
PRODUCTS OF MENGER SPACES IN THE MILLER
MODEL

LYUBOMYR ZDOMSKYY

Abstract. We prove that in the Miller model the Menger property is
preserved by finite products of metrizable spaces. This answers several
open questions and gives another instance of the interplay between clas-
sical forcing posets with fusion and combinatorial covering properties in
topology.

1. Introduction

A topological space X has the Menger property (or, alternatively, is
a Menger space) if for every sequence 〈Un : n ∈ ω〉 of open covers of X
there exists a sequence 〈Vn : n ∈ ω〉 such that Vn ∈ [Un]

<ω for all n and
X =

⋃
{∪Vn : n ∈ ω}. This property was introduced by Hurewicz, and the

current name (the Menger property) is used because Hurewicz proved in [14]
that for metrizable spaces his property is equivalent to one considered by
Menger in [18]. Each σ-compact space has obviously the Menger property,
and the latter implies lindelöfness (that is, every open cover has a countable
subcover). The Menger property is the weakest one among the so-called
selection principles or combinatorial covering properties, see, e.g., [4, 16,
24, 25, 31] for detailed introductions to the topic. Menger spaces have
recently found applications in such areas as forcing [12], Ramsey theory in
algebra [33], combinatorics of discrete subspaces [2], and Tukey relations
between hyperspaces of compacts [13].

In this paper we proceed our investigation of the interplay between posets
with fusion and selection principles initiated in [23]. More precisely, we
concentrate on the question whether the Menger property is preserved by
finite products. For general topological spaces the answer negative: In ZFC
there are two normal spaces X, Y with a covering property much stronger
than the Menger one such that X × Y does not have the Lindelöf property,
see [28, §3]. However, the above situation becomes impossible if we restrict
our attention to metrizable spaces. This case, on which we concentrate in
the sequel, turned out to be sensitive to the ambient set-theoretic universe.
Indeed, by [21, Theorem 3.2] under CH there exist X, Y ⊂ R which have the
Menger property (in fact, they have the strongest combinatorial covering
property considered thus far), whose product X × Y is not Menger. There
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are many results of this kind where CH is relaxed to an equality between
cardinal characteristics, see, e.g., [3, 15, 22, 27]. Surprisingly, there are also
inequalities between cardinal characteristics which imply that the Menger
property is not productive even for sets of reals, see [26]. The following
theorem, which is the main result of our paper, shows that an additional
set-theoretic assumption in all these results was indeed necessary.

Theorem 1.1. In the Miller model, the product of any two Menger spaces is
Menger provided that it is Lindelöf. In particular, in this model the product
of any two Menger metrizable spaces is Menger.

Theorem 1.1 answers [26, Problem 7.9(2)], [29, Problem 8.4] (restated
as [30, Problem 4.11]), and [32, Problem 6.7] in the affirmative; implies
that the affirmative answer to [1, Problem II.2.8], [5, Problem 3.9], and
[15, Problem 2] (restated as [31, Problem 3.2] and [32, Problem 2.1]) is
consistent; implies that the negative answer to and [1, Problem II.2.7],
[6, Problem 8.9], and [35, Problems 1,2,3] is consistent; and answers [24,
Problem 7] in the negative.

By the Miller model we mean a generic extension of a ground model
of GCH with respect to the iteration of length ω2 with countable support
of the Miller forcing, see the next section for its definition. This model
has been first considered by Miller in [19] and since then found numerous
applications, see [11] and references therein. The Miller forcing is similar
to the Laver one introduced in [17], the main difference being that the
splitting is allowed to occur less often. The main technical part of the proof
of Theorem 1.1 is Lemma 2.3 which is an analog of [17, Lemma 14]. The
latter one was the key ingredient in the proof that all strong measure zero
sets of reals are countable in the Laver model given in [17], the arguably
most quotable combinatorial feature of the Laver model.

As we shall see in Section 2, a big part of the proof of Theorem 1.1
requires only the inequality u < g which holds in the Miller model. However,
we do not know the answer to the following

Question 1.2. Is the Menger property preserved by finite products of
metrizable spaces under u < g? If yes, can u < g be weakened to the
Filter Dichotomy, NCF, or u < d?

We refer the reader to [11, § 9] for corresponding definitions.
We assume that the reader is familiar with the basics of forcing. The

paper is essentially self-contained in the sense that we give all the definitions
needed to understand our proofs.

2. Proofs

The proof of Theorem 1.1 is based on the fact that in the Miller model
spaces with the Menger property enjoy certain concentration properties de-
fined below. Recall that a subset R of a topological space X is called a
Gω1-set if R is an intersection of ω1-many open subsets of X.

Definition 2.1. A topological space X is called weakly Gω1-concentrated
(resp. weakly ωGω1-concentrated) if for every collection Q ⊂ [X]ω which
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is cofinal with respect to inclusion, and for every function R : Q → P(X)
assigning to each Q ∈ Q a Gω1-set R(Q) containing Q, there exists Q1 ∈
[Q]ω1 such that X ⊂

⋃
Q∈Q1

R(Q) (resp. for every Q ∈ [X]ω there exists

Q1 ∈ Q1 with the property Q ⊂ R(Q1)).

Let A be a countable set and x, y ∈ ωA. As usually x ≤∗ y means
that {a ∈ A : x(a) > y(a)} is finite. If x(a) ≤ y(a) for all a ∈ A, then
we write x ≤ y. The smallest cardinality of a dominating with respect
to ≤∗ subset of ωω is denoted by d. The smallset cardinality of a family
B ⊂ [ω]ω generating an ultrafilter (i.e., such that {A : ∃B ∈ B (B ⊂ A)}
is an ultrafilter) is denoted by u. By [7, Theorem 2] combined with the
results of [10] the inequality ω1 = u < g = ω2 holds in the Miller model, see
[7] or [11] for the definition of g as well as systematic treatment of cardinal
characteristics of reals.

As the following fact established in [20] shows, the inequality u < g
imposes strong restrictions on the structure of Menger spaces.

Lemma 2.2. In the Miller model, for every Menger space X ⊂ P(ω) and
a Gδ-subset G such that X ⊂ G ⊂ P(ω), there exists a family K of compact
subsets of G such that |K| = ω1 and X ⊂

⋃
K.

Consequently, in this model for every Menger space X ⊂ P(ω) and con-
tinuous f : X → ωω there exists F ∈ [ωω]ω1 such that for every x ∈ X there
exists f ∈ F with f(x) ≤ f.

Proof. The first statement is [20, Theorem 4.4] combined with the fact that
u = ω1 in the Miller model.

Regarding the second statement, since the Menger property is preserved
by continuous images and ωω is homeomorphic to a Gδ-subset of P(ω),
there exists a family K of compact subsets of ωω such that |K| = ω1 and
X ⊂

⋃
K. For every K ∈ K there exists fK ∈ ωω such that y ≤ fK for all

y ∈ K. It follows that the family F = {fK : K ∈ K} is as required. �

By a Miller tree we understand a subtree T of ω<ω consisting of increas-
ing finite sequences such that the following conditions are satisfied:

• Every t ∈ T has an extension s ∈ T which is splitting in T , i.e.,
there are more than one immediate successors of s in T ;

• If s is splitting in T , then it has infinitely many successors in T .

TheMiller forcing is the collectionM of all Miller trees ordered by inclusion,
i.e., smaller trees carry more information about the generic. This poset has
been introduced in [19] and since then found numerous applications see,
e.g., [10]. We denote by Pα an iteration of length α of the Miller forcing
with countable support. If G is Pβ-generic and α < β, then we denote the
intersection G ∩ Pα by Gα.

For a Miller tree T we shall denote by Split(T ) the set of all splitting
nodes of T , and for some t ∈ Split(T ) we denote the size of {s ∈ Split(T ) :
s ( t} by Lev(t, T ). For a node t in a Miller tree T we denote by Tt the set
{s ∈ T : s is compatible with t}. It is clear that Tt is also a Miller tree. The
stem of a Miller tree T is the (unique) t ∈ Split(T ) such that Lev(t) = 0.
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We denote the stem of T by T 〈0〉. If T1 ≤ T0 and T1〈0〉 = T0〈0〉, then we
write T1 ≤0 T0.

The following lemma may be proved by an almost literal repetition of
the proof of [17, Lemma 14].

Lemma 2.3. Let 〈ẋi : i ∈ ω〉 be a sequence of Pω2-names for reals and p ∈
Pω2. Then there exists p′ ≤ p such that p′(0) ≤0 p(0), and a finite set of reals
Us for each s ∈ Split(p′(0)), such that for each ε > 0, s ∈ Split(p′(0)) with
Lev(s, p′(0)) = i, j ≤ i, and for all but finitely many immediate successors
t of s in p′(0) we have

(p′(0))tˆp
′ � [1, ω2)  ∃u ∈ Us (|ẋj − u| < ε).

A subset C of ω2 is called an ω1-club if it is unbounded and for every
α ∈ ω2 of cofinality ω1, if C ∩ α is cofinal in α then α ∈ C.

Lemma 2.4. In the Miller model every Menger subspace of P(ω) is weakly
ωGω1-concentrated (and hence also weakly Gω1-concentrated

1).

Proof. We work in V [Gω2 ], where Gω2 is Pω2-generic. Let us fix a Menger
space X ⊂ P(ω), consider a cofinal Q ⊂ [X]ω, and let R(Q) ⊃ Q be a
Gω1-set for all Q ∈ Q.

In the Miller model the Menger property is preserved by unions of ω1-
many spaces, see [34, Theorem 4] and [7] for the fact that g = ω2 in this
model. This implies in particular that a complement X \R of an arbitrary
Gω1-subset R ⊂ P(ω) is Menger. Therefore by Lemma 2.2 and a standard
closing off argument (see, e.g., the proof of [9, Lemma 5.10]) there exists
an ω1-club C ⊂ ω2 such that for every α ∈ C the following condition is
satisfied:

Q∩V [Gα] is cofinal in [X]ω∩V [Gα], and for every continuous
f from a subset of P(ω) into ωω such that f is coded in V [Gα],
and every Q ∈ Q∩ V [Gα] such that X \R(Q) ⊂ dom(f), for
every x ∈ X \ R(Q) there exists b ∈ ωω ∩ V [Gα] such that
f(x) < b.

Let us fix α ∈ C. We claim that Q ∩ V [Gα] has the required property.
Suppose, contrary to our claim, there exists p ∈ Gω2 and a Pω2-name Q̇∗
such that p forces “Q̇∗ ∈ [Ẋ]ω and Q̇∗ 6⊂ Ṙ(Q̇) for any Q̇ ∈ [Ẋ]ω ∩ V [Γα]”,
where Γα is the standard Pα-name for Pα-generic filter. There is no loss of
generality in assuming that α = 0. Applying Lemma 2.3 to a sequence 〈q̇i :
i ∈ ω〉 enumerating Q̇∗, we get a condition p′ ≤ p such that p′(0) ≤0 p(0),
and a finite set Us of reals for every s ∈ Split(p′(0)) such that for each ε > 0
and each s ∈ Split(p′(0)) with Lev(s, p′(0)) = i, for all but finitely many
immediate successors t of s in p′(0) and all j ≤ i we have

(1) p′(0)tˆp
′ � [1, ω2)  ∃u ∈ Us (|q̇j − u| < ε).

Note that any condition stronger than p′ will also satisfy condition (1),
because for q0, q1 ∈ M the inequality q1 ≤ q0 implies Lev(s, q1) ≤ Lev(s, q0)

1The proof of Theorem 1.1 requires only that Menger spaces are weakly Gω1 -
concentrated in the Miller model.
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for all s ∈ Split(q1). Fix Q ∈ Q∩V containing X ∩
⋃
{Us : s ∈ Split(p′(0))}

and set F = X \R(Q). It follows from the above that p′  Q̇∗ 6⊂ Ṙ(Q). By
passing to a stronger condition, if necessary, we may additionally assume
that p′  q̇j 6∈ Ṙ(Q) for a given j ∈ ω.

Consider the map f : F → ωSplit(p′(0)) defined as follows:

f(y)(s) = [1/min{|y − u| : u ∈ Us}] + 1

for2 all s ∈ Split(p′(0)) and y ∈ F . Since F is disjoint from Q, f is well-
defined. Since f is coded in V , there exist p′′ ≤ p′ and b ∈ ωSplit(p′(0)) ∩ V
such that p′′ forces ḟ(q̇j) ≤ b. Without loss of generality we may additionally
assume that Lev(p′′(0)〈0〉, p′(0)) ≥ j. Letting s′′ = p′′(0)〈0〉, we conclude

that p′′  ḟ(q̇j)(s
′′) ≤ b(s′′), which means that

p′′  min{|q̇j − u| : u ∈ Us′′} ≥ 1/b(s′′).

On the other hand, by our choice of p′, p′′ ≤ p′, condition (1), and
Lev(s′′, p′(0)) ≥ j, for all but finitely many immediate successors t of s′′ in
p′′(0) we have

p′′(0)tˆp
′′ � [1, ω2)  ∃u ∈ Us′′ |q̇j − u| < 1/b(s′′)

which means p′′(0)tˆp
′′ � [1, ω2)  min{|q̇j − u| : u ∈ Us′′} < 1/b(s′′) and

thus leads to a contradiction. �
The next lemma relates the weak Gω1-concentration to products with

Menger spaces.

Lemma 2.5. In the Miller model, let Y ⊂ P(ω) be Menger and Q ⊂ P(ω)
be countable. Then for every Gω1-subset O of P(ω)2 containing Q×Y there
exist a Gω1-subsets R ⊃ Q such that R× Y ⊂ O.

Proof. Without loss of generality we shall assume that O is open. Let us
write Q in the form {qn : n ∈ ω} and set On = {z ∈ P(ω) : 〈qn, z〉 ∈ O} ⊃
Y . By Lemma 2.2 there exists a collection Z = {Zα : α ∈ ω1} of compact
subsets of

⋂
n∈ω On covering Y . It follows from the above that Q×Zα ⊂ O

for all α, and hence there exists an open Rα ⊂ P(ω) containing Q such that
Rα×Zα ⊂ O. Letting R =

⋂
α<ω1

Rα we get that R×Y ⊂ R×
⋃

α<ω1
Zα ⊂

O. �
As it was proved in [10], in the Miller model there exists an ultrafilter

F generated by ω1-many sets, say {Fα : α ∈ ω1}. There is a natural linear
pre-order ≤F on ωω associated to F defined as follows: x ≤F y if and only
if {n ∈ ω : x(n) ≤ y(n)} ∈ F . By [8, Theorem 3.1], in this model for every
X ⊂ ωω of size ω1 there exists b ∈ ωω such that x ≤F b for all x ∈ X.

Lemma 2.6. In the Miller model, suppose that Un = {Un
k : k ∈ ω} is an

open cover of a Menger space X ⊂ P(ω), for every n ∈ ω. Then there
exists b ∈ ωω such that X ⊂

⋃
n∈Fα

⋃
k≤b(n) U

n
k for all α. (Equivalently,

{n ∈ ω : x ∈
⋃

k≤b(n) U
n
k } ∈ F for all x ∈ X.)

2Here [a] is the largest integer not exceeding a.
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Proof. The equivalence of two statements follows from the equality F = F+,
where for X ⊂ [ω]ω we standardly denote by X+ the set {Y ⊂ ω : Y ∩X 6= ∅
for all X ∈ X}.

To prove the second statement set G =
⋂

n∈ω
⋃

Un and find a collection
K of compact subsets of G such that |K| = ω1 and X ⊂

⋃
K ⊂ G. This

is possible by Lemma 2.2. For every K ∈ K find bK ∈ ωω such that
K ⊂

⋃
k≤bK(n) U

n
k for all n ∈ ω. Then any b ∈ ωω such that bK ≤F b for all

K ∈ K is easily seen to be as required. �

The second part of Theorem 1.1 is a direct consequence of Lemma 2.4
and the following

Proposition 2.7. In the Miller model, let Y ⊂ P(ω) be a Menger space
and X ⊂ P(ω) be weakly Gω1-concentrated. Then X × Y is Menger.

Proof. Fix a sequence 〈Un : n ∈ ω〉 of covers of X × Y by clopen subsets
of P(ω)2. For every Q ∈ [X]ω fix a sequence 〈WQ

n : n ∈ ω〉 such that
WQ

n ∈ [Un]
<ω and Q× Y ⊂ OQ,α for all α ∈ ω1, where OQ,α =

⋃
n∈Fα

∪WQ
n .

(The latter is possible by Lemma 2.6.) Letting OQ =
⋂

α∈ω1
OQ,α and

using Lemma 2.5, we can find a Gω1-subset R(Q) ⊃ Q of P(ω) such that
R(Q) × Y ⊂ OQ. Since X is weakly Gω1-concentrated, there exists Q1 ∈
[[X]ω]ω1 such that X ⊂

⋃
Q∈Q1

R(Q). For every Q ∈ Q1 let us find bQ ∈ ωω

such that WQ
n ⊂ {Un

k : k ≤ bQ(n)} for all n ∈ ω, where Un = {Un
k : k ∈ ω}

is an enumeration. Let b ∈ ωω be an upper bound of {bQ : Q ∈ Q1} with
respect to ≤F . We claim that X×Y ⊂

⋃
n∈ω

⋃
k≤b(n) U

n
k . Indeed, fix y ∈ Y ,

x ∈ X, and find Q ∈ Q1 such that x ∈ R(Q). It follows that 〈x, y〉 ∈ OQ,α

for all α ∈ ω1, therefore for every α there exists n ∈ Fα with 〈x, y〉 ∈ ∪WQ
n ⊂⋃

k≤bQ(n) U
n
k , and hence F := {n ∈ ω : 〈x, y〉 ∈

⋃
k≤bQ(n) U

n
k } ∈ F+ = F .

Then 〈x, y〉 ∈
⋃

k≤b(n) U
n
k for all n ∈ F ∩ {k : bQ(k) ≤ b(k)} ∈ F , which

completes our proof. �

Note that Lemma 2.4 together with Proposition 2.7 imply that in the
Miller model, a subspace X of P(ω) is Menger iff it is weakly Gω1-concen-
trated iff it is weakly ωGω1-concentrated.

As we have already notices above, Lemma 2.4 and Proposition 2.7 imply
Theorem 1.1 for subspaces of P(ω). The general case of arbitrary Menger
spaces can be reduced to subspaces of P(ω) in the same way as in the
proof of [23, Theorem 1.1], the only difference being that in some places
“Hurewicz” should be replaced with “Menger”. However, we present this
proof for the sake of completeness. We will need characterizations of the
Menger property obtained in [34]. Let u = 〈Un : n ∈ ω〉 be a sequence of
subsets of a set X. For every x ∈ X let Is(x, u,X) = {n ∈ ω : x ∈ Un}.
If every Is(x, u,X) is infinite (the collection of all such sequences u will be
denoted by Λs(X)), then we shall denote by Us(u,X) the smallest semifilter
on ω containing all Is(x, u,X). (Recall that a family F ⊂ [ω]ω is called a
semifilter if for every F ∈ F and X∗ ⊃ F we have X ∈ F , where F ⊂∗ X
means |F \ X| < ω.) By [34, Theorem 3], a Lindelöf topological space
X is Menger if and only if for every u ∈ Λs(X) consisting of open sets,
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the semifilter Us(u,X) is Menger. The proof given there also works if we
consider only those 〈Un : n ∈ ω〉 ∈ Λs(X) such that all Un’s belong to a
given base of X.

Proof of Theorem 1.1. Suppose that X, Y are arbitrary Menger spaces
such that X × Y is Lindelöf and fix w = 〈Un × Vn : n ∈ ω〉 ∈ Λs(X × Y )
consisting of open sets. Set u = 〈Un : n ∈ ω〉, v = 〈Vn : n ∈ ω〉, and note
that u ∈ Λs(X) and v ∈ Λs(Y ). It is easy to see that

Us(w,X × Y ) = {A ∩B : A ∈ Us(u,X), B ∈ Us(v, Y )},

and hence Us(w,X × Y ) is a continuous image of Us(u,X) × Us(v, Y ). By
[34, Theorem 3] both of latter ones are Menger, considered as subspaces of
P(ω), and hence by Lemma 2.4 and Proposition 2.7 their product is Menger
as well. Thus Us(w,X×Y ) is Menger, being a continuous image of a Menger
space. It suffices to use [34, Theorem 3] again. 2

Acknowledgment. We would like to thank Arnold Miller for his comments
regarding Lemma 2.3, and Marion Scheepers for the discussion of relations
between Menger and productively Lindelöf spaces.
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