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Abstract. We prove that in the Miller model every M -separable space
of the form Cp(X), where X is metrizable and separable, is productively
M -separable, i.e., Cp(X) × Y is M -separable for every countable M -
separable Y .

1. Introduction

This paper is devoted to products of M -separable spaces. A topological
space X is said to be M-separable, if for every sequence 〈Dn : n ∈ ω〉 of
dense subsets of X, one can pick finite subsets Fn ⊂ Dn so that

⋃
n∈ω Fn is

dense, see [3]. This notion has been introduced in [21] where M -separable
spaces of the form Cp(X) were characterized. Here Cp(X) is the set of
all continuous functions f : X → R with the topology inherited from the
Tychonoff product RX . It is obvious that second-countable spaces (even
spaces with a countable π-base) are M -separable. Our main result is the
following

Theorem 1.1. In the Miller model, the product of any two M-separable
spaces is M-separable, provided that all dense subspaces of this product are
separable, and one of the spaces is of the form Cp(Z) for some Tychonoff
space Z.

In particular, if Y is a countable M-separable space and X = Cp(Z) is
M-separable for some second-countable Z, then X × Z is M-separable.

By the Miller model we standardly mean a forcing extension of a model
of GCH by adding a generic filter for an iteration with countable supports
of length ω2 of the poset introduced by Miller in [15]. We give more details
about this poset in the next section. One of the key properties of this
poset is the inequality u < g proved in [6, 9], see [5] for more information
on cardinal characteristics of the reals. In particular, an equivalent form of
this inequality established in [12] will be crucial for our proof of Lemma 2.4.

Let us recall that a topological space X is said to have the Menger
property (or, alternatively, is a Menger space) if for every sequence 〈Un :
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n ∈ ω〉 of open covers of X there exists a sequence 〈Vn : n ∈ ω〉 such that
each Vn is a finite subfamily of Un and the collection {∪Vn : n ∈ ω} is a
cover of X. This property was introduced by Hurewicz, and the current
name (the Menger property) is used because Hurewicz proved in [11] that
for metrizable spaces his property is equivalent to a certain property of a
base considered by Menger in [14]. The Menger property is central in the
study of the M -separability of function spaces: For a Tychonoff space X,
Cp(X) is M -separable if and only if all finite powers of X are Menger and
X admits a weaker separable metrizable topology, see [4, Theorem 2.9] or
[21, Theorem 35]. Let us also note that by the main result of [24], all
finite powers of Cp(X) are hereditarily separable if all finite powers of X
are hereditarily Lindelöf. In particular, Cp(Z) is hereditarily separable for
second countable spaces Z.

Our paper is a further development of the ideas in [18, 19, 23]. However,
the proof of Theorem 1.1 is conceptually different from those in these three
papers, since here we have to analyze the local structure of spaces of func-
tions in the Miller model. Also, unlike in [23], we were unable to achieve
the optimal result (which would be the consistency of the preservation of
M -separability by finite products of countable spaces), and affirmative an-
swers to any of the last two items in Question 1.2 would fill in this gap by
Lemma 2.5.

The main result of [23] states that in the Miller model the product of
any two second-countable spaces with the Menger property is Menger. Thus
in this model the characterization mentioned above yields that for any two
second-countable spaces Z0, Z1, if Cp(Z0) and Cp(Z1) are M -separable, then
so is Cp(Z0) × Cp(Z1). Thus it is worth mentioning here that there are
countable M -separable spaces which cannot be embedded into M -separable
spaces of the form Cp(Z), and hence Theorem 1.1 indeed covers more cases of
M -separable spaces as the main result of [23] combined with the characteri-
zation in [4, 21]. The easiest example of such a space is the Fréchet-Urysohn
fan Sω, i.e., the factor space of the product ω× ({0}∪ {1/n : n ∈ ω}) ⊂ R2

obtained by identifying all points in ω × {0}. It is obviously M -separable,
and it fails to have the countable fan tightness introduced in [1], whereas
every M -separable space of the form Cp(Z) has countable fan tightness by
[4, Corollary 2.10] and the latter property is hereditary.

On the other hand, there are many consistent examples under CH and
weakenings thereof of countable M -separable spaces with non-M -separable
products, see, e.g., [2, 17]. As it was demonstrated in [16, §6], in all cases
when such a non-preservation result is known, one can obtain it using spaces
of the form Cp(Z), which is a yet another motivation behind Theorem 1.1.

Theorem 1.1 seems to be the best known approximation towards the
answer to the first item of following question which is central in this area.
It has been first asked in [4] and then repeated in several other papers. We
refer the reader to Definition 2.1 for the notions appearing in the last two
items.
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Question 1.2. (1) Is it consistent that the product of two countable
M -separable spaces is M -separable? Does this statement hold in
the Miller model? Does it follow from u < g?

(2) In the Miller model, does every countable M -separable space X have
a point x (equivalently, densely many points x) such that ζ(X, x) ≤
ω1?

(3) In the Miller model, does every countable M -separable space X have
property (†)?

2. Proof of Theorem 1.1

We divide the proof of Theorem 1.1 into a sequence of auxiliary state-
ments. More precisely, it follows immediately from Lemmata 2.3, 2.5, 2.6,
and 2.7.

Definition 2.1. (1) A family U of open subsets of a space X is called
centered, if ∩V 6= ∅ for any V ∈ [U ]<ω.

(2) A topological space 〈X, τ〉 has property (†) if for every family R of
size ω1 of functions R assigning to each countable centered family U
of open subsets of X a sequence R(U) ∈ ([X]<ω \ {∅})ω such that

∀U ∈ U ∀∗n ∈ ω (R(U)(n) ⊂ U),

there exists U ∈ [[τ\{∅}]ω]ω1 consisting of countable centered families
such that for all O ∈ τ \ {∅} there exists U ∈ U such that for every
R ∈ R there exists n ∈ ω with the property R(U)(n) ⊂ O.

(3) For a topological space X and x ∈ X we denote by ζ(X, x) the
minimal cardinality κ such that for every sequence 〈An : n ∈ ω〉 such
that x ∈ Ān for all n, there exists a sequence 〈〈Kα

n : n ∈ ω〉 : α < κ〉
such that Kα

n ∈ [An]<ω for all n, α, and for every open U 3 x there
exists α ∈ κ such that U ∩Kα

n 6= ∅ for all n ∈ ω.
(4) For a topological spaceX we denote by ζ(X) the cardinal sup{ζ(X, x) :

x ∈ X}.

Spaces X with ζ(X) ≤ ω are exactly the spaces which are weakly Fréchet
in the strict sense in the terminology of [3, 20].

In order to prove Theorem 1.1 we need to recall some details related
to the Miller forcing. By a Miller tree we understand a subtree T of ω<ω

consisting of increasing finite sequences such that the following conditions
are satisfied:

• Every t ∈ T has an extension s ∈ T which splits in T , i.e., there are
more than one immediate successors of s in T ;
• If s is splitting in T , then it has infinitely many successors in T .

The Miller forcing is the collection M of all Miller trees ordered by inclusion,
i.e., smaller trees carry more information about the generic. This poset has
been introduced in [15] and has since then found numerous applications
see, e.g., [9]. We denote by Pα an iteration of length α of the Miller forcing
with countable support. If G is Pβ-generic and α < β, then we denote the
intersection G ∩ Pα by Gα.
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For a Miller tree T we shall denote by Split(T ) the set of all splitting
nodes of T . For a node t in a Miller tree T we denote by Tt the set {s ∈ T : s
is compatible with t}. It is clear that Tt is also a Miller tree. The stem of
a Miller tree T is the shortest t ∈ Split(T ). We denote the stem of T by
T 〈0〉. If T1 ≤ T0 and T1〈0〉 = T0〈0〉, then we write T1 ≤0 T0.

The following lemma can be proved by an almost literal repetition of the
proof of [13, Lemma 14], see also [23, §2] for a more general form. Here by
a real we mean a subset of ω.

Lemma 2.2. Let ẋ be a Pω2-name for a real and p ∈ Pω2. Then there
exist p′ ≤ p such that p′(0) ≤0 p(0), and a finite set of reals Us for each
s ∈ Split(p′(0)), such that for each N ∈ ω, s ∈ Split(p′(0)), and for all but
finitely many immediate successors t of s in p′(0) we have

(p′(0))tˆp
′ � [1, ω2)  ∃u ∈ Us (u ∩N = ẋ ∩N).

A subset C of ω2 is called an ω1-club if it is unbounded and for every
α ∈ ω2 of cofinality ω1, if C ∩ α is cofinal in α then α ∈ C.

The following lemma is the key part of the proof of Theorem 1.1.

Lemma 2.3. In the Miller model every countable space X such that {x ∈
X : ζ(X, x) ≤ ω1} is dense in X, has property (†).

Proof. We work in V [Gω2 ], where Gω2 is Pω2-generic and Pω2 is the iteration
of length ω2 with countable supports of the Miller forcing. Let us write X
in the form 〈ω, τ〉 and let R = {Rα : α < ω1} be such as in the definition of
(†). By a standard argument (see, e.g., the proof of [8, Lemma 5.10]) there
exists an ω1-club C ⊂ ω2 such that for every α ∈ C the following conditions
hold:

(i) τ ∩ V [Gα] ∈ V [Gα] and for every x ∈ ω and a sequence 〈An : n ∈
ω〉 ∈ V [Gα] of subsets of ω containing x in their closure, there exists
〈〈Kα

n : n ∈ ω〉 : α < ω1〉 ∈ V [Gα] such as Definition 2.1(3);
(ii) {Rα(U) : α ∈ ω1,U ∈ [τ ∩ V [Gα]]ω ∩ V [Gα] is centered} ∈ V [Gα];

(iii) For every A ∈ P(ω) ∩ V [Gα] the interior Int(A) also belongs to
V [Gα].

Standardly, there is no loss of generality in assuming that 0 ∈ C. We claim
that

U := {U ∈ [τ \ {∅}]ω ∩ V : U is centered }
is a witness for 〈ω, τ〉 satisfying (†). Suppose, contrary to our claim, that
there exists A ∈ τ \ {∅} such that for every U ∈ U there exists α ∈ ω1 such
that Rα(U)(n) 6⊂ A for all n ∈ ω. Let Ȧ be a Pω2-name for A and p ∈ Pω2

a condition forcing the above statement. Without loss of generality, there
exists N ∈ ω such that ζ(X,N) ≤ ω1 and p  N ∈ Ȧ.

Applying Lemma 2.2 to ẋ := Ȧ we get a condition p′ ≤ p such that
p′(0) ≤0 p(0), and a finite set Us ⊂ P(ω) for every s ∈ Split(p′(0)), such
that for each n ∈ ω, s ∈ Split(p′(0)), and for all but finitely many immediate
successors t of s in p′(0) we have

p′(0)tˆp
′ � [1, ω2)  ∃U ∈ Us (Ȧ ∩ n = U ∩ n).
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Of course, any p′′ ≤ p′ also has the property above with the same Us’s.
However, the stronger p′′ is, the more elements of Us might play no role
any more. Therefore throughout the rest of the proof we shall call U ∈ Us
void for p′′ ≤ p′ and s ∈ Split(p′′(0)), if there exists n ∈ ω such that
for all but finitely many immediate successors t of s in p′′(0) there is no
q ≤ p′′(0)tˆp

′′ � [1, ω2) with the property q  Ȧ ∩ n = U ∩ n. Note that for
any p′′ ≤ p′ and s ∈ Split(p′′(0)) there exists U ∈ Us which is non-void for
p′′, s. Two cases are possible.

a) For every p′′ ≤ p′ there exists s ∈ Split(p′′(0)) and a non-void U ∈ Us
for p′′, s such that N ∈ Int(U). Let U be the collection of Int(U) for all U
as above. It follows from the above that p′ forces that there exists α ∈ ω1

such that Rα(U)(n) 6⊂ Ȧ for all n ∈ ω. Passing to a stronger condition, if
necessary, we may additionally assume that p′ decides α.

Fix a non-void U for p′, s, where s ∈ Split(p′(0)), such that N ∈ Int(U)
(and hence Int(U) ∈ U). It follows from the above that there exists m such
that Rα(U)(k) ⊂ Int(U) for all k ≥ m. Let n ∈ ω be such that Rα(U)(m) ⊂
n. By the definition of being non-void there are infinitely many immediate
successors t of s in p′(0) for which there exists qt ≤ p′(0)tˆp

′ � [1, ω2) with
the property qt  Ȧ ∩ n = U ∩ n. Then for any qt as above we have that
qt forces Rα(U)(m) ⊂ Ȧ because Rα(U)(m) ⊂ U ∩ n, which contradicts the
fact that qt ≤ p′ and p′  Rα(U)(m) 6⊂ Ȧ.

b) There exists p′′ ≤ p′ such that for all s ∈ Split(p′′(0)), every U ∈ Us
with N ∈ Int(U) is void for p′′, s. Note that this implies that every U ∈ Us
with N ∈ Int(U), U is void for q, s for all q ≤ p′′ and s ∈ Split(q(0)). Let
〈Dk : k ∈ ω〉 ∈ V be a sequence of subsets of ω such that{

Dk : k ∈ ω
}

=
{
ω \ U : U ∈

⋃
s∈Split(p′′(0))

Us, N 6∈ Int(U)
}
.

Item (i) above yields a sequence 〈〈Kα
k : k ∈ ω〉 : α < ω1〉 ∈ V such that

Kα
k ∈ [Dk]

<ω for all k, and for every neighborhood O ∈ τ of N there exists
α ∈ ω1 such that such that Kα

k ∩O 6= ∅ for all k ∈ ω. Let p(3) ≤ p′′ decide α

which has the property stated above for Ȧ. Fix U ∈ Up(3)(0)〈0〉 non-void for

p(3), p(3)(0)〈0〉. Then N 6∈ Int(U) by the choice of p′′ and hence there exists
k such that ω \U = Dk. It follows that Kα

k ∩U = ∅ because Kα
k ⊂ Dk. On

the other hand, since U is non-void for p(3), p(3)(0)〈0〉, for n = maxKk + 1
we can find infinitely many immediate successors t of p(3)(0)〈0〉 in p(3)(0)
for which there exists qt ≤ p(3)(0)tˆp

(3) � [1, ω2) forcing Ȧ ∩ n = U ∩ n.
Then any such qt forces Kα

k ∩ Ȧ = ∅ (because Kα
k ⊂ n and Kα

k ∩ U = ∅),
contradicting the fact that p(3) ≥ qt and p(3)  Kα

k ∩ Ȧ 6= ∅ for all k.

Contradictions obtained in cases a) and b) above imply that U is a witness
for 〈ω, τ〉 having (†), which completes our proof. �

It is known [9] that in the Miller model there exists an ultrafilter F
generated by ω1-many sets, say {Fα : α ∈ ω1}. It plays an important role
in the proof of the following
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Lemma 2.4. In the Miller model, for every M-separable space X and a
decreasing sequence 〈Dn : n ∈ ω〉 of countable dense subsets of X, there
exists a sequence 〈〈Kα

n : n ∈ ω〉 : α ∈ ω1〉 such that

(1) Kα
n ∈ [Dn]<ω for all n ∈ ω and α ∈ ω1, and

(2) for every open non-empty O ⊂ X there exists α ∈ ω1 such that
O ∩Kα

n 6= ∅ for all n ∈ ω.

Proof. Let us write Dn in the form {dnk : k ∈ ω} and fix an increasing func-
tion f ∈ ωω such that for every open non-empty O ⊂ X there are infinitely
many n ∈ ω such that O ∩ {dnk : k ≤ f(n)} 6= ∅. Let us denote by UO the
set of all such n. By [12, Theorem 10] combined with [6, Theorems 1,2], for
the family U = {UO : O is an open non-empty subset of X} there exists an
increasing sequence 〈mi : i ∈ ω〉 ∈ ωω such that one of the following options
takes place:

• For every O the set
⋃
{[mi,mi+1) : UO ∩ [mi,mi+1) 6= ∅} belongs to

F ; or
• For every A ∈ [ω]ω there exists O such that UO ⊂∗

⋃
{[mi,mi+1) :

i ∈ A}.
Suppose that the second option takes place and let A ⊂ [ω]ω be an infinite
(and hence uncountable) maximal almost disjoint family. For every A ∈ A
fix an open non-empty subset O(A) of X such that UO(A) ⊂∗

⋃
{[mi,mi+1) :

i ∈ A} and note that this implies |UO(A)∩UO(A′)| < ω for any distinct A,A′ ∈
A. On the other hand, since X is separable and A is uncountable, there
are distinct A,A′ ∈ A such that O(A) ∩ O(A′) 6= ∅, and hence UO(A)∩O(A)

is infinite, contradicting the fact that UO(A)∩O(A) ⊂ UO(A) ∩ UO(A) and the
latter intersection is finite.

Thus the first option must take place. For every α ∈ ω1 and n ∈ ω let
iα,n be the minimal number i such that mi ≥ n and [mi,mi+1) ∩ Fα 6= ∅.
We claim that the sequences〈

Kα
n = {dlk : l ∈ [miα,n ,miα,n+1), k ≤ f(l)} : n ∈ ω

〉
are as required. Indeed, given O, find α such that Fα ⊂

⋃
{[mi,mi+1) :

UO ∩ [mi,mi+1) 6= ∅}. Now for every n ∈ ω we have

Kα
n ∩O = {dlk : l ∈ [miα,n ,miα,n+1), k ≤ f(l)} ∩O,

and the latter intersection is non-empty because [miα,n ,miα,n+1) ∩ Fα 6= ∅,
hence also [miα,n ,miα,n+1)∩UO 6= ∅, and thus for every l ∈ [miα,n ,miα,n+1)∩
UO we have O ∩ {dlk : k ≤ f(l)} 6= ∅. This completes our proof. �

There is a natural linear preorder ≤F on ωω associated to F defined
as follows: x ≤F y if and only if {n ∈ ω : x(n) ≤ y(n)} ∈ F . By [7,
Theorem 3.1], in the Miller model for every X ⊂ ωω of size ω1 there exists
b ∈ ωω such that x ≤F b for all x ∈ X. As an easy consequence thereof
we get the following fact: Suppose that 〈Dn : n ∈ ω〉 is a sequence of
countable sets and Aα,n ∈ [Dn]<ω for all α ∈ ω1 and n ∈ ω. Then there
exists a sequence 〈An : n ∈ ω〉 such that An ∈ [Dn]<ω for all n, and
{n : Aα,n ⊂ An} ∈ F for all α ∈ ω1.
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Lemma 2.5. In the Miller model, suppose that |X| = |Y | = ω, X satisfies
(†), and Y is M-separable. Then X × Y is M-separable.

Proof. Let 〈Dn : n ∈ ω〉 be a sequence of dense subsets of X × Y . By
[10, Lemma 2.1] there is no loss of generality in assuming that Dn+1 ⊂ Dn

for all n. Given an open non-empty subset U of X, for every n ∈ ω set
DU
n = {y ∈ Y : ∃x ∈ U(〈x, y〉 ∈ Dn)} and note that DU

n is dense in Y .
Given a countable centered family U of open subsets of X, fix a decreasing
sequence 〈UU ,n : n ∈ ω〉 of open subsets of X such that for every U ∈ U there
exists n ∈ ω such that UU ,n ⊂ U . By Lemma 2.4 there exists a sequence〈

〈Lα,Un : n ∈ ω〉 : α ∈ ω1〉

such that Lα,Un ∈ [D
UU,n
n ]<ω for all n, α, and for every open non-empty

V ⊂ Y there exists α such that Lα,Un ∩ V 6= ∅ for all n. Let us find
Kα,U
n ∈ [UU ,n]<ω such that for every y ∈ Lα,Un there exists x ∈ Kα,U

n such
that 〈x, y〉 ∈ Dn. For every α, β ∈ ω1 set Rα,β(U) = {Kα,U

n : n ∈ Fβ}1.
Note that R = {Rα,β : α, β ∈ ω1} is such as in the definition of (†) because
Kα,U
n ⊂ U for all U ∈ U and all but finitely many n ∈ ω. It follows that

there exists a family U of countable centered families U of open subsets
of X of size |U| = ω1, and such that for every open non-empty O ⊂ X
there exists U ∈ U such that for all α, β ∈ ω1 there exists n ∈ Fβ with the
property Kα,U

n ⊂ O. Since F is an ultrafilter, it follows that for all α ∈ ω1

there exists ξ ∈ ω1 with the property Kα,U
n ⊂ O for all n ∈ Fξ.

Since |U| = ω1, there exists a sequence 〈Mn : n ∈ ω〉 such that Mn ∈
[Dn]<ω and for every U ∈ U and α, β ∈ ω1, we have{

n ∈ ω : Mn ⊃ (Kα,U
n × Lα,Un ) ∩Dn

}
∈ F .

We claim that
⋃
n∈ωMn is dense in X × Y . Indeed, let us fix an open non-

empty subset of X × Y of the form O × V and find U ∈ U as above. Let α
be such that Lα,Un ∩ V 6= ∅ for all n ∈ ω. Pick β ∈ ω1 such that

Fβ ⊂
{
n ∈ ω : Mn ⊃ (Kα,U

n × Lα,Un ) ∩Dn

}
.

Let ξ ∈ ω1 be such that Kα,U
n ⊂ O for all n ∈ Fξ. Then for every n ∈ Fβ∩Fξ

we have

∅ 6= (O × V ) ∩ (Kα,U
n × Lα,Un ) ⊂ (O × V ) ∩Mn,

which completes our proof. �

Next lemma gives consistent examples of countable spaces X such that
ζ(X) ≤ ω1.

Lemma 2.6. In the Miller model, suppose that X = 〈ω, τ〉 is a topological
space and x ∈ ω is such that U = {U ∈ P(ω) : x ∈ Int(U)} is Menger.
Then ζ(X, x) ≤ ω1.

1Formally, Rα,β(U) should have domain ω. We can define it arbitrarily on ω\Fβ in such
a way that for all U ∈ U and all but finitely many n ∈ ω \ Fβ we have Rα,β(U)(n) ⊂ U ,
the restriction Rα,β(U) � (ω \ Fβ) will play no role anyway.
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Proof. For every n ∈ ω fix An = {ank : k ∈ ω} ⊂ ω such that x ∈ Ān. For
every U ∈ U set

φ(U)(n) = min{k : ank ∈ U} and Φ(U) = {z ∈ ωω : ∀n (z(n) ≤ φ(U)(n))}

and note that Φ is a compact-valued map from U to ωω. We claim that
it is upper semicontinuous, i.e., for every open W ⊂ ωω containing Φ(U)
for some U ∈ U , there exists an open neighborhood O of U in U such that
Φ(U ′) ⊂ W for all U ′ ∈ U ∩O. For U,W as above find m ∈ ω such that

Φ(U) =
∏
n∈ω

(φ(U)(n) + 1) ⊂
∏
n≤m

(φ(U)(n) + 1)×
∏
n>m

ω ⊂ W.

Set O = {U ′ ∈ U : ∀n ≤ m(φ(U ′)(n) ≤ φ(U)(n))} and note that O is open
in P(ω) and Φ(U ′) ⊂ W for all U ′ ∈ O ∩ U .

Since U is Menger and Φ is compact-valued and upper semicontinu-
ous, Z :=

⋃
U∈U Φ(U) ⊂ ωω is Menger by [22, Lemma 1]. Applying [23,

Lemma 2.3] we conclude that there exists Y ∈ [ωω]ω1 such that for every
z ∈ Z (in particular, for every z of the form φ(U), where U ∈ U) there
exists y ∈ Y such that z(n) ≤ y(n) for all n ∈ ω. It follows from the above
that Ky

n = {ank : k ≤ y(n)}, where y ∈ Y and n ∈ ω, are witnessing for
ζ(X, x) ≤ ω1. �

Lemma 2.7. Suppose that X is a Tychonoff space such that Xn is Menger
for all n ∈ ω, and 0 ∈ A ∈ [Cp(X)]ω is such that 0 is a limit point of A.
Then U = {U ∈ P(A) : 0 ∈ Int(U)} is Menger as a subspace of P(A),
where the interior is considered in the topology on A inherited from Cp(X).

Proof. By the definition of the topology of Cp(X) we have that

U =
⋃

n,m∈ω

⋃
~x=〈x0,...,xn−1〉∈Xn

↑ Un,m,~x,

where Un,m~x = {a ∈ A : ∀i < n (a(xi) < 1/m)} and ↑ B = {B′ ⊂ A : B ⊂
B′} for all B ⊂ A. In the same way as in Lemma 2.6 we can check that the
map

Xn 3 ~x 7→↑ Un,m~x ⊂ P(A)

is compact-valued and upper semicontinuous for all n,m ∈ ω, and hence by
[22, Lemma 1] U is Menger being a countable union of its Menger subspaces.

�

Finally, we have all necessary ingredients for the proof of Theorem 1.1. It
suffices to prove that in the Miller model the product of any two countable
M -separable spaces X, Y is M -separable, provided that X is a subspace of
Cp(Z) and Cp(Z) is M -separable. By [21, Theorem 35] we have that Zn

has the Menger property for all n ∈ ω, and hence for every x ∈ X the
family U = {U ∈ P(X) : x ∈ Int(U)} is Menger as a subspace of P(X) by
Lemma 2.7. Applying Lemma 2.6 we conclude that ζ(X) ≤ ω1, and hence
X has property (†) by Lemma 2.3. It remains to apply Lemma 2.5.
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[19] Repovš, D.; Zdomskyy, L., Products of H-separable spaces in the Laver model,
Topology Appl. 239 (2018), 115–119.

[20] Sakai, M., Special subsets of reals characterizing local properties of func-
tion spaces, In: Selection Principles and Covering Properties in Topology (L.
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