UBUNGEN FUR 19.03.2014

Exercise 1. Let (k; : i € a) be a sequence of cardinals. We define the
infinite sum of cardinals to be:
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where {X; : i € a} is a disjoint family of sets such that | X;| = k; for each
i € a. Show that this definition makes sense (using AC) and show that for
an infinite cardinal X the following equation holds: ), \ ki = X - sup;cy K;.

Exercise 2. Let (k; : i € a) be as above. We define the infinite product of

cardinals as follows:

]jI Ki = |Ii[‘X}|

1€ 1EQ
where the X;’s are such that | X;| = k; for eachi € o and [[,c, Xi :={f: f
is a function, dom(f) = a, and Vi € a(f(i) € X;)}. Show that this is
a well-defined notion and show that for an infinite cardinal X and a non-
decreasing sequence (k; : i € A} of cardinals the following equation holds:

Hz’EA ki = (Sup;ey “i)A-

Exercise 3. Prove that if (k; : i € o) and (\; : i € a) are two sequences
of cardinals such that for each i € o, k; < i, then Y .. ki < [l;cn Ni- Use
this to prove Koenig’s Theorem (Kunen Theorem 1.13.12.).

Exercise 4. Prove that [[3,]°] =11,,c, In = Dwt1-

new

Exercise 5. Let k be an infinite cardinal and o < k*. Prove that there
erist X,, C o, n € w, such that 0.t.(X,)) < k™ (here we condider ordinal
exponentiation) and o =, ., Xn-

The last fact is known as “Milner-Rado Paradox”.

Exercise 6. Let k be an infinite cardinal and < be a well-order on k. Prove
that there exists X € [k]™ such that < NX?* =€ NX?, i.e., < and € coincide
on X.



Ubungen fiir 26.03.2014

Exercise 1 (Kunen 1.13.34). Let W be a vector space over some field F', and
let W* = Hom(W, F) be the dual vector space. Consider W as a subspace
of W** as usually (x € W is identified with the map ¢ — ¢(x) in W**).
Let Wy = W and Wy = W™, so that W, C Wy Let W, = e, Wa-

n ’

Prove that if |F| < 3, and w < dim(W) < 3, then |W,| = dim(W,,) = 3.
Exercise 2 (Kunen 1.13.36). Assume CH. Prove that ws = w, for alln < w.

Exercise 3 (Kunen 1.13.39). Suppose that k is an infinite cardinal, o =
Un<e Xn for some ¢ < w, and the order type of each X, is less than k*
(ordinal exponentiation!). Show that o < K¥.

Exercise 4 (Kunen 1.15.10). Let B be any structure for L such that
max{|L|,w} < k < |B| for some infinite cardinal k. Suppose that S C B
has size |S| < k. Show that there exists an elementary submodel 2 of B
such that S C A and |A| = k.

Hint: Use 1.13.22 and 1.13.21, or just look it up in some model theory book.

Exercise 5. Prove that (Q, <) is an elementary substructure of (R, <).
Hint: Use the previous exercise to find countable X D Q such that (X, <) is
an elementary substructure of (R, <). Then construct a monotone bijection
¢ : Q — X (this is the famous Cantor’s back and forth argument which you
may find in many books or just reinvent!), and argue that it may be extended
to a monotone bijection ¢ : R — R by the completeness of R.

There are of course other approaches.
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Exercise 1 (Kunen 1.16.6). (ZF~). Let pow(x,y) be Vz(z C x — z € y).
Let v be a limit ordinal and a,b € R(y). Prove that R(vy) F pow(a,b) iff
b="P(a), i.e., R(7y) <pow V.

Exercise 2 (Kunen 1.16.8). (ZFC~). Assume that 0 <y < § are ordinals
and R(y) < R(9). Prove that R(y) E ZFC, and hence also R(§) E ZFC.
You may use the fact that R(vy) E ZC' for any limit .

Exercise 3 (Kunen 1.16.9). Assume that ZFC + 3v[R(y) E ZFC]. Show
that ZFC' is inconsistent.

Exercise 4 (Kunen 1.16.10). Show how to modify Definition 1.15.5 to give
a correct definition of (V, €) E ¢(0) in the case of A¢ formulas.

Exercise 5 (Kunen 1.16.17). Describe a two-element non-transitive M that
is isomorphic to {0,1}, such that N is defined but N is not absolute for
M, and such that C is not absolute for M.
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Work in ZF unless otherwise indicated.

Exercise 1. Which axioms of ZF are true in ON?
Exercise 2. (AC). For k > w, show that |H (k)| = 2<".
Exercise 3. (AC). For k > w, show that H(k) = R(r) iff kK = 3s.

Exercise 4. Show that in R(w + w), it is not true that every well-ordering
s 1somorphic to an ordinal.

Hint. Consider 2 x w, ordered lexicographically. Track down the specific
instance of Replacement which fails in R(w + w).

Exercise 5. (AC.) Recall that Zermelo set theory, Z, is ZF without Re-
placement. Show that for all k > w, H(k) is a model for Z — P. Show that
the Power Set Aziom is true in H(r) iff K = 3, for some limit v. Show
that Replacement fails in H(3,).
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Exercise 1 (I1.4.8). Prove that the notions “R well-orders A” and “R is
well-founded on A” are absolute for R(vy) for any limit .
Why can’t we use here I1.4.7 directly?

Exercise 2 (I1.4.6). Let v be a limit ordinal such that Yo < y[a? < 7).
Show that ordinal sum and product are defined in R(y) and are absolute for

R(v).

Exercise 3 (I11.4.9). (ZFC). Prove that R(y) - AC™ and H(k) = AC™ for

any limit v and reqular k.

Exercise 4 (11.4.21). Let Al be “our standard” Aziom of Infinity, and let
AU denote the Axziom des Undendlichen of Zermello: 3x() € x AVy €
x({y} € x)). Work in ZFC and produce transitive models for ZC+—AU and
for ZC-Inf+AU+—-AL

Exercise 5 (11.4.22). Find a transitive M E ZC — P in which w X w and
w*:={{n} :n € w} do not ezist.

There are hints to almost all of these exercises in the book. Feel free to
use them!



ﬂ'bungen fur 7.05.2014

Exercise 1 (11.4.26). Let M be a transitive class, and assume that the
axioms of Extensionality, Comprehension, Pairing, Union, and Infinity hold
in M. Prove that w € M.

Exercise 2 (11.4.29). Let M be a transitive model for ZF-P. Let x,x € M
be two group operations on w. Prove that the statement (w,*) = (w,*) is
absolute for M.

Exercise 3 (11.5.6). Assume AC. Find a formula ¢ such that every transi-
tive M satisfying M <, V is of the form R(v) for some ordinal v = 2,.

Exercise 4 (11.5.12). Work in ZFC plus the assumption that R(vy) EZFC
for some . Prove that the minimal such v has cofinality w.

Exercise 5 (11.5.13). Show that there is a finite set A of instances of the
Comprehension axiom such that A together with the axioms of ZF other
than Comprehension, proves all instances of Comprehension.

There are hints in the book simplifying these exercises greatly!
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Exercise 1 (11.6.30). Convince yourself that the class L[A] defined in
11.6.29 is a transitive model of ZFC if A consists of ordinals. Find the
place in the argument where the fact that A C ON is used! Prove that
LIA] EGCH for A C w.

Exercise 2 (I11.6.31). Suppose that V' = L[A] for some A C wy. Prove that
GCH holds in L[A].

Later we shall show that V' = L[A] is essential in the above exercise.

Exercise 3 (11.6.33). Assume V = L and prove that L(o) = R(«a) iff

a=N,.

Exercise 4 (I11.2.7). Let k be singular. Show that there is a family A of k
two-element subsets of k such that no B € [A]* forms a delta system.

Exercise 5 (Folklore). Let A be an uncountable collection of finite subsets
of wy and M an elementary submodel of H(wy) containing A as an element.
Let A€ A\M and D = AN M. Prove that there exists an uncountable
delta system B C A, B € M, with kernel D.

Hint: pick in M a mazimal delta subsystem of A with the kernel D and
show that it is uncountable. Use the fact that if | X| =w and X € M then
X C M.

The same ideas as in the above exercise allow to prove also more general
instances of the delta system lemma.

T will not ask you to present this near blackboard because this is analogous to the
case of L and lengthy.
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Recall from II1.3.23 that a subset C' of a poset P is centered, if for any
n € wand all py,...,p, € C there exists ¢ € P such that ¢ < p; for all i < n.
If, moreover, ¢ may be found in C', then C' is called a filter. A poset P is
called o-centered if it can be written as a countable union of its centered
subsets.

Exercise 1 (I11.3.27(part 1)). If X is a compact Hausdorff space, then X
is separable iff Ox is o-centered iff Ox is a countable union of filters. Here
Ox s ordered by inclusion, i.e., U <V means U C V.

The standard base for the topology on 24 consists of sets [s], s €
Fn(A,2), where [s] = {x € 24 : 2 | dom(s) = s}. Thus U C 24 is
open iff it is a union of a collection of sets of the form [s].

Exercise 2 (II1.3.27(part 2)). Let k be a cardinal and X = 2%. Show that
Ox 1is ccc. Show that Ox is o-centered iff K < 2“.

Hint: If k < 2%, then take any metrizable separable topology on K (e.g.,
via some bijection with a subset of R), fix a countable base B for this topol-
ogy, and look at characteristic functions of finite unions of elements of B.
For the case k > 2“ show that a separable space cannot have more than 2%
mutually different clopen subsets.

Exercise 3 (IV.2.8). Let 7 = {(0,p), ({{0,q)},r)}. Compute 1 for each
of the 8 possibilities for p,q,r being € or & G.

Exercise 4 (IV.2.16). Using the notation of Lemma IV.2.15, replace the
definition of ™ by: m = {({v,p) : Io,q) € TIr[{v,r) € Ap <rAp<q|}.
Let b = wg and show that Ua = b.

Exercise 5 (IV.2.28). Let M be a ctm for ZFC. Find a poset P and a
sentence ¢ € FLp N M and two different generic filters G, H with M[G] =
MIH] and M|G] E ¢ and M[H] v because some 1¢ differs from ty.
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Exercise 1. Let M be a ctm for ZFC and P € M be a poset. Let also
G C P be a filter. Show that the following conditions are equivalent:
(1) GN D # 0, whenever D € M and D is dense in P;
(2) GNA#0, whenever A € M and A is a mazimal antichain in P;
(3) GNE # 0, whenever E € M and for every p € P there exists ¢ € E
such that p and q are compatible.
Furthermore, show that in all these items, if we assume that G is just a
centered subset of P, then it is automatically a filter.

Exercise 2 (IV.2.46). Assume that M is a ctm for ZFC, and let P =
Fn(w,2). Then there is a filter G on P such that there is no transitive
N D M such that G € N, NE ZF — P, and o(N) = o(M).

Exercise 3. Let M be a ctm for ZFC and P € M be a poset. Suppose that
7€ M¥ and dom(7) C {n:n € w}. Let

o={{n,p) :VgeP((n.q) €T = p L g}
Show that o = w \ 7¢, where G is a P-generic over M.

Exercise 4. Let M be a ctm for ZFC and P = (2<“1)M | where p < q means
that p is an extension of q. Let G be a P-generic over M. Show that in
MI|G] there exists a bijection between (wi)™ and (2*)M.

Hint: Look at the restrictions of |JG to intervals [o, v + w) for o <
(wi)™.

Exercise 5 (IV.2.47). Assume that M is a ctm for ZFC. Give an example
of P.€ M and a (non-generic) filter G on P for which P\ G ¢ M|G].
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In the following, unless we state otherwise: M represents a c.t.m. for
ZFC, P e M is a p.o., and G is a filter which is P-generic over M.

Exercise 1. Assume that P doesn’t have the largest element. For an element
x € M redefine the name T so that g = x.

Exercise 2. Suppose (P, <) is a partial order in M which may or may not
have a largest element. In M, fix 1 ¢ P, and define the p.o. (Q,<,1) by:
Q =PU{1} where P retains the same order and ¥p € P(p < 1). Show that
if G C P is a filter, G is P-generic over M iff GU{1} is Q-generic over M,
and M[G] (defined as a P-extension) is the same as M |G U{1}] (defined as

a Q-extension).

Exercise 3. Assume f: A — M and f € M|G|. Show that there is a set
B € M such that f : A — B. .
Hint. Let B={b:3p € P(pl- b € ran(7))}, where f = 75.

Exercise 4. Assume « is a cardinal of M. Show that the following are
equivalent.

(1) Whenever B € M, “BN M = “Bn M[G];

(2) *MNM=*>MnM[G];

(3) In M : The intersection of a many dense open subsets of P is dense.

Recall that a subset O of P is open if for every p € O and q < p we have
q € O (i.e., O is downwards closed).

A p.o. satisfying (3) is called a*-Baire. k-Baire means that the inter-
section of less than x dense open sets is dense.

Exercise 5. Let P € M be non-atomic. Let
M=MyCcMyC---CM,C- (n€w)

be such that M,y1 = M,[G,] for some G, which is P-generic over M,.
Show that \J, ¢, Myn cannot satisfy the Power Set Aziom. Furthermore,
show that the G,, may be chosen so that there is no c.t.m. N for ZFC with
(G, :n€w) e N and o(N) = o(M).

Hint, {n:p € G,} can code o(M).
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In the following, unless we state otherwise: M represents a c.t.m. for
ZFC, P € M is a p.o., and G is a filter which is P-generic over M.

A poset P is called A-closed, where A is a cardinal, if every decreasing
sequence (pe : & < a) of elements of P of length a < A has a lower bound.

Exercise 1. Prove that every A-closed poset is A-Baire (see the definition
on the previous ezxercise sheet ). Show that if P is A-closed and X is singular
then P is A" -closed.

Exercise 2. Suppose that P is countable and non-atomic. Show that there
is a dense embedding from {p € Fn(w,w) : dom(p) € w} into P.
Hint. Map {p : dom(p) = 1} onto an infinite antichain in P, now handle

{p : dom(p) = 2}, etc.

It follows from the exercise above that all countable non-atomic posets
yield the same generic extensions.

Observe that for every forcing poset P, each map ¢ : P — P gives rise
to a natural map i* : MY — MP defined as follows: i*(7) = {(i*(0),i(p)) :

(o,p) € T}.

Exercise 3. If P (i.e., (P,<,1p)) is a p.o., an automorphism of P is a
1-1 map i from P onto P which preserves < and satisfies i(1lp) = 1p; thus
also () = & for each z. P is called almost homogeneous iff for all p,q €
P, there is an automorphism i of P such that i(p) and q are compatible.
Suppose that P € M and P is almost homogeneous in M. Show that if
plF @(Z1,..., %), then 1p IF @(Z1,...,Ty,); thus, either 1p I+ ¢(Z1, ..., &p)
or 1p Ik =g (&1, ..., Zn).

Exercise 4. Show that any Fn(I, J, k) is almost homogeneous.
For P = Fn(w,2) give an example showing that the conclusion of the
previous exercise s not any more true for arbitrary names.

Exercise 5. Let k be a cardinal of uncountable cofinality and f : Kk — K.
Show that there exists a closed and unbounded C' C k such that for all a € C
and B € a we have that f(5) € a (i.e., range(f [ a) C ).
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In the following, unless we state otherwise: M represents a c.t.m. for
ZFC, P e M is a p.o., and G is a filter which is P-generic over M.

Exercise 1. x s called strongly Mahlo iff k is strongly inaccessible and
{a < K« is reqular}

is stationary in k. Show that for such k,
{a < K : « is strongly inaccessible}

18 stationary in K.

Exercise 2. Let (P = Fn(I,2,w))™, where (|I| > w)™. Show that M|G]
satisfies CH, regardless of whether M does.

Exercise 3. Suppose, in M, w = cf(\) < \. Show that Fn(\, 2, \)™ adds
a map from w onto \*.

Exercise 4. Assume in M that k > w, Kk is reqular, and P has the k-c.c. In
MIG], let C C k be c.u.b. Show that there exists C' C C' such that C' € M
and C" is c.u.b. in K.

Exercise 5. Suppose that in M: S C wy is stationary and P is either c.c.c.
or wi-closed. Show that S remains stationary in M|G|.



