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Abstract. We extend a theorem of Todor£evi¢: Under the assumption (K)
(see De�nition 1.11),

£
{
any regular space Z with countable tightness such that
Zn is Lindelöf for all n ∈ ω has no L-subspace.

We assume p > ω1 and a weak form of Abraham and Todor£evi¢'s P -ideal di-
chotomy instead and get the same conclusion. Then we show that p > ω1 and the
dichotomy principle for P -ideals that have at most ℵ1 generators together with
£ do not imply that every Aronszajn tree is special, and hence do not imply (K).
So we really extended the mentioned theorem.

1. Introduction

A regular topological space X is an L-space, if it is hereditarily Lindelöf
but not separable. The following theorem is a classical fact about L-spaces.

Theorem 1.1 (Szentmiklóssy [13]). Assume MAω1, and let Z be a com-
pact space with countable tightness. Then Z has no L-subspaces.
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Using similar techniques as in [11], Todor£evi¢ extended Theorem 1.1 to
the following:

Theorem 1.2 (Todor£evi¢ [16, Theorem 7.10]). £ follows from (K).
The principle (K) follows from MAω1 , Martin's Axiom for ω1 dense sets,

and it implies that all Aronszajn trees are special, see [16, Remarks 7.16].
We will review the mentioned principles at the end of this section.

We prove that the conclusion of Theorem 1.2 holds under another as-
sumption (see Statement 1.12):

Theorem 1.3. £ follows from p > ω1 and WPID.
Let us note that neither p > ω1 nor WPID alone are su�cient in The-

orem 1.3: as it was noted in [11, p. 266], strong L-spaces remain so in all
forcing extensions V P such that P has the Knaster property, which means
that for any A ∈ [P]ω1 there exists a centred subcollection B ∈ [A]ω1 . There
is a Knaster forcing increasing p. WPID is consistent with CH, and under
CH there are many constructions of regular topological spaces X all of whose
�nite powers are L-spaces (i.e. strong L-spaces).

In the light of Theorems 1.2 and 1.3 it is natural to ask about the relations
between MAω1 and the conjunction of p > ω1 and WPID. Theorem 1.4 below
describing such relations is the main result of this paper.

Theorem 1.4. The following is consistent: PID (ω1-generated) and
p > ω1, £, and there is a nonspecial Aronszajn tree. Therefore, PID (ω1-
generated) and p > ω1 does not imply (K).

If we assume the existence of a supercompact cardinal then the same is
true about the (full version of) PID.

Thus Theorem 1.3 adds more cases as compared with Todor£evi¢'s The-
orem 1.2. In the other direction we have the following consequence of [15,
Theorem 7], whose conclusion resembles WPID (ω1-generated).

Theorem 1.5. MAω1 implies that for every ideal I on an uncountable
set S with ω1-many generators, either there exists T ∈ [S]ω1 locally in I, or
there exists J ∈ [I]ω1 such that

⋃J ′ 6∈ I for any in�nite J ′ ⊂ J .
However, the following question remains open.
Question 1.6. Let P be one of the statements MAω1 and (K), and Q

be one of WPID (ω1-generated), WPID, PID (ω1-generated), PIDω1. Does P
imply Q?

Since MAω1 does not put any upper bound on b, the following theorem
shows that MAω1 does not imply PID.

Theorem 1.7 (Todor£evi¢ [17]). PID implies b 5 ω2.
For the reader's convenience we write a complete proof of Theorem 1.7

at the end of this section, which seems to be not available elsewhere.
Theorems 1.1 and 1.2 arose from the following classical fact:
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Theorem 1.8 (Kunen [11]). Assume MAω1. If X is an L-space, then
some of its �nite powers is not hereditarily Lindelöf.

Theorems 1.3 and 1.2 imply the following statement, which extends The-
orem 1.8:

Corollary 1.9. Assume that (p > ω1 and WPID) or MAω1. Then every
L-space of size ω1 has a non-Lindelöf �nite power.

Now we recall the relevant combinatorial principles.
A family J of in�nite subsets of ω is centred, if the intersection of any

�nite subfamily of J is in�nite. We standardly denote by p the smallest size
of a centred subfamily of [ω]ω without in�nite pseudo-intersection.

Definition 1.10. Let S be an uncountable set and let [S]<ω = K0 ∪K1

be a partition. Then this is called a c.c.c. partition if all singletons are in K0

and K0 is closed under subsets and every uncountable subset of K0 has two
elements whose union is in K0.

Definition 1.11. The principle (K) (see [16, Ch. 7]) says: For any c.c.c.
partition (S,K0,K1) there is an uncountable H j S such that [H]2 j K0. If
we replace 2 by the �nite number m in the dimension (still partitioning into
two parts) we get (Km).

It is easy to see that (K) implies also p > ω1: Given a centered subset F
of [ω]ω of size ω1, take PF from Section 3 and partition [PF ]<ω = K0 ∪K1,
{p0, p1, . . . , pn} ∈K0 if there is an upper bound on this set. This is a c.c.c. par-
tition and any uncountable homogeneous set will give a pseudo-intersection
to an uncountable part of F , and hence, since F can assumed to be j∗-
descending, to all of F .

An ideal I on a set S is a P -ideal, if for every countable J ⊂ I there
exists I ∈ I such that J ⊂∗ I for all J ∈ J . We say that T ⊂ S is locally in
(resp. orthogonal to) the ideal I, if [T ]ω ⊂ I (resp. P(T ) ∩ I = [T ]<ω). We
consider the ideals containing all singletons. We shall use the following two
statements:

WPID: For every P -ideal on an uncountable set S, either S contains an
uncountable subset locally in I, or an uncountable subset orthogonal to I.

PID: For every P -ideal on an uncountable set S, either S contains an
uncountable subset locally in I, or S can be decomposed into countably many
pieces orthogonal to I.

The principle PID (abbreviated from P -ideal dichotomy) was introduced
in [17]. We write PIDκ for the restriction of PID for sets S of size at most κ
and we write PID (ω1-generated) for the the restriction of PID for P -ideals
I with at most ω1 generators. Similarly with WPID (here �W� stands for
�weak�), but WPIDκ is obviously equivalent to WPIDω1 for every cardinal
κ. The WPID (ω1-generated) was used in [6] in context of S-spaces. The
principle PID follows from PFA and is consistent with CH, see [17]. PIDω2

contradicts the existence of Jensen's square sequence at ω2 (i.e. ¤ω1), and
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thus any of its consistency proof must involve large cardinals, see [17, p. 258].
Therefore MA does not imply PIDω2 .

Finally, we present the proof of Theorem 1.7. It is a direct consequence
of Lemmas 1.12 and 1.13 below. Lemma 1.12 is modelled after the second
paragraph of [17], while the proof of Lemma 1.13 can be found in [9, p. 578].
For the reader's convenience we give a complete proof of Lemma 1.12, which
seems not to be available elsewhere. Given a relation R on ω and x, y ∈ ωω,
we denote the set

{
n ∈ ω : x(n) R y(n)

}
by [xRy].

Let κ, λ be regular cardinals. A (κ, λ)-pregap
〈{fα}α<κ, {gβ}β<λ

〉
is a

pair of trans�nite sequences 〈fα : α < κ〉 and 〈gβ : β < λ〉 of nondecreasing
sequences fα, gβ of natural numbers such that fα1 5∗ fα2 5∗ gβ2 5∗ gβ1 for
all α1 5 α2 < κ and β1 5 β2 < λ. As usual, f 5∗ g means that the set [f > g]
is �nite. A (κ, λ)-pregap is called a (κ, λ)-gap, if there is no h ∈ ωω such that
fα 5∗ h 5∗ gβ for all α, β.

Lemma 1.12. Suppose that there exists a (κ,λ)-gap such that κ is regular,
b > κ > ω1, and λ = ω1. Then PIDλ fails.

Proof. Assume that such a gap
〈{fα}α<κ,{gβ}β<λ

〉
exists and, contrary

to our claim, PIDλ holds. Set

I =
{

A ∈ [λ]ω : ∃α ∈ κ∀γ = α ∀n ∈ ω
(
|{β ∈ A : [fγ > gβ] ⊂ n

} | < ω
)}

.

We claim that I is a P -ideal. Indeed, let {Ai : i ∈ ω} be a sequence of
mutually disjoint elements of I, αi be a witness for Ai ∈ I, and α = sup {αi :
i ∈ ω}. Fix γ = α. Let Bi(γ) =

{
β ∈ Ai : [fγ > gβ] ⊂ i

}
. Then Bi(γ) is a

�nite subset of Ai by the de�nition of I. Since κ < b, there exists a sequence
〈Bi : i ∈ ω〉 such that each Bi is a �nite subset of Ai and for every γ = α,
Bi(γ) ⊂ Bi for all but �nitely many i.

Set A =
⋃

i∈ω Ai \Bi and �x n ∈ ω and γ = α. If β ∈ Ai is such that
[fγ > gβ] ⊂ n and i = n, then β ∈ Bi(γ). Let jγ = n be such that Bi ⊃ Bi(γ)
for all i = jγ . Then for every i = jγ the set

{
β ∈ Ai : [fγ > gβ] ⊂ n

}
is a

subset of Bi, and hence
{

β ∈ A : [fγ > gβ] ⊂ n
} ⊂

{
β ∈

⋃

i<jγ

Ai : [fγ > gβ] ⊂ n

}
.

Since γ = α = supi∈ω αi, the latter set is �nite.
Applying PIDλ to I we conclude that one of the following alternatives is

true:
1. There exists S ∈ [λ]ω1 such that [S]ω ⊂ I. Passing to an uncountable

subset of S if necessary, we can assume that S = {βξ : ξ < ω1} and βξ < βη

for any ξ < η < ω1. For every ξ we denote by Sξ the set {βζ : ζ < ξ}.
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By the de�nition of I for every ξ there exists αξ ∈ κ witnessing for Sξ ∈ I.
Let α = sup{αξ : ξ < ω1}. There exists n ∈ ω such that the set C =

{
ξ < ω1 :

[fα > gβξ
] ⊂ n

}
is uncountable. Let ξ0 be the ω-th element of C. Then

α = αξ0 and for all ξ ∈ C ∩ ξ0 we have [fα > gβξ
] ⊂ n. On the other hand,

Sξ0 ∈ I, and hence there should be only �nitely many such ξ ∈ ξ0, a contra-
diction.

2. λ =
⋃

m∈ω Sm such that Sm is orthogonal to I for all m ∈ ω. This
means that for every m ∈ ω and α ∈ κ there exists γα > α and nm,α ∈ ω such
that [fγα > gβ] ⊂ nm,α for all β ∈ Sm. There is no (κ, ω)-gap for κ < b (see
the proof of Theorem 29.8 on page 578 in [9]), and hence we assume that
cf (λ) > ω. Therefore there exists m ∈ ω such that Sm is co�nal in λ. Let
n ∈ ω be such that the set J =

{
α ∈ κ : nm,α = n

}
is co�nal in κ. For every

k let h(k) = max
{

fγα(k) : α ∈ J
}
. From the above it follows that [gβ < h]

⊂ n for all β ∈ Sm, and hence h contradicts the fact that
〈{fα}α<κ,{gβ}β<λ

〉

is a gap. ¤
Lemma 1.13. If b > ω2 then there is an (ω2, λ)-gap for some uncount-

able λ.

2. Proof of Theorem 1.3

We recall that a family V of subsets of a set X is point-�nite, if for every
x ∈ X the set {V ∈ V : x ∈ V } is �nite. The following statement could be
classi�ed as folklore.

Lemma 2.1. If a topological space T has an uncountable point-�nite fam-
ily of open subsets, then it is not hereditarily Lindelöf.

Proof. Assume that T is hereditarily Lindelöf and there exists an un-
countable point-�nite family V = {Vα : α < ω1} of open nonempty subsets
of T . Then we can construct a trans�nite sequence (αβ)β<ω1

of countable
ordinals such that for all β < ω1,

⋃

α=sup {αξ: ξ<β}
Vα =

⋃

αβ>α=sup {αξ: ξ<β}
Vα.

Let ζ = sup{αn : n ∈ ω}. From the above it follows that Vζ ⊂
⋃

αn+1>α=αn
Vα

for all n ∈ ω, and hence any point t ∈ Vζ is a witness for the family {Vα :
α < ω1} being not point-�nite, a contradiction. ¤

Let us recall some de�nitions. A family U of subsets of a set X is an ω-
cover (resp. γ-cover) of X [7], if X 6∈ U and for every �nite F ⊂ X the set {U
∈ U : F ⊂ U} is nonempty (resp. for every x ∈ X the set {U ∈ U : x 6∈ U}
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is �nite.) It is clear that U is a γ-cover of X if and only if V = {X \ U :
U ∈ U} is point-�nite. A topological space X is called an ε-space (resp. a
γ-space) [7], if any open ω-cover of X contains a countable ω-subcover (resp.
γ-subcover). It is easy to check [7] that X is an ε-space i� all �nite powers
of X are Lindelöf. We recall from [5] that a Σ-product of a family {Xα :
α ∈ A} of topological spaces with base-point (pα)α∈A is the dense subspace
Σ of

∏
α∈A Xα consisting of those points x for which xα = pα for all but

countably many α's. In what follows we shall be interested in the Σ-product
of ω1-many unit intervals with the base-point (0), and we denote this space
by Σω1 . The space Σω1 has countable tightness [5].

Let B be the standard base of the topology of [0, 1]ω1 consisting of prod-
ucts

∏
α∈ω1

Uα, where each Uα is an open interval with rational end-points,
and Uα = [0, 1] for all but �nitely many α.

Given any topological space X with a base C, let us denote by IX,C the
set of all at most countable point-�nite subfamilies of C.

Lemma 2.2. Let V0, V1, V2 be three models of ZFC such that ωV0
1 = ωV1

1

= ωV2
1 , V0 ⊂ V1 ⊂ V2, and ωω ∩ V0 = ωω ∩ V1. Then there is no ε-subspace

X ∈ V2 of Σω1 containing a dense subspace Y ∈ V0 with the following prop-
erties:

(i) Y is an L-subspace in V2 (and hence in V0 and V1);
(ii) V0 ² �IY,B|Y is a P -ideal�;
(iii) V1 ² �WPID is true for IV0

Y,B|Y �;
(iv) V0 ² �Every countable ω-cover of Y by elements of B|Y contains a

γ-subcover�; and
(v) for every α there exists x ∈ Y such that xα = 1.
Proof. Assume that such X and Y exist. Let us note that BV0 = BV1 and

(B|Y )V0 = (B|Y )V1 = (B|Y )V2 , where B|Y = {B ∩ Y : B ∈ B}. Indeed, the
�rst equality follows from the fact that there are no new reals in V1, while the
second is a consequence of Y ∈ V0. Therefore we can simply write B|Y in what
follows. For every α ∈ ω1 let Uα = pr−1

α (1/2, 1] ∩ Y and Oα = pr−1
α [0, 1/2)

∩X. Applying (in V1) WPID to the P -ideal (IY,B|Y )
V0 restricted to the

family {Uα : α ∈ ω1}, we conclude that one of the subsequent alternatives
holds.

1. There is an uncountable family W ∈ V1 of {Uα : α ∈ ω1} such that
each countable subset U ∈ V0 of W belongs to (IY,B|Y )

V0 . Since V1 and V0

have the same reals, this means that in V1, W is a point-�nite family of open
subsets of Y of size ω1. Applying Lemma 2.1, we conclude that Y is not an
L- space in V1, a contradiction.
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2. There exists A ∈ [ω1]
ω1 ∩ V1 such that no in�nite subset of {Uα :

α ∈ A} belongs to (IY,B|Y )
V0 . {Oα : α ∈ A} is an ω-cover of X, and hence

there exists a countable I ⊂ A, I ∈ V2, such that {Oα : α ∈ I} is an ω-cover
of X. Since A ∈ V1 and ωV1

1 = ωV2
1 , there exists a countable subset I ′ ∈ V1 of

A containing I, and therefore I ′ ∈ V0. Consequently, {Oα ∩ Y : α ∈ I ′} is a
countable ω-cover of Y in V0, and hence it contains a countable γ-subcover.
This means that there exists a countable subset I ′′ ∈ V0 of I ′ such that
{Oα ∩ Y : α ∈ I ′′} is a γ-cover of Y , and hence {Uα : α ∈ I ′′} ∈ (IY,B|Y )

V0 ,
which contradicts the choice of A. ¤

Corollary 2.3. Assume that WPID holds. Then there is no ε-space
X with countable tightness containing an L-subspace Y with the following
properties:

(i) IY,τ is a P -ideal, where τ is the topology of Y ; and
(ii) Y is a γ-space.
Proof. Assume that that there are such X and Y . Without loss of

generality [10], Y = {yα : α ∈ ω1}, Yβ := {yα : α < β} is closed in Y for all
β < ω1, and Y is dense in X. Set Fβ = clX(Yβ). From the above it follows
that Fβ ∩ Y = Yβ. Since X has countable tightness, X =

⋃
β<ω1

Fβ .
For every α < ω1 there exists an open neighbourhood Uα of yα such that

clX(Uα)∩Fα = ∅. Let fα : X → [0,1] be a continuous function such that f |Fα

= 0 and f(yα) = 1, and f : X → [0, 1]ω1 be the diagonal product of fα's, i.e.
f(x)α = fα(x). Then f(X) and f(Y ) ful�l all the conditions of Lemma 2.2
with V = V0 = V1 = V2, a contradiction. ¤

We recall that b is the minimal cardinality of an unbounded subset of ωω

with respect to 5∗. It is well-known (and easy) that p 5 b.
Proof of Theorem 1.3. Follows from Corollary 2.3 and the following

well-known observations.
Claim 2.4. Let |T | < b, F a family of subsets of T , and V the family

of all at most countable point-�nite subfamilies of F . Then V is a P -ideal
on F .

Proof. Let us �x any {Vn : n ∈ ω} ⊂ V. There is no loss of generality to
assume that each Vn is in�nite. Let Vn = {Vn,m : m ∈ ω} be a bijective enu-
meration of Vn. Using the point-�niteness of Vn's, for every t ∈ T �nd a num-
ber sequence

(
mt(n)

)
n∈ω

such that t 6∈ Vn,m for all n ∈ ω and m = mt(n).
Since |T | < b, there exists a number sequence

(
m(n)

)
n∈ω

such that for ev-
ery t ∈ T the inequality mt(n) 5 m(n) holds for all but �nitely many n ∈ ω.
A direct veri�cation shows that V =

{
Vn,m : m = m(n)

} ∈ V and Vn ⊂∗ V
for all n ∈ ω, which �nishes our proof. ¤

Claim 2.5. Every countable ω-cover V of a set T of size |T | < p contains
a γ-subcover.
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Proof. Since V is an ω-cover, the family
{{V ∈ V : z ∈ V } : z ∈ T

}
is a centred family of in�nite subsets of V of size < p, and hence it has a
pseudo-intersection V ′. Then V ′ is a γ-cover of T . ¤

Proof of Corollary 1.9. Follows from Theorem 1.3 and the follow-
ing fact: For every L-space T of size ω1 there exists a continuous surjection
f : T → Z onto some L-space Z of countable tightness. The latter can be
proved using the same arguments as in the second paragraph of Corollary 2.3.
¤

3. Proof of Theorem 1.4

Todor£evi¢'s result, that (K) implies that all Aronszajn trees are special,
gives the second part of the theorem. For the proof of the �rst part, we build
on a deep work by Hirschorn [8] and on a preservation theorem by Abraham
[1] and just add an epsilon to it.

The following notion was introduced by Shelah for his proof [12, Ch. IX]
that the non-existence of Souslin trees does not imply that all Aronszajn trees
are special.

Definition 3.1 [12, De�nition IX.4.5]. We call a forcing notion P (T,S)-
preserving if the following holds: T is an Aronszajn tree, S j ω1, and for ev-
ery λ > (2|P|+ℵ1)

+ and countable N ≺ (
H(λ),∈)

such that P, T, S ∈ N and
δ = N ∩ ω1 6∈ S, and every p ∈ N ∩ P there is some q = p (bigger conditions
are stronger) such that

(1) q is (N,P) generic; and
(2) for every x ∈ Tδ, if

(
x ∈ A → (∃y <T x)y ∈ A

)
for all A ∈ P(T )∩N ,

then q °P
(
x ∈ Ȧ → (∃y < x)y ∈ Ȧ

)
for every P-name Ȧ ∈ N such that °P Ȧ

⊂ T .
Let F be a centred family of in�nite subsets of ω of size |F| = ω1. For such

an F we let PF = (P,5P ) be de�ned by P =
{

(s,F ) : F ∈ [F ]<ω, s ∈ [ω]<ω}
.

(t, G) =P (s, F ) if t k s, tr s j
⋂

F and G k F .
Lemma 3.2. Let T be an Aronszajn tree, S = ∅, and F be a centred sub-

family of [ω]ω of size ω1. Then the forcing PF is (T, S)-preserving.
Proof. Let F = {aα : α < ω1} and ḡ = 〈gα : α < ω1〉 be a sequence of

in�nite subsets of ω such that gα is a pseudo-intersection of aβ , β < α. Fix
an N ≺ (H(λ),∈) with T , S, P , ḡ, p = (s, F ) ∈ N . Let δ = N ∩ ω1. We take
δ∗ = sup

{
ϕ(δ) + 1 : ϕ ∈ N , ϕ(δ) is an ordinal < ω1

}
.

We show that q = p is as desired. Let q1 = q, q1 ∈ PF . We show that
there is some q2 = q1 such that q2 ° x 6∈ Ȧ or q2 ° (∃y <T x)(y ∈ Ȧ). If
q1 ° x 6∈ Ȧ, then we can choose q2 = q1. Otherwise there is q3 = q1,
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q3 ° x ∈ Ȧ. We take any q4 =
(
s(q4), F (q4)

)
= q3 and show that q4 can be

extended to a condition that forces y ∈ Ȧ for some y <T x. Then by density
it follows that q3 forces (x ∈ Ȧ → (∃y <T x)y ∈ A).

The proof is an adaption of the steps given on pp. 456�457 in [12]. We
de�ne a function f : T → ω1 ∪ {ω1} as follows:

f(y) = sup{α ∈ ω1 : there are pairwise disjoint nonempty �nite ti, i ∈ ω,

ti ⊂ gα such that ∀i∃F1,i

(
ti ∪ s(q4), F1,i

)
° y ∈ Ȧ)}.

f ∈ N , as it is de�ned by a �rst order formula in (H(λ),∈) with parameters
in N . Let

A∗ =
{

y ∈ T : f(y) = ω1

}
.

A∗ ∈ N is a set, not just a name for a set.
Let f∗ : ω1 → ω1 be de�ned by

f∗(α) = sup
{

f(y) + 1 : y ∈ Tα, f(y) < ω1

}
.

By the de�nition of δ∗, f∗(δ) < δ∗. The condition q4 exempli�es that
f(x) = δ∗, since we can take witnesses ti that are just pairwise disjoint
nonempty �nite subsets of

⋂
F (q4) ∩ gξ, where ξ > δ∗ is any countable ordi-

nal above all η such that aη ∈ F (q4). So f(x) = ω1 and x ∈ A∗. Now we use
the hypothesis and get some y <T x, y ∈ A∗. Say the highest index in one
of the members of F (q4) is α0. Then since f(y) = ω1 there are α1 > α0 and
pairwise disjoint nonempty �nite ti, i ∈ ω, all subsets of gα1 , such that for
every i for some F1,i (

ti ∪ s(q4), F1,i

)
° y ∈ Ȧ.

But then some of the ti is not only a subset of the pseudo-intersection
gα1 j∗ ⋂

F (q4) but really a subset of
⋂

F (q4) and hence for this ti we have(
ti ∪ s(q4), F1,i ∪ F (q4)

)
° y ∈ Ȧ and

(
ti ∪ s(q4), F1,i ∪ F (q4)

)
= q4. ¤

Now we prove Theorem 1.4. Assume that GCH holds in the ground
model. We will use an iterated forcing construction 〈Pβ, Q̇α : β 5 ω2, α < ω2〉
which takes care about all posets of the form PF de�ned before Lemma 3.2,
along the odd α's. This way we shall guarantee p > ω1 in V Pω2 . Concern-
ing even α's (those of the form 2 · β), Q̇α is the Pα name of the Abraham�
Todor£evi¢ forcing QIα (again [2, p. 172]) corresponding to an ω1-generated
P -ideal Iα in V Pα . This is a proper ω2-c.c. forcing of size ω2 (provided GCH
holds in the ground model) which does not add reals and such that the P -
ideal dichotomy for Iα holds in the extension [2]. This forcing satis�es the
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ω2-properness isomorphism condition by [2, Lemma 3.6], and hence the re-
sulting poset Pω2 has the ω2-c.c., see [12, Ch. V]. Combining Lemma 3.2 with
the two deep results below, we conclude that every non-special Aronszajn
tree in V remains non-special in V Pω2 .

Theorem 3.3 (Hirschorn [8]). Let T be an Aronszajn tree and let S = ∅.
The Abraham�Todor£evi¢ forcing is (T, S)-preserving.

Theorem 3.4 (Abraham [1]). If every iterand Q̇α is forced to be (T, S)-
preserving, then the countable support iteration is (T, S)-preserving.

A standard book-keeping of all possible ω1 generated P -ideals allows us
to get PID (ω1-generated) in V Pω2 . In order to get £ in addition, we need
to be a little bit more careful when we set up our book-keeping. We use an
auxiliary Lemma 3.5 for this.

A subset C of an ordinal is called ω1-closed if it is closed under increasing
limits of co�nality ω1. An ω1-club (in ω2) is an unbounded subset (of ω2)
that is ω1-closed. A set is called ω1-stationary if it intersects every ω1-club.

Lemma 3.5. Let 〈Pβ, Q̇α : β 5 ω2, α < ω2〉 be a countable support iter-
ation of proper iterands such that CH holds in V Pβ for all β < ω2, p > ω1

holds in V Pω2 , Pω2 has the ω2-c.c., and the iterands at even stages force the
P -ideal dichotomy for ideals with ω1 generators.

Let β < ω2 and let X ∈ V Pβ be a subspace of Σω1 of size ω1. Let ψ(X)
= �IX,B|X is a P -ideal, and each countable ω-cover of X contains a γ-
subcover�. Then the set of all those α < ω2 such that V Pα ² ψ(X) is ω1-closed
and unbounded in ω2.

Proof. The closure under increasing ω1-sequences is proved as in model
theory. Just note that there are no new names for countable ω-covers in the
limit model. Now for the unboundedness: Let α0 be given. We choose a
continuously increasing sequence αi, i < ω1, such that in V Pαi+1 , PX,B|X is
a P -ideal and each countable ω-cover of X in V Pαi (by the CH there are at
most ω1 tasks here) contains a γ-subcover. Then αω1 := supα<ω1

αi is in the
set. ¤

By [4, Lemma 5.2] for every subspace Y of Σω1 of size ω1 in V Pω2 there
exists β < ω2 and a Pβ-name Ẏ of Y . Let Yα, α < ω2, enumerate all such
subspaces in V Pω2 and assume that Yα has a Pβα-name Ẏα (which is also a
Pε-name for all ε ∈ [βα, ω2]). Let Cα be an ω1-club of ξ = βα such that ψ(Yα)
holds in V Pξ (as in the lemma before). We divide

{
α < ω2 : cof (α) = ω1

}
into ω2 pairwise disjoint ω1-stationary sets (as in [9, p. 94]) 〈Sα : α < ω2〉.
Now, if our book-keeping was arranged in such a way that the Pξ name
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Q̇IYα,B|Yα

1 is used for some ξ = ξα ∈ Sα ∩ [βα, ω2) ∩ Cα, the extension V Pα

has the required properties. Indeed, assume that in V Pω2 there exists an ε-
space X of countable tightness and an L-subspace Y of X. By the same argu-
ment as in the proof of Corollary 2.3 we can assume that X ⊂ Σω1 , |Y | = ω1,
and for every β ∈ ω1 there exists y ∈ Y such that yβ = 1. Let α ∈ ω2 be
such that Y = Yα. Now V0 = V Pξα , V1 = V Pξα+1 , V2 = V Pω2 , X, and Y ful-
�l the premises of Lemma 2.2, a contradiction. This �nishes the proof of
Theorem 1.4. ¤

4. Applications in Cp-theory

The properties of a topological space X appearing in Section 2 have coun-
terparts among the properties of Cp(X), the space of all continuous functions
f : X → R endowed with the topology of pointwise convergence. Namely:

• A regular space X is a γ-space if and only if Cp(X) has the Fréchet�
Urysohn property, see [7]. We recall that a topological space Y has the
Fréchet�Urysohn property if for every y ∈ Y and A ⊂ Y such that y ∈ A,
there exists a sequence of elements of A convergent to y.

• The existence of an uncountable point-�nite family of open subsets of
a topological space X is equivalent [14] to the existence of a copy in Cp(X)
of the one-point compacti�cation α ω1 of ω1 with the discrete topology.

• The methods of [3] imply that for a perfectly normal (= every open sub-
set is Fσ) space X, the ideal PX,τ is a P -ideal i� Cp(X) has the property α1.
(Here τ denotes the topology of X.) Recall that a topological space Y has
the property α1 at a point y ∈ Y , if for every countable family A of conver-
gent to y sequences and for each A ∈ A there exists BA ∈ [A]<ω such that⋃

A∈A(A \BA) converges to y. Y has the property α1, if it has this property
at every y ∈ Y .

Therefore it could be possible to apply some ideas from previous sections
to the space of continuous functions. We illustrate this by giving a simple2
(modulo the equivalences above) proof of Corollary 1.9 based on the following
straightforward observation: A topological space Y has the property α1 at a
point y ∈ Y if and only if the family of all countable subsets of Y converging
to y constitutes P -ideal.

Lemma 4.1. (PID) Let Y be a topological space. If Y has the property
α1 at a point y ∈ Y , then either Y contains a copy Z of α ω1 with y being
the unique non-isolated point of Z, or Y \ {y} can be written as a countable

1I.e. for every Pξ- generic �lter Gξ the interpretation Q̇Gξ

IYα,B|Yα
coincides with the Abraham�

Todor£evi¢ forcing corresponding to the P -ideal IYα,B|Yα
computed in V [Gξ].

2The price for the simplicity of that proof is that we use PID there instead of WPID.
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union
⋃

n∈ω Yn such that for every n there is no convergent to y sequence of
elements of Yn.

If, in addition, Y has the Fréchet�Urysohn property at y, then none of
Yn's contains y in its closure, i.e. Y has countable pseudo-character at y.
¤

Applying Lemma 4.1 to Cp(X), we obtain the following
Proposition 4.2 (PID). Let X be a Tychonov space. If Cp(X) has the

property α1 and the Fréchet�Urysohn property, then either Cp(X) contains a
copy of α ω1, or X is separable.

Proof. If Cp(X) does not contain a copy of αω1, then Cp(X) must have
countable pseudo-character by Lemma 4.1. The above means that we can �nd
a sequence (Fn, εn)n∈ω, where Fn ∈ [X]<ω and εn > 0, such that a continu-
ous function f : X → R coincides with 0 provided

∣∣f(x)
∣∣ < εn for all x ∈ Fn

and n ∈ ω. Together with regularity of X this clearly implies that
⋃

n∈ω Fn

is dense in X. ¤
Alternative proof of Corollary 1.9. Assume, to the contrary, that

X is an L-space of size ω1 and, in addition, X is an ε-space. Since p >
ω1, Cp(X) has the Fréchet�Urysohn property (every open ω-cover contains a
countable ω-subcover by the de�nition of an ε-space, and every open ω-cover
of X contains a γ-subcover by Claim 2.5, and therefore X is a γ-space). In
addition, Cp(X) has the property α1 by Claim 2.4 and [3, Theorem 11]. From
the above it follows that X ful�lls the premises of Proposition 4.2. Since X
is an L-space, it is not separable, and hence Cp(X) contains a copy of α ω1.
Therefore there exists [14] an uncountable point-�nite family of open subsets
of X, which contradicts Lemma 2.1. ¤
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