns out that the value of the πχ-character πχ[F ] of the coherence class
[F ] is coded in covering properties of the function representation ↗F . By
definition, the function representation of a semifilter F is the subset↗F =
{nextF : F ∈ F} ⊂ ωω, where nextF : ω → ω, nextF : n 7→ minF ∩ [n+ 1,∞).
In Theorem 8.5.3 of [6] it is proved that bc(↗F) = min{πχ[F ], d}, where bc(X),
the bounded covering number of a subset X ⊂ ωω equals the smallest size |D|
of a set D ⊂ ωω such that for each x ∈ X there is y ∈ D with x ≤∗ y. Let
us also note that d equals the bounded covering number of ωω. The equality
bc(↗F) = min{d, πχ[F ]} has a philosophical value since the definition of the
cardinal characteristic πχ[F ] uses the subcoherence relation while bc(↗F) does
not.

The function representation↗F is a powerful tool for proving coherence
properties of semifilters with small πχ-characters. In particular, using the func-
tion representation one can show that each semifilter F with πχ[F ] < d is
subcoherent to a filter F̃ with χ(F̃) = πχ[F ] and satisfies πχ[F ] ≤ r. This
implies that any maximal linked semifilter L with πχ[L] < d is coherent to an
ultrafilter and thus is regular.

The near coherence of semifilters also can be easily translated into dominat-
ing properties of their function representations. According to Theorem 8.5.6 of
[6], two semifilters F ,U are nearly coherent if and only if the set

max(↗F ,↗U) =
{

max(f, g) : f ∈↗F , g ∈↗U
}
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is not dominating in the poset (ωω,≤), where a subset D of the poset (ωω,≤)
is dominating if for each x ∈ ωω there is y ∈ D with x ≤ y.

This characterization implies that two semifilters F ,U are near coherent
provided max{πχ[F ], πχ[U ]} < d. For ultrafilters this result was proved by
Blass [9].

18. The nonification π̂χ[−] of πχ[−]

The latter near coherence condition can be used to estimate the nonification
π̂χ[F ] of a semifilter F with πχ[F⊥] < d. For such a semifilter F we will
get π̂χ[F ] ≥ d. Indeed, any semifilter S with πχ[S] < d is near coherent to
F⊥ and hence subcoherent to F . Thus we arrive to the polarization formula
max{πχ[F⊥], π̂χ[F ]} ≥ d holding for each semifilter F . On the other hand,
min{πχ[F⊥], π̂χ[F ]} ≤ r. Indeed, assuming that π̂χ[F ] > r and taking an
ultrafilter U with πχ(U) = r < π̂χ[F ] we will get U b F and thus F⊥ b U⊥ = U
which yields πχ[F⊥] ≤ πχ[U ] = r.

Under the assumption r < d the inequality max{πχ[F⊥], π̂χ[F ]} ≥ d implies
that π̂χ[U ] ≥ d for each ultrafilter U with πχ[U ] = r, which allows us to prove
that π̂χl = d. Therefore the assumption r < d implies πχl = r < d = π̂χ

l and
we can apply the First Fundamental Theorem to establish the uniqueness of
πχ-minimal semifilters. Following the general rule we define a semifilter F to be
πχ-minimal if max{πχ[F ], πχ[F⊥]} ≤ πχl = r. It turns out that under r < d all
πχ-minimal semifilters are coherent (in fact, the inequality r < d is equivalent
to the coherence of all πχ-minimal ultrafilters). Moreover, a semifilter F is
coherent to a πχ-minimal ultrafilter if and only if max{πχ[F ], πχ[F⊥]} < d if
and only if min{π̂χ[F ], π̂χ[F⊥]} > r.

This result implies a characterization of NCF due to Blass [9]: NCF holds
if and only if all ultrafilter are coherent if and only if each ultrafilter is πχ-
minimal if and only if πχ[U ] < d for any ultrafilter if and only if π̂χ[U ] > r for
any ultrafilter U . By analogy we can characterize the coherence of all semifilters
from a given class F ⊂ SF containing a πχ-minimal semifilter, see Theorem 8.6.5
of [6].
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19. The “Ideal” cardinal characteristics of semifilters

It turns out that the nonification π̂χ[−] (which belongs to the third complex-
ity level in our hierarchy) can be thought as one of four cardinal characteristics
add[−], cov[−], non[−], cof[−] having the “ideal” origin. The cardinal charac-
teristics add(I), cov(I), non(I), cof(I) are defined for any family I of subsets
of a set X with ∪I = X /∈ I as follows:

add(I) = min
{
|C| : C ⊂ I ∪ C /∈ I

}
,

non(I) = min
{
|A| : A ⊂ X A /∈ I

}
,

cov(I) = min
{
|C| : C ⊂ I ∪ C = X

}
,

cof(I) = min
{
|C| : C ⊂ I ∀A ∈ I ∃C ∈ C with A ⊂ C

}
.

These cardinal characteristics are classical tools for studying various ideals I,
i.e., families of sets closed under unions and taking subsets. In fact, the small
cardinals b and d are nothing else but the cardinal characteristics add(B) =
non(B) = b and cov(B) = cof(B) = d of the ideal B of bounded subsets of the
poset (ωω,≤∗).

Each non-comeager semifilter F generates an ideal ↓[F ] = {U ∈ SF : U b

F} in the set SF of all semifilters. So we can consider the cardinal characteristics
of this ideal and think of them as cardinal characteristics of the semifilter F . In
fact, we go a bit further and introduce cardinal characteristics add(F), non(F),
cov(F), and cof(F) of any family F ∈ SF with ∪F = Fr⊥ /∈ F. Given such a
family F let ↓F = {S ⊂ P(ω) : S ⊂ F for some F ∈ F} and consider the
cardinals

add(F) = min
{
|C| : C ⊂ F and ∪ C /∈ ↓F

}
;

cov(F) = min
{
|C| : C ⊂ F and ∪ C = Fr⊥

}
;

cof(F) = min
{
|C| : C ⊂ F and ↓C = ↓F

}
.

To define the cardinal non(F) note that infinite subsets of ω play the role of
“points” in P([ω]ω) ⊃ SF. So it is natural to put

non(F) = min
{
|B| : B ⊂ [ω]ω is such that B /∈ ↓F

}
.
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The cardinal characteristics add(F), cov(F), non(F), cof(F) have duals defined
for any family F ⊂ SF with ∩F = Fr /∈ F as follows:

add⊥(F) = add(F⊥) = min
{
|C| : C ⊂ F, ∩C /∈↑ F

}
;

cov⊥(F) = cov(F⊥) = min
{
|C| : C ⊂ F, ∩C = Fr

}
;

cof⊥(F) = cof(F⊥) = min
{
|C| : C ⊂ F, ↑C =↑F

}
;

non⊥(F) = non(F⊥),

where F⊥ =
{
F⊥ : F ∈ F

}
and ↑F =

{
B ⊂ P(ω) : B ⊃ F for some F ∈ F

}
.

The cardinal characteristics of any family F ⊂ SF with ∪F = Fr⊥ /∈ F are
related as expected:

add(F) ≤ min
{

cov(F), cf(non(F)), cf(cof(F))
}

and
cof(F) ≥ max

{
non(F), cov(F)

}
.

There is also a non-expected inequality cov⊥(F) ≤ non(F) holding for any
�-invariant family F of bi-Baire semifilter. The �-invariantness of F means
that [F ] ⊂ F for any semifilter F ∈ F. The interplay between the cardinal
characteristics of such a family F is described by the following symmetric dia-
gram:

add⊥(F)
�
�
�
��

add(F)
@

@
@

@@

cov⊥(F)
�
�
�
��

cov(F)
@

@
@

@@

non(F) non⊥(F)

cof(F) cof⊥(F)

The inequality cov⊥(F) ≤ non(F) follows from the deep Theorem 9.2.5 of
[6] asserting that for any �-invariant family of semifilters F ⊂ SF \ [Fr] a
semifilter F with πχ[F ] < cov⊥(F) is strictly subcoherent to the intersection
∩C of any family C ⊂ F with size |C| < cov⊥(F). This theorem implies also
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that for any �-invariant family F ⊂ SF\ [Fr] containing a semifilter F ∈ F with
πχ[F ] < cov⊥(F) the cardinal cov⊥(F) equals add⊥(F) and thus is regular.

These results show the importance of the cardinal characteristics cov(F).
It turns out that cov(F) is large if all semifilters F ∈ F have small cardinal
characteristics of the first level. In Theorem 9.2.7 of [6] we show that for a
family F ⊂ SF with ∪F = Fr⊥ /∈ F its covering number

– cov(F) ≤ c;

– cov(F) ≤ d if F is �-invariant;

– cov(F) = c provided sup
F∈F

ad(F) < c;

– cov(F) ≥ cf(c) provided ad(F) < c for any F ∈ F;

Please, check if
the item is correct.– cov(F) ≥ d provided sup

F∈F
πχ[F ] < d;

– cov(F) ≥ cf(d) provided πχ[F ] < d for all F ∈ F;

– cov(F) ≥ s provided sup
F∈F

πp(F⊥) < s;

– cov(F) ≥ cf(s) provided πp(F⊥) < s for all F ∈ F.

The values of the cardinal characteristic cov⊥(F) for various families of
semifilters F ⊂ SF lead to interesting and important small cardinals:

h =cov⊥(F), where F is the family of all semifilters F with πχ(F) > 1;

g =cov⊥(F), where F is the family of all non-meager semifilters;

gf =cov⊥(F), where F is the family of all non-meager filters;

gu =cov⊥(F), where F is the family of all semifilters coherent to ultrafilters;

gl =cov⊥(F), where F is the family of all semifilters F � F⊥.

One may wonder why we do not add to this list the cardinal cov⊥(UF) where
UF is the class of ultrafilters. But according to a result of Plewik [34] the
cardinal cov⊥(UF) equals c and thus is not interesting.
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The first two cardinals h and g are well-known to set theorists and naturally
appear in many different contexts. For example h can be equivalently defined
an the smallest size of a family N of nowhere dense subsets of the Stone-Čech
remainder ω∗ = βω \ ω with dense union ∪N . The cardinal h was introduced
by B. Balcar, J. Pelant and P. Simon as the smallest height of a tree π-base for
the Stone-Čech remainder ω∗ (that is why the letter h appears).

Another well-known cardinal in the above list is g, the groupwise density
number, introduced by Blass [11] as the smallest size of a collection of groupwise
dense families with empty intersection. The cardinal gf was recently considered
by Mildenberger [27] and the cardinal gu (which is equal to cov(Dfin)) was
studied in [29] and [39].

Investigating the properties of the small cardinals g, gf , gl, gu, we show in
[6, §9.3] that gu ≥ gl ≥ max{g, b} and gf ≤ cf(c). Since the inequality g < gf

is consistent [19], the latter result strengthen the lower bound g ≤ cf(c) proved
earlier by Blass [13, 8.7].

Applying the mentioned general results about the cardinal characteristics
of families of semifilters to the coherence classes of semifilters we arrive to the
following “ideal” cardinal characteristics add[F ], cov[F ],non[F ], cof[F ] defined
for any non-comeager semifilter F :

– add[F ] = add([F ]) = min
{
|C| : C ⊂ [F ] ∪C 6� F

}
,

– cov[F ] = cov([F ]) = min
{
|C| : C ⊂ [F ] ∪C = Fr⊥

}
,

– cof[F ] = cof([F ]) = min
{
|C| : C ⊂ [F ] ∀E ∈ [F ] ∃C ∈ C with E ⊂ C

}
,

– non[F ] = non([F ]) = min
{
χ(B) : B ∈ SF and B 6b F

}
.

These cardinal characteristics have duals defined for any non-meager semifil-
ter F :

– add⊥[F ] = add(F⊥) = min
{
|C| : C ⊂ [F ] ∩C 6� F

}
,

– cov⊥[F ] = cov[F⊥] = min
{
|C| : C ⊂ [F ] ∩C = Fr

}
,

– cof⊥[F ] = cof[F⊥] = min
{
|C| : C ⊂ [F ]∀E ∈ [F ]∃C ∈ C with C ⊂ E

}
,

– non⊥[F ] = non[F⊥] = min
{
χ(B) : B ∈ SF and F 6b B⊥

}
.
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It is important to notice that for any non-comeager semifilter F the cardinal
non[F ] coincides with the nonification π̂χ[F ] of the π-character (this partly
justifies the choice of the term “nonification” for π̂χ[−]).

For any bi-Baire semifilter F its “ideal” cardinal characteristics are related
as follows:

b
@@ ��

add⊥[F ]
�
�
�
��

add[F ]
@

@
@

@@

cov⊥[F ]
�
�
�
��

cov[F ]
@

@
@

@@

non[F ] non⊥[F ]

cof[F ] cof⊥[F ]

d

�� @@

Let us observe that the cardinal characteristics add[F ], cov[F ], non[F ],
cof[F ] are defined only for non-comeager semifilters F . If we want to extend
them onto comeager semifilters, the unique reasonable way to do that is to put
add[Fr⊥] = cov[Fr⊥] = b and non[Fr⊥] = cof[Fr⊥] = d.

Among the eight “ideal” cardinal characteristics of semifilters, cov⊥[−] and
non[−] seem to be the most important. The first of them, cov⊥[−], is a b-
monotone ∪-homomorphism while the second, non[−], is a b-monotone ∩-
homomorphism on the lattice SF.

Applying the above-mentioned theorem (estimating cov(F) for various fam-
ilies of semifilters), we arrive to the following important Polarization Formula
holding for any semifilter F :

max
{

cov⊥[F ], πχ[F⊥]
}
≥ d.

Since cov⊥[F ] ≤ non[F ] ≤ π̂χ[F ] this formula strengthen the polarization
formula max

{
π̂χ[F ], πχ[F⊥]

}
≥ d proved earlier with help of the function



82 T. Banakh and L. Zdomskyy

representation.
If F is a semifilter with πχ[F ] < cov⊥[F ], then the cardinal cov⊥[F ] =

add⊥[F ] is regular, see Theorem 9.4.2 of [6]. This theorem implies that the
cardinal d is regular under (r < d). Indeed, take any ultrafilter U with πχ[U ] =
r < d and derive from max

{
cov⊥[U ], πχ[U⊥]

}
≥ d that d = cov⊥[U ] > r =

πχ[U ] and thus the cardinal d = cov⊥[U ] = add⊥[U ] is regular.

20. The relation ≤F and its cardinal characteristics

It turns out that the cardinal characteristics cov⊥[−] and non[−] give lower
and upper bounds for another two cardinal characteristics b(−) and q(−) hav-
ing their origins in Non-standard Arithmetics. To define the cardinal charac-
teristics b(−) and q(−) observe that each semifilter F generates two relations
≤F and =F on the countable product ωω: f ≤F g (resp. f =F g) if the set
{n ∈ ω : f(n) ≤ g(n)} ∈ F (resp. {n ∈ ω : f(n) = g(n)} ∈ F ). In case of the
Fréchet filter F = Fr the relation ≤F coincides with the usual preorder ≤∗ of
eventual dominance.

If F is a filter, then ≤F is a preorder and =F is an equivalence relation
generated by this preorder on ωω. Moreover, the preorder ≤U is total (that is
any two elements of ωω are ≤U -comparable) provided U is an ultrafilter. In
the latter case the total preorder ≤U is well-studied in Set and Model Theories:
the quotient space ωω/U of ωω by the equivalence relation =U , endowed with
natural arithmetic and order structures is a non-standard model of arithmetics.

Two cardinal characteristics play an important role in studying the ultra-
power ωω/U : the cofinality cof(ωω/U) of ωω/U and the coinitiality
coin(ω↑ω/U) of its top sky. By the top sky of an ultrapower ωω/U we under-
stand the quotient-image ωω/U of the set ω↑ω of all functions f : ω → ω with
limn→∞ f(n) = +∞.

In the case of (semi)filters the cardinals cof(ωω/F), coin(ωω/F) are split
up into four important cardinal characteristics b(F), b⊥(F) and q(F), q⊥(F)
which are tightly connected with the “ideal” cardinal characteristics of F . To
define them take a semifilter F and call a subset A ⊂ ω↑ω

– ≤F -bounded if there is a function b ∈ ω↑ω such that a ≤F b for all a ∈ A;
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– ≤F -dominating if for each x ∈ ω↑ω there is a ∈ A with x ≤F a;

– ≥F -bounded if there is a function b ∈ ω↑ω such that b ≤F a for all a ∈ A;

– ≥F -dominating if for each x ∈ ω↑ω there is a ∈ A with a ≤F x.

Given a semifilter F let

– b(F) be the smallest size of a ≤F -unbounded subset B ⊂ ω↑ω;

– q(F) be the smallest size of a ≥F -unbounded subset B ⊂ ω↑ω;

– b⊥(F) be the smallest size of a ≤F -dominating subset D ⊂ ω↑ω;

– q⊥(F) be the smallest size of a ≥F -dominating subset D ⊂ ω↑ω.

The cardinal functions b(−), q(−) are b-monotone lattice homomorphisms on
SF. Moreover, b⊥(F) = b(F⊥) and q⊥(F) = q(F⊥) for each semifilter F . In
particular, b(L) = b⊥(L) and q(L) = q⊥(L) for any maximal linked semifilter
L.

For the extremal semifilters Fr and Fr⊥ the cardinal characteristics b(−)
and q(−) take their extremal values: b(Fr) = q(Fr) = b and b(Fr⊥) =
q(Fr⊥) = d. The ⊂-monotonicity of b(−) and q(−) implies that the cardinal
characteristics b(−), q(−) take their values in the interval [b, d]. The cardinals
b(F), q(F) are regular for any filter F . These are the only restrictions on the
values of b(−) and q(−): according to a forcing result of Canjar [21] for any
regular cardinals κ, λ ∈ [b, d] it is consistent that there is an ultrafilter U with
b(U) = κ and q(U) = λ. Moreover, in ZFC there always exists a ultrafilter U
with b(U) = q(U) = cf(d), see Canjar [22].

The cardinal characteristics of semifilters discussed above have counterparts
defined for a family of semifilters F ⊂ SF as follows:

– b⊥(F) = min
{
|D| : D ⊂ ωω ∀(F , f) ∈ F× ωω ∃g ∈ D with f ≤F g

}
;

– q⊥(F) = min
{
|D| : D ⊂ ω↑ω ∀(F , f) ∈ F× ω↑ω ∃g ∈ D with g ≤F f

}
;

– b(F) = min
{
|P| : P ⊂ F× ωω ∀g ∈ ωω ∃(F , f) ∈ P with f 6≤F g

}
;

– q(F) = min
{
|P| : P ⊂ F× ω↑ω ∀g ∈ ω↑ω ∃(F , f) ∈ P with g 6≤F f

}
.
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It follows from the definitions that b(F) ≤ b(F) = b⊥(F⊥) ≤ b⊥(F⊥) for any
semifilter F ∈ F. In particular, b([F ]) ≤ b(F) ≤ b⊥([F⊥]). In contrast to
the cardinal characteristics b(F), q(F) which can be distinct, their “family”
counterparts b(F) and q(F) are equal for any �-invariant family F of semifilters
(in particluar, for each coherence class). The same concerns their duals b⊥(F) =
q⊥(F).

As we said, cov⊥[−] and non[−] give lower and upper bounds for b(−)
and q(−). The following diagram describes the interplay between the cardinal
characteristics (of the third complexity level) of a semifilter F and these of its
support supp(F):

min
{
b(supp(F)), q(supp(F))

}add⊥[F ] add[F ]

cov⊥[F ] cov[F ]

q([F ]) = b([F ]) b([F⊥]) = q([F⊥])

q(F) b(F) b⊥(F) q⊥(F)

q⊥([F⊥]) = b⊥([F⊥]) b⊥([F ]) = q⊥([F ])

non[F ] non⊥[F ]

cof[F ] cof⊥[F ]

max
{
b⊥(supp(F)), q⊥(supp(F))

}

�
�
�
�
��

�
�
�
�
��

\
\
\
\
\\

\
\
\
\
\\
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�
�
�
��

�
�
�
�
��
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\
\
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Since the support supp(F) of any filter F coincides with F , the above
diagram implies the equalities

min
{
b(F), q(F)

}
= b([F ]) = q([F ]) = cov⊥[F ] = add⊥[F ] ≤ add[F ]

holding for any filter F . For an ultrafilter U we have, in addition, cof[U ] =
non[U ] = b⊥([U ]) = q⊥([U ]) = max

{
b(U), q(U)

}
. Thus the “ideal” cardinal

characteristics of any ultrafilter U are completely determined by the values of
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b(U) and q(U). This fact has a philosophical value since the “ideal” cardinal
characteristics are defined with help of the subcoherence relation while b(−),
q(−) are not.

Thus the values of cardinal characteristics b(−) and q(−) determine the
values of other cardinal characteristics of ultrafilters. As we said even for
an ultrafilter U the cardinal characteristics b(U) and q(U) can be different.
However, any such an ultrafilter U is coherent to a Q-point according to a result
of Laflamme, Zhu [26]. To understand the nature of this result, let us introduce
two oriented modifications of the subcoherence relation. We shall say that a
semifilter F is right (resp. left) subcoherent to a semifilter U and denote this
by F ⊂

→
U (resp. F ⊂

←
U) if for any finite-to-one function f : ω → ω there is a

finite-to-finite multifunction Φ on ω such that Φ(F) ⊂ U and Φ(n) ⊂ [f(n),∞)
(resp. Φ(n) ⊂ [0, f(n)]) for almost all n ∈ ω. The right (left) subcoherence
agrees well with duality and the usual subcoherence relation, see Proposition
10.2.2 of [6]:

– F ⊂
→
U if and only if U⊥ ⊂

←
F⊥;

– F b U provided F ⊂
→
U or F ⊂

←
U ;

– F ′ b F ⊂
→
U b U ′ implies F ′ ⊂

→
U ′;

– F ′ b F ⊂
←
U b U ′ implies F ′ ⊂

←
U ′.

The main result concerning oriented subcoherences is Theorem 10.2.4 of [6]
asserting that F ⊂

→
U (resp. F ⊂

←
U) implies b(F) ≤ q(U) (resp. q(F) ≤ b(U)).

For an ultrafilter U the relations U ⊂
→
U and U ⊂

←
U are equivalent to the

absence of a Q-point in the coherence class [U ] of U , see Proposition 10.2.3 [6].
For such ultrafilters U the characteristics b(U), q(U), add[U ], cov[U ], non[U ],
cof[U ] all are equal.

It is interesting to note that each of the cardinal characteristics non[−],
cov⊥[−], b(−), q(−) is responsible for a special sort of subcoherence: for semi-
filters F ,U

– πχ[F ] < non[U ] implies F b U ;

– πχ[F ] < cov⊥[U ] implies F v U ;
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– πχ[F ] < b(U) implies F ⊂
←
U ;

– πχ[F ] < q(U) implies F ⊂
→
U .

We derive from this that the cardinal functions non[−], cov⊥[−], b(−) and
q(−) cannot exceed πχ[−] too much. More precisely, for any semifilter F with
πχ[F ] < d we get

non[F ] ≤ nextnon[SF](πχ[F ]), cov⊥[F ] ≤ nextcov[SF](πχ[F ]),

b(F) ≤ nextb[SF](πχ[F ]), q(F) ≤ nextq[SF](πχ[F ]),

where nextX(κ) is a cardinal function assigning to a set X of cardinals and a
cardinal κ < supX the cardinal nextX(κ) = minX \ [0, κ].

21. Constructing non-coherent semifilters

It turns out that under some additional set-theoretic assumptions it is pos-
sible to construct large families of pairwise non-coherent or even incomparable
semifilters (possessing some additional properties). Two semifilters F ,U are
incomparable if neither F b U nor U b F . Maximal linked semifilters are
incomparable if and only if they are not coherent. In particular, we show in [6,
Ch.11] that

– under d < c the lattice SF contains at least c pairwise non-coherent semi-
filters;

– under max{r, d} < c the lattice SF contains at least c pairwise non-
coherent filters;

– under r ≥ d the lattice SF contains strictly more than r pairwise non-
coherent πχ-minimal ultrafilters;

– under r ≥ d the lattice SF contains strictly more than d pairwise non-
coherent πχ-minimal ultrafilters U with b(U) = q(U) = cf(d);

– under t = d the lattice SF contains strictly more than d pairwise incom-
parable non-meager filters F with χ(F) = p(F) = t;
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– under r ≥ d (resp. b = d) for every n ≥ 2 the lattice SF contains
strictly more than r pairwise non-coherent (resp. pairwise incomparable)
maximal n-linked semifilters which fails to be coherent to (n+ 1)-linked
semifilters.

– under r ≥ d the lattice contains a totally separated sequence of ultrafilters
(Un). For this sequence the operator lim[Un] : SF → [SF] is an isomor-
phic embedding of SF into [SF] preserving many classes of semifilters. In
particular, |[SF]| = |[UF]| = 2c under r ≥ d.

The principal result here is Theorem 11.6.7 of [6] producing a totally sepa-
rated sequence of ultrafilters (and consequently an embedding of SF into [SF])
from any infinite sequence of non-coherent ultrafilters. This theorem implies
the Banakh-Blass Dichotomy that the number of coherence classes of ultrafil-
ters is either finite or 2c.

22. Total coherence

The results on the existence of non-coherent semifilters combined with co-
herence criteria obtained with the help of cardinal characteristics help us to
characterize the principle NCF and its variations in the terms of inequalities
between suitable small cardinals. Namely, in [6, Ch.12] we show that

– All Simon semifilters (i.e., semifilters F with πχ[F ] = b) are coherent
if and only if all centered Simon semifilters are coherent if and only if
b < nonb.

– All Simon filters are coherent if and only if b < nonf .

– All πχ-minimal ultrafilters are coherent if and only if all πχ-minimal semi-
filters are coherent if and only if r < d.

– The principle NCF holds if and only if all ultrafilters are coherent if and
only if r < nonu if and only if r < addu = gu = bu = qu = nonu = d.

– All maximal linked semifilters are coherent if and only if r < nonl if and
only if r < addl = gl = bl = ql = nonl = d.
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– the Filter Dichotomy holds if and only if all non-meager filters are coher-
ent if and only if r < gf if and only if b = r < addf = gf = d = c.

– the Semifilter Trichotomy holds if and only if all bi-Baire semifilters are
coherent if and only if all non-meager centered semifilters are coherent if
and only if all centered Simon semifilters are coherent and all non-meager
filters are coherent if and only if r < g if and only if b = r < g = nonb =
d = c.

23. The supremization of the linkedness number πp(−)

Now we return to some cardinal characteristics of the second complexity
level and study the supremization πp[−] of the linkedness number πp(−). For
typographical reasons we shall write πp[F ] in place of πp[F ]. By its properties
the supremization πp[−] resembles the minimization πχ[−] of the π-character.
The role of the small cardinals r and d (which are of crucial importance in
applications of πχ[−]) play another two classical small cardinals: b and s. We
recall that s is the smallest size of a splitting family S ⊂ P(ω) (the splitting
property of S means that for each infinite subset I ⊂ ω there is a set S ∈ S
such that both the sets I ∩ S and I \ S are infinite).

For the cardinal function πp[−] in [6, 13.2.1] we can prove the polarization
formulas

min
{

non[F ], πp[F ]
}
≤ b and max

{
cov⊥[F ], πp[F ]

}
≥ s

which resemble the polarization formulas

min
{

non⊥[F ], πχ[F ]
}
≤ r and max

{
cov[F ], πχ[F ]

}
≥ d

holding for the cardinal function πχ[−].
The former polarization formula allows to prove the near coherence of

semifilters F ,U satisfying the inequality max{cov⊥[F ], cov⊥[U ]} < s (this
is a counterpart of the near coherence of any two semifilters F , U with
max{πχ[F ], πχ[U ]} < d). These two near coherence conditions allow us to es-
tablish the Blass-Mildenberger Dichotomy asserting that under r < s there
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are at most two non-coherent maximal linked semifilters (πχ-minimal and
πp-maximal). Indeed, if L is a maximal linked semifilter with cov[L] > r,
then πχ[L] ≤ r (by the polarization formula min{cov[L], πχ[L]} ≤ r) and
L is (nearly) coherent to each πχ-minimal ultrafilter. If cov[L] ≤ r, then
cov[L] ≤ r < s and L is (nearly) coherent to each maximal linked semifilter
U with cov[U ] < s (by the polarization formula max{cov⊥[U ], πp[U ]} ≥ s, any
such a maximal linked semifilter U is πp-maximal). These results imply also an
easy proof of the Mildenberger inequality s ≤ cf(d): Assuming that s > cf(d)
we would get that the cardinal d is singular and thus r ≥ d. In this case
by Corollary 11.2.2 of [7], there are two non-coherent ultrafilters U1,U2 with
cov[U1] = cov[U2] = cf(d). On the other hand, they should be (nearly) coherent
by the near coherence condition max{cov[U1], cov[U2]} = cf(d) < s, which is a
contradiction.

It is interesting to mention that under the assumption r < g (equivalent to
the Semifilter Trichotomy) the cardinal characteristics πχ[−] and πp[−] com-
pletely determine the subcoherence relation: a semifilter F is subcoherent to
a semifilter U if and only if πχ[F ] ≤ πχ[U ] if and only if πp[F ] ≥ πp[U ], see
Proposition 13.9.2 of [6].

Under the assumption r < s we have a weaker result: a semifilter F is
subcoherent to a maximal linked semifilter L if and only if πχ[F ] ≤ πχ[L] if
and only if πp[F ] ≥ πp[L], see Proposition 13.9.3 of [6].

24. Some cardinal characteristics of rapid semifilters

In this section we calculate cardinal characteristics of rapid semifilters. A
semifilter F is defined to be rapid if for any function f : ω → ω there is F ∈ F
whose enumerating function eF : ω → F exceeds f . It is easy to see that Q-
points are rapid ultrafilters. In Theorem 13.8.1 of [6], we show that πχ[F ] ≥ d,
non⊥[F ] ≤ r, πp[F ] ≤ b, and cov⊥[F ] ≥ s for any rapid semifilter F . We derive
from this that under NCF or r < s each ultrafilter is coherent to a P -point
and no ultrafilter is rapid (this was first noticed by A. Blass). Moreover, under
r < g all rapid semifilters are comeager, see Corollary 13.8.3 [6].
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25. Inequalities between some critical values

The following inequalities between critical values of cardinal characteristics
are proved in Theorem 12.1.9 and Proposition 13.3.1 of [6].

– b ≤ addb ≤ covb = max{b, g} = min{bb, qb} ≤ max{bb, qb} ≤ nonb ≤
cofb.

– max{gl, bb, qb} ≤ b(ML) = q(ML) ≤ gu.

– addf ≥ add⊥f = cov⊥f = max{b, gf} = min{bf , qf} ≤ max{bf , qf} ≤
nonf ≤ coff ≤ cofu.

– max{bf , qf} ≤ gu = b(UF) = q(UF).

– addl ≤ covl ≤ min{bl, ql} ≤ max{bl, ql} ≤ nonl ≤ cof l ≤ cofu.

– addu = covu = min{bu, qu} ≤ max{bu, qu} ≤ nonu = cofu ≤ cf(d).

– covb = max{b, g} ≤ gl ≤ covl and cov⊥f = max{b, gf} ≤ gu ≤ covu.

– πpl = πpu ≤ πpf = πpb and p ≤ πpu ≤ s.

26. The consistent structures of the coherence lattice [SF]

With all the knowledge at hand, we return to studying the structure of the
coherence lattice [SF] and some its subsets. We start with estimating the size
of the set [UF] of all coherence classes of ultrafilters:

– |[UF]| = 1 if and only if r < nonu if and only if r < covu = d.

– |[UF]| ≤ 2 if r < s.

– |[UF]| = 2c if r ≥ d.

– |[UF]| ≥ 2c if and only if |[UF]| ≥ ℵ0.

The size of the coherence lattice [SF] is evaluated in Theorem 14.4.1 of [6]
as follows:
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1. |[SF]| ≥ 3;

2. |[SF]| = 3 if and only if |[SF]| ≤ 4 if and only if (r < g).

3. |[SF]| ≥ 5 if b < r.

4. |[SF]| = 2c if r ≥ d or |[UF]| ≥ ℵ0.

5. |[SF]| ≥M(n) if |[UF]| = n < ω.

6. |[SF]| ≥ g if g < b.

7. |[SF]| ≥ gf if gf < b.

8. |[SF]| ≥ c if d < c.

Here M(n), the Dedekind function, equals the number of all monotone Boolean
functions of n variables.

Observe that under r < g the coherence lattice [SF], being finite, is complete.
On the other hand, it fails to be complete under b = d, see Theorem 14.5.3
of [6].

27. Some applications

In this section we collect some applications of the coherence in various fields
of mathematics. We tried to select applications in which the presence of the
coherence and semifilters would not be immediately evident.

We start with studying the composant structure of the Stone-Čech remain-
der H∗ = βH \H of the half-line H = [0,∞). The space H∗ is known to be an
example of a non-metrizable indecomposable continuum (a continuum is inde-
composable if it is not the union of two smaller continua). The composant C(x)
of a point x of an indecomposable continuum X is the set of all points y ∈ X
which can be connected with x by a proper subcontinuum of X. It is easy to
see that two composants of an indecomposable continuum either coincide or
are disjoint. According a classical result of Mazurkiewicz each metrizable in-
decomposable continuum X has uncountably many composants; moreover, X
contains an uncountable closed subset intersecting each composant in at most
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one point. In contrast, the number of composants of H∗ equals the size of the
set [UF] = {[U ] : U is an ultrafilters} and can vary from 1 under NCF till 2c

under r ≥ d. More precisely, H∗ has either finitely many or else 2c composants.
In the latter case H∗ contains a closed subset C homeomorphic to βω and in-
tersecting each composant in at most one point. This is a combined result of
Mioduszewski [31], Rudin [38], Blass [10] and Banakh, Blass [3].

Our next application of semifilters appear in calulating the additivity of the
Menger property. We recall that a topological space X is Menger if for each
sequence (Un)n∈ω of open covers of X there are finite subfamilies Vn ⊂ Un,
n ∈ ω, whose union

⋃
n∈ω Vn covers the space X. It is easy to see that the

countable union of Menger spaces is Menger. In Bartoszyński, Shelah, Tsaban
[8] asked about the smallest number add(Menger) of Menger subspaces of the
real line whose union is not Menger. They proved that b ≤ add(Menger) ≤ cf(d)
and asked if the equality b = add(Menger) can be proved in ZFC. We show that
this is not so because of the lower bound add(Menger) ≥ covb = max{b, g}.
This lower bound proved with help of semifilters is due to Zdomskyy [43].

Our third application of semifilters concerns the problem of the existence of
a discontinuous separately continuous function f : X × Y → R defined on the
product of any non-discrete separable Tychonov spaces X,Y . We show that
this problem has an affirmative solution if and only if any two P -filters F ,U are
nearly coherent (formally this is a weaker than NCF). This is an unpublished
result of Banakh, Maslyuchenko, Mykhaylyuk [4].

28. Some open problems

One of the most intriguing open problems related to semifilters is Protasov’s
reformulation of the Owings problem. We recall that Owings [32] asked if for
any partition ω = A1 ∪ A2 one of the cells of the partition contains the sum
set A+ A for some infinite A ⊂ ω. It should be mentioned that Hindman [24]
constructed a partition ω = A1 ∪ A2 ∪ A3 such that no cell of this partition
contains a sum set A+A with A ∈ Fr⊥.

Problem 28.1 ((Protasov). Show that the semifilter S generated by the fam-
ily

{
A+A : A ∈ Fr⊥

}
is comeager. Is S unsplit?
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Let us note that the unsplit property of the semifilter S is equivalent to the
affirmative solution of the Owings problem.

Many questions can be posed on the consistency of strict inequalities be-
tween small cardinals appearing as the extremal values of cardinal character-
istics considered in this book. There are 8 × 2 such cardinal characteristics
(πχ[−], πp[−], add[−], cov[−], b(−), q(−), non[−], cof[−] plus their duals) and
four basic classes of semifilters (BS, BF, ML, UF). In such a way there appear
8 × 2 × 4 × 2 = 128 small cardinals and C2

128 = 8128 possible questions con-
cerning the relation between these cardinals. Of course there is no physical
possibility to state all of them.

In this context it would be helpful for the reader to know the existing
consistency results on the strict inequalities between some of the classical small
cardinals. Except for the four last columns the following table is taken from
Blass [13, §11] and describes the values of the small cardinals in some models of
ZFC obtained by iterated forcing (which adds Cohen, Random, Sacks, Hechler,
Laver, Mathias or Miller reals to ground models). In the table “Blass” stands
for the model with b < g = u produced by Blass [12] (he starts with a model of
GCH and does the countable-support iterated forcing construction for ω2 steps
using the Miller’s superperfect forcing at limit stages and the Cohen forcing at
successor stages); “BS” stands for the models of g ≤ u < d constructed by Blass
and Shelah [17] and studied recently by Mildenberger [28]. “Brendle” stands
for the model of g < gf constructed by Brendle [19] and “MTS” for the model
constructed by Mildenberger, Shelah, Tsaban [29]. For the value of the cardinal
gf in this model, see Mildenberger [27]. For filling the cells of the table we
used the (in)equalities between critical values of cardinal characteristics from
Section 25.

Problem 28.2. Try to determine the new cardinals in the forcing extensions,
where there are question marks in the table.

Problem 28.3. Explore the structure of the coherence lattice [SF] in known
models of ZFC with r < d.
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Cohen Random Sacks Hechler Laver Mathias Miller Blass BS Brendle MST

b ℵ1 ℵ1 ℵ1 c c c ℵ1 ℵ1 ℵ1 c ℵ1

d c ℵ1 ℵ1 c c c c c c c c

g ℵ1 ℵ1 ℵ1 ℵ1 c c c c ℵ1 ℵ1 ℵ1

gf ℵ1 ℵ1 ℵ1 ℵ1 c c c c ℵ1 c ℵ1

gu ℵ1 ℵ1 ℵ1 c c c c c ℵ1 c c

h ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 c ℵ1 ℵ1 ℵ1 ℵ1 ℵ1

p ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1

πpb ? ? ? ? ? ? ℵ1 ℵ1 ? ? ?
πpu ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ? ℵ1 ℵ1 ℵ1 ℵ1 ℵ1

r c c ℵ1 c c c ℵ1 c ℵ1 c c

rκ c ? ℵ1 c c c ℵ1 c ℵ1 c c

s ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 c ℵ1 ? ℵ1 ℵ1 ℵ1

t ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1

u c c ℵ1 c c c ℵ1 c ℵ1 c c

addb ℵ1 ℵ1 ℵ1 c c c c ? ℵ1 c ℵ1

covb ℵ1 ℵ1 ℵ1 c c c c c ℵ1 c ℵ1

x ? ℵ1 ℵ1 c c c c c ℵ1 c ?
y ? ℵ1 ℵ1 c c c c c ℵ1 c c

Here x, y, are any cardinals from the sets

X =
{
gl, covf , covl, bi, qi,noni, cofi : i ∈ {b, f, l}

}
,

Y =
{
gu, addu, covu, bu, qu,nonu, cofu},

respectively.

Problem 28.4. Is bi 6= qi consistent for some i ∈ {b, f, l, u}? Is nonb < nonu

consistent?1

Problem 28.5. Which (finite) lattices can occur as isomorphic copies of the
coherence lattice [SF] under various set-theoretic assumptions? Is any such a
finite lattice isomorphic to the lattice M(P(n)) of monotone Boolean functions

1Some results related to Problems 28.2–28.4 can be found in recent papers of Brendle [19],
Mildenberger [27], [28], and Mildenberger, Shelah, Tsaban [29].
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over n = |[UF]| variables?

According to the Banakh-Blass Dichotomy, |[UF]| < ℵ0 if and only if |[UF]| <
2c. Is the same thue for the coherence lattice [SF] or its subset [ML]?

Problem 28.6. Can [SF] or [ML] have infinite size < 2c? Is the equality
|[SF]| = ℵ0 consistent? (If the latter happens, then |[UF]| < ℵ0 and b ≤ g ≤
r < d = c.)
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