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Introduction

This article is a survey of results included in the forthcoming book [9].
The starting impulse for writing this book came from topological algebra.
Trying to find an inner characterization of subgroups of σ-compact topologi-
cal groups, Okunev introduced the concept of an o-bounded group (see [74]):
a topological group G is o-bounded if for any sequence (Un)n∈ω of open neigh-
borhoods of the unit of G there is a sequence (Fn)n∈ω of finite subsets of G
such that G =

⋃
n∈ω Fn ·Un where A·B = {ab : a ∈ A, b ∈ B} is the product

of two subsets A, B in the group G. The class of o-bounded groups turned
out to be much wider than the class of subgroups of σ-compact groups: for
example the group Rω contains a non-meager dense o-bounded subgroup.
To overcome this difficulty M.Tkachenko introduced the narrower class of
so-called strictly o-bounded groups, defined with help of the infinite game
“Open-Finite” played by two players, I and II, on a topological group G: at
the n-th inning the first player selects a neighborhood Un of the unit in G
while the second player responds with a finite subset Fn of G. At the end of
the game the second player is declared the winner if G =

⋃
n∈ω Fn ·Un. Fol-

lowing Tkachenko we define a topological group G to be strictly o-bounded
if the second player has a winning strategy in the game “Open-Finite” on G.
The class of strictly o-bounded groups includes all subgroups of σ-compact
groups and lies in the class of all o-bounded groups. (Strictly) o-bounded
groups were intensively studied last time, see [3], [4], [6], [8], [37], [38], [49],
[56], [74], [77], [91].
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In spirit, o-boundedness is very close to the Menger property introduced
by K. Menger [58] in 1924 and studied in detail by W. Hurewicz [40] who in-
troduced another property known in topology as the Hurewicz property. Re-
call that a topological space X has the Menger property (resp. the Hurewicz
property) if for any sequence (un)n∈ω of open covers of X there is a se-
quence (vn)n∈ω such that each vn, n ∈ ω, is a finite subcollection of un and
X =

⋃
n∈ω ∪vn (resp. X =

⋃
n∈ω

⋂
m≥n ∪vm ). Our crucial observation is

that the o-boundedness of a topological group (G, τ) is noting else but the
Menger property applied to the family µL =

{{g · U : g ∈ G} : e ∈ U ∈ τ
}

of open covers of G by left shifts of fixed neighborhoods of the unit e of G.
This observation naturally led us to the concept of a multicovered space, by
which we understand a pair (X,µ) consisting of a set X and a collection µ
of covers of X (such a collection µ is called a multicover of X).

The category of multicovered spaces seems to be the most natural place
for considering various concepts such as the Menger and Hurewicz proper-
ties of topological spaces or the (strict) o-boundedness of topological groups.
Such an abstract approach allows us to prove general results having appli-
cations and interpretations in various fields of mathematics as different as
Set Theory, General Topology, Descriptive Set Theory, Topological Algebra
or Theory of Uniform Spaces.

1. Multicovered Spaces and their Morphisms

1.1. Basic definitions and concepts. By a multicover of a set X we
understand any family µ of covers of X. A set X endowed with a multicover
µ will be called a multicovered space (denoted by (X, µ)) or simply X if the
multicover is clear from the context.

There are many natural examples of multicovered spaces:
• Each topological space X can be considered as a multicovered space

(X,O), where O denotes the family of all open covers of X;
• Every metric space (X, ρ) carries a natural multicover µρ consisting

of covers by ε-balls: µρ = {{B(x, ε) : x ∈ X} : ε > 0}, where

B(x, ε) def= {y ∈ X : ρ(y, x) < ε};
• Every uniform space (X,U) has a multicover µU consisting of uni-

form covers, i.e. µU = {{U(x) : x ∈ X} : U ∈ U}, where U(x) =
{y ∈ X : (x, y) ∈ U};

• In particular, each Abelian topological group G carries a natural
multicover µG = {{g +U : g ∈ G} : U 6= ∅ is open in G} correspond-
ing to the uniform structure of G.

Next, we define some notions related to boundedness in multicovered
spaces. A subset B of a set X is defined to be u-bounded with respect to
a cover u of X if B ⊂ ∪v for some finite subcollection v of u. A subset
B of a multicovered space (X, µ) is defined to be µ′-bounded, where µ′ ⊂
µ, if B is u-bounded for every u ∈ µ′. If µ′ = µ, then we simply say
that B is bounded in place of µ-bounded. The notion of a bounded subset
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is a natural generalization of such concepts as a precompact subset of a
regular topological space (i.e., a subset with compact closure) or a totally
bounded subset of a uniform space to the realm of multicovered spaces. A
multicovered space X is defined to be σ-bounded if it is a countable union
of its bounded subsets.

On the family cov(X) of all covers of a set X there is a natural preorder
Â: u Â v if each u-bounded subset is v-bounded. A multicover space (X, µ)
is defined to be centered if any finite subfamily δ ⊂ µ has an upper bound
u ∈ µ with respect to ≺ (the latter means that each u-bounded subset of X
is δ- bounded). For example, all multicovered spaces described before are
centered. We shall say that a multicover µ on X is finer than a multicover
η on X (µ Â η) if for any u ∈ η there is v ∈ µ with v Â u. Two multicovers
µ, η of a set X will be called equivalent if each of them is finer than the
other.

Now we are ready to introduce three important cardinal characteristics
of a multicovered space (X, µ):

• bχ(X,µ), the boundedness character of (X,µ), is the smallest size
|δ| of a subcollection δ ⊂ µ such that each δ-bounded subset of X is
µ-bounded;

• cof(X, µ), the cofinality of (X, µ), is the smallest size |η| of a sub-
family η ⊂ µ, equivalent to µ (which means that for every u ∈ µ
there exists v ∈ η with v Â u);

• bc(X, µ), the bounded covering number of (X, µ), is the smallest size
of a cover of X by µ-bounded subsets;

• bcω(X, µ) = sup{bc(X, η) : η ⊂ µ is a countable subcollection}, the
countably-bounded covering number.

It is clear that bχ(X, µ) ≤ cof(X, µ) for every multicovered space (X, µ), and
a multicovered space (X, µ) is σ-bounded iff bc(X, µ) ≤ ω. It is also clear
that bcω(X, µ) ≤ bc(X, µ) and both the cardinals are equal if bχ(X,µ) ≤ ℵ0.

Another important notion related to multicovered spaces is ω-boundedness
generalizing the ω-boundedness of topological groups, see [35]. We shall say
that a multicovered space (X,µ) is ω-bounded if every cover u ∈ µ contains
a countable subcover u′. Unfortunately, this does not mean that u′ ∈ µ.
We define a multicovered space (X, µ) to be properly ω-bounded if for every
cover u ∈ µ there exists a countable subcover u′ ⊂ u and a cover v ∈ µ
such that v Â u′, i.e. each v-bounded subset is u′-bounded. A multicovered
space (X, µ) is said to be paracompact if for any cover u ∈ µ there is a cover
v ∈ µ with St(v) Â u. Here, as expected, St(v) = {St(V, v) : V ∈ v} where
St(V, v) = ∪{U ∈ v : U ∩ V 6= ∅}.
Proposition 1. Every ω-bounded paracompact multicovered space is prop-
erly ω- bound.

1.2. Morphisms between multicovered spaces. Trying to introduce a
proper notion of isomorphic multicovered spaces we came to the conclusion
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that it is too restrictive to look at morphisms as usual single-valued functi-
ons. By a morphism from a multicovered space (X,µX) into a multicovered
space (Y, µY ) we shall understand a multifunction Φ : X ⇒ Y , see [11,
section 6] for basic information about multifunctions. Such a morphism
Φ : X ⇒ Y is defined to be:

• uniformly bounded , if for every cover u ∈ µY there exists a cover
v ∈ µX such that the image Φ(B) of any v-bounded subset B of X
is u-bounded;

• perfect , if Φ−1 is uniformly bounded;
• an isomorphic embedding if Φ is a perfect uniformly bounded mor-

phism with Dom(Φ) = X;
• an isomorphism, if Φ is a perfect uniformly bounded morphism with

Dom(Φ) = X and Im(Φ) = Y (equivalently, both Φ and Φ−1 are
isomorphic embeddings).

The above three cardinal characteristics of multicovered spaces as well as the
(proper) ω-boundedness are preserved by isomorphisms between multicov-
ered spaces. Moreover, a multicovered space (X, µ) is properly ω-bounded
iff it is isomorphic to some multicovered space (Y, ν), where ν consists of
countable covers.

Finally we explain the nature of perfect morphisms between multicovered
spaces of the form (X,O) where X is a topological space and O is the
multicover consisting of all open covers of X.

Theorem 2. For a multifunction Φ : X ⇒ Y from a regular topological
space X into a k-space Y the morphism Φ : (X,O) ⇒ (Y,O) is perfect iff
its closure in X × Y considered as a morphism is perfect iff the projection
prY : Φ → Y is perfect in the usual topological sense.

We recall from [30, p. 277] that a continuous closed map f from a Haus-
dorff topological space X into a topological space Y is perfect, if f−1(y) is
compact for every y ∈ Y .

1.3. Operations over multicovered spaces. Each subset Y of a mul-
ticovered space (X,µ) carries the induced multicover µ|Y consisting of all
covers {U ∩ Y : U ∈ u} where u ∈ µ. Having this multicover µ|Y in mind
we shall make remarks about subspaces of multicovered spaces. It is imme-
diate that the σ- and ω-boundedness are preserved by countable unions of
subspaces.

Note that for each subspace Y of a multicovered space X the identity
inclusion id : Y → X is an isomorphic embedding. This implies that
bχ(Y ) ≤ bχ(X), bc(Y ) ≤ bc(X), and cof(Y ) ≤ cof(X) for every subspace
Y of a multicovered space (X, µ).

It should be also stressed here that for a subspace Y of a topological space
X the identity inclusion id : (Y,O(Y )) → (X,O(X)) is uniformly bounded
but can fail to be an isomorphic embedding of multicovered spaces. Take
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for example any compact topological space K and its non-compact subspace
X.

Let (X, µX) and (Y, µY ) be multicovered spaces. By their product we
understand the set X × Y endowed with the multicover µX · µY = {u · v :
u ∈ µX , v ∈ µY }, where u · v = {U × V : U ∈ u, V ∈ v}. The product
of a finite collection of multicovered spaces can be naturally defined by in-
duction. We usually identify µX · µY with the Cartesian product µX × µY

and write (Xn, µn) for the n-th power of the space (X, µ). The bounded-
ness, σ-boundedness, and (proper) ω-boundedness are preserved by finite
products.

Another important operation on multicovered spaces is centralization,
which assigns to each multicovered space (X,µ) the centered multicovered
space (X, cen(µ)) endowed with the multicover cen(µ) = {u1 ∧ · · · ∧ un :
u1, . . . , un ∈ µ}, where u1∧· · ·∧un = {U1∩· · ·∩Un : Ui ∈ ui for 1 ≤ i ≤ n}.
The multicover cen(µ) has the following universality property.

Proposition 3. For any multicover µ on a set X the identity morphism
idX : (X,µ) → (X, cen(µ)) is both perfect and bounded. Moreover for any
uniformly bounded morphism Φ : Y ⇒ (X,µ) from a centered multicovered
space Y the composition idX ◦Φ : Y ⇒ (X, cen(µ)) is uniformly bounded.

1.4. Universal multicovered spaces. We define a multicovered space X
to be universal in a class M of multicovered spaces if X ∈ M and each
multicovered space M ∈ M admits an isomorphic embedding Φ : M ⇒ X.
Up to isomorphism, each class of centered multicovered spaces contains at
most one universal space. But we do not know whether the centeredness
can be dropped in this result.

For every cardinal κ the class of properly ω-bounded multicovered spaces
X with cof(X,µ) ≤ κ has a universal element: the space (ωκ, µu) endowed
with the multicover µu = {uα : α ∈ κ}, where uα = {pr−1

α (n) : n ∈ ω}
and prα : ωκ → ω stands for the coordinate projection. Centralizing the
multicover µu, we obtain a centered multicover µp = cen(µu) on ωκ, equiva-
lent to the multicover induced by the product uniformity of ωκ. Combining
the universality property of µu with the universality property of central-
ization we obtain that the multicovered space (ωκ, µp) is universal in the
class of centered properly ω-bounded multicovered spaces with cofinality
≤ κ. The multicovered space (ωκ, µp) is isomorphic to topological groups Zκ

and Rκ endowed with the multicovers generated by their topological group
structures. The universal space (ωω, µp) is also isomorphic to its subspace
ω↑ω = {f ∈ ωω : f is non-decreasing}.

The existence of universal spaces allows us to obtains the following non-
trivial estimates.

Theorem 4. bcω(X,µ) ≤ d (resp. bcω(X, µ) ∈ {1,ℵ0} ∪ [b, d]) for every
(properly) ω-bounded multicovered space X.
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1.5. Uniformizability and metrizability of multicovered spaces. A
multicovered space X is defined to be uniformizable (resp. metrizable) if
X is isomorphic to the multicovered space (Y, µU ) (resp. (Y, µρ)) for some
uniform (resp. metric) space (Y,U) (resp. (Y, ρ)). For example, the universal
space (ωκ, µp) is uniformizable (metrizable) for every (at most countable)
cardinal κ.

Theorem 5. An ω-bounded multicovered space X is uniformizable (metriz-
able) iff it is is centered, properly ω-bounded (and has countable cofinality
cof(X)).

Selection Principles on uniform spaces were considered by L. Kočinac in
[45].

1.6. Cardinal characteristics of some natural multicovered spaces.
This subsection is devoted to cardinal characteristics of multicovered spaces
described at the beginning of this section, i.e. topological, metric, uniform
spaces, and topological groups.

First we shall calculate the cardinal characteristics of multicovered spaces
of the form (X,O) where X is a topological space. Since a subset B of a reg-
ular topological space X is O-bounded if and only if B has compact closure
in X, we conclude that bc(X,O) = kc(X), where kc(X), the compact cov-
ering number of X, is the smallest size of a cover of X by compact subsets.
Another important cardinal invariant of the family K(X) of compact sub-
spaces of X is its cofinality cof(K(X)) with respect to the inclusion relation,
see [27].

In a sense, the cardinal invariants cof(K(X)) and kc(X) are dual to the
character χ(X; βX) and pseudo-character ψ(X;βX) of a Tychonov space X
in its Stone-Čech compactification βX (see [30] for their definitions). The
cardinal ψ(X;βX) = kc(βX \X) is often called the Čech number of X and
is denoted by Č(X). For a given topological space X the Čech number
Č(X) gives a cardinal measure of the non-compactness of X: X is compact
iff Č(X) = 0, X is locally compact iff Č(X) ≤ 1, X is Čech-complete iff
Č(X) ≤ ℵ0.

Theorem 6. Let X be a Tychonoff space and Y be a compactification of X.
Then

(1) cof(X,O) = χ(X; Y ) = cof(K(Y \X));
(2) bχ(X,O) ≤ Č(X) = ψ(X;Y );
(3) bχ(X,O) = Č(X) if bχ(X,O) ≤ ℵ0;
(4) cof(X,O) ≥ d if Y \ X is first countable and not locally countably

compact.

Next, we consider uniform spaces. Given a uniform space (X,U), for
an entourage U ∈ U and a subset A of X let U(A) = {y ∈ X : ∃x ∈
A with (x, y) ∈ U} be the U -ball around A. The uniform cover of X cor-
responding to U will be denoted by cU , i.e. cU = {U(x) : x ∈ X}, and the
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multicover of X consisting of all uniform covers will be denoted by µU . We
recall from [30, § 8.1] that the weight w(X,U) of a uniform space (X,U) is
the smallest size |B| of a subfamily B ⊂ U such that for each U ∈ U there is
V ∈ B with V ⊂ U . It is evident that cof(X, µU ) ≤ w(X,U) for any uniform
space. On the other hand, we have the subsequent

Theorem 7. For every uniform space (X,U) with bχ(X,µU ) ≤ ℵ0 the com-
pletion (X̃, Ũ) of (X,U) is Čech-complete, i.e. so is its underlying topological
space.

Question 1. Let (X,U) be a dense uniform subspace of a uniform space
(Y,V). Is it true that bχ(X, µU ) = bχ(Y, µV)?

The answer onto the above problem is affirmative if one of these characters
is countable.

And finally we shall consider cardinal invariants of topological groups
endowed with multicovers corresponding to their natural uniformities. Let
G be a topological group and O be the collection of all neighborhoods of the
unit e of G. We shall be interested in the following four natural multicovers
on G: µL = {{gU : g ∈ G} : U ∈ O}, µR = {{Ug : g ∈ G} : U ∈ O},
µL∨R = {{gU ∩ Ug : g ∈ G} : U ∈ O}, and µL∧R = {{UgU : g ∈ G} :
U ∈ O} corresponding to the left, right, two-sided and Rölke uniformities
on G, respectively. It should be mentioned that the multicovered spaces
(G,µL) and (G,µR) are isomorphic via the map x 7→ x−1, while (G,µL∨R)
is isomorphic to the diagonal of the product (G,µL)× (G, µR). This implies
that bc(G,µL∨R) = bc(G,µL) = bc(G,µR) and bχ(G, µL∨R) ≤ bχ(G,µL) =
bχ(G,µR).

Question 2. Can the latter inequality be strict? More precisely, is there a
topological group G with bχ(G,µL∨R) < bχ(G, µL)?

The following characterization shows that this cannot happen at the
countable level.

Theorem 8. For a topological group G the following conditions are equiva-
lent: (1) bχ(G,µL) ≤ ℵ0; (2) bχ(G,µR) ≤ ℵ0; (3) bχ(G,µL∨R) ≤ ℵ0; (4) G
is a subgroup of a Čech-complete group. Moreover, the equivalent conditions
(1)–(4) imply bχ(G,µL∧R) ≤ ℵ0.

In light of the above result it is interesting to note that the cardinals
bχ(G,µL∨R) and bχ(G,µL∧R) can differ as much as we wish: there is no
upper bound on bχ(G,µL∨R) for groups with bχ(G,µL∧R) ≤ ℵ0.

2. Classical selection principles

2.1. Basic Selection Principles. Here we introduce and study various
selection properties of multicovered spaces, intermediate between the prop-
erties of σ-boundedness and ω-boundedness.
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The strongest and the weakest among these properties are the Menger and
Hurewicz properties. They take their origin in topology and have appeared
as cover counterparts of the σ-compactness. Both Menger and Hurewicz
properties are expressed in terms of covers so have multicover nature and
can be defined for any multicovered space. We shall go a bit further in our
generalizing attempts and observe that both Menger and Hurewicz prop-
erties allow us to construct sequences (vn) satisfying certain property. In
such a way we arrive to our main selection principle ∪fin(µ,P) introduced by
M. Scheepers in [64]. Let (X, µ) be a multicovered space and P be a property
of sequences (Bn)n∈ω of subsets of (X, µ). We shall say that the multicov-
ered space satisfies the selection principle ∪fin(µ,P) if for any sequence of
covers (un)n∈ω ∈ µω there is a sequence (Bn)n∈ω having the property P
and consisting of un-bounded subsets Bn ⊂ X. The above definition works
properly only for monotone properties P. The latter means that a sequence
(Bn)n∈ω has the property P provided there is a sequence (Cn)n∈ω with the
property P such that Cn ⊂ Bn for all n ∈ ω.

Let {Ui : i ∈ ω} be an indexed family of subsets of a set X. Given a point
x ∈ X let Ix = {i ∈ ω : x ∈ Ui}. The indexed family {Ui : i ∈ ω} is defined
to be

• a large cover of X, if each point x lies in infinitely many sets Ui;
• a γ-cover of X, if each point x ∈ X belongs to almost all Ui;
• a sub-γ-cover of X, if there exists an infinite subset A ⊂ ω such that
{Ui : i ∈ A} is a γ-cover of X;

• an ω-cover of X, if each finite subset F ⊂ X lies in infinitely many
Ui.

Now we arrive at our principal definition: A multicovered space (X, µ) is
called Menger (resp. Scheepers, sub-Hurewicz, Hurewicz) if for any sequence
(un)n∈ω ⊂ µ there exists an sequence (Bn : n ∈ ω) of subsets of X such that
each set Bn is un-bounded and the indexed collection {Bn : n ∈ ω} is a
cover (resp. ω-, sub-γ-, γ-)cover of X. Let us note that a topological space
X has the Menger (resp. Scheepers, Hurewicz) property if and only if so
does the multicovered space (X,O). A topological group G is o-bounded iff
the multicovered space (G, µL) is Menger. These properties are related as
follows:

σ-bounded ⇒ Hurewicz ⇒ sub-Hurewicz ⇒ Scheepers ⇒ Menger ⇒ ω-bounded.

The first implication of this chain can be reversed for spaces with count-
able boundedness character. This follows from the characterization of Hure-
wicz spaces as multicovered spaces X with bcω(X) ≤ ℵ0. The second im-
plication can be reversed in the centered case: Each centered sub-Hurewicz
space is Hurewicz.

On the other hand, in section 2.4 we shall present an example of a sub-
Hurewicz space which fails to be Hurewicz as well as an example of a centered
Menger space which is not Scheepers. In section 3.4 we shall meet many
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centered Scheepers spaces which are not sub-Hurewicz. Finally, a Hurewicz
metrizable non-σ- compact space was constructed in [42].

The problem of constructing a Menger non-Hurewicz topological space
was posed by Hurewicz in [40] and then posed again in [42], [22], and [80].

The first known example (added in a footnote of [40] by W. Sierpinski)
distinguishing these properties was a Luzin set (i.e., an uncountable subset L
of R having countable intersection with each meager subset M ⊂ R). But the
existence of a Lusin set is independent of ZFC. The reason why each Lusin
set X is Menger lies in the fact that it is concentrated at some countable
subset. We recall that a topological space X is said to be concentrated at
a subset A ⊂ X if for any open neighborhood U ⊂ X of A, the complement
X \U has size |X \U | < |X|. Using the fact that each properly ω-bounded
multicovered space (X,µ) with bc(X, µ) < d is Menger, one can prove that
Lindelöf topological space X is Menger provided it has size |X| ≤ d and is
concentrated at some countable subset A ⊂ X.

By a dichotomic argument (depending on the relation between the small
cardinals b and d) J. Chaber and R. Pol [24] constructed a subset X ⊂ ωω

of size |X| = b that is concentrated at some countable set but cannot be
included into a σ-compact subset of ωω. This construction resolves the orig-
inal Hurewicz’s problem giving a ZFC-example of a Menger non- Hurewicz
metrizable space X of size |X| = b. Moreover, the non-Hurewicz space X
constructed by Chaber and Pol has all finite powers Xn Menger. Conse-
quently, X is Scheepers but not Hurewicz. Another space with the same
properties was constructed by a non-dichotomic argument in [84].

A more refined version of the Hurewicz problem will also be considered
in section 4.3.

2.2. Preservation of selection properties by operations. The selec-
tion properties defined above are preserved by many operations over mul-
ticovered spaces. In particular, they are preserved by uniformly bounded
images.

Also for a properly ω-bounded multicovered space X and a family A of
Menger (resp. Hurewicz, sub-Hurewicz ) subspaces of X with |A| < b (resp.
|A| < b, |A| < t) the union ∪A is Menger (resp. Hurewicz, sub-Hurewicz ),
see [13, 2.3] for a corresponding topological result.

There is a deep connection between Scheepers and Menger properties via
finite powers:

Theorem 9. A (centered) multicovered space (X, µ) is Scheepers if (and
only if) the power (Xn, µn) is Menger for every n ∈ ω.

In framework of topological groups this characterization was proved in
[3]. Therefore the finite powers Xn, n ∈ ω, of any centered Scheepers
multicovered space X are Scheepers. The same assertion holds for Hurewicz
spaces. Moreover, the product X ×Y of a sub-Hurewicz multicovered space
X and a Menger (resp. Scheepers) space Y is Menger (resp. Scheepers). In
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the framework of uniform spaces this result was proved by L.Kočinac [45,
Th. 17, 18]. However under the negation of NCF there are two different
centered Scheepers spaces with non-Scheepers product, see [8] or [28].

2.3. Selection properties of subspaces of (ω↑ω, µp) and (Rω, µG). The
above selection properties of subspaces of the universal space (ω↑ω, µp) have
simple combinatorial characterizations. A subspace X of ω↑ω is Menger
(resp. Scheepers, Hurewicz) with respect to the multicover µp if and only
if it is not dominating (resp. is not finitely dominating, is bounded) with
respect to the preorder ≤∗ of eventual dominance. For subspaces of (Rω, µG)
the characterization is similar.

Theorem 10. A subspace A of (Rω, µG) is Menger (resp. Scheepers, Hu-
rewicz) if and only if the set ‖A‖ = {‖x‖ : x ∈ A} is not dominating (resp.
not finitely dominating, bounded) in (Rω,≤∗), where ‖x‖n = maxk≤n |xk|.

These characterizations combined with the countable nature of the selec-
tion properties and the universality of the space (ω↑ω, µp) imply that a uni-
formizable multicovered space (X, µ) is Menger (resp. Scheepers, Hurewicz)
iff for every uniformly bounded morphism Φ : (X, µ) ⇒ (ω↑ω, µp) the im-
age Φ(X) is not dominating (resp. not finitely dominating, bounded) with
respect to ≤∗. Consequently, a properly ω-bounded multicovered space with
bcω(X) < d is Scheepers. For topological spaces similar characterizations
can be found in [40] (see also [42, Th. 4.3, 4.4]) and [81, Th. 2.1].

2.4. Five natural multicovers of the Baire space ωω. In this section
we shall introduce five natural multicovers µm, µp, µu, µc, and µ` of the
Baire space ωω. In fact, µu and µp have been introduced earlier.

We shall consider the infinite product ωω as [ω<ω], the set of branches of
the tree ω<ω. We set µm = O(ωω), µ` =

{{ωω \ ↑s} ∪ {↑s∧i : i ∈ ω} : s ∈
ω<ω

}
, and µc = cen(µ`), where ↑ s = {x ∈ ωω : s is an initial segment of x}.

The relations between these five multicovers are described by the following
diagram in which the arrow from µi to µj means that the identity morphism
(ωω, µi) ⇒ (ωω, µj) is uniformly bounded.

µm µp

µu

µc

µ`- »»»»»»»»:

XXXXXXXXz

XXXXXXXXz

»»»»»»»»:

The multicovers µm, µp and µc are centered, while µ` and µu are not. ∪µi

is a subbase of the usual product topology on ωω for every i ∈ {m, p, u, c, `},
and a subset of ωω is µi-bounded if and only if its closure in ωω is compact.
Their cardinal characteristics also are very close: bχ(ωω, µi) = cof(ωω, µi) =
ℵ0, bc(ωω, µi) = d, for every i ∈ {p, u, c, `} while bχ(ωω, µm) = ℵ0 < d =
cof(ωω, µm) = bc(ωω, µm). In spite of these similarities, selection properties
of these multicovers differ substantially.
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Theorem 11.
(1) The multicovered spaces (ωω, µu), (ωω, µp), and (ωω, µm) are not Menger.
(2) The multicovered space (ωω, µc) is Menger but its square (ωω×ωω, µc ·µc)
is not Menger; consequently (ωω, µc) is not Scheepers.
(3) The multicovered space (ωω, µ`) is sub-Hurewicz but not Hurewicz.

3. F-Menger multicovered spaces

In this section we shall look at selection principles from a bit more gen-
eral point of view leading to an interesting and fruitful interplay between
selection principles and semifilters.

3.1. Semifilters. First we give a very short survey of the theory of semifil-
ters. For more detail information we refer the reader to the book [9] or the
survey [11] of that book.

By a semifilter we understand a family F of nonempty subsets of ω,
closed under taking almost supersets (which means that F 3 A ⊂∗ B ⊂
ω ⇒ B ∈ F). The family of semifilters forms a lattice SF with respect to
the operations of intersection and union. Besides these two operations there
is an important operation of transversal assigning to each semifilter F its
dual semifilter F⊥ = {E ⊂ ω : ∀F ∈ F F ∩ E 6= ∅}. The smallest element
of the lattice SF is the Fréchet filter Fr consisting of all cofinite subsets.
Its dual Fr⊥ is the largest semifilter consisting of all infinite subsets of ω.
A semifilter F lies in its dual F⊥ if and only if F is linked which means
that A ∩ B 6= ∅ for all A, B ∈ F . Semifilters F with F = F⊥ can be
characterized as maximal linked semifilters. For example, any ultrafilter is
a maximal linked semifilter.

Each family B of infinite subsets of ω induces a semifilter 〈B〉 = {F ⊂ ω :
∃B ∈ B B ⊂∗ F}. The smallest size of a family B ⊂ Fr⊥ with F = 〈B〉
(resp. F ⊂ 〈B〉) is called the character (resp. π- character) of a semifilter
F and is denoted by χ(F) (resp. πχ(F)).

For two semifilters F ,U we write F b U and say that F is subcoherent
to U if Φ(F) ⊂ U for some finite-to-finite multifunction Φ : ω ⇒ ω (the
latter means that for every n ∈ ω the sets Φ(n) and Φ−1(n) are finite and
non-empty). Two semifilters F ,U are called coherent if F b U and U b F .
In this case we write F ³ U . The subset [F ] = {U ∈ SF : U ³ F} is
called the coherence class of a semifilter F . It follows from the Talagrand
Theorem [69] that the coherence class [Fr] (resp. [Fr⊥]) consists of all meager
(resp. comeager) semifilters, considered as subspaces of the power-set P(ω)
endowed with the natural compact metrizable topology. A semifilter F is
bi-Baire if both F and F⊥ are Baire (equivalently non-meager) semifilters.
This happens if and only if Fr 6³ F 6³ Fr⊥. For example, each maximal
linked semifilter is bi- Baire. In the sequel by BS (resp. FF, UF, ML) we
denote the subset of SF consisting of bi-Baire semifilters (resp. free filters,
ultrafilters, maximal linked semifilters). A family F ⊂ SF of semifilters is
called ³-invariant if [F ] ⊂ F for every semifilter F ∈ F.
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3.2. Defining F-covers and F-Menger multicovered spaces. Semifil-
ters give a convenient tool for measuring “largeness” of subsets: in a sense
elements of a semifilter can be thought as “large” subsets of ω. This allows
us to assign to each family F ⊂ SF of semifilter a selection property.

This will be done with help of the operation of so-called Marczewski
numerization of an indexed cover u of X. Namely, given an indexed family
u = {Un : n ∈ ω} of subsets of X, let u?

x = {n ∈ ω : x ∈ Un} be the
numerical star of a point x ∈ X. The family u?

X = {u?
x : x ∈ X} ⊂ P(ω) is

called the Marczewski numerization of the indexed cover u = {Un : n ∈ ω}.
If u = {Un : n ∈ ω} is a large cover of X, then u?

X consists of infinite subsets
of ω and generates a semifilter 〈u?

X〉 = {F ⊂ ω : u?
x ⊂∗ F for some x ∈ X}

called the Marczewski semifilter of u. If X is clear from the context, we
shall omit the subscript and write u? and 〈u?〉 instead of u?

X and 〈u?
X〉.

In such a way we arrive at an important
Definition. Let F ⊂ SF be a family of semifilters. An indexed sequence
v = {Bn : n ∈ ω} of subsets of a set X is called an F-cover of X if its
Marczewski numerization v?

X lies in some semifilter F ∈ F.
A multicovered space (X,µ) is defined to be F-Menger (or else, satisfies

the selection principle
⋃

fin(µ,F?)) if for any sequence of covers (un)n∈ω ∈ µω

there is an F-cover v = {Bn : n ∈ ω} of X by un-bounded subsets Bn ⊂ X.
F-covers generalize large covers (=SF-covers), ω-covers (=UF-covers), γ-

covers (={Fr}-covers), and sub-γ-covers (=F1-covers for the family F1 =
{F ∈ SF : χ(F) = 1} of semifilters generated by a single set).

Respectively, the selection properties corresponding to a particular type
of cover are particular cases of the F-Menger property for suitable family F
of semifilters.

Proposition 12. A multicovered space (X, µ) is (1) Scheepers iff it is UF-
Menger; (2) Menger iff it is SF-Menger iff it is {Fr⊥}-Menger; (3) Hurewicz
iff it is {Fr}-Menger; (4) sub-Hurewicz iff it is F1-Menger for the family
F1 = {F ∈ SF : χ(F) = 1}.

Like the basic selection principles the F-Menger property is preserved
by uniformly bounded images, and has countable nature in the sense that
a multicovered space (X, µ) is F-Menger if and only if for each countable
subcollection δ ⊂ µ so is the multicovered space (X, δ). This observation
allows us to prove that a uniformizable multicovered space X is F-Menger if
and only if for any uniformly bounded function f : X → (ω↑ω, µp) the image
f(X) is an F-Menger subspace of (ω↑ω, µp).

For families F ⊂ SF closed under countable unions of semifilters, the F-
Menger property is closed under countable unions as well.

3.3. F-Menger property for an ³-invariant family F. To obtain in-
teresting results on the F-Menger property, one need take a relatively large
family F of semifilters, containing together with each semifilter F ∈ F all its
finite-to-one images. In fact, each family F ⊂ SF can be included into two
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larger families: F↓ = {ϕ(F) : F ∈ F, ϕ : ω → ω is a finite-to-one map} and
F³ =

⋃
F∈F[F ] = {E ∈ SF : ∃F ∈ F with E ³ F} possessing this property.

It turns out that the F↓-Menger and F³- Menger properties coincide for
uniformizable multicovered spaces. Moreover, F↓-Menger subspaces of the
universal space (ω↑ω, µp) admit a simple description: they lie in sets of the
form

M(b,F) = {(xn) ∈ ω↑ω : ∃F ∈ F ∀n ∈ F max
i≤n

xi ≤ b(n)}
for a suitable semifilter F ∈ F↓ and an increasing function b : ω → ω. There-
fore the study of the F³-Menger property can be reduced to the studying
the [F ]-Menger property for a suitable semifilter F ∈ F. The following
statement collects some elementary properties of [F ]-Menger spaces.

Proposition 13. (1) If a semifilter F is subcoherent to a semifilter U , then
each [F ]-Menger multicovered space is [U ]-Menger; (2) A centered multi-
covered space X (with cof(X, µ) ≤ ℵ0) is Scheepers if (and only if ) it is
[F ]-Menger for some filter F ; (3) A centered multicovered space is Hurewicz
iff it is sub-Hurewicz iff it is [Fr]-Menger.

3.4. Universal [F ]-Menger spaces. In section 1.4 we presented examples
of universal spaces in the class of properly ω-bounded metrizable multi-
covered spaces. The class of metrizable [F ]-Menger multicovered spaces
has a universal element as well. Namely, for every semifilter F the sub-
space M(F) = M(idω,F) of (ω↑ω, µp) endowed with the induced multicover
µp|M(F) is universal in the class of metrizable [F ]-Menger multicovered
spaces.

Theorem 14. A semifilter F is (sub)coherent to a semifilter U iff M(F)
is isomorphic to (a subspace of ) M(U).

For example, for the Fréchet filter Fr we get that the space M(Fr) is
universal in the class of metrizable σ-bounded multicovered spaces. The
other extreme is the multicovered space M =M(Fr⊥), which is universal in
the class of metrizable Menger multicovered spaces. M is a dense Gδ-subset
of ω↑ω.

For a family F = F↓ ⊂ SF there exists a universal multicovered space in
the class of metrizable F-Menger spaces if and only if there exists a semifilter
F ∈ F such that F ⊂ [F ]. Since the classes of Scheepers and UF-Menger
spaces coincide, we conclude that there is a universal space in the class of
Scheepers metrizable multicovered spaces if and only if the principle NCF
holds (i.e. any two ultrafilters are coherent).

3.5. Menger π-character of a Menger multicovered space. As we
already know each large cover v = {Vn : n ∈ ω} generates a corresponding
Marczewski semifilter v?

X . This naturally leads us to the idea of applying
³-invariant cardinal characteristics of semifilters for studying multicovered
spaces. Probably the most important among such cardinal characteristics is
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the π- character πχ[F ] = min{πχ(U) : U ∈ [F ]} of the coherence class of F .

Definition. The Menger π-character πχ[X] of a Menger multicovered
space (X, µ) is the smallest cardinal κ such that for each sequence of covers
(un)n∈ω ∈ µω there is a large cover v = {Bn : n ∈ ω} of X by un-bounded
subsets Bn ⊂ X with πχ(〈v?

X〉) ≤ κ.
Obviously, a multicovered space (X,µ) is [F ]-Menger for any semifilter

F with non[F ] > πχ[X]. Consequently, a centered multicovered space X
is Hurewicz if πχ[X] < b. We recall that non[F ] is the smallest cardinal κ
such that any semifilter U with πχ(U) < κ is subcoherent to F .

There is a non-trivial equality bcω(X) = min{d, πχ[X]} linking the Menger
character of a Menger uniformizable multicovered space X with its countably-
bounded covering number. This equality can be applied to show that each
semifilter F with πχ[F ] < d is subcoherent to a filter.

Since each semifilter F with πχ[F ] < b (resp. πχ[F ] < d, πχ[F ] <
c) is meager (resp. subcoherent to a filter, not comeager), we obtain the
subsequent

Proposition 15. A Menger multicovered space X is [Fr]-Menger (resp. UF-
Menger, BS-Menger) provided πχ[X] < b (resp. πχ[X] < d, πχ[X] < c).

3.6. ∀F-Menger multicovered spaces. As we saw in the previous sub-
section, a multicovered space X with πχ[X] < b, being [Fr]-Menger, is [F ]-
Menger for all semifilters F ; if πχ[X] < nonBS = min{non[F ] : F ∈ BS},
then X is [F ]-Menger for all non-meager semifilters, i.e., semifilters which
are not minimal with respect to the subcoherence preorder.
Definition. Let F ⊂ SF be a family of semifilters. A multicovered space X
is called ∀F-Menger if it is [F ]-Menger for each semifilter F ∈ F.

For example, a multicovered space X is [Fr]-Menger iff it is ∀SF-Menger.
For any family of semifilters F ⊂ SF the class of ∀F-Menger multicovered
spaces is closed with respect to the operations of taking a subspace, the im-
age under a uniformly bounded morphism, countable union of multicovered
spaces. Also the ∀F-Menger property has countable nature.

For a Menger multicovered space X and a family F ⊂ SF we get

πχ[X] < nonF ⇒ (X is ∀F-Menger) ⇒ πχ[X] ≤ πχF

where nonF = min{non[F ] : F ∈ F} and πχF = min{πχ[F ] : F ∈ F}.
Next we consider two particular cases of this concept: ∀BS-Menger and

∀UF- Menger multicovered spaces, where BS and UF stand for the families of
bi-Baire semifilters and ultrafilters, respectively. Taking into account that
πχBS = b, πχUF = r, and nonSF = b we get the following statement.

Theorem 16. For every Menger multicovered space X the subsequent im-
plication hold:
• πχ[X] < b ⇒ (X is ∀SF- Menger) ⇔ (X is [Fr]-Menger);
• πχ[X] < nonBS ⇒ (X is ∀BS- Menger);
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• πχ[X] ≤ b ⇐ (X is ∀BS- Menger);
• πχ[X] < nonUF ⇒ (X is ∀UF- Menger);
• πχ[X] ≤ r ⇐ (X is ∀UF- Menger).

Moreover, if X is a ∀UF-Menger uniformizable multicovered space, then
• bcω(X) = πχ[X] < d;
• X is ∀SFnon=d-Menger for the family SFnon=d = {F ∈ SF : non[F ] = d};
• X is FFχ<d-Menger for the family FFχ<d = {F ∈ SF : F is a filter with
χ(F) < d}.

The preceding results imply the following “spiral” of Menger properties
holding for any uniformizable multicovered space X. The dashed arrows
indicate implications holding under a suitable set-theoretic assumption.

∀UF-Menger

6

UF-Menger
´

´́3 Q
QQs

¾ (NCF)

∀BS-Menger

?

BS-Menger
Q

QQk

¾ (u<g)

bcω(X) < d

bcω(X) < b

6?

6(b=d)

Hurewicz
Q

QQk

Menger

3.7. Products of [F ]-Menger multicovered spaces. Since the class of
centered Scheepers spaces with countable cofinality consists of centered [F ]-
Menger spaces where F runs over filters, the problem of preservation of
the Scheepers property by products can be reduced to studying products of
[F ]-Menger spaces for different (semi)filters F .

We shall say that semifilters F1, . . . ,Fn are jointly subcoherent to a semi-
filter F on ω if there is a finite-to-finite multifunction Φ : ω ⇒ ω such
that

⋂n
i=1 Φ(Fi) ∈ F for any elements Fi ∈ Fi, i ∈ [1, n]. For example,

for every semifilter F the semifilters F ,F⊥ are jointly subcoherent to the
largest semifilter Fr⊥. Also for every filter F the semifilters F , . . . ,F are
jointly subcoherent to F .

The joint subcoherence appears quite naturally in questions about prod-
ucts and unions of [F ]-Menger spaces.

Theorem 17. For semifilters F ,F1, . . . ,Fn the following conditions are
equivalent:
(1) The product X1 × · · · ×Xn of centered [Fi]-Menger multicovered spaces
Xi is [F ]-Menger;
(2) The semifilters F1, . . . ,Fn are jointly subcoherent to F .

Moreover, if F is a filter, then the conditions (1),(2) are equivalent to
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(3) The semifilters F1, . . . ,Fn are subcoherent to F ;
(4) The union M(F1) ∪ · · · ∪M(Fn) is [F ]-Menger in (ω↑ω, µp).

Consequently, for any filter F , the [F ]-Menger as well as ∀UF-Menger
properties are preserved by finite products of uniformizable multicovered
spaces. The situation with products of ∀BS-Menger spaces is not so clear.

Question 3. Is the ∀BS-Menger property preserved by finite products of
metrizable multicovered spaces?

The answer is affirmative provided b < nonBS or b⊥([SF]◦) > 1.
The above results permit us to characterize the F-Menger and ∀F- Menger

spaces via their product properties.

Corollary 18. A uniformizable multicovered space (X, µ) is [F ]-Menger for
a semifilter F if and only if the product X ×M(F⊥) is Menger.

Consequently, a uniformizable multicovered space X is ∀F-Menger for a
family F = F↓ ⊂ SF of semifilters if and only if for every semifilter F ∈ F

the product X ×M(F⊥) is Menger.

This yields a characterization of ∀UF-Menger spaces as the spaces X
whose product X × Y with any Scheepers space Y is Scheepers.

And finally, the above results give us an approach to studying multicov-
ered spaces whose finite powers are Menger. Namely, for a centered multi-
covered space X (of countable cofinality) an n-th power Xn of X is Menger
if and only if X is Ln-Menger for the family Ln of n-linked semifilters (if
and only if X is [L]-Menger for some n-linked semifilter L).

It is consistent that all centered multicovered spaces with Menger square
are Scheepers. This is equivalent to the set-theoretic assumption that each
maximal linked semifilter is coherent to an ultrafilter, which implies NCF<ω

and follows from u < max{g, s}, see [10]. We recall that the principle NCF<ω

asserts that there are only finitely many non- coherent ultrafilters. This is
one of two possibilities allowed by the Finite-2c Dichotomy [7] asserting that
the number of distinct coherence classes of ultrafilters is either finite or 2c.
Under the negation of NCF<ω, for every n ≥ 2 there is a maximal n-linked
semifilter F such that F b L for no (n + 1)-linked semifilter L. For such a
semifilter F the space M(F)n is Menger, while M(F)n+1 is not.

3.8. Implications of NCF, CML, and (u < g). In this section we collect
some results on selection properties of multicovered spaces, which can be
proved only under certain additional set-theoretic assumptions. We shall
consider effects of the following three assumptions: NCF, CML, and (u < g),
which are independent of ZFC and relate as follows:

(u < g) ⇒ (CML) ⇒ (NCF) ⇒ (NCF<ω) ⇒ (u < d) ⇒ (¬MA)

3.8.1. Implications of NCF. Since NCF is responsible for coherence of (ul-
tra)filters, many natural questions concerning universal spaces, products or
unions of Scheepers spaces can be resolved affirmatively if and only if the
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principle NCF holds. We recall that NCF asserts that all ultrafilters are
coherent.

Theorem 19. The following conditions are equivalent: (1) the principle
NCF holds; (2) for any ultrafilter U on ω the space M(U) is universal in
the class of metrizable Scheepers multicovered spaces; (3) any UF-Menger
multicovered space is ∀UF-Menger; (4) bcω(X) < d for any uniformizable
Scheepers space X; (5) the union ∪A of any family A of Scheepers sub-
spaces of an ω-bounded uniformizable multicovered space X of size |A| < d
is Scheepers; (6) the union of two Scheepers metrizable multicovered spaces
is Scheepers; (7) the product of finitely many centered Scheepers multicovered
spaces is Scheepers; (8) the product of two Scheepers metrizable multicovered
spaces is Menger.

3.8.2. Implications of CML. The principle CML asserts that any two max-
imal linked semifilters on ω are coherent. Formally, it is stronger than NCF
and is responsible for the behavior of ML-Menger spaces. Let us recall that
a centered multicovered space is ML-Menger iff it has Menger square X2.

Theorem 20. The following conditions are equivalent: (1) the principle
CML holds; (2) there is a universal space in the class of metrizable multi-
covered spaces with Menger square; (3) any centered multicovered space with
Menger square is ∀UF-Menger.

3.8.3. Implications of (u < g). Finally, we establish what happens under
(u < g), the strongest among the considered assumptions contradicting Mar-
tin’s Axiom. The consistency of (u < g) was proved by Blass and Shelah
[17] or [18].

The following theorem characterizing the assumption (u < g) shows that
it has as same effect on the class of BS-Menger spaces as NCF has on the
class of Scheepers (= UF-Menger) spaces.

Theorem 21. The following conditions are equivalent: (1) u < g; (2) any
two bi-Baire semifilters are coherent; (3) each (metrizable) uniformizable
BS-Menger multicovered space has Menger square; (4) any BS-Menger mul-
ticovered space is ∀BS-Menger; (5) the product of two centered BS-Menger
multicovered spaces is BS-Menger.

3.9. Cardinal characteristics of the family of F-Menger spaces. In
this section we calculate cardinal characteristics of families of multicovered
spaces satisfying Selection Principles considered in preceding sections. We
shall be interested in the following four classical cardinal characteristics
defined for any family I ⊂ P(X) with ∪I = X /∈ I:

add(I) = min{|A| : A ⊂ I and
⋃A 6∈ I},

non(I) = min{|A| : A ⊂ X and A 6∈ I},
cov(I) = min{|A| : A ⊂ I and ∪A = X},
cof(I) = min{|B| : B ⊂ I and ∀A ∈ I ∃B ∈ B with A ⊂ B}.
These cardinal characteristics will be studied for the collection I = MF(X)

of all F-Menger subspaces of a given non-Menger multicovered space X,
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where F is a suitable family of semifilters. instead of MSF(X). Observe
that the family M(X) consists of all Menger subspaces of the multicovered
space X. If X = (ω↑ω, µp), then we shall write MF instead of MF(X) =
MF(ω↑ω, µp). The space X = (ω↑ω, µp) deserves a special attention because
it is universal in the class of ω-bounded metrizable multicovered spaces.

We shall compare these characteristics with cardinal characteristics of the
family F, see [11] for their definitions. The relationships between them are
described by the diagram in Figure 1. In this diagram the family Supp(F)
consists of semifilters Supp(F) for F ∈ F where Supp(F) = {S ∈ F⊥ :
S ∧ F b F} with S ∧ F = 〈S ∩ F : F ∈ F〉.

b
Q

Q
´

´
min{b(SuppF⊥), add(F⊥)} min{add(F), b(SuppF)}

add(MF⊥) add(MF)

add(F⊥) add(F)

cov(F⊥) cov(F)

cov(MF⊥) = b(F) b(F⊥) = cov(MF)

b⊥(F⊥) b⊥(F)

non(MF) = min{d, non(F)} min{non(F⊥), d} = non(MF⊥)

cof(F) cof(F⊥)

cof(MF) cof(MF⊥)

max{cof(F⊥), b⊥(SuppF⊥)}max{b⊥(SuppF), cof(F)}
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Figure 1. Inequalities between cardinal characteristics of
the family MF of F-Menger subspaces of (ω↑ω, µp) for an ³-
invariant family F of bi-Baire semifilters.

This diagram implies that for a non-Menger ω-bounded metrizable multi-
covered space X and a semifilter F whose dual F⊥ is a filter, we get
• add(M[F ](X)) = add[F ] = min{b⊥(F), q⊥(F)} = cov[F ] = cov(M[F ](X));
• non(M[F ](X)) = non[F ] = max{b(F), q(F)} = cof[F ] ≥ cof(M[F ](X)).
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If X is isomorphic to (ωω, µp), then cof(M[F ](X)) = cof[F ].
Also we can estimate the cardinal characteristics of the family MF for

families F ∈ {BS,UF, ML}:
• g = add(MBS) ≤ max{b, g} = cov(MBS) ≤ d = non(MBS) ≤ cof(MBS);
• {2, d} 3 add(MUF) ≤ cov(MUF) ≤ non(MUF) = d ≤ cof(MUF) ∈ {d, 2c};
• {2, d} 3 add(MML) ≤ cov(MML) ≤ non(MML) = d ≤ cof(MML(X)) ≤ 2c.

4. Selection Principles in topological spaces

This section is devoted to studying Selection Principles in topological
spaces. This is the most elaborated part in Selection Principles Theory and
first problems and concepts of the theory appeared just in the topological
context. The great number of recent survey papers (see, e.g., [46], [47], [65],
[80], [79], [83], and [66]) devoted to this subject is an evidence of its intensive
development.

Of course, many results discussed in the preceding sections apply also to
topological spaces X (identified with the multicovered spaces (X,O) car-
rying the multicover O consisting of all open covers of X). However, mul-
ticovered spaces appearing in the topological setting have some distinctive
features.

Firstly, they rarely have countable cofinality. Because of that feature, it is
not so easy to construct topological examples distinguishing between various
[F ]-Menger properties. In fact, even the problem of constructing Menger
topological space which is not Hurewicz turned out to be non-trivial.

The second distinctive feature of multicovered spaces appearing from
topological spaces is their odd behavior with respect to products. Namely,
for two topological spaces (X,O(X)) and (Y,O(X)) the product multicover
O(X)·O(Y ) on X×Y generally is not equivalent to the multicover O(X×Y ),
which makes impossible application of general result on products of mul-
ticovered spaces to studying selection principles in products of topological
spaces. As an illustration of this pathology one can look at [42, 2.11] describ-
ing a Hurewicz subspace X of reals whose square X2 admits a (uniformly)
continuous map onto the irrationals and thus is not Menger. So, study-
ing selection principles in products of topological spaces usually requires a
careful separate treatment.

The third distinctive feature of topological multicovers is rather of positive
character and is connected with the fact that such a multicover O is closed
under forming countable covers by elements of the union ∪O (which is the
topology). This feature allows us to obtain some specific (and very helpful)
characterizations of the F-Menger property in topological spaces, not valid
for general multicovered spaces.

Throughout the section, saying that a topological space X has some se-
lection property we shall understand that the multicovered space (X,O) has
that property.
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4.1. F-Menger property in (strongly) diagonalizable multicovered
spaces. We define a multicovered space (X, µ) to be (strongly) diagonal-
izable, if the multicover µ contains any countable cover of X by elements
of ∪µ (of the smallest family containing ∪µ and closed under finite inter-
sections). The class of strongly diagonalizable multicovered spaces includes
multicovered spaces of the form (X,O), (X,Oω), and (X,Bω), where X is
a topological space and Bω (Oω) denotes the family of all countable Borel
(open) covers of X, respectively.

There is a tight connection between selection properties of strongly diag-
onalizable multicovered spaces X and topological properties of Marczewski
semifilters of their µ-open large covers, where a subset U ⊂ X is µ-open
with respect to the multicover µ if it can be written in the form U = ∪v
for some countable subfamily v of a cover u ∈ µ. In the sequel Marczewski
semifilters are considered as topological spaces endowed with the (metrizable
separable) topology inherited from P(ω). This permits us to speak about
topological properties of semifilters, for example the (F-)Menger property.
A crucial observation is that for every strongly diagonalizable multicovered
space (X, µ) and any µ-open large cover v = {Vn : n ∈ ω} of X the mul-
tifunction ↑v? : x 7→ ↑v?

x = {A ⊂ ω : v?
x ⊂ A} is uniformly bounded as a

morphism ↑v? : (X, µ) ⇒ (〈v?
X〉,O).

A topological version of the above result [88] states that the set-valued
map ↑v? is compact-valued upper semicontinuous, i.e. for every open W ⊂
℘(ω) the preimage (↑v?)−1

⊂ (W ) = {x ∈ X : ↑v?(x) ⊂ W} is open in X. This
implies that the Marczewski semifilter 〈v?〉 of v is F- Menger as a topological
space. The topological properties of semifilters appear to be much stronger
than corresponding combinatorial ones: every F-Menger semifilter U lies in
some semifilter F ∈ F, while there exists a meager semifilter without the
Menger property.

The above observation implies the following characterization.

Theorem 22. A Menger strongly diagonalizable multicovered space X is
F-Menger for an ³-invariant family of semifilters F iff each large cover v =
{Vn : n ∈ ω} ∈ µ of X is an F-cover iff 〈v?

X〉 is F-Menger for each large
µ-open cover v = {Vn : n ∈ ω} of X iff X is Ftop-Menger.

(Here Ftop denotes the family of F-Menger semifilters.)
The preceding result motivates the study of F-Menger semifilters. Such

semifilters are relatively small. More precisely, they cannot be coherent to
rapid semifilters. A semifilter F is defined to be rapid, if for each function
f : ω → ω there is a set F ∈ F whose enumerating function eF ≥ f . If
F contains no rapid semifilter and the multicovered space (X, µ) is strongly
paracompact, then the “Menger” assumption can be dropped in the above
characterization of the F-Menger property. (We define a multicovered space
X to be strongly paracompact if for each cover u ∈ µ there is a star-finite
cover v ∈ µ such that v Â u. A cover v of X is star-finite if for any V ∈ v the
set {V ′ ∈ v : V ′∩V 6= ∅} is finite.) Examples of strongly paracompact spaces
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include regular Lindelöf spaces endowed with the multicover of open covers.
Since no meager semifilter is rapid, we get the following characterization of
the Hurewicz property obtained in [88] and [78] independently.

Theorem 23. A regular Lindelöf topological space (X, µ) is Hurewicz iff the
Marczewski semifilter 〈v?

X〉 of each large cover v of X is meager.

One can introduce some new selection principles using stars of covers.
For example, a multicovereds space (X,µ) is star-Menger, if so the space
(X, {St(u) : u ∈ µ}). It is easy to see that these selection principles coincide
with the classical ones for strongly paracompact spaces. Such the properties
are intensively studied in the realm of topological spaces, see [19], [20], and
[44].

4.2. Characterizing the F-Menger property in topological spaces.
The F-Menger property in topological spaces can be characterized in many
different ways.

4.2.1. Characterizing F-Menger metrizable spaces. For a metrizable topo-
logical space X, the multicovered space (X,O) is F-Menger if and only if
for every metric ρ generating the topology of X the multicovered space
(X, µρ) is F-Menger. The latter happens if and only if for every ε > 0
there is an F-cover v = {Vn : n ∈ ω} of X with supn∈ω diamρ(Vn) < ε and
lim

n→∞diamρ(Vn) = 0.
There are also equivalents of the F-Menger property in terms of properties

of bases of its topology with respect to some (all) admissible metrics, namely
that the family v as above can be chosen from an arbitrary base B of the
topology of X.

Another condition characterizing the F-Menger property does not appeal
to any admissible metrics.

Theorem 24. A metrizable topological space X is F-Menger iff every open
base for X contains an F-cover u of X which is almost point (or locally) finite
in the sense that for every open subset W of X the family {U ∈ u : u\W 6= ∅}
is point (locally) finite at each point x ∈ W .

Eliminating “F-” from the above characterizations we get a characteriza-
tion of the Menger property due to Lelek [55].

4.2.2. Characterizing by continuous images. This kind of characterization
traces its history back to Hurewicz [40] who showed that the negation of the
Menger property is equivalent to the existence of a dominating image with
respect to ≤∗. Similar characterization of some other selection properties
were obtained in [81], [82], [89].

The most general form of such a characterization involves compact-valued
upper semicontinuous maps.

Theorem 25.
(1) A Lindelöf topological space X is F-Menger iff for any compact-valued
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upper semicontinuous multifunction Φ : X ⇒ ωω the image Φ(X) is an
F-Menger subspace of (ωω, µp).
(2) A (zero-dimensional) Lindelöf topological space X is F-Menger iff for
any compact-valued upper semicontinuous multifunction Φ : X ⇒ Rω the
image Φ(X) is an F-Menger subspace of (Rω, µG) (iff for any continuous
map f : X → ωω the image f(X) is an F-Menger subspace of (ωω, µp) ).

Some related results (including partial cases F = {Fr} and F = {Fr⊥})
may be found in [48].

The Lindelöfness of Menger topological spaces makes it impossible to
extend the above characterization beyond the class of Lindelöf spaces in its
present form. But we can replace the multicover O of a topological space X
by a smaller one. One of the natural choices for such a smaller multicover
seems to be Oω = {u ∈ O : |u| = ω}. But what can we really characterize
via continuous images are the selection properties of the multicover Of

ω of all
countable covers by functionally open subsets of X. We recall that a subset
U ⊂ X is functionally open if U = f−1(V ) for some continuous function
f : X → R and some open set V ⊂ R.

Proposition 26. For a topological space X the multicovered space (X,Of
ω)

is F-Menger iff for any continuous function f : X → Rω the image f(X) is
an F-Menger subspace of (Rω, µG).

In light of this it is important to detect topological spaces X for which the
multicovers Oω and Of

ω are equivalent. The class of such spaces includes
regular Lindelöf, countably compact, and perfectly normal spaces, and is
closed under taking closed subspaces.

4.2.3. Characterizing F-Menger property in terms of covers by compacta. It
was shown in [42] that a subspace X ⊂ R is Hurewicz iff for every Gδ-subset
G of R containing X there exists a σ-compact set C with X ⊂ C ⊂ G. The
same approach still works in a more general situation.

Theorem 27. A Lindelöf regular space X is Hurewicz iff for every compact-
ification cX of X and every Gδ-subset G of cX containing X there exists a
family C of compact subsets of cX such that X ⊂ ∪C ⊂ G and |C| < b.

Under some additional set-theoretic assumptions this characterization
may be extended to Scheepers topological spaces. Namely the Scheepers
property can be characterized in the same way via the families C of compact
subsets of size |C| < d provided the NCF principle holds. In addition, under
u < g the Scheepers and Menger properties coincide for topological spaces,
and hence the same characterization holds for the Menger property under
u < g. This means that the condition

For every Čech-complete space G ⊃ X there exists a family C
of compact subsets of G such that X ⊂ ∪C ⊂ G and |C| < d
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is universal in the sense that under b = d, NCF, and u < g it is equivalent
to the Hurewicz, Scheepers, and Menger properties of a Lindelöf regular
topological space X, respectively.

It also implies that under NCF (under u < g) the Scheepers (Menger)
property is preserved by unions of families of subspaces of regular heredi-
tarily Lindelöf spaces of size < d.

4.3. Constructing examples of [F ]-Menger topological spaces. As
we saw there are ZFC-examples of Menger topological spaces which are not
Hurewicz. In this section we address a more precise question: For which
pairs of semifilters F ,U is there an [F ]-Menger topological space which is
not [U ]-Menger?

To construct examples of topological [F ]-Menger spaces we develop the
machinery of concentrated sets already exploited in section 2.1, see also [24]
and [84]. Let F ⊂ SF be a family of semifilters and ω↑ω∗ denote the set
of bounded non-decreasing functions in ω↑ω. A subset X ⊂ ωω is called
F-concentrated at ω↑ω∗ , if ω↑ω∗ ⊂ X ⊂ ω↑ω and for any unbounded function
f ∈ ω↑ω and any semifilter F ∈ F the complement X \ M(f,F) has size
< |X|. For example, a subset X ⊂ ω↑ω∗ is concentrated at ω↑ω∗ in the sense
of the definition used in section 2.1 if (and only if) it is {Fr⊥}- concentrated
at ω↑ω∗ (and the size |X| of X has uncountable cofinality).

Let F be a semifilter. As expected, every [F ]-concentrated at ω↑ω∗ set
X ⊂ ω↑ω of size |X| ≤ non(M[F ]) is [F ]-Menger as a topological space. The
above statement has also a product version. Given semifilters F1, . . . ,Fn let
F1 ∧ · · · ∧Fn = {F1 ∩ · · · ∩Fn : Fi ∈ Fi for i ≤ n}. The family F1 ∧ · · · ∧Fn

is a semifilter if it does not contain the empty set. In such a situation the
product X =

∏n
i=1 Xi is F1 ∧ · · · ∧ Fn-Menger provided Xi ⊂ ω↑ω is an

[Fi]-concentrated subset at ω↑ω∗ of size |Xi| ≤ add(M[F1∧···∧Fn]) for all i ≤ n.
In particular, if F is a filter and |X| ≤ add(M[F ]), then all finite powers of
X are [F ]- Menger.

Our next aim is to construct an [F ]-Menger space X failing to be [U ]-
Menger for a semifilter U . Of course, such a semifilter U cannot be arbitrary:
it must lie in the set SF \ {U ∈ SF : F 6b U}.
Theorem 28. Let F be a semifilter with κ = cof(M[F⊥]) = cov(M[F⊥]) =
add(M[F ]) for some cardinal κ. Then for any semifilter U with F 6b U and
cof(M[U ]) ≤ κ there is an [F ]-concentrated subset X ⊂ ωω at ω↑ω∗ of size
|X| = κ such that (1) (X,O) is [F ]-Menger; (2) (X, µp) is not [U ]-Menger;
(3) if F is a filter, then all finite powers of X are [F ]-Menger.

Since the cardinal characteristics of families M[F ] lie in the interval [b, d]
all of them coincide under b = d. Thus under (b = d) for all semifilters
F 6b U there exists an [F ]-Menger zero-dimensional metrizable space X
that fails to be [U ]-Menger. This is the base of a dichotomic proof of the
existence of a non-Hurewicz subspace X ⊂ ωω of size |X| = b whose all
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finite powers of X are Scheepers (it suffices to consider the cases b = d and
b < d). However we do not know the answer to the following

Question 4. Let F be an ultrafilter. Is there an [F ]-Menger topological
space which is not Hurewicz?

S. Garćia-Ferreira and A. Tamariz-Mascarúa deeply considered the pres-
ence of an ultrafilter parameter in the Frechét-Urysohn property, sequential-
ity, γ-property of Gerlits and Nagy, see [33] and references therein. In spirit
Question 4 seems to be close to [33, Problem 3.14].

4.4. A selection principle varying between Hurewicz and Menger.
In this section we discuss the selection principle

⋃
fin(O, T ∗) introduced by

Tsaban [82]. In our terminology this selection principle coincides with the
SPF-Menger property corresponding to the family SPF of all simple P -filters.
Recall from [10] that a filter F on ω is a simple P -filter, if it is generated by a
tower. Following [86] by a tower we understand a ⊂∗-decreasing transfinite
sequence of infinite subsets of ω, i.e. a sequence (Tα)α<λ such that Tα ⊂∗ Tβ

for all α ≥ β. The cardinality λ is called the length of this tower. We denote
by Depth+([ω]ℵ0) the smallest cardinality κ such that there is no tower of
length κ. (Thus t < Depth+([ω]ℵ0). A model with b ≥ Depth+([ω]ℵ0) was
constructed in [26]. Some other applications of Depth+([ω]ℵ0) in Selection
Principles may be found in [68].)

The following result result was proven in [90].

Theorem 29. Under Depth+([ω]ℵ0) ≤ b the SPF-Menger property is equiv-
alent to the Hurewicz property, while under u < g it is equivalent to the
Menger property.

The statement above can be compared with the fact that the Hurewicz
and Menger properties differ in ZFC, see, e.g., [24].

4.5. Applications to function spaces Cp(X). This section is devoted
to characterizations of the F-Menger property of a topological space X via
properties of the function space Cp(X). We recall that Cp(X) is the space
of continuous real-valued functions on X, endowed with the topology of
pointwise convergence (inherited from the Tychonoff product RX).

4.5.1. Characterizing the F-Menger spaces via convergence properties of func-
tion sequences. Here we characterize F-Menger topological spaces X via
convergence properties of sequences in Cp(X). Our results develop ideas
of Bukovsky, Reclaw, Repický [23] who investigated the interplay between
the pointwise and so-called quasi-normal convergence in Cp(X).

A function sequence (fn : X → R)n∈ω is defined to converge quasinor-
mally to a function f : X → R if there exists a vanishing sequence (εn)n∈ω

of positive reals such that for every x ∈ X the equation |fn(x)− f(x)| ≤ εn

holds for all but finitely many n ∈ ω. Introducing a semifilter parameter F ⊂
SF in this definition we obtain a notion of F-normal convergence so that the
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quasinormal convergence will correspond to the {Fr}-normal convergence:
a function sequence (fn : X → R)n∈ω is defined to converge F-normally to a
function f : X → R if there exists a vanishing sequence (εn)n∈ω of positive
reals such that the family

{{n ∈ ω : |fn(x) − f(x)| < εn} : x ∈ X
}

lies in
some semifilter F ∈ F.

Our general strategy is to find conditions on a topological space X imply-
ing the F-normal convergence of any pointwise convergent function sequence
in Cp(X). Spaces X with that property are referred to as QNF-spaces.

We shall write inf A = 0 for a subset A ⊂ RX if inf{f(x) : f ∈ A} = 0 for
each x ∈ X. By C+

p (X) ⊂ Cp(X) we denote the set of all strictly positive
functions on X.

Theorem 30. For an ³-invariant family F ⊂ SF of semifilters and a topo-
logical space X the following conditions are equivalent: (1) X is an QNF-
space; (2) The multicovered space (X,Of

ω) is F-Menger; (3) Any function
sequence (fn)n∈ω ⊂ C+

p (X) with inf{fn}n∈ω = 0 is F-normally convergent.
In particular, a Lindelöf regular topological space X is F-Menger iff it is

a QNF-space.

For the family F = [Fr] of meager semifilters this yields a characterization
[22] of Hurewicz regular topological spaces as regular Lindelöf spaces with
the property that every monotone pointwise convergent function sequence
(fn) ⊂ Cp(X) converges quasinormally.

The above statements yield a characterization of the F-Menger property
of X via convergence properties of Cp(X). However, this characterization
involves the partial order of Cp(X) and thus is not purely topological. So,
Arkhangelski’s question [2] on the t-invariance of the Menger property still
remains open. We extend it to the subsequent

Question 5. Is the F-Menger property t-invariant? What about ³-invariant
families F?

4.5.2. The F-Menger property and fan tightness. In this section we discuss
another duality between selection properties of a Tychonoff space X and
local properties of the function space Cp(X).

Let F be a family of semifilters. Generalizing the definition of countable
fan tightness introduced in [1] we define a topological space X to have F-fan
tightness, if for every point x ∈ X and every sequence (An)n∈ω of subsets
of X with x ∈ ⋂

n∈ω An there exists a sequence (Bn)n∈ω of finite subsets of
X such that An ⊃ Bn and the collection {{n ∈ ω : U ∩ Bn 6= ∅} : U is a
neighborhood of x} lies in some semifilter F ∈ F. Thus a topological space
X has countable fan tightness if and only if X has {Fr⊥}-fan tightness if
and only if it has SF-fan tightness.

Theorem 31. The function space Cp(X) has F-fan tightness for an ³-
invariant family F ⊂ SF if and only if all finite powers of X are F-Menger.
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In two extreme cases, namely F = [Fr⊥] and F = [Fr], the above result
gives known characterizations of the Menger and Hurewicz properties of all
finite powers proved in [1] and [50].

5. Games on Multicovered spaces

5.1. Definitions and elementary properties. In this section we shall
consider classes of multicovered spaces situated between σ-bounded and ω-
bounded spaces, and defined with help of infinite games. All multicovered
spaces are assumed to be centered.

Given a family F ⊂ SF of semifilters, consider the following F-Menger
game on a multicovered space (X, µ) played by two players I and II: player I
chooses a cover u0 ∈ µ and player II responds choosing a u0-bounded subset
B0 of X; in the second turn, player I again chooses some u1 ∈ µ and player
II responds choosing a u1-bounded subset B1 of X, and so on. At the end
of this game they will obtain infinite sequences (un)n∈ω ∈ µω and (Bn)n∈ω,
where Bn ⊂ X is un-bounded for all n ∈ ω. We say, that player II (=the
second player) wins this game, if the indexed family v = {Bn : n ∈ ω} is an
F-cover of X. Otherwise player I(=the first player) wins.

For families {Fr}, UF, and {Fr⊥} we obtain the games corresponding
to the Hurewicz, Scheepers, and Menger properties respectively. The last
one was introduced by R. Telgarsky in [72], who proved that a hereditarily
Lindelöf topological space X is σ-compact provided the second player has a
winning strategy in the Menger game on X, see [71] and references therein.

¿From now on we shall call a multicovered space (X, µ) winning F-Menger
(resp. non-loosing F-Menger, F-Menger determined, F-Menger undetermined)
if the second player has a winning strategy (resp. the first has no winning
strategy, one of the players has a winning strategy, none of the players has
a winning strategy) in the F-Menger game on (X, µ).

All “winning” and “non-loosing” properties are preserved by uniformly
bounded surjective morphisms. One of the most important results is that
all “winning” properties coincide, i.e. every winning {Fr⊥}-Menger mul-
ticovered space is winning {Fr}-Menger. Therefore it is natural to call
a multicovered space (X,µ) winning, if it is winning F-Menger for some
(equivalently any) family F of semifilters.

Proposition 32. Every winning multicovered space X satisfies the inequal-
ity bc(X) ≤ ℵ0 · bχ(X).

5.2. The interplay between the F-Menger and non-loosing F-Menger
properties. It is clear that every non-loosing F-Menger multicovered space
is F- Menger. The inverse implication depends on the properties of F.
Given a family F = F↓ ⊂ SF of semifilters and a map θ : F → SF such
that θ(F) ⊂ F⊥ and θ(F) 6³ Fr for all F ∈ F, denote by Fθ the family
{F ∧ θ(F) : F ∈ F}. Then every F-Menger uniformizable multicovered
space is non-loosing Fθ-Menger for all θ as above. In particular, every F-
Menger uniformizable multicovered space is non-loosing F-Menger for every
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family F of filters (in this case θ = idF). This implies that every Scheepers
(Hurewicz) uniformizable space is non-loosing Scheepers (Hurewicz). In case
of topological spaces this implies the subsequent result essentially proven by
Hurewicz [39], see also [64, Th. 13].

Theorem 33. Each Menger topological space is BS-Menger, and hence non-
loosing Menger.

On the other hand, the multicovered space (ωω, µc) is Menger but not non-
loosing Menger. Therefore it fails to be BS-Menger. As we shall see later,
the multicovered space (ωω, µc) has nontrivial applications to K-analytic
spaces.

It is worth to mention here that in our proofs we use the technique based
on (semi)filter games deeply considered in [53], [52] and [12]. Surprisingly,
but the results about games on multicovered spaces from the previous sec-
tion enable us to find simple alternative proofs of some results from [52].
Therefore, semifilter games is a place where multicovered spaces can be ef-
fectively applied as well as the tool for considering games on multicovered
spaces.

5.3. Unions and products of multicovered spaces. It is easy to check
that the winning property is preserved by countable unions of subspaces of
a multicovered space. Moreover, for an ω-bounded multicovered space X
with bχ(X) ≤ ℵ0 each Hurewicz subspace of X is winning. This observation
implies that the union of less than b winning subspaces of X is winning.

For multicovered spaces (X, µ) with uncountable bχ(X, µ) the situation is
rather different. Let X be a Bernstein subset of the real line and µ = O(X)
be the family of all open covers of X. (Recall, that a subset X of R is
Bernstein if it splits every uncountable compact C ⊂ R in sense C ∩X 6= ∅
and C\X 6= ∅.) Then every winning subspace of (X,µ) is at most countable,
consequently the winning property is not preserved by uncountable unions
of subspaces of (X, µ).

Concerning the “non-loosing” properties, for a family F = F↓ ⊂ SF the
non-loosing F-Menger property is preserved by unions of less than t sub-
spaces of an ω-bounded uniformizable multicovered space. If, moreover, F is
a family of filters, then the F-Menger and non-loosing F-Menger properties
coincide. So we can exploit the results on preservation of F-Menger prop-
erty by operations over multicovered spaces, discussed in sections 2.2, 3.7
and 3.9.

Theorem 34. The product (X × Y, µX · µY ) of a non-loosing F-Menger
(winning) multicovered space (X, µX) and a winning space (Y, µY ) is non-
loosing F-Menger (winning).

5.4. A transfinite extension of the Menger game. Let us fix any ordi-
nal α and consider the following Menger(α) game: players I and II at each
step β < α choose a cover uβ ∈ µ and a uβ-bounded subset Bβ of X. Player
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II is declared the winner in the Menger(α) game, if
⋃

β<α Bβ = X, other-
wise player I wins. Thus we arrive to classes of winning(α) and non-loosing
Menger(α) multicovered spaces.

Observe, that the Menger game is a particular case of a Menger(α) game
with α = ω. It is clear, that every multicovered space X is winning
Menger(α) for a sufficiently large α (for example α = |X|). This naturally
leads us to the concept of the ordinal winning index owi(X) of a multicov-
ered space X, equal to the least ordinal α such that X is winning(α).

It is clear, that the multicovered space X is Menger provided owi(X) <
ω1. On the other hand, every topological space X has owi(X,O) ≤ hl(X)+,
where hl(X) is the hereditary Lindelöf number of X. The ordinal winning
index owi(X) can not be arbitrary: it equals either to a limit ordinal or to
the successor of a limit ordinal. The latter case occurs for the (non-centered)
multicovered space (ωω, µ`): owi(Nω, µ`) = ω + 1.

Concerning centered multicovered spaces with intermediate ordinal win-
ning index, we have no naive examples.

Question 6. Is there a ZFC-example of a centered multicovered space (X, µ)
such that ω < owi(X, µ) < ω1? More generally, for which α ∈ (ω, ω1) there
is a consistent (resp. ZFC-)example of a centered multicovered space (X, µ)
with owi(X, µ) = α?

Some partial answer onto the second part of the above question is already
known.

Theorem 35. (1) Under (add(M) = d) there exists a divisible subgroup H
of Rω with owi(H) = ω ·2. (2) Under (add(M) = c) there exists a decreasing
sequence (Hn)n∈N of divisible nonmeager subgroups of Rω with owi(Hn

n ) =
ω · (n + 1) for every n ∈ N. (3) Under (b = d) there exists a subgroup G of
Zω such that owi(Gn) = ω2 for all n ∈ ω; (4) Under (b = d) there exists a
zero-dimensional metrizable space X such that owi(Xn,O) = ω · (n + 1) for
every n ∈ N.

Similar results can be proven for the Rothberger version of the Menger(α)
game (the difference is that at the β-th inning the second player select an
element Bβ ∈ uβ in the cover uβ chosen by the first player).

5.5. Applications to topological groups.

5.5.1. Straightforward applications. In this section we survey some applica-
tions of the results from sections 4 and 5 to topological groups. This will
allow us to answer some questions posed in [38] and [74]. Some of them were
independently answered in [4]. The crucial observation is that the game OF
on a topological group G coincides with the Menger game on the multicov-
ered space (G,µL), where µL = {{gU : g ∈ G} : U is open subset of G} is
the multicover of G corresponding to its left uniform structure. Thus a topo-
logical group G is: (strictly) o-bounded, if the multicovered space (G,µL) is
(winning) Menger; OF -(un)determined, if (G,µL) is Menger (un)determined.
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Theorem 36. (1) The classes of (strictly) o-bounded, OF -determined and
OF -undetermined topological groups are closed under multiplication of such
groups by strictly o-bounded groups.

(2) A strictly o-bounded topological group G is σ-bounded provided the
Raikov completion of G is Čech-complete.

(3) Assume (u < g) and let {Gi : i ≤ n} be a finite family of topological
groups such that the topological space Gi is Menger for all i ≤ n. Then the
product G0 × · · · ×Gn is either strictly o-bounded or OF -undetermined.

(4) Let G be a topological group which fails to be strictly o-bounded. If the
square G2 is o-bounded, then G is OF -undetermined.

(5) The union
⋃

α<τ Gα of an increasing family {Gα : α < τ} of τ < t
many OF -undetermined subgroups of an ω-bounded topological group is OF -
undetermined.

5.5.2. Selection properties of free groups over a Tychonoff space. In this
section we characterize Tychonoff spaces X whose free (Abelian) topological
group F (X) (A(X)) is [strictly] o-bounded, thus answering a question from
[38].

In what follows topological groups are considered with the multicover
corresponding to their left uniformity provided converse is not stated.

Theorem 37. For a Tychonoff space X and an ³-invariant family of semi-
filters F ⊂ SF the following conditions are equivalent: (1) the free Abelian
topological group A(X) of X is F-Menger; (2) A(X)n is F-Menger for all
n ∈ ω; (3) the free topological group F (X) of X is F-Menger; (4) F (X)n

is F-Menger for all n ∈ ω; (5) All finite powers of the multicovered space
(X, µU(X)) are F-Menger.

Here U(X) is the maximal uniformity generating the topology of X. For
F = [Fr⊥] this gives a characterization of o-boundedness of free (Abelian)
topological groups. The characterization of the strict o-boundedness is ana-
logical.

Theorem 38. For a Tychonoff space X the following conditions are equiv-
alent: (1) A(X) is (strictly) o-bounded; (2) A(X)n is (strictly) o-bounded
for all n ∈ ω; (3) F (X) is (strictly) o-bounded; (4) F (X)n is (strictly) o-
bounded for all n ∈ ω; (5) The multicovered space (X, µU(X)) is Scheepers
(winning).

For a Lindelöf topological space X the multicovers λU(X) and O(X) are
equivalent. Therefore a Tychonoff space X is winning (resp. F-Menger)
if and only if so is (X,λU(X)) and X is Lindelöf. In combination with
the A-invariance of the Lindelöf property [87] this implies that the winning
property as well as the F-Menger property for a family F = F↓ of filters are
A- and hence M -invariant. (A topological property is (A-) M -invariant, if
a topological space X has this property whenever so does any topological
space Y such that F (X) and F (Y ) (resp. A(X) and A(Y )) are topologically
isomorphic).
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The above characterizations enable us to resolve the problem of construc-
tion of OF -undetermined groups posed in [74] and solved in [51] and [6]
(and, probably, somewhere else) independently. Namely, let X be a non-
σ-compact metrizable space such that all finite powers of X are Menger
(Hurewicz). Then all finite powers of F (X) and A(X) are OF -undetermined
being non-strictly o-bounded groups whose underlying topological space are
Menger (Hurewicz). Spaces X with properties specified above were con-
structed in [14], [24], and [84].

In all nontrivial cases free groups are not metrizable. In the next section
we shall also present metrizable examples of OF-undetermined groups.

6. Determinacy of Games related to Selection Principles

This section is devoted to the determinacy of the F-Menger game. We
introduce a class of so-called absolutely F-Menger-determined topological
spaces and prove that it contains spaces with nice descriptive properties,
namely all countably K-analytic or more generally quasi-analytic spaces.
In section 6.3 we give an exposition of Menger-undetermined multicovered
spaces possessing an additional algebraic structure.

6.1. K-analytic multicovered spaces. We recall that a topological space
X is (countably-) K-analytic if X is the image of ωω under an upper semi-
continuous set-valued map Φ : ωω ⇒ X with (countably) compact values
Φ(z), z ∈ ωω. If |Φ(z)| ≤ 1 for any z ∈ ωω, then the space X is called
Souslin. Metrizable Souslin spaces are frequently called analytic.

The (countable) K-analyticity can be characterized in terms of an infinite
game, called “Cover-Subset−K” (resp. “Cover-Subset−Kω”). A decreasing
sequence (Fn)n∈ω of subsets of a topological space X is called a K-sequence
(resp. Kω-sequence) if the intersection Fω =

⋂
n∈ω Fn is (countably) com-

pact and the sequence (Fn)n∈ω converges to Fω in the sense that for any
neighborhood U ⊂ X of Fω there is a number m ∈ ω with Fm ⊂ U . A se-
quence (Fn)n∈ω of subsets of a topological space X is called a ∩6=∅-sequence
if

⋂
n∈ω Fn 6= ∅.

Now we are able to describe the infinite games “Cover-Subset−K”, “Cover-
Subset−Kω”, and “Cover-Subset−∩6=∅” played by two players I and II on
a topological space X as follows. The player I starts the game selecting a
countable cover u0 of X and II responds with an element U0 ∈ u0 and a
non-empty closed subset F0 of U0. At the n-th inning the player I selects a
countable cover un of the set Fn−1 and II responds with an element Un ∈ un

and a non-empty closed subset Fn ⊂ Un. At the end of the game “Cover-
Subset−K” (resp. “Cover-Subset−Kω”, “Cover-Subset−∩6=∅”) the player I
is declared the winner if the constructed sequence (Fn)n∈ω is a K-sequence
(resp. Kω-sequence, ∩6=∅-sequence). These games give us the following use-
ful characterization of (countably-)K-analytic spaces.
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Theorem 39. A topological space X is (countably-)K-analytic if and only
if the first player has a winning strategy in the “Cover-Subset−K” (resp.
“Cover-Subset−Kω”) game on X.

We define a topological space X to be quasi-analytic, if the first player
has a winning strategy in the game “Cover-Subset-∩ 6=∅”. The preceding
characterization means that quasi-analytic topological spaces are natural
generalizations of (countably-)K-analytic spaces.

Question 7. Is there a quasi-analytic topological space which is not count-
ably K-analytic?

The class of quasi-analytic spaces shares many useful properties of K-
analytic spaces: it is closed under taking upper semicontinuous (countably-)
compact-valued images and Fσ-subspaces of its elements. In addition, every
metrizable quasi-analytic topological space X is analytic.

Generalizing the classical result of Hurewicz asserting that an analytic
subset Z of a Polish space P is either σ-compact or else contains a closed in
P copy of the Baire space, we prove the following dichotomy:

Theorem 40. Let µ be a properly ω-bounded open multicover on a quasi-
analytic topological space X. Then either (X, µ) is winning or else the
multicovered space (ωω, µ`) is the image of X under a surjective uniformly
bounded morphism Φ : (X, µ) ⇒ (ωω, µ`).

Applying this dichotomy to quasi-analytic regular hereditarily Lindelöf
spaces, we obtain that such a space X either is σ-compact or else contains
a closed subspace that maps continuously onto ωω. A similar result may be
found in the survey paper [61].

These dichotomic results have many corollaries. First of all, it implies that
every quasi-analytic topological space X is absolutely F-Menger determined
in the sense that every properly ω-bounded open multicover µ of X the
multicovered space (X,µ) is F-Menger determined for every family F of
semifilters.

Another corollary asserts that the product of two centered properly ω-
bounded quasi-analytic multicovered spaces is Menger if and only if one of
these spaces is winning and the other is Menger. In its turn this corol-
lary helps us to prove that an Abelian quasi-analytic topological group is
o-bounded if and only if it is strictly o-bounded, which shows that the group
“constructed” in [37, 6.1] and “improved” in [6, Theorem 4] cannot exist in
principle.

In connection with our games ‘Cover-Subset−K”, ”Cover-Subset−Kω”
and “Cover-Subset-∩6=∅” let us mention Telgarsky who introduced and stud-
ied very similar games in [70] and [71] characterizing the analyticity.

6.2. Other examples of Menger-determined multicovered spaces.
In this section we establish the Menger-determinacy of multicovered spaces
that live on nice topological spaces.
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A topological space X is called a Choquet space if the second player has
a winning strategy in the following Choquet game GX . Two players, I and
II, at every step k ∈ ω choose non-empty open subsets Uk and Vk of X,
respectively, so that Uk ⊂ Vk−1 and Vk ⊂ Uk. At the end of the game, the
player II is declared the winner if the intersection

⋂
k∈ω Vk 6= ∅.

Theorem 41. Let µ be an open regular multicover on a topological space
X admitting a continuous surjective map f : Z → X from a hereditarily
Lindelöf hereditarily Choquet topological space Z. The multicovered space
(X, µ) is non-loosing Menger if and only if it is σ-bounded.

Next, we reveal the interplay between the Menger-determinacy of multi-
covered spaces and the determinacy of the game G(A) defined for any subset
A ⊂ ωω as follows. Two players, I and II, at every step k ∈ ω choose num-
bers n2k and n2k+1, respectively. At the end of the game, I is declared the
winner if the constructed sequence (nk)k∈ω belongs to the set A. Otherwise,
II wins. The game G(A) is determined if one of the players has a winning
strategy in the game G(A).

According to the fundamental Martin Theorem (see [57] or [43]), the game
G(A) is determined for any Borel subset A of ωω. The question whether
G(A) can be undetermined for an analytic or projective subset A ⊂ ωω

depends on axioms of Set Theory. We recall that the algebra of projective
subsets of a Polish space P is the smallest algebra of subsets of P closed
under taking continuous images of its elements, see [43, 37.1].

Let Det denote the family of all subspaces A ⊂ ωω such that for any
closed subset F ⊂ ωω and any continuous map p : ωω → ωω the game
G(p−1(A)∩F ) is determined. It follows from the Martin Theorem that the
family Det includes all Borel subsets of ωω. Under a suitable large cardinal
assumption the collection Det includes all projective subsets of ωω.

Theorem 42. Suppose a topological space X is the image of a space Z ∈ Det
under an upper semicontinuous countably-compact-valued map Φ : Z ⇒ X
and µ is an open multicover of X such that the multicovered space (X, µ) is
properly ω-bounded and bχ(X,µ) ≤ ℵ0. Then the multicovered space (X, µ)
is Menger-determined. More precisely, either (X, µ) is σ-bounded or else Z
contains a closed subset P of ωω whose image Φ(P ) fails to be non-loosing
Menger in (X, µ).

6.3. Menger- and Scheepers-undetermined multicovered spaces.
Generalizing the notion of the group hull of a subset in a topological group,
we arrive at the concept of an algebraic hull operator by which we understand
a function H : P(X) → P(X) such that for any subsets A ⊂ B ⊂ X we get

A ⊂ H(A) ⊂ H(B) = ∪{H(F ) : F is a finite subset of B}.
An algebraic hull operator H on a topological space X is defined to be

σ-compact if the set H(K) is σ-compact for any compact subset K ⊂ X;
H is called Gδ-measurable if for any compact subset K ⊂ X the set-valued
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function HK : X ⇒ X, HK : x 7→ H({x} ∪ K), is Gδ-measurable in the
sense that for any open subset U of X the set {x ∈ X : HK(x) ⊂ U} is a
Gδ-subset of X.

σ-Compact Gδ-measurable algebraic hull operators often arise in topolog-
ical algebra. Let us recall some related definitions, see [25]. By a continuous
signature we understand a sequence E = {En}n∈ω of topological spaces.
A continuous signature E = {En}n∈ω is σ-compact if all the spaces En

are σ-compact. A universal topological algebra of the continuous signature
E (briefly, a topological E-algebra) is a topological space X endowed with a
sequence of continuous maps {en : En×Xn → X}n∈ω. A subset A of a topo-
logical E-algebra (X, {en}n∈ω) is called a subalgebra of X if en(En×Y n) ⊂ Y
for all n ∈ ω. By the algebraic hull H(A) of a subset A of a topological E-
algebra we understand the intersection of all subalgebras of X containing
the subset A. The operator H : P(X) → P(X) assigning to each subset
A ⊂ X its algebraic hull H(A) is an algebraic hull operator. Moreover, if
the signature E is σ-compact, then the operator H is σ-compact and Gδ-
measurable. Observe, that the notion of a topological E-algebra generalizes
concepts of a topological (semi)group, topological ring, linear topological
space, and many other.

Theorem 43. Let H : P(X) ⇒ P(X) be a σ-compact Gδ-measurable al-
gebraic hull operator on a Polish space X and µ be any properly ω-bounded
open multicover on X. Then either (X, µ) is winning or else it contains a
Menger-undetermined subspace A with Menger-undetermined hull H(A).

In case when algebraic hull operator H is generated by some structure of
topological E-algebra with σ-compact signature E on X, using the ideas of
[24] (see also [84]) we can prove a bit more.

Theorem 44. Let H : P(X) → P(X) be the algebraic hull operator gener-
ated by the structure of topological E-algebra with σ-compact signature E on
a K-analytic regular topological space X and let µ be an open centered mul-
ticover of X such that the multicovered space (X, µ) is properly ω-bounded
but not winning. Then X contains not winning subspace Z such that all
finite powers of H(Z) have the Menger property. Consequently, H(Z) is
non-loosing Scheepers.

If the space X is Polish and nowhere locally-compact, then under CH
we can construct the subalgebra H(Z) to be hereditarily Baire. In case of
topological groups this gives a positive solution to Problem 5 posed in [38].

6.4. Determinacy of transfinite games on quasi-analytic multicov-
ered spaces. For a centered open multicover µ on a quasi-analytic topologi-
cal space X the Menger(α) game on (X, µ) is determined for every countable
ordinal α. More precisely, either X is winning or else for every countable
ordinal α the first player has a winning strategy in the Menger(α) game on
X. Consequently, owi(X, µ) ∈ {1, ω, ω1} for any open centered multicover
µ on a regular Lindelöf quasi-analytic space X.
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[40] W. Hurewicz: Über Folgen stetiger Functionen, Fund. Math. 9 (1927), 193–204;
[41] W. Just: On direct sums of γ7 spaces, preprint.
[42] W. Just, A. Miller, M. Scheepers, P. Szeptycki: The combinatorics of open

covers II, Topology Appl. 73 (1996), 241–266.
[43] A. Kechris: Classical Descriptive Set Theory, GTM 156, Springer, 1995.
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Department of Mathematics, Ivan Franko Lviv National University, Lviv (Ukraine)
E-mail address: tbanakh@franko.lviv.ua, lzdomsky@rambler.ru


