ON UNIVERSALITY OF FINITE PRODUCTS OF POLISH SPACES
T. BANAKH, R. CAUTY, K. TRUSHCHAK, AND L. ZDOMSKYI

ABSTRACT. We introduce and study the n-Dimensional Perfect Homotopy Approxima-
tion Property (briefly n-PHAP) equivalent to the discrete n-cells property in the realm of
LC™-spaces. It is shown that the product X x Y of a space X with n-PHAP and a space
Y with m-PHAP has (n+m+ 1)-PHAP. We derive from this that for a (nowhere locally
compact) locally connected Polish space X without free arcs and for each n > 0 the
power X"t contains a closed topological copy of each at most n-dimensional compact
(resp. Polish) space.

A topological space X is called C-universal, where C is a class of spaces, if X contains
a closed topological copy of each space C' € C. By M, and M; we denote the classes of
metrizable compacta and Polish (= separable complete-metrizable) spaces, respectively.
For a class C of spaces by C[n] we denote the subclass of C consisting of all spaces C' €
C with dimC < n. All topological spaces considered in the paper are metrizable and
separable, all maps are continuous.

In terms of the universality, the classical Menger-No6beling-Pontrjagin-Lefschetz Theo-
rem states that the cube [0, 1]>"™! is Mg[n]-universal for every n > 0. It is well known
that the exponent 2n + 1 in this theorem is the best possible: the Menger universal com-
pactum g, cannot be embedded into [0, 1]**. Nonetheless, P.Bowers [Bo;] has proved that
the (n+1)-th power D"*! of any dendrite D with dense set of end-points does be Mg[n]-
universal for every non-negative integer n. Moreover, any such a dendrite D contains
a locally connected Gs-subspace G whose (n + 1)-th power G"! is M;[n]-universal for
every n, see [Bo;|. Generalizing this Bowers’ result we shall prove that the power X" of
any locally connected Polish space X without free arcs is Mg[n]-universal for all n > 0;
moreover the power X! is M [n]-universal provided X is nowhere locally compact.

The standard way to prove the M, [n]-universality of a Polish space X with nice local
structure is to verify the discrete n-cells property for X, see [Bo;]. We remind that a
space X has the discrete n-cells property if for any map f : N x [0,1)]" — X and any
open cover U of X there is a map g : N x [0, 1] — X such that g is U-near to f and the
collection {g({i} x [0, 1]™)}ien is discrete in X.

Let us recall that two maps f,g : Z — X are called U-near with respect to a cover U
of X (this is denoted by (f,g) < U) if for any point z € Z there is an element U € U
such that {f(2),9(2)} C U. Two maps f,g: Z — X are called U-homotopic if they can
be linked by a homotopy {h: : Z — X }sc[0,1 such that hg = f, hy = g and for any z € Z
there is U € U with {h(z) : t € [0,1]} C U. It is clear that &-homotopic maps are U-near
while the converse is not true in general.

Unfortunately, the discrete n-cells property is applicable only for spaces having nice
local structure. To overcome this obstacle we introduce a stronger property, called n-
PHAP, which is equivalent to the discrete n-cells property in the realm of LC™-spaces.
We remind that a space X is called an LC"-space, n > 0, if for any point x € X and
any neighborhood U C X of x there is a neighborhood V' C X of x such that any map
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f:0I" — V from the boundary of the n-dimensional cube I"™ = [0, 1] can be extended
to amap f : I" — U defined on the whole n-cube I".

All simplicial complexes considered in this paper are countable and locally finite. We
shall identify simplicial complexes with their geometric realizations.

Definition 1. A space X is defined to have the n-dimensional perfect homotopy approx-
imation property (briefly n-PHAP) if for any map f: K — X from a simplicial complex
K with dim K < n and any open cover U of X there is a perfect map g : K — X,
U-homotopic to f.

We remind that a map f : X — Y is perfect if f is closed and the preimage f~'(y)
of any point y € Y is compact. According to [En, 3.7.18], a map f : X — Y between
metrizable spaces is perfect if and only if f is proper in the sense that the preimage f~1(K)
of any compact subset K C Y is compact.

A map f: X — Y is called simplicially approximable if for any open cover U of X
there are a simplicial complex K and two maps p: X — K and ¢ : K — Y such that the
composition ¢ o p is U-homotopic to f. It follows from Corollary 6.6 [BP, p.80] that each
map into an absolute neighborhood retract is simplicially approximable.

Some basic properties of spaces with n-PHAP are described by the following theorem
which is the main result of this paper.

Theorem 1. Let n, m be non-negative integers.

(1) If a space X has n-PHAP, then each open subspace of X has that property too.

(2) A space X has n-PHAP provided X admits a cover by open subspaces with n-
PHAP.

(3) If a space X has n-PHAP, then X has the discrete n-cells property.

(4) An LC"-space X has n-PHAP if and only if X has the discrete n-cells property.

(5) If X is a space with n-PHAP and 'Y is a space with m-PHAP, then their product
X XY has (n+m+1)-PHAP.

(6) If a Polish space X has n-PHAP, then for any open cover U of X and any simpli-
cially approximable map f : P — X from a Polish space P with dim P < n there
15 a perfect map g : P — X, U-homotopic to f.

(7) If a Polish space X has n-PHAP, then for any open cover U of X and any simpli-
cially approximable map f : P — X from a Polish space P with dim P < n there
18 a closed embedding g : P — X, U-near to f.

(8) If a Polish space X has n-PHAP, then X is M[n]-universal.

Statements 4, 5, and 8 of Theorem 1 imply

Corollary 1. If X is a Polish LC"-space with the discrete n-cells property, then for every
k>0 the power X**1 is My[nk + n + k]-universal.

In its turn, the last corollary implies another two corollaries generalizing the mentioned
Bowers’ results on the universality of finite powers of dendrites.

Corollary 2. If X is a locally connected Polish nowhere locally compact space, then for
every k > 0 the power X*1 is M [k]-universal.

Proof. The Polish space X, being locally connected, is locally path-connected and hence
LCY according to the classical Mazurkiewicz-Moore-Menger Theorem, see [Ku]. Tt is well-
known (and easy) that the discrete 0-cells property is equivalent to the nowhere local
compactness. In this situation it is legal to apply Corollary 1 to conclude that the power
X*1is M, [k]-universal for every k > 0. O
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We say that a topological space X has no free arcs if no open subset of X is homeo-
morphic to the open interval (0, 1).

Corollary 3. If X is a locally connected Polish space without free arcs, then for every
k >0 the power X**1 is Mo|k]-universal.

Proof. Corollary 3 will follow from Corollary 2 as soon as we prove that each locally
connected Polish space X without free arcs contains a locally connected nowhere locally
compact Polish subspace Y.

Replacing X by any of its connected component, we can assume that X is connected.
Then by [Wy, Ch.VIIL§9] the space X admits a compatible metric d such that any
points z,y € X can be linked by an arc whose diameter does not exceed 2d(x,y). Fix a
countable dense subset D C X and for any points z,y € D fix an arc J(z,y) C X with
diam J(z,y) < 2d(z,y). It is easy to see that any subspace Y C X containing the set
A= UWE p J(x,y) is locally path-connected. Since the Polish space X has no free arcs,
the Baire Theorem implies that the complement X \ A is dense in X. Let C C X \ A be
a countable dense set. Then Y = X \ C is a locally connected nowhere locally compact
Polish subspace of X. 0

1. PROOF OF THEOREM 1

Our notations are standard. In particular, by A or clx(A) we denote the closure of a
set A in a topological space X; cov(X) stands for the family of all open covers of a space
X. For a cover U of X and a subset A C X, let St (A,U) = U{U eld : UN A # 0},
St'(U) =St (U) = {St(U,U) : U € U}, and St" ™ (U) = St (St™(U)) for n > 1. Given
two families U, V of subsets of a space X we write i < V if any U € U lies in some V € V.
For amap f : Z — X and a family U of subsets of X we put f~(U) = {f~1(U) : U e U}.

For a metric space (X, d) and a point xy € X by B(zg,e) = {z € X : d(z,z9) < €} we
denote the open e-ball centered at zy. Also we put meshlf = sup;;o,, diam U for a cover
U of X. A homotopy h : Z x[0,1] — X is called an e-homotopy if diam h({z} x [0,1]) < ¢
for all z € Z.

For a simplicial complex K, denote by K™ the n-dimensional skeleton of K and let
St(K) = {St(v,K) : v € K©} where St (v, K) stands for the open star of a vertex v
in K. Several times we shall use the following homotopy extension property of simplicial
pairs (see Corollary 5 of [Spa, p.112]): If L is a subcomplex of a simplicial complex K,
f: K — X is a continuous map into a space X, and h : L x [0,1] — X is a homotopy
with h(z,0) = f(z) for all z € L, then there is a homotopy H : K x [0,1] — X such
that H|L x [0,1] = h and H(z,0) = f(z) for all z € K. If h is a U-homotopy for some
open cover U of X, then H can be chosen to be a U-homotopy. If diam h({z} x [0,1]) <
eo f(z), v € L, for some continuous map € : X — (0,00), then H can be chosen so that
diam H({z} x [0,1]) < eo f(x) forall x € K.

In the proof of Theorem 1 we shall exploit some known facts about proper maps.

Lemma 1. For a perfect map f : K — X from a locally compact space K there is an
open cover U of X such that each map g : K — X with (f,g) <U is perfect.

Proof. Let X be any metrizable compactification of X. It follows from [En, 3.7.21] that
the image f(K) of the locally compact space K under the perfect map f : K — X is
a closed locally compact subspace of X. Consequently, f(K), being locally compact, is
open in its closure cl¢(f(K)) in X and hence the complement F = cl(f(K)) \ f(K) is

closed in X. It follows that X = X \ F is a locally compact space containing X so that
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themap f: K — X C X still is perfect. Now it is legal to apply Theorem 4.1 of [Ch]
to find an open cover U of X such that (;fmch map g : K — X with (f,g) < U is perfect.
Then the open cover U = {U N X : U € U} satisfies our requirements. O

Lemma 2. If f : K — X is a map from a locally compact space K and the restriction
fIL: L — X of f onto a closed subset L C K is perfect, then fIW is perfect for some
closed neighborhood W of L in K.

Proof. Fix any metric d generating the topology of X and write K = J,», K; as the
countable union of an increasing sequence (K;);>o of compact subsets such that K, = ()
and each K, lies in the interior of K, ,;. For each i > 1 and z € K; \ K, ; find a
neighborhood O(z) C K such that O(z) C K;11\ K;—1 and f(O(2)) C B(f(z),1) ={z €
X :d(z, f(2)) < 1}. Let W be any closed neighborhood of L in K with W C |, O(z).

Let us show that the restriction f|W is perfect. Assuming the converse we could find
a sequence (z;);>1 C W that has no cluster point in W but (f(z;))i>1 converges to some
point @ in X. Passing to a subsequence, if necessary, we can assume that z; ¢ K;. For
every i > 1 find a point z; € L with z; € O(z;). Taking into account that z; ¢ K;
and O(z) C K; for all z € K; 1, we conclude that z; ¢ K; | for all ¢ > 1. Then
d(f(x;), f(z)) < % for i > 1 and thus the sequence (f(z;)) converges to a = lim f(x;)
which is not possible since f|L is perfect and the sequence (z;) has no cluster point in
L. O

Applying n-PHAP it will be convenient to work with its stronger version.

Lemma 3. If a space X has n-PHAP, then for any open cover U of X, any simplicial
complex K with dim K < n, any closed subspace F C K, and any map f : K — X whose
restriction f|F : F — X is perfect, there is a perfect map g : K — X, U-homotopic
to f via a U-homotopy h : K x [0,1] — X such that h(z,1) = g(x) for all z € K and
h(z,t) = f(x) for all (z,t) € K x {0} UF x [0,1].

Proof. By Lemma 2, the restriction f|W is perfect for some closed neighborhood W
of Fin K. By Lemma 1, there is a cover V € cov(X), V < U, such that a map
g: W — X is perfect, whenever it is V-near to f|W. Using n-PHAP of X, find a perfect
map f : K — X, V-homotopic to f via a homotopy & : K x [0,1] — X such that
h(z,0) = f(z) and h(z,1) = f(z) for all z € K. Fix any continuous map A : K — [0,1]
with A(F) € {0} and \M(K \ W) C {1} and consider the homotopy h : K x [0,1] — X
defined by h(z,t) = h(z, M(z)t) for (z,t) € K x [0,1]. It is easy to see that the map
g: K — X, g: 2w h(z,1), and the U-homotopy h satisfy the requirements of the
lemma. OJ

The following lemma gives a proof of Theorem 1(1).
Lemma 4. If X is a space with n-PHAP, then each open subspace of X has n-PHAP.

Proof. Let U be an open subspace of X, U be an open cover of U and fy : K — U be
a map of a simplicial complex K with dim K < n. We have to construct a perfect map
foo : K — U which is U-homotopic to fj.

Fix any metric p < 1 generating the topology of X. For every n > 0let K, = {x € K :
p(fo(x), X \U) > 27"}. It is clear that each set K, is closed in K and lies in the interior
of K, ;1. Since p < 1, Ky = 0.

Let (U,)n.>0 be a sequence of open covers of X such that meshi, < 2-™*Y and
StUp1 < U, for any n > 0. We can additionally assume that the covers U, are so
fine that {St (z,U,,) : p(z, X \U) > 27"} < U for every n > 0.
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By induction, we shall construct a function sequence {f, : K — X},c, satisfying the
following conditions for every n € N:

(1n) fn('r) = fnfl(‘x) for any x S anl U (K \ KnJrl);

(2,) the map f,|K, : K, — X is perfect;

(3,) the map f, is U, 2-homotopic to f,_1 via a U, 2-homotopy h,, : K x [0,1] — X

such that h,(z,t) = f.(z) for (z,t) € K x {1} and h,(z,t) = f,—1(x) for all
(x,t) € K x {0} U (K,_1 U (K \ K,1)) x [0,1].

Assume that for some n € N the function f,,_; has been constructed. Using Lemma 3
find a perfect map g : K — X and a U, 2-homotopy h : K x [0,1] — X such that
h(z,1) = g(x) for any x € K and h(z,t) = f,—1(x) for any (z,t) € K x {0} UK, x [0, 1].
Let A : K — [0, 1] be a continuous function such that A=1(0) > K\ K,;; and A7'(1) D K,,.
Finally, consider the function f,, : K — X defined by f,,(z) = h(z, A(z)) for x € K and the
homotopy h, : K x[0,1] — X defined by h,(z,t) = h(z, A(z)-t) for (z,t) € K %[0, 1]. The
construction of f,, and h, imply that the conditions (1,)—(3,) are satisfied. The conditions
(1,) imply that for each z € K the sequence (f,(x)) eventually stabilizes and thus the
limit map f,, = lim,, .o f, : K — X is well-defined. Observe that f., is homotopic to
the map fy via the homotopy ho : K X [0,00] — X defined by hy(x,00) = foo(x) for
x € K and hoo(z,t) = hp(z,t —n+1)forz € K andt € [n—1,n],n > 1.

Since p(fo(X), X \U) > 27", for z € K, \ K,_1, we get

1
(1) heo({a} x [0,00]) = | hnsa({z} x [0,1]) € St (fo(w),Un) C St (fo(),U).

i=——1
This means that h., is a U-homotopy, which yields hq, (K x [0,00]) C U and f,(K) C U.
Also (1) implies that p(fs(z), fo(7)) < meshUd, < 2=V for any x € K, \ K,,_;.

Let us show finally that the map f,, : K — U is perfect. Take any compact subset
C C U and find n > 0 such that p(C, X \ U) > 27". We claim that f_'(C') C K,;;. Fix
any © € K\ K,;; and find a unique number m such that x € K, \ K,,,_1. It follows that
m > n+ 2 and p(fs(2), fo(z)) < 27D < 2=("+3) By the definition of the set K, i,
we get p(fo(z), X \ U) < 2=m=D < 2=+ and thus

p(fo(x),C) > p(C, X \U) = p(fo(z), X \U) > 27" — 27 (1) = 9= (nF1)]

Then p(fu(2),C) = plfol),C) — plfoe(@), fol@)) > 27D = 29 > 0 and thus
foo(z) & C. Therefore f1(C) C K, 1. Since the map foo|Kni1 = frio|Kny1 is perfect
we conclude that the preimage f!(C) = (foo|Kpy1) H(C) is compact. This means that
the map fo, : K — U is perfect. O

Lemma 5. A space X has n-PHAP provided X is a union of two open subspaces with
n-PHAP.

Proof. Suppose X = UyUU; where Uy, U; are open subspaces of X having n-PHAP. Find
two open subsets V;, V4 C X such that VUV, = X and V,; C U; for i = 0, 1.

To show that X has n-PHAP, fix an open cover Y of X and amap f: K — X of a
simplicial complex K with dim K < n. Pick an open cover V of X such that StV < U
and clx (St (V;,StV)) C U; for i =0, 1.

Let W; = f~1(V;) and W} = f~1(U;) for i = 0, 1. Taking a sufficiently fine triangulation
of K, we can assume that each simplex of K lies in Wy or W;. Then the union K; of
simplexes lying in W; is a subcomplex of K and KqU K; = K.

Since the space W C K is triangulable, the n-PHAP of Uy allows us to find a proper
map fo : W) — Uy which is V-homotopic to f|W] via a V-homotopy ho : W] x [0,1] —
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Up such that ho(z,0) = f(z) and ho(z,1) = fo(z) for x € W{. Note that fo(K,) C
St (f(Ky),V) C St (Vy,V) C clx(St(Vy,V)) C Uy which implies that the map fo| Ky
Ky — X is perfect.

Let A : K — [0,1] be a continuous map such that A=*(1) D Ky and A71(0) D K \ W.
Since Wy C WY, we can define a homotopy hy : K x [0,1] — X letting ho(x,t) =
ho(z, M(z) - t) for (x,t) € W, x [0,1] and ho(z,t) = f(z) for & ¢ Wy and t € [0,1]. Let
fo(as) = ﬁg(a:, 1). Since f0|K0 = fo| Koy the map f0|K0 : Ky — X is perfect.

Observe that fo(K1) C St(f(K1),V) € St(V1,V) C Uy and applying Lemma 3, find
a perfect map f; : Ky — U; which is V-homotopic to the restriction f0|K1 via a V-
homotopy hy : K x [0,1] — Uy such that hy(x,1) = fi(x) and hy(z,t) = fo(z) for (z,t) €
K x {0} U (Ko N Ky) x [0,1]. Then fi(K;) C St(fo(K1),V) C St(St(f(K1),V),V) C
clxSt (Vl,St V) C Uy and hence the map fi|K; : K1 — X is perfect.

Finally, consider the map ¢ : K — X defined by g|Ky = fo| Ky and g|K; = fi. The
map ¢ is perfect because so are its restrictions onto the closed sets Ky and K. It is easy
to show that ¢ is V-homotopic to fo and hence is St V-homotopic to f. O

Now we can prove the second item of Theorem 1. We shall exploit the classical Michael
result [Mi] on local properties. Following E. Michael we call a property P of topological
spaces to be local if a space X has P if and only if each point of X has an open neigh-
borhood with the property P. According to [Mi] (see also Proposition 4.1 of [BP, Ch.II])
a property P is local if and only if P is open-hereditary (open subspaces of a space with
the property P have that property), open-additive (a space has the property P if it is a
union of two open subspaces with that property), and discrete additive (a space has P
provided it is the union of a discrete family of open subspaces with the property P).

Lemmas 4 and 5 imply that the n-PHAP is an open-hereditary and open-additive
property. It is trivial to check that the discrete union of spaces with n-PHAP has n-
PHAP. Applying the Michael Theorem, we conclude that n-PHAP is a local property. In
other words the following lemma implying Theorem 1(2) is true.

Lemma 6. A space X has n-PHAP provided X admits an open cover by subspaces with
n-PHAP.

The third statement of Theorem 1 follows from
Lemma 7. If a space X has n-PHAP, then X has the discrete n-cells property.

Proof. This lemma trivially follows from a result of [Cu| asserting that a space X has the
discrete n-cells property if and only if each map f : I" X w — X can be approximated by
a map ¢ sending {I™ x {i}};c,, onto a locally finite collection in X. O

To reverse the preceding lemma we will need one classical result concerning LC™-spaces.

Lemma 8. ([Hu, V.5.1]) For any cover U € cov(X) of an LC™-space X there is a cover
V € cov(X) such that any two V-near maps f, g : K — X from a space K with dim K <n
are U-homotopic.

Now we are able to prove the item 4 of Theorem 1.
Lemma 9. An LC™-space has n-PHAP if and only if it has the discrete n-cells property.

Proof. The “only if” part follows from Lemma 7. The “if” part will be proven by induc-
tion. Fix any finite n > 0 and assume that Lemma 9 has been proved for all £ < n. To
show that an LC"-space X with the discrete n-cells property has n-PHAP, fix a cover
U € cov(X) and a map f: K — X from an n-dimensional simplicial complex K.
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Let U; € cov(X) be an open cover with Sty < U. Let K™Y denote the (n — 1)-
dimensional skeleton of K. By the inductive hypothesis, the space X has (n — 1)-PHAP
which allows us to find a perfect map g : K"V — X which is 2;-homotopic to f|K ™1,
Since the pair (K, K("~Y) has the homotopy extension property, the map g admits a
continuous extension g : K — X, U;-homotopic to f.

By Lemma 2, the restriction g|W is perfect for some closed neighborhood W of K1
in K. By Lemma 1, there is a cover Uy € cov(X) such that Uy < U; and any map
p: W — X, Up-near to g|W is perfect. By Lemma 8 there is a cover Uz € cov(X) such
that any two Usz-near maps from a space D with dim D < n into X are Us-homotopic.

Write the complement K\ K~ = U,c; o as the disjoint union of open n-dimensional
simplexes of K and consider the discrete topological sum D = | |,; &; of their closures in
K. Denote by i : K\ K"V — D the natural embedding. There is a natural surjective
perfect map 7 : D — K such that 7({J,.,; 05;) = K™ .

Since X has the discrete n-cells property, there is a perfect map ¢ : D — X such that
(q,g o m) < Us. By the choice of the cover Us, there is a Us-homotopy h : D x [0,1] — X
connecting the maps g o w and ¢ in the sense that h(z,0) = g o w(z) and h(z,1) = q(z)
for z € D. Let A : K — [0, 1] be a continuous map such that A=*(0) is a neighborhood of
K™Y and K\ W c A"*(1). Finally, consider the map p : K — X defined by

N g(x) if r € K1),
plx) = {h(z(z),/\(a:)) otherwise.

It is easy to see that the map p is continuous and Us-homotopic to g. Taking into account
that U < Uy, StU; < U, and g is U;-homotopic to f, we conclude that the map p is
U-homotopic to f.

Finally, let us show that the map p is perfect. For this observe that the restriction
p|W, being Us-homotopic to g, is perfect while the restriction p|K \ W, being equal to
qoi|K \ W is perfect too. O

For the proof of Theorem 1(5) we shall need

Lemma 10. Let K be a simplicial complex and ) = Ly C Ly C --- be a tower of
subcomplezes of K such that K = Uiau L; and each L; lies in the interior of L;11. Then
for any map f : K — X into a metric space (X, d) with n-PHAP and any sequence (£;);e.
in (0,1] there exists a map f: K — X and a homotopy H : K x [0,1] — X satisfying the
following conditions:

(a) H(z,0) = f(2), H(z,1) = f(2) for all z € K;

(b) diam H({z} x [0,1]) < &), for all z € L \ Ly—1 and k € w;

(c) f]L;") is perfect for every k € w.

Proof. Without loss of generality, .1 < &/2 for all k € w. Put fy = f. By induction, for
every k € N we shall construct a map f; : K — X and a homotopy Hy : K x [0,1] - X
satisfying the following conditions:

(1x) Hi(2,0) = fr_1(2) and Hg(z,1) = fp(z) for all z € K;

(2k) Hi(z,t) = fr_1(z) for all z € L1 UK \ Liyq and t € [0,1];

(3g) diam Hy({z} x [0,1]) < 41 for all z € K;

(4x) fk,|L§€n) is perfect.

Suppose that functions f; and homotopies H; have been constructed for ¢ < k. Take any
open cover U of X with meshif < ej,5. Using Lemma 3, find a perfect map ¢ : K — X,
U-homotopic to fi, via a homotopy h : K™ x [0,1] — X such that h(z,1) = g(2)
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for = € K™ and h(z,t) = fi(2) for (z,t) € K™ x {0} U L,(gn) x [0,1]. Then M =
LkULgﬁl UK \ Ly is a simplicial subcomplex of K and the homotopy extension property
of the simplicial pair (K, M) allows us to find a #-homotopy Hy.; : K x [0,1] — X such
that Hi1(z,t) = fr(2) if (2,t) € K x{0}U(LxUK \ Lgy2) x[0,1] and Hyy1(z,t) = h(z,t)
if (2,t) € L,(gi)l x [0,1]. Letting fri1(2) = Hgs1(z,1) for z € K we finish the inductive
step.

The conditions (1;)-(3;) imply that the limit map f = lc11—>1£1<> fr is well-defined and

continuous. Using the homotopies Hy, it is easy to compose a homotopy H connecting
the maps f and f and satisfying the conditions (a)—(c) of the lemma. O

With Lemma 10 in disposition we can prove the fifth item of Theorem 1. It should be
mentioned that a particular case of Lemma 11 was proven by P.Bowers in [Bos, 4.6].

Lemma 11. If X, is a space with ni-PHAP and X5 is a space with no-PHAP, then the
product X1 x X5 has (ny +ng + 1)-PHAP.

Proof. Let n = ny+ny+1, K be a simplicial complex with dim K < n, U € cov(X; x X5),
and f = (f1, fo) : K — X; x Xy be a map. For every i € {1,2} fix an admissible met-
ric d; < 1 on X;. On the product X; x X consider the metric d((x1,z2), (2}, 25)) =
max{d,(z1,2)),da(z2,25)}. Find a continuous map ¢ : X; x Xy — (0,1] such that
{B(z,6e(x)) : x € Xy x Xo} < U. Replacing K by its sufficiently fine subdivision,
we can assume that for any simplex ¢ of K we have

(1) min{e o f(z) : z € 0} > s max{e o f(z) : 2 € o} and

(2) diam f(0) < min{e o f(2) : z € 0}.

For every k € w let Fy, = (o f)~([27%,1]). It follows from (1) that any simplex of K
meeting Fj, lies in the interior of Fj;. Consequently, the simplicial subcomplex L; of K,
composed by simplexes meeting Fj, lies in the interior of the subcomplex L; ;. Evidently,
the subcomplexes Ly, k € w, cover the complex K.

Denote by K; the n;-dimensional skeleton of K and let K5 be the full subcomplex of
the barycentric subdivision of K, generated by the barycenters of simplexes of dimension
> ny. Then K3 is a subcomplex of dimension dim K — (n; + 1) < ny of the barycentric
subdivision of K. Applying Lemma 10 with g, = 2=**Y for every i € {1,2} we can
find a map f; : K — X; and a homotopy H} : K x [0,1] — X; such that the following
conditions hold

(3) H}(2,0) = fi(2) and H}(2,1) = fi(2) for 2z € K;

(4) diam H;({z} x [0,1]) < g0 f(z) for z € K

(5) fi| K; N Ly, is perfect for all k € w.

Observe that for points z, 2’ of a simplex o of K, the conditions (1), (2) and (4) imply

dz(.fl(z)7 ﬁ(zl)) < di(fi(2), fi(2)) + diam filo) + di(fi(2"), fi))
<eo f(z)+diam fi(0) + o f(z') < bmine o fi(0),

which yields diam f;(0) < 5mine o f(0).

Each point z € K can be written as z = sz; + (1 — s)z with z; € K; and s € [0, 1]
and such a representation is unique if z ¢ K; U K3. The set C (resp. Cs) of points z
for which s > % (resp. s < 1) is closed in K and K = C; U Cy. For every i € {1,2}
there is a homotopy ®; : K x [0,1] — K such that ®;(z,0) = 2z, ®;(C; x {1}) C K;
and ®;(o x [0,1]) C o for each simplex o of K (such a homotopy ®; can be defined by
D;(z,t) = a;(s,t) 21+ (1—a;(s,t))zg for z = s214(1—8) 29, where (s, t) = min{1, (1+¢)s}
and as(s,t) = max{0,s +t(s — 1)} ).
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For i € {1,2}, define a homotopy H? : K x [0,1] — X; by H?(z,t) = f; o ®;(z,t) and
let g;(2) = H?(z,1). Let z € K and o be a simplex of K, containing the point z. Since
®;(0 % [0,1]) C o we get diam H2({z} x [0,1]) < diam f;j(0) < 5z o f(2). Since H}(z,1) =
fi(2) = H*(z,0), we can glue H} and H? together and define a homotopy H; linking f;
and g; and such that diam H;({z} x [0,1]) < 6 o f(z) for all z € K. Then H = (Hy, H>)
is a homotopy between f and g = (g1, ¢92) such that diam h({z} x [0,1]) < 6 o f(z) for
all z € K. The choice of € guarantees that H is a -homotopy.

Let us show that the map g is perfect. Assuming the converse we would find a sequence
{z,} without limit points in K and such that the sequence {g(z,)} converges to some point
x = (z1,29) € X. Since C; UCy = K, we can suppose that {z.} C C; for some i € {1,2}.
The inclusion ®;(o x [0,1]) C o for any simplex ¢ of K implies that the homotopy ®; is
proper and ®;(Ly x [0,1]) C Ly for all k. In particular, ®;((C; N Lg) x {1}) C K; N Ly
and since the restriction f;|K; N Ly is proper, we get that the restriction of g; onto the
closed subset C; N Ly is proper. Then C; N L, contains only finitely many points z, which
yields € o f(z,) < 27% for all sufficiently large r and thus lim, .. € o f(2,) = 0. Since
d(f(z),9(z)) < 6e o f(z,), we get that the sequence {f(z.)} converges to xz and thus
e(z) = lim, € 0 f(2,) = 0, which is impossible. O

Let X be a topological space and U € cov(X). We define a subset B C X to be
U-bounded, if B C UF for some finite subcollection F of U.

Lemma 12. Let X be a space with n-PHAP and U € cov(X). Then for any simplicially
approximable map f : P — X from a space P with dim P < n and any open cover V of

P there exists an open cover W of X and a map g : P — X, U-homotopic to f and such
that g=*(A) is V-bounded in P for any WW-bounded subset A C X.

Proof. Given a cover U € cov(X) let U’ € cov(X) be any cover with St*U’ < U. Since f
is simplicially approximable, there are a simplicial complex Ky and two maps py : P —
Ky and qp : Ky — X such that the map ¢ o py is U’-homotopic to f. Replacing the
triangulation of Ky by a sufficiently fine subdivision, if necessary, we can assume that
St (Ko) < q5 ' (U).

Let V1 < V be an open star-finite cover of P, K; be the nerve of V; and p; : P — K;
be a canonical map such that p; ' (St (K;)) < V. Let K = Ko x Ky, p = (po,p1) : P = K
and a = gy o prg, : K — X. Endow K with a triangulation such that the projections
of K onto K and K; are simplicial maps. Then St (K) < (prg,) (St (Kjp)) < o (U)
while p~ (St (K)) < p; (St (K,)) < V.

b
;

Since dim P < n, there is a continuous function ¢ : P — K such that for any
x € P the point £(x) belongs to the minimal simplex containing p(x). Then ¢ is St (K)-
homotopic to p and hence o £ is U’-homotopic to awop = gy o py. On the other hand, for
every vertex v of K, £71(St (v, K)) C p~ (St (v, K)) and thus £7(St (K)) refines V.

Using the n-PHAP of X, we can find a perfect map = : K™ — X, U’-homotopic to
a/K™. Then g = 7 o £ is U’-homotopic to a o & and consequently, St 2(U’)-homotopic to
f.
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Since 7 is perfect and St (K) is locally finite, each point x € X has an open neigh-
borhood O(z) such that 771(O(x)) is St (K)-bounded. Then ¢g~'(O(z)) is £1(St (K))-
bounded and hence V-bounded. Consequently, the cover W = {O(z) : x € X} has the
desired properties. O

Next, we prove the sixth item of Theorem 1.

Lemma 13. For any simplicially approximable map f : P — X from a Polish space P
with dim P < n into a Polish space X with n-PHAP and any open cover U € cov(X)
there is a perfect map g : P — X, U-homotopic to f.

Proof. We assume that the Polish spaces P and X are endowed with some complete
metrics generating their topology.

Let f-y = f and U1 = U. Using Lemma 12 we can construct by induction two
sequences of star-finite open covers (V,)new C cov(P) and (Up)new C cov(X) and a
sequence (fy,)new Of continuous maps from P into X satisfying the following conditions:

(a) lim mesh(V,) = 0;

(b) mesh(U,) < = for every n € w;

(c) St (Un41) < U, for every n € w;

(d) f,7'(B) is V,-bounded in P for any U,-bounded subset B C X;

(e) fn and f,_q are U,,_1-homotopic for all n € w.

It follows from (b), (c) and (e) that the limit map g = lim,, ., f,, : P — X is a well-defined
continuous function, St (U,,)-homotopic to each f,.

We claim that the map g is proper. Indeed, let C' be a compact subset of X. We
have to show that ¢g~!(C) is compact. Since g~(C) is closed in the complete metric
space P, we may prove the total boundedness of g~!(C). Due to (a) it suffices to verify
that for every n € w the set ¢g7'(C) is V,-bounded. Since (g, f,) < St (U,), we get
g HC) C f71(St(C,St(U,))). Taking into account that the cover U, is star-finite and
the set C' is compact, we conclude that the set St (C, St (U,,)) is Un-bounded. Then (d)
implies that f, (St (C,St (U,))) D g~ *(C) is V,-bounded. O

For the proof of two last items of Theorem 1 we need to recall some definitions from
[BRZ]. Given two spaces X, Y denote by C(X,Y’) the space of all continuous functions
from X to Y, endowed with the limitation topology whose neighborhood base at an
f € C(X,Y) consists of the sets B(f,U) = {g € C(X,Y) : (g9, f) < U}, where U runs
over all open covers of Y, see [Bog|. If the space Y is Polish, then the space C(X,Y) is
Baire, see [To] or [BRZ, 3.2.1].

By a multivalued map F : Z = Y we understand a function assigning to each point
z € Z a (possibly empty) subset F(z) C Y. Such a multivalued map F : Z = Y is
called perfect if for any compact subsets A C Z, B C Y the sets F(A) = |J,., F(2) and
FYB)={2€Z:F(z)NB# 0} are compact.

Following [BRZ, p.124] we define a map f : X — Y to be F-injective if | f1(F(2))] <1
forall z€ Z. Amap f: X — Y is called a (U, F)-map, where U is an open cover of X,
if there is an open cover V of Y such that { (St (F(2), V))}ZEZ <U.

Lemma 14. Let U C R¥ be an open subspace of the countable product of lines and
F : Z = U be a perfect multivalued map. For any Polish space P the set of all perfect
F-injective maps is dense in the function space C(P,U).

Proof. Fix a complete metric on the Polish space P and let (U,,),c., be a sequence of open
covers of P with meshif,, < 27" for all n € w.
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By [To] the set & of closed embeddings is dense G5 in C(P,U). By Lemma 3.2.14 of
[BRZ] for every n € w the set ‘H,, of (U,,F)-maps is open and dense in C(P,U). Since
the function space C(P,U) is Baire (see [To, 1.1]), the intersection Z = £ N[, o, H, is
dense in C'(P,U). It is clear that each function f € 7 is perfect and F-injective. OJ

Our final lemma proves the item (7) of Theorem 1 and (8) follows from (7) applied to
a constant map.

Lemma 15. If a Polish space X has n-PHAP, then for any open cover U of X and any
simplicially approximable map f : P — X from a Polish space P with dim P < n there is
a closed embedding g : P — X, U-near to f.

Proof. Let V € cov(X) be any cover with St(V) < U. The map f : P — X, being
simplicially approximable, is V-homotopic to the composition p o g of maps ¢ : P — K,
p: K — X, where K is a simplicial complex. Identify the Polish space P with a closed
subset of s = (—1,1)“, the pseudo-interior of the Hilbert cube @) = [—1, 1]“. Since K is an
ANR, the map ¢ admits a continuous extension ¢ : U — K onto some open neighborhood
U of P in s.

According to a result of Dranishnikov [Dr]| (see also [BRZ, 2.3.5]), there is an map
1 N — @ from an n-dimensional compactum N onto (), which is n-invertible in the sense
that for any map o : A — @ from a space A with dim A < n thereisamap 3 : A — N such
that o = po 3. It follows that p~!(U) is a Polish space with dim ¢~ (U) < dim N < n.

Consider the simplicially approximable map po qo p: u~(U) — X. By Lemma 13, it
is V-near to a perfect map m : u~1(U) — X. It is easy to see that for any t € U we get
(= 1(t)) € St(poq(t),V). Since the map u|pu~*(U) is perfect, we can find an open cover
W of U such that 7 (u~'(St (t,W))) C St(poq(t),V) forall t € U.

Now consider the multivalued map F : U = U defined by F(z) = portomropu (z)
for x € U and observe that it is perfect (in the sense that for any compact set C' C U the
sets F(C') and F~1(C) are compact in U). By Lemma 14, there is a perfect F-injective
map « : P — U which is W-near to the inclusion P C U. By the choice of the map p,
there is amap 3 : P — p~(U) such that o = po 3. The perfectness of the maps o and 7
implies the perfectness of the maps § and g = 703 : P — X. Moreover, the F-injectivity
of the map « implies the injectivity of the map g. Thus g, being injective and perfect, is
a closed embedding.

Observe that for each t € P we get

g(t) = mo B(1) € w(u ™ (a(1)) C 7 (u (St (L W) € St(poq(t). V),

which means that the maps ¢ and p o ¢ are V-near. Since f and p o q are V-near and
StV < U we get that f and g are U-near. O
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