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Abstract. Assuming V = L, for every successor cardinal κ we con-

struct a GCH and cardinal preserving forcing poset P ∈ L such that

in LP the ideal of all non-stationary subsets of κ is ∆1-definable over

H(κ+).

1. Introduction

In this paper we prove the following result, which solves in the affirmative

a question posed in [8].

Theorem 1.1. Let κ be a successor cardinal in L.

(1) There exists a GCH and cardinal preserving forcing poset P ∈ L

such that in LP the ideal NSκ of all non-stationary subsets of κ is

∆1-definable over H(κ+).

(2) There exists a cardinal preserving forcing poset P ∈ L such that in

LP the ideal NSκ of all non-stationary subsets of κ is ∆1-definable

over H(κ+), and 2κ = κ++.

The motivation for Theorem 1.1 comes from generalized descriptive set

theory, which, roughly speaking, is the study of “nice” subsets of 2κ for

κ > ω. Descriptive set theory looks very different in this generalized setting

compared to the classical case. For instance, the classical fact that ∆1
1 sets

are Borel is not anymore true. And the non-stationary ideal on κ (pos-

sibly restricted to certain stationary subset) considered in various forcing

extensions is an important test space distinguishing various classes of “nice”

subsets of 2κ, see, e.g., [7, Theorem 49] and references therein.

Theorem 1.1 is proved using almost disjoint coding followed by localiza-

tion, a method invented by David in [3] and further developed in works of

Friedman and collaborators. This is a new application of this method as the

previous results regarding the definability of the ideal of non-stationary sub-

sets of κ were mainly achieved using combinatorics related to canary trees,

2010 Mathematics Subject Classification. Primary: 03E35, 03E20. Secondary: 03E45.

Key words and phrases. Definability, stationarity preservation, mixed support itera-

tion, coding, localization, generalized descriptive set theory.

The first author would like to thank the FWF for its support through grant P 23316.

The second author acknowledges the support through the FWF grants P 23316 and P

21968. The third author would like to thank FWF grant M 1244-N13 as well as the APART

Program of the Austrian Academy of Sciences for generous support for this research.

1



2 SY-DAVID FRIEDMAN, LIUZHEN WU, LYUBOMYR ZDOMSKYY

see [13] for the definition. For instance, Mekler and Shelah proved in [13]

that NSω1 is ∆1-definable over H(ω2) iff there is a canary tree, and canary

trees may or may not exist in models of GCH. The proof presented in [13]

had some inaccuracies which were fixed by Hyttinen and Rautila in [10],

where they also obtained the result that NSκ+ restricted to the ordinals of

cofinality κ can be ∆1-definable over H(κ+) for any regular κ. The results

of [10] were further improved in [7], where it is also shown that NSκ is not

∆1-definable in L.

This topic also has connections with large cardinal theory: Using methods

similar to those of [7], Friedman and Wu proved [8] that NSκ restricted to a

measure 0 set can be ∆1-definable for a measurable κ. They also show that

the unrestricted NSκ cannot be ∆1-definable for a weakly compact κ. Also

note that NSκ is ∆1-definable if there exists a collection S of stationary

subsets of κ such that |S| = κ and each stationary subset of κ contains some

S ∈ S. For κ = ω1 this is consistent relative to the existence of infinitely

many Woodin cardinals, see [14, Section 6.2].

With the exception of the case κ = ω1, prior results on the ∆1-definability

of NSκ are limited to restrictions of NSκ. In the present paper our methods

allow us to obtain the ∆1-definability of the full unrestricted NSκ for all

successor κ.

Throughout this paper we work over the constructible universe L, thus

unless otherwise specified V = L.

2. Proof of Theorem 1.1

Let γ be the predecessor cardinal of κ, i.e., κ = γ+. First we prove the

first part. At the end we shall indicate how to modify it in order to obtain

the proof of the second part.

We say that a transitive ZF− model M is suitable if γ + 1 ⊂M , (γ++)M

exists and (γ++)M = (γ++)L
M
. From this it follows, of course, that (γ+)M =

(γ+)L
M
. We will need an appropriate sequence ~S = 〈Sα : α < κ+〉 of

stationary subsets of κ+ ∩ Cof(κ) such that (κ+ ∩ Cof(κ)) \
⋃

α∈κ+ Sα is

stationary. Let 〈Gξ : ξ ∈ κ+ ∩ cof(κ)〉 be a ♦κ+(cof(κ)) sequence which is

Σ1 definable over Lκ+ . For every α < κ+ let us denote by Sα the set {ξ <
κ+ : Gξ = {κ · (α+ 1)}}. It follows from the above that Sα’s are stationary

subsets of cof(κ) ∩ κ+ which are mutually disjoint and the sequence ~S =

〈Sα : α < κ+〉 is Σ1 definable over Lκ+ . Moreover,
⋃
{Sα : α < κ+} has fat

complement because the set S′ = {ξ < κ+ : Gξ = {0}} is disjoint from the

union considered above.

The idea of the proof will be to construct a poset P such that in V P we

will have the following Σ1 definition of the complement of NSκ: S ⊂ κ is

stationary iff there exists Y ∈ [κ]κ such that for every suitable model M

of size γ containing Y ∩ (γ+)M , there is µ < (γ++)M such that for all

ζ ∈ T (S) ∩ (γ+)M we have M � Sρ·µ+ζ is not stationary (where T (S) =
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{2i+ 1 : i ∈ S} ∪ {2i : i ∈ κ \ S} and ρ = κ+ 3). In the latter definition by

Sρ·µ+ζ we mean, of course, its M -version.

We shall force clubs disjoint from certain Sα’s by initial segments. This

forcing is well-studied and it is known (see, e.g., [2, Theorem 1]) that under

GCH the poset consisting of closed bounded subsets of a stationary subset

S ⊂ λ, where λ is a successor cardinal, preserves cofinalities, introduces no

bounded subsets of λ, and creates a club subset of S if and only if S is fat

in the sense that for every club C ⊂ λ, C ∩S contains closed sets of ordinals

of arbitrarily large order-types below λ. Since Cof(< κ) ∪ S is easily seen

to be fat for any stationary subset S ⊂ Cof(κ), the posets shooting clubs

disjoint from Sα’s will have all of these nice properties.

Similarly, but using this time the (κ+-many) L-least codes for ordinals

below κ+ and a Σ1 definable ♦κ(cof(γ)) sequence, we can obtain a Σ1 defin-

able sequence ~A = 〈Aζ : ζ < κ+〉 of stationary subsets of cof(γ) ∩ κ which

are mutually almost disjoint (that is, for all ζ0 6= ζ1 we have that Aζ0 ∩Aζ1

is bounded in κ).

Let us fix a function F : κ+ → L and set ρ = κ + 3. Next, we shall

define an iteration 〈Pξ, Q̇ξ : ξ < κ+〉 depending1 on F . Later we will choose

a particular F such that the poset associated to it makes NSκ, the ideal of

non-stationary subsets of κ, ∆1-definable over H(κ+). The choice of this F

is done after Corollary 2.12.

Suppose that we have already defined Pξ for some ξ < κ+. Let us write

ξ in the form ρ · α + ζ, where ζ < ρ, and suppose that together with Pξ

we have also defined a sequence 〈Ẏβ : β < α〉 such that Ẏβ is a Pρ·(β+1)-

name for a subset of κ. If F (α) is not a Pρ·α-name for a subset of κ then

Q̇ξ is trivial. Otherwise let G denote the Pξ-generic filter. If F (α)G is

not stationary in V [G � ρ · α], then Qξ = Q̇G
ξ is trivial. So suppose that

F (α)G is stationary in V [G � ρ · α]. Four cases are possible. Before passing

to them we shall set the following notation: if A is a subset of κ, then

T (A) = {2i+ 1 : i ∈ A} ∪ {2i : i ∈ κ \A}.

Case 1. ζ < κ. If ζ 6∈ T (F (α)G), then Qξ is the trivial poset. Otherwise

Qξ is the standard poset shooting a club Cξ disjoint from Sξ via initial

segments. The Pξ-name of Cξ will be denoted by Ċξ.

Case 2. ζ = κ. Before defining Q̇ξ we need to fix some notation and

introduce some auxiliary objects. Given a set of ordinals X, let Even(X)

and Odd(X) be the sets of even and odd ordinals in X, respectively. In the

following we treat 0 as a limit ordinal. Let Dα ⊂ κ+ be a set coding the

sequences 〈Ẏ G
β : β < α〉 and 〈Cρ·α+ζ : ζ < κ〉. That is, letting φl, φt be

the L-minimal injections of α× κ and κ× κ+ into Even(κ+) and Odd(κ+),

1Formally we should have written 〈PF
ξ , Q̇F

ξ : ξ < κ+〉 instead of 〈Pξ, Q̇ξ : ξ < κ+〉, but
this would only burden the notation.
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respectively, Dα is such that Even(Dα) = φl[{〈β, i〉 : β < α, i ∈ Ẏ G
β }] and2

Odd(Dα) = φt[{〈ζ, ν〉 : ζ ∈ T (F (α)G), ν ∈ Cζ}]. Then Qξ adds a subset X0
α

of κ which almost disjointly codes Dα. More precisely, let Qξ be the poset

of all pairs 〈s, s∗〉 ∈ [κ]<κ × [Dα]
<κ, where 〈t, t∗〉 extends 〈s, s∗〉 if and only

if t end-extends s and t\s ∩ Aν = ∅ for every ν ∈ s∗. Given a Qξ-generic

filter G(ξ) over L[G], we set X0
α =

⋃
{s : ∃s∗ (〈s, s∗〉) ∈ G(ξ)}. By genericity

we have that Dα = {ν : Aν ∩X0
α is bounded in κ}.

Case 3. ζ = κ + 1. Let us fix a strictly increasing continuous sequence

〈Nν : ν < κ+〉 of elementary submodels of Lθ[X
0
α] of size κ which contain

κ ∪ {X0
α} as a subset, where θ is a large enough cardinal. Denote by Eα

the set {(κ+)N̄ν : ν < κ+}, where N̄ν is the Mostowski collapse of Nν , and

observe that Eα is a club in κ+. Now choose Zα to be a subset of κ+ such

that Even(Zα) = Dα, and if β < κ+ is (γ++)M = (κ+)M for some suitable

model M such that Zα ∩ β ∈M , then β belongs to Eα. (This is easily done

by placing in Zα a code for a bijection φ : β1 → κ on the odd part of the

interval (β0, β0+κ) for each adjacent pair β0 < β1 from Eα.) Then Qξ adds

a subset X1
α of κ which almost disjointly codes Zα. More precisely, let Qξ

be the poset of all pairs 〈s, s∗〉 ∈ [κ]<κ× [Zα]
<κ, where 〈t, t∗〉 extends 〈s, s∗〉

if and only if t end-extends s and t\s ∩ Aν = ∅ for every ν ∈ s∗. Given a

Qξ-generic filter G(ξ) over L[G], we set X1
α =

⋃
{s : ∃s∗ (〈s, s∗〉) ∈ G(ξ)}.

By genericity we have that Zα = {ν : Aν ∩X1
α is bounded in κ}.

As a result we have:

(∗)α: IfM is any suitable model such that κ∪{X0
α, X

1
α} ⊂M and (γ++)M <

γ++, then3 M � ψ(γ+, γ++, α, F (α)G, X0
α), where

ψ(γ+, γ++, µ, S,X) is the formula “Using the sequence ~A, the set X

almost disjointly codes a subset D of γ++ such that using φl and φt,

D codes4 µ < γ++, S ⊂ γ+, and a sequence 〈Cζ : ζ ∈ T (S)〉, where
Cζ is a club in γ++ disjoint from Sρ·µ+ζ .”

The proof of (∗)α is analogous to that of (∗)α in [4]. However, for the

sake of completeness we shall present it. Given a suitable model M with

(γ++)M = β and κ ∪ {X0
α, X

1
α} ⊂ M , observe that Zα ∩ β ∈ M be-

cause Zα ∩ β = {ν < β : |Aν ∩ X1
α| = κ} and ~AM = ~AL � β, which

yields β ∈ Eα by the construction of Zα. Also, Dα ∩ β ∈ M because

Dα = Even(Zα). Let ν < κ+ be such that (γ++)N̄ν = β. By the construc-

tion we have that Lθ[X
0
α] � ψ(γ+, γ++, α, F (α)G, X0

α), and hence also N̄ν �
ψ(γ+, γ++, α, F (α)G, X0

α) by elementarity. Since the coding apparatus as

well as stationary subsets involved into the formula ψ are referring to L, for

any 2 suitable modelsM0,M1 ⊃ {X} we have thatM0 � ψ(γ+, γ++, µ, S,X)

2Here we implicitly use that neither κ nor κ+ is collapsed by Pξ. This will be proved

in Lemmas 2.2 and 2.7. To be formally correct we should have presented this proof

simultaneously with the inductive construction of P.
3In this case κ = γ+ in M .
4Whenever we verify thatM � ψ(γ+, γ++, µ, T,X) for some suitable modelM we mean

by γ+, γ++, ~A, φt, φl, Sι, as may be expected, their M -versions.
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iffM1 � ψ(γ+, γ++, µ, S,X), provided that (γ++)M0 = (γ++)M1 . In particu-

lar, M � ψ(γ+, γ++, α, F (α)G, X0
α) because N̄ν � ψ(γ+, γ++, α, F (α)G, X0

α)

and (γ++)N̄ν = (γ++)M = β, which completes the proof of (∗)α.
Case 4. ζ = κ+2. In this case the poset Qξ localizes the property (∗)α of

X0
α in the style of [3]. More precisely, Qξ consists of all functions r : |r| → 2,

where the domain |r| of r is a limit ordinal less than κ, such that:

(1) if η < |r| then η ∈ X0
α iff r(3η + 1) = 1

(2) if η < |r| then η ∈ X1
α iff r(3η + 2) = 1

(3) if η ≤ |r|, M is a suitable model of size γ containing r � η as an

element and η = (γ+)M , then M � ψ(γ+, γ++, µ, F (α)G ∩ η,X0
α ∩ η)

for some ordinal µ.

The order relation is given by extension. Observe that the poset Qξ produces

a generic function from κ into 2, which is the characteristic function of a

subset Yα of κ whose Pξ-name will be denoted by Ẏα.

Finally, assuming that 〈Pξ, Q̇ξ : ξ < δ〉 has been defined for some limit

δ < κ+, we define Pδ as follows. Let Sδ be the set of all functions p with

domain δ such that p � ξ ∈ Pξ for all ξ < δ. For p ∈ Sδ we shall denote the

sets {
ξ < δ : ξ is of the form ρ · α+ ζ for some ζ < κ and p(ξ) 6= 1Q̇ξ

}
and{
ξ < δ : ξ is of the form ρ·α+ζ for some ζ ∈ {κ, κ+1, κ+2} and p(ξ) 6= 1Q̇ξ

}
by suppκ+(p) and suppκ(p), respectively, and their union will be denoted by

supp(p). The poset Pδ consists of those p ∈ Sδ such that |suppκ(p)| < κ and

|suppκ+(p)| < κ+. This completes our definition of P = Pκ+ depending on

the arbitrary bookkeeping function F .

Even though the following remark has been used already, we isolate it

here for future use.

Remark 2.1. Tracing back the statement of the formula ψ as well as the

coding apparatus involved one can see that if N,M are suitable models such

that (γ+)M = (γ+)N , (γ++)M = (γ++)N , and S,X ⊂ (γ+)M are elements

of M ∩N , then M � ψ(γ+, γ++, µ, S,X) iff N � ψ(γ+, γ++, µ, S,X) for any

µ < (γ++)M .

Lemma 2.2. The poset P is (< κ) distributive.

Before passing to the proof of Lemma 2.2 we shall introduce some nota-

tion. Let Dδ be the set of conditions p ∈ Pδ such that

• for all ξ of the form ρ · α+ ζ, where ζ ∈ {κ, κ+ 1}, we have p(ξ) =
ˇ〈sξ, s∗ξ〉 for some s∗ξ ∈ [κ+]<κ and sξ ∈ [κ]<κ;

• for all ξ of the form ρ ·α+κ+2 we have p(ξ) = ř for some r : |r| → 2;

and

• ξ p(ξ) ∈ Q̇ξ for all ξ ∈ supp(p).
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If Q is a poset, q ∈ Q ∈ N , then we say that q is strongly (N,Q)-generic if

for every open dense subset O of Q which is an element of N there exists

p ∈ O ∩N such that q ≤ p.

Proof of Lemma 2.2. We shall prove by induction on ξ < κ+ that Pξ has

some property which is formally stronger than (< κ) distributivity and that

Dξ is dense in Pξ. In order to formulate this property we shall introduce

some auxiliary notions.

Let us fix some large enough regular cardinal θ and some large n ∈ ω.

Given a set X ∈ Lθ, let N0 be the least Σn-elementary submodel of Lθ such

that {X} ∪ (γ + 1) ⊂ N0. The least means here that N0 is the closure of

{X} ∪ (γ + 1) with respect to all Σn Skolem functions given by the well-

ordering <L of Lθ. Suppose that for some ζ < κ we have already constructed

an increasing chain 〈Nξ : ξ < ζ〉 of Σn-elementary submodels of Lθ. If ζ

is limit then we set Nζ =
⋃

ξ<ζ Nξ. If ζ = ζ0 + 1 let Nζ be the minimal

Σn-elementary submodel of Lθ such that Nζ0 ∈ Nζ . This completes the

construction of the sequence 〈Nζ : ζ < κ〉 which will be called the minimal

sequence generated by X throughout the proof5.

By induction on ξ < κ+ we shall show that Dξ is dense in Pξ, and

(†ξ) for every q ∈ Pξ and X ∈ Lθ there exists a condition q′ ≤ q which

is strongly (Nζ ,Pξ)-generic for all limit ζ ≤ γ, where 〈Nζ : ζ < κ〉 is
the minimal sequence6 generated by {q,X}.

Notice that if X = 〈Bζ : ζ < γ〉 is a sequence of open dense subsets of Pξ,

then it follows from the above that q′ ∈
⋂

ζ<γ Bξ, and hence (†ξ) implies the

(< κ) distributivity of Pξ.

(†)0 is vacuously true. So let us consider three non-trivial cases: ξ is a

successor ordinal, ξ is limit of cofinality at most γ, and ξ is limit of cofinality

κ. The latter two cases will be addressed on pages 9 and 10, respectively.

1. ξ = ξ0 + 1. Let us write ξ in the form ρ · α + ι for some ι < ρ. If

ι ≤ κ+1 then Qξ0 is a Pξ0-name for a (< κ) closed poset, which makes this

case straightforward. So let us assume that ι = κ+2, i.e., ξ = ρ ·α+ κ+2.

First we shall prove that Pξ is (< κ) distributive. Let us denote by µ the

ordinal ρ · α + κ and fix a collection X = {Oζ+1 : ζ < γ} of open dense

subsets of Pξ and a condition q ∈ Pξ. Let also 〈Nζ : ζ < κ〉 be the minimal

sequence generated by {q,X}. We shall show that 1Pµ forces the poset

˙̄Qµ := Q̇µ ∗ Q̇µ+1 ∗ Q̇µ+2 = Q̇ρ·α+κ ∗ Q̇ρ·α+κ+1 ∗ Q̇ρ·α+κ+2

to be (< κ) distributive.

Using the inductive assumption we can find a condition q′ ∈ Pµ such that

q′ ≤ q � µ and q′ is strongly (Nζ ,Pµ)-generic for all limit ζ ≤ γ. Let G

denote a Pµ-generic filter containing q′ and note that Nζ [G] ∩ κ = Nζ ∩ κ

5In this proof we will only use the first γ + 1 elements of minimal sequences. Longer

initial segments of minimal sequences will be considered in the proof of Lemma 2.5.
6Here we have ξ ∈ N0 because q ∈ N0 and ξ is the domain of q.
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for all limit ζ < γ. For every (not necessary limit) ζ ≤ γ we shall denote

the intersection Nζ ∩ κ by κζ . Since X, γ ∈ N0, there exists an enumeration

〈Oζ+1 : ζ < γ〉 ∈ N0 of X. We shall denote Q̇G
µ by Qµ and the Qµ-names

Q̇G
µ+1 and Q̇G

µ+2 by Q˜µ+1 and Q˜µ+2, respectively.

For every ζ ≤ γ let us denote by O′
ζ+1 the open dense subset {τG : exists

u ∈ G such that 〈u, τ〉 ∈ Oζ+1} of Q̄µ = ˙̄QG
µ . Observe that 〈O′

η+1 : η + 1 ≤
ζ〉 ∈ N0[G] for all ζ ≤ γ. The (< κ) distributivity of Pµ combined with the

(< κ) closure of Qµ,Q˜µ+1 implies that the set U of conditions r ∈ Q̄µ such

that r(µ), r(µ+1), r(µ+2) are of the form ǎ for some set a ∈ L of size < κ,

is dense in Q̄µ.

Set p0 = (q � {µ, µ + 1, µ + 2})G. From now on we shall work in L[G].

The sequence 〈Nζ [G] : ζ < γ〉 will guide our inductive construction of a

decreasing sequence 〈pζ : ζ ≤ γ〉 of conditions in U such that pγ ∈ Nγ+1[G]

belongs to all O′
ζ+1’s as follows. Let <G be the canonical wellordering of

L[G]: x <G y iff τx <L τy, where τx, τy are the <L-minimal Pµ-names such

that τGx = x and τGy = y. Suppose that a condition pζ ∈ Nζ+1 ∩U has been

already constructed. Since Qµ ∗ Q˜µ+1 is (< κ) closed, we can inductively

extend 〈pζ(µ), pζ(µ+1)〉 to a strongly (Nζ+1[G],Qµ ∗Q˜µ+1)-generic in L[G]

condition 〈p′ζ(µ), p′ζ(µ + 1)〉 ∈ Qµ ∗ Q˜µ+1. We shall additionally assume

that 〈p′ζ(µ), p′ζ(µ + 1)〉 is the <G-minimal condition in Qµ ∗ Q˜µ+1 with the

properties described above. It follows that we can find r ∈ Nζ+1[G] such

that 〈p′ζ(µ), p′ζ(µ + 1), ř〉 ∈ O′
ζ+1. In addition, we shall assume that r is

the <G-minimal element of 2<κ with this property. Let rζ+1 be the <G-

minimal extension of r with domain κζ+1 and such that rζ+1 �
(
{3η : η <

κ} ∩ [|r|, |r| + γ)
)
codes a bijection between κζ+1 and γ. Letting pζ+1 be

the condition 〈p′ζ(µ), p′ζ(µ+1), ˇrζ+1〉, by the construction above we conclude

that pζ+1 ∈ Nζ+2[G] ∩ U ∩O′
ζ+1.

If ζ is limit, then we set

pζ(µ) =
ˇ〈

⋃
η<ζ

sµ,η,
⋃
η<ζ

s∗µ,η〉 and pζ(µ+ 1) =
ˇ〈

⋃
η<ζ

sµ+1,η,
⋃
η<ζ

s∗µ+1,η〉,

where pη(µ) = ˇ〈sµ,η, s∗µ,η〉 and pη(µ + 1) = ˇ〈sµ+1,η, s∗µ+1,η〉 for all η < ζ. In

addition, we set pζ(µ + 2) = ˇ∪η<ζrη, where řη = pη(µ + 2) for all η < ζ.

Since pη for η < ζ have been constructed by choosing <G-minimal conditions

fulfilling certain requirements, the sequence 〈pη : η < ζ〉 is an element of

Nζ+1[G], and hence pζ ∈ Nζ+1[G] as well.

We claim that pζ ∈ Q̄µ. Observe that 〈pζ(µ), pζ(µ + 1)〉 ∈ Qµ ∗ Q˜µ+1 by

the (< κ) closeness of the latter poset. It suffices to show that 〈pζ(µ), pζ(µ+
1)〉  pζ(µ+2) ∈ Q˜µ+2. Let pζ(µ) = 〈sµ,ζ , s∗µ,ζ〉, pζ(µ+1) = ˇ〈sµ+1,ζ , s

∗
µ+1,ζ〉,

and pζ(µ+ 2) = řζ . Notice that the condition 〈pζ(µ), pζ(µ+ 1)〉 is strongly
(Nζ [G],Qµ∗Q˜µ+1)-generic in L[G]. This means that if H := H(µ)∗H(µ+1)

is a Qµ ∗Q˜µ+1-generic filter over L[G] containing 〈pζ(µ), pζ(µ+1)〉, then the

isomorphism π of the transitive collapse N̄ζ [ḡ] of Nζ [G], onto Nζ [G], extends
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to an elementary embedding from

¯̄Nζ := N̄ζ [ḡ ∗ h̄(µ̄) ∗ h̄(µ̄+ 1)]

into Lθ[G][H]. Here µ̄ = π−1(µ), h̄(µ̄) is the π−1(Qµ)-generic filter over

N̄ζ [ḡ] determined by pζ(µ), i.e., h̄(µ̄) consists of the images under π−1 of all

conditions in Qµ which are weaker than pζ(µ) and belong to Nζ [G]. h̄(µ̄+1)

is defined in the same way.

By the genericity of H we know that, letting X0
α and X1

α be the unions

of the first coordinates of elements of H(µ) and H(µ + 1), respectively,

property (∗)α holds. By elementarity we have that ¯̄Nζ is a suitable model

and ¯̄Nζ � ψ(γ+, γ++, π−1(α), π−1(F (α)G), x0α), where x0α and x1α are the

unions of the first coordinates of elements of h̄(µ̄) and h̄(µ̄+1) (equivalently,

the first coordinates of pζ(µ) and pζ(µ+ 1)), respectively. Observe that by

the construction of P we have ¯̄Nζ = N̄ζ [ḡ, x
0
α, x

i
α] and hence N̄ζ [ḡ, x0, xi] �

ψ(γ+, γ++, π−1(α), π−1(F (α)G), x0α).

Let M be any suitable model containing rζ and such that (γ+)M = |rζ |,
which is equal to κ ∩Nζ = κζ . We have to show that

M � ψ(γ+, γ++, π−1(α), F (α)G ∩ κζ , x
0
α). Let us denote by ν and λ the

intersection M ∩Ord and ¯̄Nζ ∩Ord, respectively. Three cases are possible.

Case a). ν > λ. Since Nζ was chosen to be the least sufficiently ele-

mentary submodel of Lθ[G] containing certain objects, it follows that κζ =

(γ+)M is collapsed to γ in Lν , and hence this case cannot happen.

More precisely, Lν can compute (and hence contains) the sequence 〈π−1[Nη] :

η < ζ〉. Indeed, N̄ζ ∈ Lν since N̄ζ = Lξ, π
−1[Nη] =

⋃
η′<η π

−1[Nη′ ]

for limit η < ζ, and π−1[Nη+1] is the closure of {π−1[Nη]} under the Σn

Skolem functions of Lξ, and these are elements of Lν . Therefore Lν con-

tains the sequence 〈N̄η : η < ζ〉, where N̄η is the Mostowski collapse of Nη

(the Mostowski collapse of Nη coincides with that of π−1[Nη]), and hence

〈κη = (γ+)N̄η : η < ζ〉 ∈ Lν , whereas the latter sequence is cofinal in κζ .

Case b). ν = ξ. Since (γ+)N̄ζ [ḡ,x
0
α,x

1
α] = (γ+)M and (γ++)N̄ζ [ḡ,x

0
α,x

1
α] =

(γ++)M and N̄ζ [ḡ, x
0
α, x

1
α] � ψ(γ+, γ++, π−1(α), F (α)G∩κζ , x0α), we conclude

that

M � ψ(γ+, γ++, π−1(α), F (α)G ∩ κζ , x0α), see Remark 2.1.

Case c). ν < ξ. In this caseM1 := Lν [x
0
α, x

1
α] is an element of N̄ζ [ḡ, x

0
α, x

1
α].

Since Lθ[G][H] satisfies (∗)α, by elementarity so does the model N̄ζ [ḡ, x
0
α, x

1
α]

with X0
α, X

1
α, and α replaced by x0α, x

1
α, and π

−1(α), respectively. In par-

ticular, M1 � ψ(γ+, γ++, π−1(α), F (α)G ∩ κζ , x
0
α). Applying Remark 2.1

we conclude that M � ψ(γ+, γ++, π−1(α), F (α)G ∩ κζ , x
0
α), which finishes

our proof of pζ ∈ Q̄µ and hence completes the construction of the sequence

〈pζ : ζ ≤ γ〉.
By the construction we have pγ ∈

⋂
ζ<γ O

′
ζ+1 ∩ Nγ+1[G], and hence Q̄µ

as well as Pξ are (< κ) distributive. Let τ be a Pµ-name such that τG = pγ
and for every ζ < γ let qζ ∈ G be such that qζ ≤ q � µ and 〈qζ , τ〉 ∈ Oζ+1.
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Since Pµ is (< κ) distributive, there exists q′′ ∈ G such that q′′ ≤ qζ for all

ζ. In addition, we can assume that q′′ ∈ Dµ and it forces all coordinates of

τ to be equal to certain ground model objects. It follows from the above

that q ≥ 〈q′′, τ〉 ∈
⋂

ζ<γ Oζ+1 ∩ Dξ, and hence Dξ is dense in Pξ. Combined

with the following claim this implies (†ξ) and thus completes the successor

case.

Claim 2.3. Let β < κ+. If Pβ is (< κ) distributive and Dβ is dense, then

(†β) holds.

Proof. Let q ∈ Pβ , X ∈ Lθ, and 〈Nζ : ζ < κ〉 be the minimal sequence

generated by {q,X}. We need to find a condition q′ ≤ q which is strongly

(Nζ ,Pβ)-generic for all limit ζ ≤ γ.

Set p0 = q and assume that conditions 〈pη : η < ζ〉 have already been

defined for some ζ ≤ γ so that pη ∈ Nη+1 ∩ Dβ for all η < ζ. If ζ = η + 1,

then pζ is the <L-minimal condition extending pη such that pζ ∈ Dβ and it

belongs to the intersection of all open dense subsets of Pβ which are elements

of Nζ . Since Nζ ∈ Nζ+1, we have pζ ∈ Nζ+1 as well, as β belongs to N0.

If ζ is limit, then using the fact that pη ∈ Dβ for all η < ζ we can define

pζ to be the “coordinatewise” union of pη over η < ζ. More precisely, for

ξ ∈
⋃

η<ζ suppκ(pη) we set

pζ(ξ) =
ˇ〈

⋃
η<ζ

sξ,η,
⋃
η<ζ

s∗ξ,η〉 and pζ(ξ) =
ˇ⋃

η<ζ

rξ,η,

where pη(ξ) = ˇ〈sξ,η, s∗ξ,η〉 for all
7 η < ζ provided that ξ ∈ {ρ·ι+κ, ρ·ι+κ+1}

for some ι, and pη(ξ) = ˇrξ,η for all η < ζ if ξ is of the form ρ · ι+ κ+ 2. For

ξ ∈
⋃

η<ζ suppκ+(pη) we denote by pζ(ξ) a Pξ-name τ which is forced by 1Pξ

to be the union of pη(ξ) over all η < ζ.

Since pη for η < ζ have been constructed by choosing <G-minimal condi-

tions fulfilling certain requirements, the sequence 〈pη : η < ζ〉 is an element

of Nζ+1, and hence pζ ∈ Nζ+1 as well. Thus, once we know that pζ is a

condition in Pβ , it is a consequence from its definition that pζ ∈ Dβ ∩Nζ+1.

In order to show that pζ ∈ Pβ it is enough to establish by induction on

ξ ∈ supp(pζ) that pζ � ξ ∈ Pξ. The only non-trivial case here is when ξ has

the form ρ ·α+ κ+2. Assuming that pζ � ρ ·α+ κ+2 ∈ Pρ·α+κ+2 for some

α, the equation pζ � ρ · α + κ + 2  pζ(ρ · α + κ + 2) ∈ Q̇ρ·α+κ+2 can be

established in the same way as above, using the fact that pζ � ρ · α+ κ+ 2

is strongly (Nη,Pρ·α+κ+2)-generic for all limit η ≤ ζ and considering three

cases depending on the height of a suitable model under consideration. It

suffices to note that q′ = pγ is as required. �

2. ξ is a limit ordinal of cofinality ≤ γ. Here we shall work in L. We need

the following auxiliary statement.

7We assume here that if ξ 6∈ supp(p) then p(ξ) = ˇ〈∅, ∅〉 provided that ξ = ρ · α+ ζ for

some ζ ∈ {κ, κ+ 1} and p(ξ) = ∅̌ otherwise.
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Claim 2.4. Suppose that (†β) holds and Dβ is dense in Pβ for each β < ξ,

where ξ is a limit ordinal of cofinality ≤ γ. Then for every p ∈ Pξ and

X0 ∈ Lθ there exists an extension q ∈ Dξ ∩Nγ·cof(ξ)+1 of p such that q � β
is strongly (Nγ·cof(ξ),Pβ)-generic for all β < ξ, where 〈Nζ : ζ < κ〉 is the

minimal sequence generated by {p,X0}.

Proof. Since p ∈ N0, we have ξ ∈ N0, and hence N0 contains a continuous

sequence ξ0 < ξ1 < . . . cofinal in ξ of order type cof(ξ). Set p0 = p � ξ0
and assume that conditions 〈pη : η < ζ〉 have already been defined for some

ζ ≤ cof(ξ) so that

(i) pη ∈ Nγ·η+1 ∩ Dξη for all η < ζ;

(ii) pη1 � ξη0 ≤ pη0 for all η0 < η1 < ζ;

(iii) pη � β is strongly (Nγ·η,Pβ)-generic for all η < ζ and β ≤ ξη.

Notice that (iii) is vacuous unless β is an element of Nγ·η because oth-

erwise Pβ 6∈ Nγ·η. If ζ = η + 1, then let pζ be the <L-minimal condition

extending pη ˆp0 � [ξη, ξζ) so that (i)-(iii) hold. Its existence is guaranteed

by (†ξζ ) applied to X = Nγ·η and the inductive assumption that Dξζ is dense

in Pξζ .

If ζ is limit, then we define pζ in exactly the same way as in Claim 2.3.

In addition, almost literal repetition of the proof given in Claim 2.3 gives

that (i)-(iii) are satisfied for all η, η0, η1 ≤ ζ, the essential part here being

to show that pζ ∈ P. It suffices to set q = pcof(ξ). �

We are in a position now to prove the (< κ) distributivity of Pξ. Moreover,

the construction below gives a condition in Dξ which lies in the intersection

of γ many open dense subsets of Pξ, and consequently it establishes that Dξ

is dense in Pξ. Combined with Claim 2.3 this will complete the proof that

the inductive assumption holds for ξ.

Given p ∈ Pξ and fewer than κ open dense sets {Oζ+1 : ζ < γ}, let

〈Nζ : ζ < κ〉 be the minimal sequence generated by {p, 〈Oζ+1 : ζ < γ〉}. Set
γ′ = γ · cof(ξ), p = p0, and assume that conditions 〈pη : η < ζ〉 have already

been defined for some ζ ≤ γ so that

(iv) pη ∈ Nγ′·η+1 ∩ Dξ for all η < ζ;

(v) pη1 ≤ pη0 for all η0 < η1 < ζ;

(vi) pη � β is strongly (Nγ′·η,Pβ)-generic for all η < ζ and β < ξ; and

(vii) pη+1 ∈ Oη+1 for all η + 1 < ζ.

If ζ = η + 1, let pζ be the <L-minimal condition extending pη so that

(iv)-(vii) hold for all η, η0, η1 ≤ ζ. Its existence is guaranteed by Claim 2.4

applied to X = Nγ′·η and pη. If ζ is limit, then we define pζ in exactly the

same way as in Claim 2.3. Once we know that pζ ∈ Pξ, the verification of

(iv)-(vi) is straightforward, whereas (vii) is vacuous. The verification that

pζ ∈ Pξ is exactly the same as in Claim 2.3, which in turn uses of course the

ideas from the successor case. It suffices to note that pγ ∈
⋂

ζ<γ Oζ+1.

3. ξ is a limit ordinal of cofinality κ. Here we shall also work in L. Given

p ∈ Pξ and fewer than κ open dense sets {Oζ+1 : ζ < γ}, let 〈Nζ : ζ < κ〉 be
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the minimal sequence generated by {p, 〈Oζ+1 : ζ < γ〉}. Set ξζ = sup(Nζ∩ξ)
for all ζ < κ, p = p0, and assume that conditions 〈pη : η < ζ〉 have already

been defined for some ζ ≤ γ so that

(i) pη ∈ Nγ·η+1 ∩ Dξ for all η < ζ;

(ii) pη1 ≤ pη0 for all η0 < η1 < ζ;

(iii) pη � β is strongly (Nγ·η,Pβ)-generic for all η < ζ and β < ξγ·η; and

(iv) pη+1 ∈ Oη+1 for all η + 1 < ζ.

Assume first that ζ = η + 1. Let p′η+1 be the <L-minimal condition

extending pη so that p′η+1 ∈ Oη+1. Then p′η+1 ∈ Nγ·η+1. Let r′′η+1 <L

p′η+1 � ξγ·(η+1) be the <L-minimal element of Dξγ·(η+1)
such that r′′η+1 � β is

strongly (Nγ·(η+1),Pβ)-generic for all β < ξγ·(η+1). Its existence follows from

the density of Dξγ·(η+1)
and (†ξγ·(η+1)

). Note that r′′η+1 ∈ Nγ·(η+1)+1. Now set

pη+1 = r′′η+1ˆp
′
η+1 � [ξγ·(η+1), ξ).

It is clear that pη+1 ∈ Nγ·(η+1)+1 and conditions (ii)-(iv) hold. Since p′η+1 ∈
Nγ·η+1, we have suppκ(p

′
η+1) ⊂ Nγ·η+1 ∩ ξ ⊂ ξγ·(η+1). Combining this with

r′′η+1 ∈ Dξγ·(η+1)
we conclude that pη+1 ∈ Dξ.

If ζ is limit, then we define pζ in exactly the same way as in Claim 2.3.

Once we know that pζ ∈ Pξ, the verification of (i)-(iii) is straightforward,

whereas (iv) is vacuous. The verification that pζ ∈ Pξ is exactly the same

as in Claim 2.3. It suffices to note that pγ ∈ Dξ ∩
⋂

ζ<γ Oζ+1.

As in the case of cof(ξ) ≤ γ we have established the existence of a condi-

tion in Dξ which lies in the intersection of given γ many open dense subsets

of Pξ. Combined with Claim 2.3 this completes the proof that the inductive

assumption holds for ξ. �Lemma 2.2

Lemma 2.5. Let p ∈ Pξ for some ξ < κ+ and τ be a Pξ-name. If p Pξ

“τ is a stationary subset of κ”, then p P “τ is a stationary subset of κ”.

In other words, every tail of the iteration 〈Pξ, Q̇ξ : ξ < κ+〉 preserves

stationary subsets of κ.

Proof. In light of Lemma 2.2 we may restrict our attention to conditions

p ∈ Dξ. Given p ∈ Dξ and ζ ∈ suppκ(p), from now on we shall write simply

p(ζ) = a instead of p(ζ) = ǎ.

Let ξ < κ+ and G be a Pξ-generic filter over L. Note that L[G] has the

same sequences of ordinals of length < κ as L. From now on we shall work in

L[G]. Set P′ = PG
[ξ,κ+), D

′ = {p � [ξ, κ+)G : p ∈ Dκ+ , p � ξ ∈ G}, P′
β = PG

[ξ,β),

and D′
β = {p � [ξ, β)G : p ∈ Dβ , p � ξ ∈ G}.

Fix a stationary subset S of κ in L[G]. Given any p ∈ P′ and P′-name Ċ

such that p  Ċ is a club in κ, we shall construct q ∈ P′ stronger than p

such that q  Ċ ∩ S 6= ∅.
Let us fix some large enough regular cardinal θ and some large enough

n. Given a set X ∈ Lθ[G], let N0 be the least Σn-elementary submodel

of Lθ[G] such that {X} ∪ (γ + 1) ⊂ N0. Least means here that N0 is the

closure of {X}∪ (γ+1) with respect to all Σn Skolem functions given by the
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well-ordering <G of Lθ[G]. Suppose that for some ζ < κ we have already

constructed an increasing chain 〈Nε : ε < ζ〉 of Σn elementary submodels of

Lθ[G]. If ζ is limit then we set Nζ =
⋃

ε<ζ Nε. If ζ = ζ0+1 we let Nζ be the

minimal Σn-elementary submodel of Lθ[G] such that (γ + 1) ∪ {Nζ0} ⊂ Nζ .

This completes the construction of the sequence 〈Nζ : ζ < κ〉 which will be

called the G-minimal sequence generated by X throughout the proof.

Let ~C = 〈Cε : ε ∈ Lim(κ)〉 be a �γ sequence and 〈Nζ : ζ < κ〉 be the

G-minimal sequence generated by {P′, G, S, Ċ, ~C, p, . . .}. Set κζ = Nζ ∩ κ.
Since S is stationary, we can find a limit ordinal ζ < κ such that κζ ∈ S.

We shall find q ≤ p such that q  κζ ∈ Ċ. Set η = cof(ζ). Two cases are

possible: η > ω and η = ω. The latter one will be addressed on page 14.

1. η > ω. Letting 〈κζβ : β ≤ η〉 be the increasing enumeration of

{κζ} ∪
(
{κυ : υ < ζ} ∩ Cκζ

)
, we shall construct a decreasing sequence of

conditions 〈pβ : β ≤ η〉 such that

(a) pβ+1 ∈
⋂
{O : O ∈ Nζβ+1

is open dense in P′} for all β < η;

(b) pβ ∈ Nζβ+1 ∩ D′ for all β ≤ η;

(c) For every β ≤ η, λ ∈ supp(pβ) of the form ρ · α+ κ+ 2, and υ < ζ,

if κυ ∈ |pβ(λ)|, then pβ(λ)(κυ) = 0 if and only if υ ∈ {ζµ : µ < η}.
Then as a consequence of (a) and (b) we shall have

(d) pβ+1  [κζβ , κζβ+1+1) ∩ Ċ 6= ∅ for all β < η.

for all β < η. Let p0 = p and suppose that for some ε ≤ η we have already

constructed a decreasing sequence 〈pβ : β < ε〉 satisfying (a)-(c).

If ε = β + 1 for some β, let p′β+1 be the <G-least condition u ≤ pβ in

D′ such that for every λ ∈ supp(u) of the form ρ · α + κ + 2 the following

conditions hold:

(e) κζβ ∈ |u(λ)|;
(f) If κυ ∈ |u(λ)| for some υ < ζ, then u(λ)(κυ) = 0 if and only if

υ ∈ {ζµ : µ < η};
(g) |u(λ)| = |pβ(λ)|+ γ and u(λ) �

(
[|pβ(λ)|, |pβ(λ)|+ γ)∩ {3ε : ε < κ}

)
is the <G-least code for a bijection between γ and κζβ+1

.

It is clear that p′β+1 ∈ Nζβ+1+1. Since (g) makes the third condition of the

definition of Q̇λ for λ of the form ρ · α+ κ+ 2 vacuous for ordinals between

|pβ(λ)| and κζβ+1
+γ, we can find a condition u ≤ p′β+1 in D′∩Nζβ+1+1 such

that for every λ ∈ supp(u) as above the following conditions hold:

(h) κζβ+1
∈ |u(λ)|, and

(i) u(λ)(κυ) = 0 if and only if υ ∈ {ζµ : µ < η}.
Let p′′β+1 be the <G-least u as above. Then p′′β+1 ∈ Nζβ+1+1. Now let pβ+1

be the <G-least condition w ∈ D′ below p′′β+1 so that w ∈
⋂
{O : O ∈ Nζβ+1

is open dense in P′}. It follows that pβ+1 satisfies conditions (a)-(c) (and

hence also (d)) with β + 1 instead of β.

If ε is limit then we define pε to be the “coordinatewise” union of {pβ :

β < ε}, see Claim 2.3. It follows from the construction of the sequence
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〈pβ : β < ε〉 that pε ∈ Nζε+1. Indeed, pε is determined by the sequence

〈pβ : β < ε〉 which has been constructed using Cκζ
∩{κυ : υ < ζε} by always

choosing <G-minimal conditions with certain properties. Since Cκζ
∩ {κυ :

υ < ζε} = Cκζε
∩{κυ : υ < ζε} ∈ Nζε+1 by the choice of ~C, we conclude that

pε ∈ Nζε+1.

In order to show that pε ∈ P′ it is enough to establish by induction on

λ ∈ supp(pε) that pε � λ ∈ P′
λ. The only non-trivial case here is when λ has

the form ρ · (α+ 1) = ρ · α+ κ+ 3 for some α. In this case, assuming that

pε � (λ− 1) ∈ P′
λ−1, the equation

pε � (λ− 1) P′
λ−1

pε(λ− 1) ∈ Q̇λ−1

can be established as follows: Given a P′
λ−3-generic filter R 3 pε � (λ − 3)

over L[G], the strong (Nζε ,P′)-genericity of pε � (λ − 1) (in L[G]) by the

same argument as in item 1 of Lemma 2.2 implies that in L[G ∗R] we have

〈pε(λ− 3), pε(λ− 2)〉G∗R (Q̇λ−3∗Q̇λ−2)G∗R pε(λ− 1)G∗R ∈ Q̇G∗R
λ−1 ,

which yields pε � λ ∈ P′
λ. The only difference with the proof given in

Lemma 2.2 is the case a) where suitable models M of height Ord ∩M >

Ord ∩ N̄ζε have to be treated (here N̄ζε is the Mostowski collapse of Nζε).

Now the sequence 〈κυ : υ < ζε〉 might have length larger than γ. However,

any such suitable model M still has a bijection between γ and (γ+)N̄ζε by

the fact that M contains the sequence {κυ : υ < ζε}∩Cκζε
which has length

≤ γ and is cofinal in κζε . Since (γ+)N̄ζε = (γ+)M for suitable models as

above, the latter is impossible, and hence such suitable models M are again

ruled out.

The following statement completes the informal argument given above.

Claim 2.6. LetM be a suitable model of size γ containing pε(λ−3), pε(λ−2)

and such that Ord ∩M > Ord ∩ N̄ζε. Then M contains the sequence 〈κυ :

υ < ζε〉.
Proof. Let H = H(λ − 3) ∗ H(λ − 2) be a (Q̇λ−3 ∗ Q̇λ−2)

G∗R-generic filter

over L[G∗R] containing 〈pε(λ−3), pε(λ−2)〉G∗R and π : Nζε [R∗H] → ¯̄N be

the Mostowski collapsing function. Observe that by elementarity we have

¯̄N = π[Nζε ][π(R) ∗ π(H)] = π[Nζε ][x
0
α, x

1
α] = LOrd∩ ¯̄N [x0α, x

1
α],

where x0α and x1α are the unions of the first coordinates of all elements

of π(H(λ − 3)) and π(H(λ − 2)) (equivalently, are the first coordinates of

pε(λ − 3) and pε(λ − 2)), respectively. Indeed, letting X0
α and X1

α be the

unions of the first coordinates of all elements of H(λ− 3) and H(λ− 2), we

can easily conclude from the definition of P that L[G ∗R ∗H] = L[X0
α, X

1
α],

and hence also Nζε [R ∗H] = Nζε [X
0
α, X

1
α] = (Nζε ∩ L)[X0

α, X
1
α].

Since M 3 pε(λ − 1) = pε(ρ · α + κ + 2) and the latter is of the form ř

for some r : κζε → 2 such that r(3ι+ 1) = 1 iff ι ∈ x0α and r(3ι+ 2) = 1 iff

ι ∈ x1α, we conclude that x0α, x
1
α ∈M , and consequently

π[Nζε ][π(R) ∗ π(H)] = LOrd∩ ¯̄N [x0α, x
1
α] ∈M
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because Ord∩ ¯̄N < Ord∩M . In π[Nζε ] we have that π[Nυ+1] is the closure

of {π[Nυ]} under Σn Skolem functions of π[Nζε ] with respect to <π(G). Thus

the sequence 〈π[Nυ] : υ < ζε〉 is definable (as a class) over π[Nζε ], and hence

the sequence

〈min(Ord \ π[Nυ]) : υ < ζε〉 = 〈κυ : υ < ζε〉

is definable over π[Nζε ]. As a result, this sequence is an element of M . �

2. η = ω. In this case let C ′
κζ

⊂ {κµ : µ < ζ} be a cofinal subset of κζ
of order type ω which is an element of Nζ+1. Using C ′

κζ
instead of Cκζ

, we

can repeat the argument from case 1 and construct a decreasing sequence

〈pβ : β ≤ η〉 satisfying conditions (a)-(d).

In both of the cases considered above we have pη ≤ p0 = p and pη forces

that Ċ has nonempty intersection with [κζβ , κζβ+1+1) for all β < η, and

hence it forces that κζ = sup{κζβ : β < η} is an element of Ċ. Since κζ ∈ S

this completes our proof. �Lemma 2.5

Let us denote by Suppκ+ the set of all ξ ∈ κ+ of the form α · ρ + ζ for

some ζ < κ and set Suppκ = κ+ \ Suppκ+ .

Let p, q ∈ D. We say that q ≤∗ p if q ≤ p, suppκ(p) = suppκ(q) and

q � suppκ(q) = p � suppκ(p). Suppose that q ≤ p. We shall define a new

condition qp called the reduction of q to p by induction as follows. Suppose

that qp � ξ has been already defined. If ξ ∈ Suppκ then (qp)(ξ) = p(ξ).

If ξ ∈ Suppκ+ then qp(ξ) is a Pξ-name τ such that q � ξ  τ = q(ξ) and

u  τ = p(ξ) for all Pξ 3 u ≤ qp � ξ which are incompatible with q � ξ. A

direct verification shows that qp ∈ P and q ≤ qp ≤∗ p.

For a pair c = 〈a, b〉 we shall use the following notation: a = c0, b = c1.

From now on we shall consider only conditions p ∈ D such that ξ p(ξ) ∈ Q̇ξ

for all ξ ∈ suppκ+(p). It is easy to see that for every q ∈ D there exists p ∈ D
with this property such that p ≤ q ≤ p.

The next lemma shows, in particular, that P does not collapse κ+. Its

proof is patterned after that of [5, Proposition 2.3]. Here our choice of the

support comes into play.

Lemma 2.7. Let p ∈ P and µ < κ+ be an ordinal of the form ρ · α + ζ

with ζ < κ such that p P ζ 6∈ T (F (α)). Suppose also that Ċ is a P-name

for a club in κ+. Then there exists q ≤ p such that q P Sµ ∩ Ċ 6= ∅.
In particular, if G is a P-generic filter such that ζ 6∈ T (F (α))G, then Sµ
remains stationary in L[G].

Proof. Without loss of generality we may assume that p ∈ D. Let 〈Mi : i <

κ+〉 be an increasing chain of elementary submodels of Lθ of size κ, where

θ is big enough, such that

(i) Mi ⊃ [Mi]
γ for all i ∈ κ+;

(ii) Mi =
⋃

j<iMj for all i ∈ κ+ of cofinality κ; and

(iii) κ ∪ {p,P, Ċ, α, . . .} ⊂M0.
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Now a standard Fodor argument yields i ∈ κ+ such that i = Mi ∩ κ+ ∈ Sµ
and i 6∈ Sξ for any ξ ∈Mi \ {µ}. Let 〈〈Oυ, φυ〉 : υ < κ〉 ∈Mκ

i be a sequence

in which all pairs 〈O,φ〉 ∈ Mi appear cofinally often, where O is an open

dense subset of P and φ is a function of size ≤ γ such that dom(φ) ⊂ i,

φ(ξ) ∈ [κ]≤γ × [κ+]≤γ if ξ is of the form ρ · β + κ or ρ · β + κ + 1, and

φ(ξ) ∈ 2<κ if ξ is of the form ρ · α + κ + 2. Let also 〈iυ : υ < κ〉 be an

increasing sequence of ordinals cofinal in i.

Construct by induction on υ a ≤∗-decreasing sequence 〈qυ : υ ≤ κ〉 ∈
Dκ+1 such that 〈qυ : υ < κ〉 ∈ (D∩Mi)

κ as follows. Set q0 = p and suppose

that 〈qη : η < υ〉 has been already constructed. If υ is limit then we set

qυ(ξ) = p(ξ) if ξ ∈ Suppκ and let qυ(ξ) be a Pξ-name which is forced by

qυ � ξ to be the union of all qη(ξ), η < υ, together with its supremum. Since

the Sξ’s consist of ordinals of cofinality κ for all ξ < κ+, we conclude that

qυ ∈ P provided that υ < κ. Now suppose that υ = η + 1. Let us first

consider the case that there exists a condition r ∈ Oη ∩ D stronger than qη

such that, letting ψ = r � suppκ(r), the following conditions hold:

(iv) dom(φη) ⊂ dom(ψ);

(v) ξ ψ(ξ) ≤ φη(ξ) for all ξ ∈ dom(φη); and

(vi) ψ(ξ)0 = φη(ξ)0 for all ξ ∈ dom(φη) of the form ρ ·β+κ or ρ ·β+κ+1.

In this case we fix such a condition rη ∈ Mi and set qυ0 = rηqη. If there is

no such condition r then we set qυ0 = qη. Now let qυ ≤∗ qυ0 be such that for

all ξ ∈ suppκ+(qυ0 ), ξ “qυ(ξ) = qυ0 (ξ) ∪ {max(qυ0 (ξ)) + iυ} if ς ∈ T (F (β))

and qυ(ξ) = ∅ otherwise”, where ξ = ρ · β + ς.

We claim that qκ ∈ P and it is (Mi,P)-generic. We shall prove this in

several steps.

Claim 2.8. If ξ ∈ Suppκ+ ∩Mi and q
κ � ξ is (Mi,Pξ)-generic

8, then qκ �
(ξ + 1) ∈ Pξ+1.

Proof. It suffices to show that r ξ q
κ(ξ)∩Sξ = ∅ for every r ≤ qκ � ξ which

forces ς ∈ T (F (β)), where ξ = ρ · β + ς. Suppose, contrary to our claim,

that there exists r ≤ qκ � ξ such that r ξ ς ∈ T (F (β)) but

(1) r ξ [
⋃
υ<κ

qυ(ξ) ∪ {sup(
⋃
υ<κ

qυ(ξ))}] ∩ Sξ 6= ∅.

Then ξ 6= µ. Indeed, otherwise r ≤ qκ � µ ≤ p � µ, and the latter forces

ζ 6∈ T (F (α)) by our assumptions. Thus r µ ζ 6∈ T (F (α)), and hence

r ξ ς 6∈ T (F (β)) because 〈ξ, β, ς〉 = 〈µ, α, ζ〉, which contradicts the choice

of r.

Without loss of generality we may assume that r ξ sup(
⋃

υ<κ q
υ(ξ)) = j

for some j. Note that j ≤ i because r is (Mi,Pξ)-generic and therefore forces

max qυ(ξ) < i for each υ. And by the definition of the qυ’s we have that

r ξ max qυ(ξ) ≥ iυ for all υ < κ and therefore i ≤ j, so i = j. But (1)

is possible only if j belongs to Sξ and since ξ belongs to Mi \ {µ}, we have

j 6= i by our choice of i, contradiction. �
8In particular, here we assume that qκ � ξ ∈ Pξ.
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Claim 2.9. Suppose that j ≤ i and qκ � ξ is (Mi,Pξ)-generic for all ξ < j.

• If j < i, then qκ � j is (Mi,Pj)-generic;

• If j = i, then qκ � j = qκ is (Mi,P)-generic.

Proof. Let us first consider the case j < i. It follows that qκ � j ∈ Pj , the

case of a successor j is handled by Claim 2.8.

Fix an open dense subset E ∈Mi of Pj and w ≤ qκ � j. We need to show

that there exists w1 ∈ E ∩Mi such that w and w1 are compatible. Without

loss of generality, w ∈ D ∩ E.

Consider the set K = suppκ(w) ∩Mi and note that K ∈ Mi and K ⊂ j.

For every ξ ∈ K let φ(ξ) = w(ξ) if ξ is of the form ρ · β + κ + 2 and

φ(ξ) = 〈w(ξ)0, w(ξ)1 ∩Mi〉 otherwise. Observe that φ ∈ Mi. Let O be the

set of those r ∈ P such that r � j ∈ E. Then O ∈Mi is an open dense subset

of P. Let η < κ be such that 〈O,φ〉 = 〈Oη, φη〉 and υ = η + 1. It follows

from the above that we have made the non-trivial choice in the construction

of qυ. More precisely, there exists r ∈ Oη ∩ D (namely w extended by

qη � [j, κ+)) such that conditions (iv)-(vi) are satisfied. Thus there exists

rη ∈ O ∩ D ∩Mi satisfying (iv)-(vi) such that qυ ≤∗ rηpη. In particular,

w ≤ qκ � j ≤∗ rηpη � j and rη � j ∈ E ∩Mi. We claim that w1 = rη � j is

compatible with w. Let us define a sequence w2 of length j as follows:

(vii) w2(ξ) = w(ξ) if ξ ∈ Suppκ+ ;

(viii) w2(ξ) = 〈w(ξ)0, w(ξ)1 ∪ rη(ξ)1〉 if9 ξ ∈ suppκ(w) is of the form

ρ · α+ κ or ρ · α+ κ+ 1;

(ix) w2(ξ) = w(ξ) if10 ξ is of the form ρ · α+ κ+ 2.

We are left with the task to show that w2 ∈ Pj , since then it becomes

straightforward that w2 is a lower bound for w and w1. We shall show by

induction on ξ < j that if w2 � ξ ∈ Pξ then w2 � ξ  w2(ξ) ∈ Q̇ξ. In

light of our convention regarding conditions in D made before Lemma 2.7

we have to consider only the case ξ ∈ suppκ(w). By (ix) and w2 � ξ ≤ w �
ξ, w1 � ξ we may further restrict ourselves to ξ’s in suppκ(w) of the form

ρ · α + κ or ρ · α + κ + 1. In the latter case w2 � ξ, being a lower bound

of w1 � ξ = rη � ξ, w � ξ, forces both w(ξ) and rη(ξ) to be elements of Q̇ξ.

Moreover, w2 � ξ forces rη(ξ) and w(ξ) to be compatible in Q̇ξ (because so

are any two conditions in the almost disjoint coding forcing with the same

first coordinate), and w2(ξ) defined as in (viii) to be their largest lower

bound. In particular, w2 � ξ  w2(ξ) ∈ Q̇ξ, which completes our proof in

case of j < i.

The case j = i can be proved by almost literal repetition of the above

proof: We just have to take O = E and replace most of the instances of j

for κ+ in it (or, alternatively, remove them). However, we shall present this

proof for the sake of completeness.

9w(ξ)0 = rη(ξ)0 = φη(ξ)0 in this case.
10w(ξ) = rη(ξ) = φη(ξ) in this case.
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Fix an open dense subset E ∈ Mi of P and w ≤ qκ. We need to show

that there exists w1 ∈ E ∩Mi such that w and w1 are compatible. Without

loss of generality, w ∈ D ∩E. Let K,φ, η, υ be such as in the previous case.

It follows from the above that we have made the non-trivial choice in the

construction of qυ. More precisely, there exists r ∈ Oη ∩D (namely w) such

that conditions (iv)-(vi) are satisfied. Thus there exists rη ∈ E ∩ D ∩Mi

satisfying (iv)-(vi) such that qυ ≤∗ rηpη. In particular, w ≤ qκ ≤∗ rηpη and

rη ∈ E ∩Mi. We claim that w1 = rη is compatible with w. Let us define a

sequence w2 of length κ+ as follows:

(vii)′ w2(ξ) = w(ξ) if ξ ∈ Suppκ+ ;

(viii)′ w2(ξ) = 〈w(ξ)0, w(ξ)1 ∪ rη(ξ)1〉 if ξ ∈ suppκ(w) is of the form

ρ · β + κ or ρ · β + κ+ 1;

(ix)′ w2(ξ) = w(ξ) if ξ is of the form ρ · β + κ+ 2.

The fact that w2 ∈ P can be verified in exactly the same way as in the case

j < i, and then it becomes straightforward that w2 is a lower bound for w

and w1. This completes our proof. �

By induction on j ≤ i using Claim 2.9 we can prove that qκ is (Mi,P)-
generic. Since Ċ ∈ Mi this implies qκ  i ∈ Ċ. It remains to note that

i ∈ Sµ and qκ ≤ p. �Lemma 2.7

Let H be a poset. An H-name ḟ is called a nice name for an element of κκ

if ḟ =
⋃

υ∈κ{〈 ˇ〈υ, ηυp 〉, p〉 : p ∈ Aυ(ḟ)}, where Aυ(ḟ) is a maximal antichain

in H for all υ ∈ κ and ηυp ∈ κ for all p ∈ Aυ(ḟ). Then p  ḟ(υ) = ηυp for

all υ ∈ κ and p ∈ Aυ. From now on we will assume that all names for an

element of κκ are nice.

Lemma 2.10. Let ḟ =
⋃

υ∈κ{〈 ˇ〈υ, ηυp 〉, p〉 : p ∈ Aυ} be a nice name for an

element of κκ. Then for every p ∈ P there exists q ≤ p and a P-name σ ⊂ ḟ

of size |σ| ≤ κ such that q  ḟ = σ.

Proof. Let 〈Mi : i < κ+〉 be such as in Lemma 2.7, where instead of (iii)

we require κ∪{p,P, ḟ , . . .} ⊂M0. As it has been established in the proof of

Lemma 2.7, there exists i < κ+ and a (Mi,P)-generic condition q ≤∗ p. In

particular, Aυ ∩Mi is predense below q, and hence no elements of Aυ \Mi

are compatible with q. It follows from the above that q  ḟ = σ, where

σ =
⋃

υ∈κ{〈 ˇ〈υ, ηυp 〉, p〉 : p ∈ Aυ ∩Mi}. �

The same proof as above also works for Pξ when ξ < κ+.

Corollary 2.11. The poset Pξ has a dense subset of size κ+ for every ξ ≤
κ+.

Proof. We shall prove by induction on ξ ≤ κ+ that there exists a ≤∗-dense

subset D′
ξ of Dξ of size κ+.

The successor case is easily handled by Lemma 2.10. Notice that it is

essential here that the generic condition q considered in its proof can be

chosen ≤∗-below the given one.
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Suppose that cof(ξ) = η ≤ κ and fix an increasing cofinal in ξ sequence

〈ξυ : υ < η〉 of ordinals such that ξ0 = 0. Let p ∈ Dξ andM be an elementary

submodel of Lθ of size κ, where θ is big enough, such that M ⊃ [M ]γ and

κ ∪ {p,Pξ, 〈ξυ : υ < η〉, . . .} ⊂ M . By a standard Fodor argument we may

additionally assume that i 6∈ Sµ for all µ ∈M , where i =M ∩ κ+: this can
be ensured by pickingM out of an increasing continuous chain of elementary

submodels of Lθ like in Lemma 2.7. Let also 〈iυ : υ < κ〉 be an increasing

sequence of successor ordinals cofinal in i. By the inductive assumption we

can construct by induction on υ a sequence 〈qυ : υ < η〉 ∈Mη such that the

following conditions hold:

(i) qυ ∈ D′
ξυ
;

(ii) qυ+1 ≤∗ qυ ˆp � [ξυ, ξυ+1); and

(iii) If υ is limit, then qυ is ≤∗-below the condition rυ ∈ Pξυ defined as fol-

lows: for all µ ∈ Suppκ+∩ξυ, µ“ r
υ(µ) =

⋃
υ′<υ q

υ′
(µ)∪{sup(

⋃
υ′<υ q

υ′
(µ))+

iυ} if ς ∈ T (F (β)) and rυ(µ) = ∅ otherwise”, where µ = ρ·β+ς; rυ(µ) = p(µ)

for all µ ∈ Suppκ ∩ ξυ.
Now let rη be defined in the same way as in item (iii) above. Observe that

rη ∈ Dξ: This is obvious if η < κ and follows from i 6∈
⋃

µ∈M∩ξ Sµ if η = κ.

In addition, rη ≤∗ p by the construction and it is uniquely determined by

the sequence 〈qυ : υ < η〉 ∈
⋃

µ<ξ D′
µ. Now, it suffices to note that there are

at most (κ+)κ = κ+ such sequences.

And finally, the case ξ = κ+ is straightforward because the supports of

conditions have size ≤ κ. �

Combining Lemma 2.10 with Corollary 2.11 we conclude that 2κ = κ+

holds in V Pξ for all ξ ≤ κ+. Recall that our main poset P depends on a

particular bookkeeping function F : κ+ → L, so we may write PF instead

of P. The following statement is a direct corollary of Lemma 2.10 and

Corollary 2.11.

Corollary 2.12. There exists a bookkeeping function F : κ+ → L such that

for every PF -name σ for a subset of κ and p ∈ PF there exists α < κ+

such that F (α) is a PF -name, and a condition q ∈ PF below p which forces

σ = F (α).

From now on we shall fix a bookkeeping function F0 with the properties

described in Corollary 2.12 and assume that P = PF0 . Combining Lem-

mas 2.5 and 2.7 we obtain the following

Corollary 2.13. Let G be a P-generic filter over L and ξ < κ+ be an ordinal

of the form ρ · α+ ζ for some ζ < κ. Then Sξ is non-stationary in L[G] iff

F (α)G is a stationary subset of κ and ζ ∈ T (F (α)G).

The following statement is reminiscent of [4, Lemma 4].

Lemma 2.14. Let G be P-generic over L and S a subset of κ in L[G]. If S

is stationary, then there exists Y ∈ [κ]κ such that for every suitable model
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M of size γ containing Y ∩(γ+)M , the set S∩(γ+)M belongs to M and there

is µ < (γ++)M such that for all ζ ∈ T (S) ∩ (γ+)M we have M � Sρ·µ+ζ is

not stationary.

Proof. Using Corollary 2.12 we may find α < κ+ such that S = F (α)G. We

claim that Yα (this is the subset of κ added in Case 4 of the definition of

P) is as required. Indeed, let M be a suitable model of size γ containing

Yα∩(γ+)M . Then by the definition ofQρ·α+κ+2 we know that S∩(γ+)M ∈M

andM � ψ(γ+, γ++, µ, S∩(γ+)M , X0
α∩(γ+)M ) for some µ < (γ++)M , where

X0
α = {υ < κ : 3υ + 1 ∈ Yα}. It suffices to analyze the statement of ψ. �

The next fact resembles [4, Lemma 5].

Lemma 2.15. Let G be a P-generic over L and S be a subset of κ in

L[G]. If there exists Y ∈ [κ]κ such that for every suitable model M of

size γ containing Y ∩ (γ+)M , there is µ < (γ++)M such that for all ζ ∈
T (S) ∩ (γ+)M we have M � Sρ·µ+ζ is not stationary, then S is stationary

in κ.

Proof. Let N be an elementary submodel of Lθ[G] of size γ containing (γ +

1) ∪ {S, Y }, where θ is a large enough cardinal. Let M be the Mostowski

collapse of N and π : N →M be the collapsing function. Then

M � ∃µ < π(κ+)∀ζ ∈ π(T (S)) (Sρ·µ+ζ is not stationary in π(κ+)),

which implies

N � ∃α < κ+∀ζ ∈ T (S) (Sρ·α+ζ is not stationary in κ+),

and hence in L[G] there exists α < κ+ such that for all ζ ∈ T (S) the set

Sρ·α+ζ is not stationary in κ+. This means that P destroys the stationarity

of Sρ·α+ζ for some ζ, and hence Corollary 2.13 implies that F (α)G is a

stationary subset of κ and Sρ·α+ζ is non-stationary in L[G] iff ζ ∈ T (F (α)G).

It follows from the above that T (S) ⊂ T (F (α)G) which gives S = F (α)G

and thus completes our proof. �

Theorem 1.1(1) is a direct consequence of Lemmas 2.14 and 2.15, as they

easily imply that in V P we have the Σ1 definition of the complement of NSκ
presented on page 3.

The proof of Theorem 1.1(2) is completely analogous to that of the first

part. In this case we consider the same iteration but proceed until κ++.

In order to be able to do this we need a suitable sequence 〈Sα : α < κ++〉
of mutually almost disjoint stationary subsets of κ+. It may be obtained

in the same way as in the first part, the only difference being that now

we have to use the diamond to “convert” all subsets of κ+ (previously we

restricted ourselves to singletons) into stationary subsets of κ+. Then we can

repeat the same proof with κ+ replaced with κ++ whenever the length of the

iteration is concerned. The only new thing here will occur in Corollary 2.11.

The same proof shows that it remains true for all ξ < κ++. The poset Pκ++
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will obviously have size (i.e., a dense subset of size) κ++. By a standard

argument it has κ++-c.c.. Indeed, in order to prove this it is enough to

basically replace ω with κ in the proof of [1, Theorem 2.10], and be a little

bit more careful with the choice of elementary submodels. More precisely,

given {rξ : ξ < κ++} ⊂ Pκ++ , for every ξ choose an elementary submodel

Mξ 3 rξ of Lλ of size κ for some big enough λ such that [Mξ]
γ∪{Pκ++} ⊂Mξ

and there exists a (Mξ,Pκ++)-generic condition11 below rξ, and apply the

fact that κ++-many of these submodels have the same isomorphism type to

find ξ1 6= ξ2 in κ++ such that rξ1 is compatible with rξ2 . The existence of

the Mξ’s is established in the proof of Lemma 2.7.

3. Final remarks and open problems

In this section we shall consider the set κκ with the (< κ)-box topology,

i.e., the topology with a base {[s] : s ∈ κ<κ}, where [s] = {x ∈ κκ : x

extends s}. Following [9] we say that a subset A of κκ is meager if it is

a union of κ many nowhere dense subsets. A is said to have the Baire

property if A∆O is meager for some open subset O of κκ. It is well-known

[9, Theorem 4.2] (see also [7, Theorem 49]) that NSκ does not have the Baire

property, even though it is Σ1
1 definable. This is one of the main differences

with the classical case κ = ω.

One may however hope that there is an analogy between the Baire prop-

erty of ∆1
1 definable subsets of κκ and that of ∆1

2 definable subsets of ωω:

informally, in the uncountable case there is no need for an extra quantifier

to express that a relation under consideration is well-founded. It turns out

that there is no such analogy, as we can see using the model constructed in

the proof of Theorem 1.112. Recall that in the classical setting κ = ω, the

Baire property of all ∆1
2 definable sets of reals is equivalent to the statement

that for every real x there exists a Cohen real y over L[x], see [11].

Proposition 3.1. In the model constructed in the proof of Theorem 1.1(1)

for every X ⊂ κ there is Y ⊂ κ which is Add(κ, 1)-generic over L[X], where

Add(κ, 1) = 2<κ ordered by extension. Thus the κ-analogue of the condition

guaranteeing the Baire property of all ∆1
2 definable sets does not imply the

Baire property of all ∆1
1 definable subsets of κκ, as witnessed by NSκ.

Proof. By Corollary 2.12 it is enough to show that posets Q̇ξ add Add(κ, 1)

generics over LPξ for cofinally many ξ ∈ κ+. For every (< κ)-complete

filter F on κ there is a natural poset M(F) (“M” comes from “Mathias”)

producing a pseudointersection of F . This poset consists of all pairs 〈s, F 〉 ∈
[κ]<κ×F where 〈s′, F ′〉 extends 〈s, F 〉 if and only if s′ end-extends s, F ′ ⊂ F ,

and s′\s ⊂ F . Observe that for every ξ of the form ρ · α + κ, in V Pξ the

poset Qξ is order isomorphic to M(F) for the (< κ)-complete filter on κ

11In [1] one can take any Mξ 3 rξ because the poset under consideration is proper.
12We would like to thank Yurii Khomskii for asking us whether such an analogy holds.
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generated by {κ\Aν : ν ∈ Dα}. The following statement may be thought of

as folklore. We have learned it from an unpublished manuscript of Brendle.

Claim 3.2. Let F be a (< κ)-complete filter on κ such that there exists a

function f : [κ]2 → 2 for which f [[F ]2] = 2 for all F ∈ F . Then there exists

a Add(κ, 1)-generic filter in V [M(F)].

Proof. Let G be a M(F)-generic and g =
⋃
{s : ∃F ∈ F(〈s, F 〉 ∈ G)}. Set

c(α) = f(γ2α, γ2α+1), where {γα : α < κ} is the increasing enumeration

of g. We claim that {c � α : α ∈ κ} is Add(κ, 1)-generic. Indeed, let D ⊂
Add(κ, 1) be dense and 〈s, F 〉 ∈ M(F) be such that the order type of s equals

2α for some α ∈ κ. Thus 〈s, F 〉 determines c � α, say 〈s, F 〉  c � α = σ. By

the density ofD there exists an extension τ ∈ D of σ. Since f [[F \ξ]2] = 2 for

all ξ ∈ κ, we can easily find an end-extension t of s such that t\s ⊂ F , order

type of t equals 2β, where β = dom(τ), and (t, F \ sup t + 1)  c � β = τ .

This completes our proof. �

In our case κ is a successor cardinal. In particular it is not measurable.

It suffices to note that for every (< κ)-complete filter F which is not an

ultrafilter there exists a function f as in the claim above. Indeed, take

A ⊂ κ such that each element of F intersects both A and κ \ A and set

f({α, β}) = 1 iff {α, β} ⊂ A or {α, β} ⊂ κ \A. �

Instead of arguing as in Proposition 3.1 we could just change the con-

struction of P by letting Q̇ξ be the Pξ-name for Add(κ, 1) for cofinally many

ξ ∈ κ+. It is easy to check that this would not interefere with the proof of

the ∆1 definability of NSκ.

Finally we mention two open questions related to Theorem 1.1 whose

solutions seem to require essentially different approaches.

Problem 3.3. Is it consistent that NSκ is ∆1-definable over H(κ+) and

2κ ≥ κ+++?

Problem 3.4. Is 2γ ≥ γ++ together with NSγ+ being ∆1-definable over

H(γ++) consistent? What if γ = ω? In the latter case, can we additionally

have MA instead of ¬CH? In case the answer to some of these questions is

affirmative, can the corresponding consistency be forced over L?

Let us note that the existence of a collection S of stationary subsets of ω1

such that |S| = ω1 and each stationary subset of ω1 contains some S ∈ S,
which may be thought of as a strong form of the ∆1-definability of the NSω1 ,

implies the existence of a Suslin tree, see, e.g., [6, Theorem 5.28]. Thus it

contradicts MA.
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