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Abstract. We introduce and study the n-Dimensional Perfect Homotopy Approxima-
tion Property (briefly n-PHAP) equivalent to the discrete n-cells property in the realm of
LCn-spaces. It is shown that the product X×Y of a space X with n-PHAP and a space
Y with m-PHAP has (n+m+ 1)-PHAP. We derive from this that for a (nowhere locally
compact) locally connected Polish space X without free arcs and for each n ≥ 0 the
power Xn+1 contains a closed topological copy of each at most n-dimensional compact
(resp. Polish) space.

A topological space X is called C-universal, where C is a class of spaces, if X contains
a closed topological copy of each space C ∈ C. By M0 and M1 we denote the classes of
metrizable compacta and Polish (= separable complete-metrizable) spaces, respectively.
For a class C of spaces by C[n] we denote the subclass of C consisting of all spaces C ∈
C with dim C ≤ n. All topological spaces considered in the paper are metrizable and
separable, all maps are continuous.

In terms of the universality, the classical Menger-Nöbeling-Pontrjagin-Lefschetz Theo-
rem states that the cube [0, 1]2n+1 is M0[n]-universal for every n ≥ 0. It is well known
that the exponent 2n + 1 in this theorem is the best possible: the Menger universal com-
pactum µn cannot be embedded into [0, 1]2n. Nonetheless, P.Bowers [Bo1] has proved that
the (n+1)-th power Dn+1 of any dendrite D with dense set of end-points does be M0[n]-
universal for every non-negative integer n. Moreover, any such a dendrite D contains
a locally connected Gδ-subspace G whose (n + 1)-th power Gn+1 is M1[n]-universal for
every n, see [Bo1]. Generalizing this Bowers’ result we shall prove that the power Xn+1 of
any locally connected Polish space X without free arcs is M0[n]-universal for all n ≥ 0;
moreover the power Xn+1 is M1[n]-universal provided X is nowhere locally compact.

The standard way to prove the M1[n]-universality of a Polish space X with nice local
structure is to verify the discrete n-cells property for X, see [Bo1]. We remind that a
space X has the discrete n-cells property if for any map f : N × [0, 1]n → X and any
open cover U of X there is a map g : N× [0, 1]n → X such that g is U -near to f and the
collection {g({i} × [0, 1]n)}i∈N is discrete in X.

Let us recall that two maps f, g : Z → X are called U-near with respect to a cover U
of X (this is denoted by (f, g) ≺ U) if for any point z ∈ Z there is an element U ∈ U
such that {f(z), g(z)} ⊂ U . Two maps f, g : Z → X are called U-homotopic if they can
be linked by a homotopy {ht : Z → X}t∈[0,1] such that h0 = f , h1 = g and for any z ∈ Z
there is U ∈ U with {ht(z) : t ∈ [0, 1]} ⊂ U . It is clear that U -homotopic maps are U -near
while the converse is not true in general.

Unfortunately, the discrete n-cells property is applicable only for spaces having nice
local structure. To overcome this obstacle we introduce a stronger property, called n-
PHAP, which is equivalent to the discrete n-cells property in the realm of LCn-spaces.
We remind that a space X is called an LCn-space, n ≥ 0, if for any point x ∈ X and
any neighborhood U ⊂ X of x there is a neighborhood V ⊂ X of x such that any map
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f : ∂In → V from the boundary of the n-dimensional cube In = [0, 1]n can be extended
to a map f̄ : In → U defined on the whole n-cube In.

All simplicial complexes considered in this paper are countable and locally finite. We
shall identify simplicial complexes with their geometric realizations.

Definition 1. A space X is defined to have the n-dimensional perfect homotopy approx-
imation property (briefly n-PHAP) if for any map f : K → X from a simplicial complex
K with dim K ≤ n and any open cover U of X there is a perfect map g : K → X,
U -homotopic to f .

We remind that a map f : X → Y is perfect if f is closed and the preimage f−1(y)
of any point y ∈ Y is compact. According to [En, 3.7.18], a map f : X → Y between
metrizable spaces is perfect if and only if f is proper in the sense that the preimage f−1(K)
of any compact subset K ⊂ Y is compact.

A map f : X → Y is called simplicially approximable if for any open cover U of X
there are a simplicial complex K and two maps p : X → K and q : K → Y such that the
composition q ◦ p is U -homotopic to f . It follows from Corollary 6.6 [BP, p.80] that each
map into an absolute neighborhood retract is simplicially approximable.

Some basic properties of spaces with n-PHAP are described by the following theorem
which is the main result of this paper.

Theorem 1. Let n, m be non-negative integers.

(1) If a space X has n-PHAP, then each open subspace of X has that property too.
(2) A space X has n-PHAP provided X admits a cover by open subspaces with n-

PHAP.
(3) If a space X has n-PHAP, then X has the discrete n-cells property.
(4) An LCn-space X has n-PHAP if and only if X has the discrete n-cells property.
(5) If X is a space with n-PHAP and Y is a space with m-PHAP, then their product

X × Y has (n + m + 1)-PHAP.
(6) If a Polish space X has n-PHAP, then for any open cover U of X and any simpli-

cially approximable map f : P → X from a Polish space P with dim P ≤ n there
is a perfect map g : P → X, U-homotopic to f .

(7) If a Polish space X has n-PHAP, then for any open cover U of X and any simpli-
cially approximable map f : P → X from a Polish space P with dim P ≤ n there
is a closed embedding g : P → X, U-near to f .

(8) If a Polish space X has n-PHAP, then X is M1[n]-universal.

Statements 4, 5, and 8 of Theorem 1 imply

Corollary 1. If X is a Polish LCn-space with the discrete n-cells property, then for every
k ≥ 0 the power Xk+1 is M1[nk + n + k]-universal.

In its turn, the last corollary implies another two corollaries generalizing the mentioned
Bowers’ results on the universality of finite powers of dendrites.

Corollary 2. If X is a locally connected Polish nowhere locally compact space, then for
every k ≥ 0 the power Xk+1 is M1[k]-universal.

Proof. The Polish space X, being locally connected, is locally path-connected and hence
LC0 according to the classical Mazurkiewicz-Moore-Menger Theorem, see [Ku]. It is well-
known (and easy) that the discrete 0-cells property is equivalent to the nowhere local
compactness. In this situation it is legal to apply Corollary 1 to conclude that the power
Xk+1 is M1[k]-universal for every k ≥ 0. �
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We say that a topological space X has no free arcs if no open subset of X is homeo-
morphic to the open interval (0, 1).

Corollary 3. If X is a locally connected Polish space without free arcs, then for every
k ≥ 0 the power Xk+1 is M0[k]-universal.

Proof. Corollary 3 will follow from Corollary 2 as soon as we prove that each locally
connected Polish space X without free arcs contains a locally connected nowhere locally
compact Polish subspace Y .

Replacing X by any of its connected component, we can assume that X is connected.
Then by [Wy, Ch.VIII,§9] the space X admits a compatible metric d such that any
points x, y ∈ X can be linked by an arc whose diameter does not exceed 2d(x, y). Fix a
countable dense subset D ⊂ X and for any points x, y ∈ D fix an arc J(x, y) ⊂ X with
diam J(x, y) ≤ 2d(x, y). It is easy to see that any subspace Y ⊂ X containing the set
A =

⋃
x,y∈D J(x, y) is locally path-connected. Since the Polish space X has no free arcs,

the Baire Theorem implies that the complement X \A is dense in X. Let C ⊂ X \A be
a countable dense set. Then Y = X \ C is a locally connected nowhere locally compact
Polish subspace of X. �

1. Proof of Theorem 1

Our notations are standard. In particular, by Ā or clX(A) we denote the closure of a
set A in a topological space X; cov(X) stands for the family of all open covers of a space
X. For a cover U of X and a subset A ⊂ X, let St (A,U) = ∪{U ∈ U : U ∩ A 6= ∅},
St 1(U) = St (U) = {St (U,U) : U ∈ U}, and St n+1(U) = St (St n(U)) for n ≥ 1. Given
two families U ,V of subsets of a space X we write U ≺ V if any U ∈ U lies in some V ∈ V .
For a map f : Z → X and a family U of subsets of X we put f−1(U) = {f−1(U) : U ∈ U}.

For a metric space (X, d) and a point x0 ∈ X by B(x0, ε) = {x ∈ X : d(x, x0) < ε} we
denote the open ε-ball centered at x0. Also we put meshU = supU∈U diam U for a cover
U of X. A homotopy h : Z× [0, 1] → X is called an ε-homotopy if diam h({z}× [0, 1]) < ε
for all z ∈ Z.

For a simplicial complex K, denote by K(n) the n-dimensional skeleton of K and let
St (K) = {St (v, K) : v ∈ K(0)} where St (v, K) stands for the open star of a vertex v
in K. Several times we shall use the following homotopy extension property of simplicial
pairs (see Corollary 5 of [Spa, p.112]): If L is a subcomplex of a simplicial complex K,
f : K → X is a continuous map into a space X, and h : L × [0, 1] → X is a homotopy
with h(z, 0) = f(z) for all z ∈ L, then there is a homotopy H : K × [0, 1] → X such
that H|L × [0, 1] = h and H(z, 0) = f(z) for all z ∈ K. If h is a U -homotopy for some
open cover U of X, then H can be chosen to be a U -homotopy. If diam h({x} × [0, 1]) <
ε ◦ f(x), x ∈ L, for some continuous map ε : X → (0,∞), then H can be chosen so that
diam H({x} × [0, 1]) < ε ◦ f(x) for all x ∈ K.

In the proof of Theorem 1 we shall exploit some known facts about proper maps.

Lemma 1. For a perfect map f : K → X from a locally compact space K there is an
open cover U of X such that each map g : K → X with (f, g) ≺ U is perfect.

Proof. Let X be any metrizable compactification of X. It follows from [En, 3.7.21] that
the image f(K) of the locally compact space K under the perfect map f : K → X is
a closed locally compact subspace of X. Consequently, f(K), being locally compact, is
open in its closure clX(f(K)) in X and hence the complement F = clX(f(K)) \ f(K) is

closed in X. It follows that X̃ = X \ F is a locally compact space containing X so that
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the map f : K → X ⊂ X̃ still is perfect. Now it is legal to apply Theorem 4.1 of [Ch]

to find an open cover Ũ of X̃ such that each map g : K → X̃ with (f, g) ≺ Ũ is perfect.

Then the open cover U = {U ∩X : U ∈ Ũ} satisfies our requirements. �

Lemma 2. If f : K → X is a map from a locally compact space K and the restriction
f |L : L → X of f onto a closed subset L ⊂ K is perfect, then f |W is perfect for some
closed neighborhood W of L in K.

Proof. Fix any metric d generating the topology of X and write K =
⋃

i≥0 Ki as the
countable union of an increasing sequence (Ki)i≥0 of compact subsets such that K0 = ∅
and each Kn lies in the interior of Kn+1. For each i ≥ 1 and z ∈ Ki \ Ki−1 find a
neighborhood O(z) ⊂ K such that O(z) ⊂ Ki+1 \Ki−1 and f(O(z)) ⊂ B(f(z), 1

i
) = {x ∈

X : d(x, f(z)) < 1
i
}. Let W be any closed neighborhood of L in K with W ⊂

⋃
z∈L O(z).

Let us show that the restriction f |W is perfect. Assuming the converse we could find
a sequence (xi)i≥1 ⊂ W that has no cluster point in W but (f(xi))i≥1 converges to some
point a in X. Passing to a subsequence, if necessary, we can assume that xi /∈ Ki. For
every i ≥ 1 find a point zi ∈ L with xi ∈ O(zi). Taking into account that xi /∈ Ki

and O(z) ⊂ Ki for all z ∈ Ki−1, we conclude that zi /∈ Ki−1 for all i ≥ 1. Then
d(f(xi), f(zi)) < 1

i
for i ≥ 1 and thus the sequence (f(zi)) converges to a = lim f(xi)

which is not possible since f |L is perfect and the sequence (zi) has no cluster point in
L. �

Applying n-PHAP it will be convenient to work with its stronger version.

Lemma 3. If a space X has n-PHAP, then for any open cover U of X, any simplicial
complex K with dim K ≤ n, any closed subspace F ⊂ K, and any map f : K → X whose
restriction f |F : F → X is perfect, there is a perfect map g : K → X, U-homotopic
to f via a U-homotopy h : K × [0, 1] → X such that h(x, 1) = g(x) for all x ∈ K and
h(x, t) = f(x) for all (x, t) ∈ K × {0} ∪ F × [0, 1].

Proof. By Lemma 2, the restriction f |W is perfect for some closed neighborhood W
of F in K. By Lemma 1, there is a cover V ∈ cov(X), V ≺ U , such that a map
g : W → X is perfect, whenever it is V-near to f |W . Using n-PHAP of X, find a perfect

map f̃ : K → X, V-homotopic to f via a homotopy h̃ : K × [0, 1] → X such that

h̃(x, 0) = f(x) and h̃(x, 1) = f̃(x) for all x ∈ K. Fix any continuous map λ : K → [0, 1]
with λ(F ) ⊂ {0} and λ(K \ W ) ⊂ {1} and consider the homotopy h : K × [0, 1] → X

defined by h(x, t) = h̃(x, λ(x)t) for (x, t) ∈ K × [0, 1]. It is easy to see that the map
g : K → X, g : x 7→ h(x, 1), and the U -homotopy h satisfy the requirements of the
lemma. �

The following lemma gives a proof of Theorem 1(1).

Lemma 4. If X is a space with n-PHAP, then each open subspace of X has n-PHAP.

Proof. Let U be an open subspace of X, U be an open cover of U and f0 : K → U be
a map of a simplicial complex K with dim K ≤ n. We have to construct a perfect map
f∞ : K → U which is U -homotopic to f0.

Fix any metric ρ < 1 generating the topology of X. For every n ≥ 0 let Kn = {x ∈ K :
ρ(f0(x), X \U) ≥ 2−n}. It is clear that each set Kn is closed in K and lies in the interior
of Kn+1. Since ρ < 1, K0 = ∅.

Let (Un)n≥0 be a sequence of open covers of X such that meshUn < 2−(n+1) and
StUn+1 ≺ Un for any n ≥ 0. We can additionally assume that the covers Un are so
fine that {St (x,Un) : ρ(x, X \ U) ≥ 2−n} ≺ U for every n ≥ 0.



ON UNIVERSALITY OF FINITE PRODUCTS OF POLISH SPACES 5

By induction, we shall construct a function sequence {fn : K → X}n∈ω satisfying the
following conditions for every n ∈ N:

(1n) fn(x) = fn−1(x) for any x ∈ Kn−1 ∪ (K \Kn+1);
(2n) the map fn|Kn : Kn → X is perfect;
(3n) the map fn is Un+2-homotopic to fn−1 via a Un+2-homotopy hn : K × [0, 1] → X

such that hn(x, t) = fn(x) for (x, t) ∈ K × {1} and hn(x, t) = fn−1(x) for all
(x, t) ∈ K × {0} ∪ (Kn−1 ∪ (K \Kn+1))× [0, 1].

Assume that for some n ∈ N the function fn−1 has been constructed. Using Lemma 3
find a perfect map g : K → X and a Un+2-homotopy h : K × [0, 1] → X such that
h(x, 1) = g(x) for any x ∈ K and h(x, t) = fn−1(x) for any (x, t) ∈ K×{0}∪Kn−1× [0, 1].
Let λ : K → [0, 1] be a continuous function such that λ−1(0) ⊃ K\Kn+1 and λ−1(1) ⊃ Kn.
Finally, consider the function fn : K → X defined by fn(x) = h(x, λ(x)) for x ∈ K and the
homotopy hn : K×[0, 1] → X defined by hn(x, t) = h(x, λ(x)·t) for (x, t) ∈ K×[0, 1]. The
construction of fn and hn imply that the conditions (1n)–(3n) are satisfied. The conditions
(1n) imply that for each x ∈ K the sequence (fn(x)) eventually stabilizes and thus the
limit map f∞ = limn→∞ fn : K → X is well-defined. Observe that f∞ is homotopic to
the map f0 via the homotopy h∞ : K × [0,∞] → X defined by h∞(x,∞) = f∞(x) for
x ∈ K and h∞(x, t) = hn(x, t− n + 1) for x ∈ K and t ∈ [n− 1, n], n ≥ 1.

Since ρ(f0(X), X \ U) ≥ 2−n, for x ∈ Kn \Kn−1, we get

(1) h∞({x} × [0,∞]) =
1⋃

i=−1

hn+i({x} × [0, 1]) ⊂ St (f0(x),Un) ⊂ St (f0(x),U).

This means that h∞ is a U -homotopy, which yields h∞(K× [0,∞]) ⊂ U and f∞(K) ⊂ U .
Also (1) implies that ρ(f∞(x), f0(x)) ≤ meshUn < 2−(n+1) for any x ∈ Kn \Kn−1.

Let us show finally that the map f∞ : K → U is perfect. Take any compact subset
C ⊂ U and find n ≥ 0 such that ρ(C, X \ U) > 2−n. We claim that f−1

∞ (C) ⊂ Kn+1. Fix
any x ∈ K \Kn+1 and find a unique number m such that x ∈ Km \Km−1. It follows that
m ≥ n + 2 and ρ(f∞(x), f0(x)) < 2−(m+1) ≤ 2−(n+3). By the definition of the set Km−1,
we get ρ(f0(x), X \ U) < 2−(m−1) ≤ 2−(n+1) and thus

ρ(f0(x), C) ≥ ρ(C, X \ U)− ρ(f0(x), X \ U) > 2−n − 2−(n+1) = 2−(n+1).

Then ρ(f∞(x), C) ≥ ρ(f0(x), C) − ρ(f∞(x), f0(x)) > 2−(n+1) − 2−(n+3) > 0 and thus
f∞(x) /∈ C. Therefore f−1

∞ (C) ⊂ Kn+1. Since the map f∞|Kn+1 = fn+2|Kn+1 is perfect
we conclude that the preimage f−1

∞ (C) = (f∞|Kn+1)
−1(C) is compact. This means that

the map f∞ : K → U is perfect. �

Lemma 5. A space X has n-PHAP provided X is a union of two open subspaces with
n-PHAP.

Proof. Suppose X = U0∪U1 where U0, U1 are open subspaces of X having n-PHAP. Find
two open subsets V0, V1 ⊂ X such that V0 ∪ V1 = X and V i ⊂ Ui for i = 0, 1.

To show that X has n-PHAP, fix an open cover U of X and a map f : K → X of a
simplicial complex K with dim K ≤ n. Pick an open cover V of X such that StV ≺ U
and clX(St (V i,StV)) ⊂ Ui for i = 0, 1.

Let Wi = f−1(Vi) and W ′
i = f−1(Ui) for i = 0, 1. Taking a sufficiently fine triangulation

of K, we can assume that each simplex of K lies in W0 or W1. Then the union Ki of
simplexes lying in Wi is a subcomplex of K and K0 ∪K1 = K.

Since the space W ′
0 ⊂ K is triangulable, the n-PHAP of U0 allows us to find a proper

map f0 : W ′
0 → U0 which is V-homotopic to f |W ′

0 via a V-homotopy h0 : W ′
0 × [0, 1] →
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U0 such that h0(x, 0) = f(x) and h0(x, 1) = f0(x) for x ∈ W ′
0. Note that f0(K0) ⊂

St (f(K0),V) ⊂ St (V 0,V) ⊂ clX(St (V 0,V)) ⊂ U0 which implies that the map f0|K0 :
K0 → X is perfect.

Let λ : K → [0, 1] be a continuous map such that λ−1(1) ⊃ K0 and λ−1(0) ⊃ K \W0.

Since W 0 ⊂ W ′
0, we can define a homotopy h̃0 : K × [0, 1] → X letting h̃0(x, t) =

h0(x, λ(x) · t) for (x, t) ∈ W ′
0 × [0, 1] and h̃0(x, t) = f(x) for x /∈ W0 and t ∈ [0, 1]. Let

f̃0(x) = h̃0(x, 1). Since f̃0|K0 = f0|K0 the map f̃0|K0 : K0 → X is perfect.

Observe that f̃0(K1) ⊂ St (f(K1),V) ⊂ St (V 1,V) ⊂ U1 and applying Lemma 3, find

a perfect map f1 : K1 → U1 which is V-homotopic to the restriction f̃0|K1 via a V-

homotopy h1 : K1× [0, 1] → U1 such that h1(x, 1) = f1(x) and h1(x, t) = f̃0(x) for (x, t) ∈
K1 × {0} ∪ (K0 ∩ K1) × [0, 1]. Then f1(K1) ⊂ St (f̃0(K1),V) ⊂ St (St (f(K1),V),V) ⊂
clXSt (V 1,StV) ⊂ U1 and hence the map f1|K1 : K1 → X is perfect.

Finally, consider the map g : K → X defined by g|K0 = f̃0|K0 and g|K1 = f1. The
map g is perfect because so are its restrictions onto the closed sets K0 and K1. It is easy
to show that g is V-homotopic to f̃0 and hence is StV-homotopic to f . �

Now we can prove the second item of Theorem 1. We shall exploit the classical Michael
result [Mi] on local properties. Following E. Michael we call a property P of topological
spaces to be local if a space X has P if and only if each point of X has an open neigh-
borhood with the property P . According to [Mi] (see also Proposition 4.1 of [BP, Ch.II])
a property P is local if and only if P is open-hereditary (open subspaces of a space with
the property P have that property), open-additive (a space has the property P if it is a
union of two open subspaces with that property), and discrete additive (a space has P
provided it is the union of a discrete family of open subspaces with the property P).

Lemmas 4 and 5 imply that the n-PHAP is an open-hereditary and open-additive
property. It is trivial to check that the discrete union of spaces with n-PHAP has n-
PHAP. Applying the Michael Theorem, we conclude that n-PHAP is a local property. In
other words the following lemma implying Theorem 1(2) is true.

Lemma 6. A space X has n-PHAP provided X admits an open cover by subspaces with
n-PHAP.

The third statement of Theorem 1 follows from

Lemma 7. If a space X has n-PHAP, then X has the discrete n-cells property.

Proof. This lemma trivially follows from a result of [Cu] asserting that a space X has the
discrete n-cells property if and only if each map f : In × ω → X can be approximated by
a map g sending {In × {i}}i∈ω onto a locally finite collection in X. �

To reverse the preceding lemma we will need one classical result concerning LCn-spaces.

Lemma 8. ([Hu, V.5.1]) For any cover U ∈ cov(X) of an LCn-space X there is a cover
V ∈ cov(X) such that any two V-near maps f, g : K → X from a space K with dim K ≤ n
are U-homotopic.

Now we are able to prove the item 4 of Theorem 1.

Lemma 9. An LCn-space has n-PHAP if and only if it has the discrete n-cells property.

Proof. The “only if” part follows from Lemma 7. The “if” part will be proven by induc-
tion. Fix any finite n ≥ 0 and assume that Lemma 9 has been proved for all k < n. To
show that an LCn-space X with the discrete n-cells property has n-PHAP, fix a cover
U ∈ cov(X) and a map f : K → X from an n-dimensional simplicial complex K.
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Let U1 ∈ cov(X) be an open cover with StU1 ≺ U . Let K(n−1) denote the (n − 1)-
dimensional skeleton of K. By the inductive hypothesis, the space X has (n− 1)-PHAP
which allows us to find a perfect map g : K(n−1) → X which is U1-homotopic to f |K(n−1).
Since the pair (K, K(n−1)) has the homotopy extension property, the map g admits a
continuous extension ḡ : K → X, U1-homotopic to f .

By Lemma 2, the restriction ḡ|W is perfect for some closed neighborhood W of K(n−1)

in K. By Lemma 1, there is a cover U2 ∈ cov(X) such that U2 ≺ U1 and any map
p : W → X, U2-near to ḡ|W is perfect. By Lemma 8 there is a cover U3 ∈ cov(X) such
that any two U3-near maps from a space D with dim D ≤ n into X are U2-homotopic.

Write the complement K \K(n−1) =
⋃

i∈I σi as the disjoint union of open n-dimensional
simplexes of K and consider the discrete topological sum D =

⊔
i∈I σ̄i of their closures in

K. Denote by i : K \K(n−1) → D the natural embedding. There is a natural surjective
perfect map π : D → K such that π(

⋃
i∈I ∂σ̄i) = K(n−1).

Since X has the discrete n-cells property, there is a perfect map q : D → X such that
(q, ḡ ◦ π) ≺ U3. By the choice of the cover U3, there is a U2-homotopy h : D × [0, 1] → X
connecting the maps ḡ ◦ π and q in the sense that h(x, 0) = ḡ ◦ π(x) and h(x, 1) = q(x)
for x ∈ D. Let λ : K → [0, 1] be a continuous map such that λ−1(0) is a neighborhood of
K(n−1) and K \W ⊂ λ−1(1). Finally, consider the map p : K → X defined by

p(x) =

{
g(x) if x ∈ K(n−1),

h(i(x), λ(x)) otherwise.

It is easy to see that the map p is continuous and U2-homotopic to ḡ. Taking into account
that U2 ≺ U1, StU1 ≺ U , and ḡ is U1-homotopic to f , we conclude that the map p is
U -homotopic to f .

Finally, let us show that the map p is perfect. For this observe that the restriction
p|W , being U2-homotopic to ḡ, is perfect while the restriction p|K \ W , being equal to
q ◦ i|K \W is perfect too. �

For the proof of Theorem 1(5) we shall need

Lemma 10. Let K be a simplicial complex and ∅ = L0 ⊂ L1 ⊂ · · · be a tower of
subcomplexes of K such that K =

⋃
i∈ω Li and each Li lies in the interior of Li+1. Then

for any map f : K → X into a metric space (X, d) with n-PHAP and any sequence (εi)i∈ω

in (0, 1] there exists a map f̃ : K → X and a homotopy H : K × [0, 1] → X satisfying the
following conditions:

(a) H(z, 0) = f(z), H(z, 1) = f̃(z) for all z ∈ K;
(b) diam H({z} × [0, 1]) < εk for all z ∈ Lk \ Lk−1 and k ∈ ω;

(c) f̃ |L(n)
k is perfect for every k ∈ ω.

Proof. Without loss of generality, εk+1 < εk/2 for all k ∈ ω. Put f0 = f . By induction, for
every k ∈ N we shall construct a map fk : K → X and a homotopy Hk : K × [0, 1] → X
satisfying the following conditions:

(1k) Hk(z, 0) = fk−1(z) and Hk(z, 1) = fk(z) for all z ∈ K;

(2k) Hk(z, t) = fk−1(z) for all z ∈ Lk−1 ∪K \ Lk+1 and t ∈ [0, 1];
(3k) diam Hk({z} × [0, 1]) < εk+1 for all z ∈ K;

(4k) fk|L(n)
k is perfect.

Suppose that functions fi and homotopies Hi have been constructed for i ≤ k. Take any
open cover U of X with meshU < εk+2. Using Lemma 3, find a perfect map g : K(n) → X,
U -homotopic to fk via a homotopy h : K(n) × [0, 1] → X such that h(z, 1) = g(z)
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for z ∈ K(n) and h(z, t) = fk(z) for (z, t) ∈ K(n) × {0} ∪ L
(n)
k × [0, 1]. Then M =

Lk∪L
(n)
k+1∪K \ Lk+2 is a simplicial subcomplex of K and the homotopy extension property

of the simplicial pair (K, M) allows us to find a U -homotopy Hk+1 : K × [0, 1] → X such

that Hk+1(z, t) = fk(z) if (z, t) ∈ K×{0}∪(Lk∪K \ Lk+2)× [0, 1] and Hk+1(z, t) = h(z, t)

if (z, t) ∈ L
(n)
k+1 × [0, 1]. Letting fk+1(z) = Hk+1(z, 1) for z ∈ K we finish the inductive

step.
The conditions (1k)–(3k) imply that the limit map f̃ = lim

k→∞
fk is well-defined and

continuous. Using the homotopies Hk it is easy to compose a homotopy H connecting
the maps f and f̃ and satisfying the conditions (a)–(c) of the lemma. �

With Lemma 10 in disposition we can prove the fifth item of Theorem 1. It should be
mentioned that a particular case of Lemma 11 was proven by P.Bowers in [Bo2, 4.6].

Lemma 11. If X1 is a space with n1-PHAP and X2 is a space with n2-PHAP, then the
product X1 ×X2 has (n1 + n2 + 1)-PHAP.

Proof. Let n = n1 +n2 +1, K be a simplicial complex with dim K ≤ n, U ∈ cov(X1×X2),
and f = (f1, f2) : K → X1 × X2 be a map. For every i ∈ {1, 2} fix an admissible met-
ric di < 1 on Xi. On the product X1 × X2 consider the metric d((x1, x2), (x

′
1, x

′
2)) =

max{d1(x1, x
′
1), d2(x2, x

′
2)}. Find a continuous map ε : X1 × X2 → (0, 1] such that

{B(x, 6ε(x)) : x ∈ X1 × X2} ≺ U . Replacing K by its sufficiently fine subdivision,
we can assume that for any simplex σ of K we have

(1) min{ε ◦ f(z) : z ∈ σ} > 1
2
max{ε ◦ f(z) : z ∈ σ} and

(2) diam f(σ) < min{ε ◦ f(z) : z ∈ σ}.
For every k ∈ ω let Fk = (ε ◦ f)−1([2−k, 1]). It follows from (1) that any simplex of K

meeting Fk lies in the interior of Fk+1. Consequently, the simplicial subcomplex Lk of K,
composed by simplexes meeting Fk lies in the interior of the subcomplex Lk+1. Evidently,
the subcomplexes Lk, k ∈ ω, cover the complex K.

Denote by K1 the n1-dimensional skeleton of K and let K2 be the full subcomplex of
the barycentric subdivision of K, generated by the barycenters of simplexes of dimension
> n1. Then K2 is a subcomplex of dimension dim K − (n1 + 1) ≤ n2 of the barycentric
subdivision of K. Applying Lemma 10 with εk = 2−(k+1), for every i ∈ {1, 2} we can
find a map f̄i : K → Xi and a homotopy H1

i : K × [0, 1] → Xi such that the following
conditions hold

(3) H1
i (z, 0) = fi(z) and H1

i (z, 1) = f̄i(z) for z ∈ K;
(4) diam Hi({z} × [0, 1]) < ε ◦ f(z) for z ∈ K;
(5) f̄i|Ki ∩ Lk is perfect for all k ∈ ω.

Observe that for points z, z′ of a simplex σ of K, the conditions (1), (2) and (4) imply

di(f̄i(z), f̄i(z
′)) ≤ di(f̄i(z), fi(z)) + diam fi(σ) + di(fi(z

′), f̄i(z
′))

< ε ◦ f(z) + diam fi(σ) + ε ◦ f(z′) < 5 min ε ◦ fi(σ),

which yields diam f̄i(σ) < 5 min ε ◦ f(σ).
Each point z ∈ K can be written as z = sz1 + (1 − s)z2 with zi ∈ Ki and s ∈ [0, 1]

and such a representation is unique if z /∈ K1 ∪ K2. The set C1 (resp. C2) of points z
for which s ≥ 1

2
(resp. s ≤ 1

2
) is closed in K and K = C1 ∪ C2. For every i ∈ {1, 2}

there is a homotopy Φi : K × [0, 1] → K such that Φi(z, 0) = z, Φi(Ci × {1}) ⊂ Ki

and Φi(σ × [0, 1]) ⊂ σ for each simplex σ of K (such a homotopy Φi can be defined by
Φi(z, t) = αi(s, t)z1+(1−αi(s, t))z2 for z = sz1+(1−s)z2, where α1(s, t) = min{1, (1+t)s}
and α2(s, t) = max{0, s + t(s− 1)} ).
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For i ∈ {1, 2}, define a homotopy H2
i : K × [0, 1] → Xi by H2

i (z, t) = f̄i ◦ Φi(z, t) and
let gi(z) = H2

i (z, 1). Let z ∈ K and σ be a simplex of K, containing the point z. Since
Φi(σ× [0, 1]) ⊂ σ we get diam H2

i ({z}× [0, 1]) ≤ diam f̄i(σ) < 5ε ◦ f(z). Since H1
i (z, 1) =

f̄i(z) = H2
i (z, 0), we can glue H1

i and H2
i together and define a homotopy Hi linking fi

and gi and such that diam Hi({z} × [0, 1]) < 6ε ◦ f(z) for all z ∈ K. Then H = (H1, H2)
is a homotopy between f and g = (g1, g2) such that diam h({z} × [0, 1]) < 6ε ◦ f(z) for
all z ∈ K. The choice of ε guarantees that H is a U -homotopy.

Let us show that the map g is perfect. Assuming the converse we would find a sequence
{zr} without limit points in K and such that the sequence {g(zr)} converges to some point
x = (x1, x2) ∈ X. Since C1 ∪C2 = K, we can suppose that {zr} ⊂ Ci for some i ∈ {1, 2}.
The inclusion Φi(σ × [0, 1]) ⊂ σ for any simplex σ of K implies that the homotopy Φi is
proper and Φi(Lk × [0, 1]) ⊂ Lk for all k. In particular, Φi((Ci ∩ Lk) × {1}) ⊂ Ki ∩ Lk

and since the restriction f̄i|Ki ∩ Lk is proper, we get that the restriction of gi onto the
closed subset Ci ∩Lk is proper. Then Ci ∩Lk contains only finitely many points zr which
yields ε ◦ f(zr) < 2−k for all sufficiently large r and thus limr→∞ ε ◦ f(zr) = 0. Since
d(f(zr), g(zr)) < 6ε ◦ f(zr), we get that the sequence {f(zr)} converges to x and thus
ε(x) = limr→∞ ε ◦ f(zr) = 0, which is impossible. �

Let X be a topological space and U ∈ cov(X). We define a subset B ⊂ X to be
U-bounded, if B ⊂ ∪F for some finite subcollection F of U .

Lemma 12. Let X be a space with n-PHAP and U ∈ cov(X). Then for any simplicially
approximable map f : P → X from a space P with dim P ≤ n and any open cover V of
P there exists an open cover W of X and a map g : P → X, U-homotopic to f and such
that g−1(A) is V-bounded in P for any W-bounded subset A ⊂ X.

Proof. Given a cover U ∈ cov(X) let U ′ ∈ cov(X) be any cover with St 2U ′ ≺ U . Since f
is simplicially approximable, there are a simplicial complex K0 and two maps p0 : P →
K0 and q0 : K0 → X such that the map q0 ◦ p0 is U ′-homotopic to f . Replacing the
triangulation of K0 by a sufficiently fine subdivision, if necessary, we can assume that
St (K0) ≺ q−1

0 (U ′).
Let V1 ≺ V be an open star-finite cover of P , K1 be the nerve of V1 and p1 : P → K1

be a canonical map such that p−1
1 (St (K1)) ≺ V. Let K = K0×K1, p = (p0, p1) : P → K

and α = q0 ◦ prK0
: K → X. Endow K with a triangulation such that the projections

of K onto K0 and K1 are simplicial maps. Then St (K) ≺ (prK0
)−1(St (K0)) ≺ α−1(U ′)

while p−1(St (K)) ≺ p−1
1 (St (K1)) ≺ V.

P X

K(n)

∪
K

K0

↑















�

�
�

�
��

�
���* HHH

Hj

@
@

@
@R

J
J

J
J

J
JĴ
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Since dim P ≤ n, there is a continuous function ξ : P → K(n) such that for any
x ∈ P the point ξ(x) belongs to the minimal simplex containing p(x). Then ξ is St (K)-
homotopic to p and hence α ◦ ξ is U ′-homotopic to α ◦ p = q0 ◦ p0. On the other hand, for
every vertex v of K, ξ−1(St (v, K)) ⊂ p−1(St (v, K)) and thus ξ−1(St (K)) refines V .

Using the n-PHAP of X, we can find a perfect map π : K(n) → X, U ′-homotopic to
α|K(n). Then g = π ◦ ξ is U ′-homotopic to α ◦ ξ and consequently, St 2(U ′)-homotopic to
f .
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Since π is perfect and St (K) is locally finite, each point x ∈ X has an open neigh-
borhood O(x) such that π−1(O(x)) is St (K)-bounded. Then g−1(O(x)) is ξ−1(St (K))-
bounded and hence V-bounded. Consequently, the cover W = {O(x) : x ∈ X} has the
desired properties. �

Next, we prove the sixth item of Theorem 1.

Lemma 13. For any simplicially approximable map f : P → X from a Polish space P
with dim P ≤ n into a Polish space X with n-PHAP and any open cover U ∈ cov(X)
there is a perfect map g : P → X, U-homotopic to f .

Proof. We assume that the Polish spaces P and X are endowed with some complete
metrics generating their topology.

Let f−1 = f and U−1 = U . Using Lemma 12 we can construct by induction two
sequences of star-finite open covers (Vn)n∈ω ⊂ cov(P ) and (Un)n∈ω ⊂ cov(X) and a
sequence (fn)n∈ω of continuous maps from P into X satisfying the following conditions:

(a) lim
n→∞

mesh(Vn) = 0;

(b) mesh(Un) < 1
n2 for every n ∈ ω;

(c) St (Un+1) ≺ Un for every n ∈ ω;
(d) f−1

n (B) is Vn-bounded in P for any Un-bounded subset B ⊂ X;
(e) fn and fn−1 are Un−1-homotopic for all n ∈ ω.

It follows from (b), (c) and (e) that the limit map g = limn→∞ fn : P → X is a well-defined
continuous function, St (Un)-homotopic to each fn.

We claim that the map g is proper. Indeed, let C be a compact subset of X. We
have to show that g−1(C) is compact. Since g−1(C) is closed in the complete metric
space P , we may prove the total boundedness of g−1(C). Due to (a) it suffices to verify
that for every n ∈ ω the set g−1(C) is Vn-bounded. Since (g, fn) ≺ St (Un), we get
g−1(C) ⊂ f−1

n

(
St (C,St (Un))

)
. Taking into account that the cover Un is star-finite and

the set C is compact, we conclude that the set St (C,St (Un)) is Un-bounded. Then (d)
implies that f−1

n (St (C,St (Un))) ⊃ g−1(C) is Vn-bounded. �

For the proof of two last items of Theorem 1 we need to recall some definitions from
[BRZ]. Given two spaces X, Y denote by C(X,Y ) the space of all continuous functions
from X to Y , endowed with the limitation topology whose neighborhood base at an
f ∈ C(X, Y ) consists of the sets B(f,U) = {g ∈ C(X, Y ) : (g, f) ≺ U}, where U runs
over all open covers of Y , see [Bo3]. If the space Y is Polish, then the space C(X, Y ) is
Baire, see [To] or [BRZ, 3.2.1].

By a multivalued map F : Z ⇒ Y we understand a function assigning to each point
z ∈ Z a (possibly empty) subset F(z) ⊂ Y . Such a multivalued map F : Z ⇒ Y is
called perfect if for any compact subsets A ⊂ Z, B ⊂ Y the sets F(A) =

⋃
z∈AF(z) and

F−1(B) = {z ∈ Z : F(z) ∩B 6= ∅} are compact.
Following [BRZ, p.124] we define a map f : X → Y to be F-injective if |f−1(F(z))| ≤ 1

for all z ∈ Z. A map f : X → Y is called a (U ,F)-map, where U is an open cover of X,
if there is an open cover V of Y such that

{
f−1

(
St (F(z),V)

)}
z∈Z

≺ U .

Lemma 14. Let U ⊂ Rω be an open subspace of the countable product of lines and
F : Z ⇒ U be a perfect multivalued map. For any Polish space P the set of all perfect
F-injective maps is dense in the function space C(P, U).

Proof. Fix a complete metric on the Polish space P and let (Un)n∈ω be a sequence of open
covers of P with meshUn < 2−n for all n ∈ ω.
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By [To] the set E of closed embeddings is dense Gδ in C(P, U). By Lemma 3.2.14 of
[BRZ] for every n ∈ ω the set Hn of (Un,F)-maps is open and dense in C(P, U). Since
the function space C(P, U) is Baire (see [To, 1.1]), the intersection I = E ∩

⋂
n∈ω Hn is

dense in C(P, U). It is clear that each function f ∈ I is perfect and F -injective. �

Our final lemma proves the item (7) of Theorem 1 and (8) follows from (7) applied to
a constant map.

Lemma 15. If a Polish space X has n-PHAP, then for any open cover U of X and any
simplicially approximable map f : P → X from a Polish space P with dim P ≤ n there is
a closed embedding g : P → X, U-near to f .

Proof. Let V ∈ cov(X) be any cover with St (V) ≺ U . The map f : P → X, being
simplicially approximable, is V-homotopic to the composition p ◦ q of maps q : P → K,
p : K → X, where K is a simplicial complex. Identify the Polish space P with a closed
subset of s = (−1, 1)ω, the pseudo-interior of the Hilbert cube Q = [−1, 1]ω. Since K is an
ANR, the map q admits a continuous extension q̄ : U → K onto some open neighborhood
U of P in s.

According to a result of Dranishnikov [Dr] (see also [BRZ, 2.3.5]), there is an map
µ : N → Q from an n-dimensional compactum N onto Q, which is n-invertible in the sense
that for any map α : A → Q from a space A with dim A ≤ n there is a map β : A → N such
that α = µ ◦ β. It follows that µ−1(U) is a Polish space with dim µ−1(U) ≤ dim N ≤ n.

U K

µ−1(U) X

P
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Consider the simplicially approximable map p ◦ q̄ ◦ µ : µ−1(U) → X. By Lemma 13, it
is V-near to a perfect map π : µ−1(U) → X. It is easy to see that for any t ∈ U we get
π(µ−1(t)) ⊂ St (p◦ q̄(t),V). Since the map µ|µ−1(U) is perfect, we can find an open cover
W of U such that π

(
µ−1(St (t,W))

)
⊂ St (p ◦ q̄(t),V) for all t ∈ U .

Now consider the multivalued map F : U ⇒ U defined by F(x) = µ ◦ π−1 ◦ π ◦ µ−1(x)
for x ∈ U and observe that it is perfect (in the sense that for any compact set C ⊂ U the
sets F(C) and F−1(C) are compact in U). By Lemma 14, there is a perfect F -injective
map α : P → U which is W-near to the inclusion P ⊂ U . By the choice of the map µ,
there is a map β : P → µ−1(U) such that α = µ◦β. The perfectness of the maps α and π
implies the perfectness of the maps β and g = π ◦β : P → X. Moreover, the F -injectivity
of the map α implies the injectivity of the map g. Thus g, being injective and perfect, is
a closed embedding.

Observe that for each t ∈ P we get

g(t) = π ◦ β(t) ∈ π
(
µ−1(α(t))

)
⊂ π

(
µ−1(St (t,W))

)
⊂ St (p ◦ q(t),V),

which means that the maps g and p ◦ q are V-near. Since f and p ◦ q are V-near and
StV ≺ U we get that f and g are U -near. �
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