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In this paper we characterize various sorts of boundedness of the free (abelian) topological
group F (X) (A(X)) as well as the free locally-convex linear topological space L(X) in terms
of properties of a Tychonoff space X . These properties appear to be close to so-called selection
principles, which permits us to show, that (it is consistent with ZFC that) the property of
Hurewicz (Menger) is l-invariant. This gives a method of construction of OF -undetermined
topological groups with strong combinatorial properties.

Ë. Ñ. Çäîìñêèé. o-Îãðàíè÷åííîñòü ñâîáîäíûõ îáúåêòîâ íàä ïðîñòðàíñòâîì Òèõîíîâà //
Ìàòåìàòè÷íi Ñòóäi¨. � 2006. � Ò.25, �1. � C.10�28.

Â äàííîé ðàáîòå õàðàêòåðèçèðóþòñÿ ðàçëè÷íûå òèïû îãðàíè÷åííîñòè ñâîáîäíîé (àáå-
ëåâîé) òîïîëîãè÷åñêîé ãðóïïû F (X) (A(X)), à òàêæå ñâîáîäíîãî ëîêàëüíî-âûïóêëîãî ëè-
íåéíîãî òîïîëîãè÷åñêîãî ïðîñòðàíñòâà L(X) â òåðìèíàõ ñâîéñòâ òèõîíîâñêîãî ïðîñòðàí-
ñòâà X . Ýòè ñâîéñòâà îêàçûâàþòñÿ áëèçêèìè ê ñåëåêöèîííûì ïðèíöèïàì, ÷òî ïîçâîëÿåò
íàì ïîêàçàòü ÷òî (ýòî ñîâìåñòèìî ñ ZFC) ÷òî ñâîéñòâà Ãóðåâè÷à (Ìåíãåðà) l-èíâàðèàíòíû.
Ýòî äàåò ìåòîä ïîñòðîåíèÿ OF -íåîïðåäåëåííûõ òîïîëîãè÷åñêèõ ãðóïï ñ ñèëüíûìè êîì-
áèíàòîðíûìè ñâîéñòâàìè.

Introduction. Main objects and related notions. The starting impulse for writing this
paper came from [15], where the problem of characterization of Tychonoff spaces X whose

free (abelian) topological group F (X) (A(X)) is [strictly] o-bounded was posed. In fact, this
problem consists of four subproblems. Three of them (except for the characterization of o-
boundedness of F (X)) are solved here. Throughout the paper group operations on abelian

groups are denoted by + and �topological space� means � Tychonoff space�.

Thus the main objects considered in this paper are free (abelian) topological groups over
a space X, i.e. a (abelian) topological group G that contains X as a set of generators and
satisfies the following condition: each continuous function ϕ : X → H of X to an arbitrary

(abelian) topological group H admits a unique extension to a continuous homomorphism
ϕ̃ : G → H , see [13] or [31] for basic properties of free topological groups. As usually we

denote by Cp(X) the space of continuous real-valued functions on X, endowed with topology

inherited from the Tychonoff product R
X . It is well-known [3, Ch. 0] that the correspondence

x 7→ ψx, where ψx(f) = f(x) for all f ∈ Cp(X), is a closed embedding of X into CpCp(X)
such that the image of X is linearly independent. In what follows we denote by Lp(X) the
linear hull of X in CpCp(X) with the subspace topology. The space Lp(X) is the free object

2000 Mathematics Subject Classification: 54D20, 22A05, 20E05, 91A44.

c© L. S. Zdomskyy, 2006



over X in the category of linear topological spaces with the weak topology, see [36]. The free

object over X in the category of all (locally-convex) linear topological spaces will be denoted

by Ls(X) (resp. L(X)). (The topology on Ls(X) is the strongest linear topology inducing

the original topology on the space X ⊂ Ls(X). This justifies the choice of the notation for
Ls(X).)

The spaces X and Y are called

• M-equivalent, if the topological groups F (X) and F (Y ) are topologically isomorphic;

• A-equivalent, if the topological groups A(X) and A(Y ) are topologically isomorphic;

• l-equivalent, if Cp(X) and Cp(Y ) are isomorphic as linear topological spaces.

It was shown in [3] that a space X is l-equivalent to a space Y if and only if Lp(X) is linearly
homeomorphic to Lp(Y ). We shall use this as an alternative definition of the l-equivalence
relation.

We say that a topological property P is ϕ-invariant, where ϕ runs over M , A and l, if
a space X has this property whenever so does any space Y ϕ-equivalent to X. It is known

[2] that M-equivalence implies A-equivalence, and A-equivalence implies l-equivalence, and
consequently each l-invariant property is A-invariant, and each A-invariant property is

M-invariant. For various examples of ϕ-invariant properties see, e.g. [3, Ch. 2], [31], and
[32]. In this paper we prove the l-equivalence of selection principles defined below. It is worth
to mention here that these principles are not multiplicative by [16, Th. 2.12], which makes
it impossible to use that the free (nonabelian) group over a space X can be represented as

countable union of continuous images of finite powers of X. They are also not hereditary [7],
and therefore the corresponding proofs cannot be reduced to the classical result of V. Pestov
[20] asserting that X is a countable union of subspaces each of which is homeomorphic to a

subspace of Y provided X and Y are M-equivalent.

Selection principles on topological spaces and groups. The notion of an o-bounded
topological group was introduced by O. Okunev and M. Tkachenko with the purpose of

characterizing subgroups of σ-compact groups, see [14], [15], and [30] for the discussion
of these properties. Recall that a topological group G is o-bounded, if for every sequence

(Un)n∈ω of nonempty open subsets of G, there exists a sequence (Fn)n∈ω of finite subsets

of G such that G =
⋃

n∈ω Fn · Un. It is clear that every σ-compact group is o-bounded.
Properties of topological spaces X appearing as duals of the o-boundedness of free groups and
Lp(X) are closely related to so-called selection principles. The duality between properties

of X and F (X), A(X), and Cp(X) is represented by many results, see [31] and [3]. The
oldests of selection principles, namely the covering properties of Menger and Hurewicz1,

were introduced at the beginning of the 20th century, see [24] or [34] for their history and
basic properties. In nearly seventy years after their appearence M. Scheepers systematized

existing and introduced new properties of this kind. Among them the property
⋃

fin(O,Ω) is
of extreme importance for us, and we shall refer to it as the Scheepers property. To define the
above three selection principles used in this paper, we have to recall from [11] the definitions

of some classes of covers: family {Un : n ∈ ω} of subsets of X is said to be

• an ω-cover of X, if for every finite subset F of X there exists n ∈ ω such that F ⊂ Un;

• a γ-cover of X, if for every x ∈ X the set {n ∈ ω : x 6∈ Un} is finite.

The properties
⋃

fin(O,O) and
⋃

fin(O, Γ) in terms of M. Scheepers [24].



Let B be a subset of a set X and u be a cover of X. We say that B is u-bounded, if B ⊂ ⋃ c
for some finite subfamily c of u. A topological space X is said to have the Menger (resp.

Scheepers, Hurewicz ) property, if for every sequence (un)n∈ω of open covers of X there

exists a (ω-, γ-) cover {Bn : n ∈ ω} of X such that each Bn is un-bounded. The Menger

and Scheepers properties differ under the Continuum Hypothesis by [16, Theorem 2.8] and

coincide under (u < g) according to Corollary 2 of [39]. Note that the o-boundedness (of all
finite powers) of a topological group is nothing else but the Menger (Scheepers) property

applied to the family of uniform covers with respect to the left uniformity on it, see Lemma 17

and Proposition 12. From now on we denote by νX and µX the Hewitt and Dieudonn�e

completions of a space X, see [10] for their definitions and basic properties. We are in a

position now to present the characterization of the o-boundedness of free abelian topological

group.

Theorem 1. For a space X the following conditions are equivalent:

(1) A(X) is o-bounded;

(2) A(X)n is o-bounded for all n ∈ N;

(3) Lp(X) is o-bounded;

(4) L(X) is o-bounded;

(5) Ls(X)n is o-bounded for all n ∈ N;

(6) every continuous metrizable image of X has the Scheepers property;

(7) A(νX) is o-bounded;

(8) A(µX) is o-bounded.

Selection games and multicovered spaces. o-Boundedness as well as the Menger pro-
perty have natural game counterparts. In case of a σ-compact group G a sequence (Fn)n∈ω

witnessing the o-boundedness of G may be constructed by the second player in the process
of an infinite game, called OF . This game is played by two players, say I and II. Player

I selects an open subset U0 of G, and player two responds choosing some finite subset
F0 of G. In the second turn, player I selects some open subset U1 of G, and II responds
choosing a finite subset F2 of G, and so on. At the end of this game we obtain the sequences

(Un)n∈ω and (Fn)n∈ω. Player II is declared the winner, if
⋃

n∈ω Fn · Un = G. Otherwise,
player I wins. A group G is strictly o-bounded, if the second player (= player II) has a
winning strategy in the game OF on G. If none of the players has a winning strategy, then

G is called OF -undetermined. It is clear that each σ-compact group is strictly o-bounded
and thus o-bounded. Examples distinguishing the σ-compacness, strict o-boundedness and
o-boundedness may be found in [5], [14], [30], and [33].

As we shall see later, the strict o-boundedness of the free objects over a space X has
no characterization in terms of continuous metrizable images of X in spirit of Theorem 1.

This constrained us to use the language of multicovered spaces, which seems to be the most
appropriate one for description of the corresponding property ofX. By a multicovered space2

we understand a pair (X, λ), where X is a set and λ is a multicover of X, i.e. a family of

covers of X. There are many natural examples of multicovered spaces:

The notion of a multicovered space and some other notions related to multicovered spaces, as well as
Corollaries 23 and 24 are due to T.Banakh. Multicovered spaces, which seem to be the most general objects
where properties looking similar to (strict) o-boundedness can be considered, are discussed in [6].



• Each topological space X can be considered as a multicovered space (X,O), where O
denotes the family of all open covers of X;

• Every metric space (X, ρ) admits a natural multicover λρ consisting of covers by ε-balls:
λρ = {{Bρ(x, ε) : x ∈ X} : ε > 0}, where Bρ(x, ε) = {y ∈ X : ρ(y, x) < ε};

• Every uniform space (X,U) has a multicover λU consisting of uniform covers, i.e. λU =
{{U(x) : x ∈ X} : U ∈ U}, where U(x) = {y ∈ X : (x, y) ∈ U};

• In particular, each topological group G admits four natural multicovers λL(G), λR(G),
λL∨R(G) and λL∧R(G) corresponding to its left, right, two-side and R�olcke uniformities,

see [22] for more information on these uniformities;

• In case of an abelian topological group G all of the above uniformities coincide, and we

denote them by U(G). The family {{(x, y) : x − y ∈ U} : 0 ∈ U ∈ O(G)} is a base of

U(G). Therefore the corresponding multicovers coincide as well, and we denote them

by λ(G).

By analogy with the game OF on a topological group G we can introduce the game CB
(abbreviated from Cover-Bounded) on a multicovered space (X, λ) as follows: two players,

I and II, step by step choose a cover un ∈ λ and a un-bounded subset Bn of X, respectively.

The player II is declared the winner, if X =
⋃

n∈ω Bn. Otherwise the player I wins. A multi-

covered space (X, λ) is said to be winning, if the second player has a winning strategy in the
game CB on (X, λ). It is clear that that the game OF on a topological group G is equivalent
to the game CB on the multicovered space (G, λL) in the sense that one of the players has a

winning strategy in one of these games if and only if he has a winning strategy in the other
one. It also should be mentioned here that the game CB on a multicovered space (X,O(X))
is nothing else but the game H(X) introduced by R. Telgarsky in [29], see also [26] and
references there in.

Let X be a Tychonoff space. Recall from [10] that the uniformity U on X is called

universal, if it generates the topology of X and contains all uniformities on X with this
property. Throughout this paper the universal uniformity of a topological space X will be
denoted by U(X). The reader is referred to the next section for the definition of the product

of multicovered spaces. We are in a position now to present the main result of this paper.

Theorem 2. For a space X the following conditions are equivalent:

(1) (F (X), λL∧R) is winning;

(2) F (X) is strictly o-bounded;

(3) (F (X)n, λn
L∨R) is winning for all n ∈ ω;

(4) A(X) is strictly o-bounded;

(5) Lp(X) is strictly o-bounded;

(6) L(X) is strictly o-bounded;

(7) Ls(X)n is strictly o-bounded for all n ∈ N;

(8) (X, λU(X)) is winning.

The equivalent properties of in the above theorem are not preserved by finite powers. To

describe the corresponding space we have to introduce some notions related to multicovered

spaces. A multicovered space (X, λ) is called



• totally-bounded, if X is u-bounded for every u ∈ λ;

• ω-bounded, if each cover u ∈ λ has a countable subcover.

These notions generalize the ω-boundedness of uniform spaces introduced by I. Guran in

[12] and the total boundedness in sense that a uniform space (X,U) has one of the above

properties if and only if so does the multicovered space (X, λU). For example, (X,O(X)) is
totally-bounded (ω-bounded) if and only if X is compact (Lindel�of). Let X be a countably-

compact spaces X such that there exists a continuous pseudometric ρ on X2 such that the

space X2 is not Lindel�of, see Example 26. Then the uniform space (X,U(X)) as well as the
multicovered space (X, λU(X)) are totally-bounded, and consequently (X, λU(X)) is winning.
But the uniform space (X2,U(X2)) obviously fails to be ω-bounded, consequently so does the
multicovered space (X2, λU(X2)), and hence X2 does not satisfy the conditions of Theorem 2.

The properties of Menger, Scheepers, and Hurewicz can be also naturally carried out

in the realm of multicovered spaces: a multicovered space (X, λ) has the Menger (resp.

Scheepers, Hurewicz) property if for every sequence (un)n∈ω ∈ λω there exists a sequence

(Bn)n∈ω of subsets of X such that each Bn is un-bounded and {Bn : n ∈ ω} is a cover (resp.

ω-cover, γ-cover) of X. It is a simple exercise to show that each Menger multicovered space

is ω-bounded. A crucial observation here is that a topological group G is o-bounded if and

only if the multicovered space (G, λR(G)) is Menger. The o-boundedness of free objects may

be also described in terms of properties of the multicovered space (X, λU(X)) as well, which
extends Theorem 1.

Theorem 3. Let X be a Tychonoff space. Then A(X) is o-bounded if and only if the

multicovered space (X, λU(X)) is Scheepers.

The Hurewicz property is selfdual.

Theorem 4. For a space X the following conditions are equivalent:

(1) (A(X), λ(A(X))) is Hurewicz;

(2) (A(X)n, λ(A(X))n) is Hurewicz for all n ∈ ω;

(3) (Lp(X), λ(Lp(X))) is Hurewicz;

(4) (L(X), λ(L(X))) is Hurewicz;

(5) Ls(X)n is Hurewicz for all n ∈ N;

(6) every continuous metrizable image of X is Hurewicz;

(7) (A(X), λ(A(νX))) is Hurewicz;

(8) (A(X), λ(A(µX))) is Hurewicz.

(9) (X, λU(X)) is Hurewicz.

For a Lindel�of topological space X the multicovers λU(X) and O(X) are equivalent in

the sense defined in the next section, see Corollary 15. In combination with Proposition 12

this gives us the following

Proposition 5. The multicovered space (X,O(X)) is winning (resp. Menger, Scheepers,

Hurewicz) if and only if so is (X, λU(X)) and X is Lindel�of.



Note, that the multicovered space (X,O(X)) has the Menger (resp. Scheepers, Hurewicz)

property if and only if so does the topological space X. Concerning the winning property

of the multicovered space (X,O(X)), there are many equivalent statements to it. At the

beginning of 80-ies R. Telgarsky introduced the game H(X) (implicitly existing in earlier

works of W. Hurewicz) on a topological space X, which coincides with the game OF on the

multicovered space (X,O(X)), and proved that the second player has a winning strategy

in this game if and only if X is C-like, which means that the first player has a winning

strategy in the compact-open game on X, see [26] and references there in. In the current

terminology the game H(X) is called the Menger game on X, see [24]. This yields the

following reformulation of Proposition 5.

Corollary 6. A Tychonoff space X is C-like (resp. Menger, Scheepers, Hurewicz) if and only

if it is Lindel�of and the multicovered space (X, λU(X)) is winning (resp. Menger, Scheepers,

Hurewicz).

Since the Lindel�of property is l-invariant [38] (see also [8], where it is shown that the

Lindel�of number is l-invariant), and the properties of the multicovered space (X, λU(X))
considered in the above corollary have counterparts among the properties of Lp(X) obviously
preserved by linear homeomorphisms, we get the following

Corollary 7. The properties of Scheepers, Hurewicz and being C-like are l-invariant (and
hence A- and M-invariant). Consequently the Menger property is l-invariant under u < g
being equivalent to the Scheepers one.

In view of this it is worth to mention Question II.2.8 of [3] whether the Menger property

is t-invariant, which seems to be still unsolved.
As we could see in Theorems 1, 3, and 4, the Scheepers and Hurewicz properties of the

multicovered space (X, λU(X)) admit a characterization in terms of metrizable images of X.
Therefore one may try to prove some similar characterization of the winning property of
(X, λU(X)) of the following kind: (X, λU(X)) is winning if and only if every metrizable image

of X has some �strong� property P. But even the property P of being countable, which
seems to be the strongest among those one could consider, does not work. Let us recall that
a topological space X is a P -space, if every Gδ-subset of X is open. R. Telgarsky in [28]

observed that a Lindel�of P -space Y constructed by R. Pol in [21] fails to be C-like (and hence
(X, λU(X)) is not winning by Corollary 6). It sufficies to note that the size of an arbitrary

metrizable image of a P -space X does not exceed the Lindel�of number of X.

Corollary 8. Pol's space Y has the following properties:

(1) The groups F (Y ), A(Y ), Lp(Y ), L(X), and Ls(X) are OF -undetermined;

(2) all metrizable images of Y n, F (Y ), A(Y ) are countable, where n ∈ N.

Proof. The second item obviously follows from the facts that every finite power of a Li-

ndel�of P -space is again Lindel�of P -space, and each metrizable image of a Lindel�of P -space is
countable. Concerning the first one, it simply follows from Corollary 10 and the observation

that each Lindel�of P -space is Hurewicz.

Corollary 8 is closely related to the result of A. Krawczyk and H. Michalewski [17] who

used the space Y to construct an OF -undetermined P -group G. Similar ideas are also used

in Theorem 3.1 of [15].



The problem of construction of OF -undetermined groups was posed in [30] and solved

in [17] and [4] (and, probably, somewhere else) independently. Theorems 2 and 4 supply us

with a method of constructing OF -undetermined groups: it sufficies to take a topological

space which does not satisfy condition (8) of Theorem 2 but still has some strong property

guaranteeing the first player having no winning strategy on free objects considered in this

paper. Such the properties are given by the subsequent proposition, which easily follows

from [16, Theorem 27].

Proposition 9. Let G be a topological group such that the underlying topological space is

Menger. Then the first player has no winning strategy in the game OF on G.

Finally, we present (nonmetrizable) examples of OF -undetermined groups.

Corollary 10. Let X be a non-σ-compact metrizable space such that all finite powers of

X are Menger (Hurewicz). Then all finite powers of F (X), A(X), Lp(X), L(X), and Ls(X)
are OF -undetermined being Menger (Hurewicz) groups which fail to be strictly o-bounded.

Proof. LetX be a non-σ-compact metrizable space whose all finite powers ofX are Hurewicz

(Menger), and G be one of the groups F (X), A(X), Lp(X), L(X), Ls(X). Since G is the

countable union of continuous images of finite powers of Y = X × R (see the proof of

Theorem 1, where it is shown that Ls(X) is a contiuous image of A(X × R)), so is Gn for
all n ∈ N. Applying Lemma 21 and Corollary 15, we conclude that each finite power of of

Y is Hurewicz (Menger). Since the Hurewicz (Menger) property is preserved by continuous
images and countable unions by Lemma 20 (this was also pointed out in [16]), Gn is Hurewicz
(Menger) for all n ∈ ω. Applying Proposition 9, we conclude that for every n ∈ ω the first

player has no winning strategy in the game OF on Gn.
As it was shown by R. Telgarsky, every winning (= C-like) metrizable topological space

is σ-compact, see [23]. Therefore X fails to be winning, and thus G is not strictly o-bounded
by Theorem 2. Consequently Gn is not strictly o-bounded for all n ∈ N. From the above it
follows that Gn is OF -undetermined for all n ∈ N.

Observation 11. Every topological group with the Hurewicz property is strictly o-bounded
provided it is metrizable.

Proof. Let G be a topological group whose underlying topological space G is Hurewicz and

{Un : n ∈ ω} be a countable local base at the identity of G. Set un = {gUn : g ∈ G}.
The Hurewicz property of G yields a sequence (Fn)n∈ω of finite subsets of G such that
G =

⋃
n∈ω

⋂
k≥n FnUn, consequently G is strictly o-bounded as a countable union of its

totally-bounded subspaces.

Spaces X with such propertis as in Corollary 10 were constructed in [7], [9], and [35].

Proofs. In our proofs of results announced in Introduction we shall exploit a number of

auxiliary statements about multicovered spaces. As a matter of the fact, all of these results

are (consequences of more general ones) proven in [6]. But for the sake of completeness

we present their proofs. Their formulations involve some additional notions and notations.

For uniform spaces (X1,U1) and (X2,U2) we shall identify the uniformity on their product
X1 × X2 generated by U1 and U2 with the product U1 × U2. Let u and λ be a cover and a

multicover of a set X respectively, and Z ⊂ X. Then u|Z denotes the family {U∩Z : U ∈ u}
and λ|Z = {u|Z : u ∈ λ}. Every subset Z of X with the induced multicover λ|Z is called



a subspace of the multicovered space (X, λ). By the product of multicovers λ and ν of

sets X and Y we understand the multicover η = {u · v : u ∈ λ, v ∈ ν} of X × Y , where
u · v = {U × V : U ∈ u, V ∈ v}. Again, we identify η with the product λ× ν.

Next, we shall also use the preorder ≺ on the family of all covers of a set X, where u ≺ v
means that each v-bounded subset is u-bounded. In other words, u ≺ v if and only if for

every finite subset c of v there exists a finite subset d of u with ∪d ⊃ ∪c. Note, that all
multicovers λ considered in this paper are centered, which means that each finite subset c
of λ has an upper bound in λ with respect to ≺. Let us also observe that u ≺ v provided v
is a refinement of u in the sense that each V ∈ v lies in some U ∈ u. The preorder ≺ on the

family of all covers of X generates the following preorder on the family of all multicovers of

X, which is also denoted by ≺: λ ≺ ν if and only if for every u ∈ λ there exists v ∈ ν such

that u ≺ v. We say that multicovers λ and ν of a set X are equivalent (and write λ ∼= ν) if
λ ≺ ν and ν ≺ λ. Given any multicovers λ and ν of X and Y respectively, we call a function

f : X → Y

• uniformly bounded, if for every v ∈ ν there exists u ∈ λ such that for every u-bounded
subset A of X its image f(A) is v-bounded;

• perfect, if for every u ∈ λ there exists v ∈ ν such that for every v-bounded subset B of
Y the preimage f−1(B) is u-bounded.

In the subsequent simple statement we collect some straightforward properties of the

notions introduced before.

Proposition 12. (1) Let (X1,U1) and (X2,U2) be uniform spaces. Then the multicovers

λU1×U2 and λU1 × λU2 of X1 ×X2 are equivalent.

(2) Let G and H be topological groups and T ∈ {L,R, L ∨ R,L ∧R}. Then λT (G×H) is

equivalent to λT (G) × λT (H).

(3) Let G be a topological group G. Then λL(G) ∼= {{gU : g ∈ G} : e ∈ U ∈ O(G)},
λR(G) ∼= {{Ug : g ∈ G} : e ∈ U ∈ O(G)},
λL∨R(G) ∼= {{gU ∩ Ug : g ∈ G} : e ∈ U ∈ O(G)},
λL∧R(G) ∼= {{UgU : g ∈ G} : e ∈ U ∈ O(G)}.

(3′) For an abelian group G the multicover λ(G) is equivalent to {{g + U : g ∈ G} : e ∈
U ∈ O(G)}.

(4) Let λ and ν be multicovers of a set X and λ ≺ ν. Then (X, λ) is Menger (resp.

Scheepers, Hurewicz, winning) provided so is (X, ν).

(5) If multicovers λ and ν of X are equivalent, then (X, λ) is Menger (resp. Scheepers,

Hurewicz, winning) if and only if so is (X, ν).

(6) λ ≺ ν if and only if the identity map idX is perfect with respect to λ and ν.

(7) If f : X → Y is perfect with respect to multicovers λ and ν of X and Y respectively,

then (X, λ) is Menger (resp. Scheepers, Hurewicz, winning) provided so is (Y, ν).

(8) If f : X → Y is uniformly bounded with respect to multicovers λ and ν, then (Y, ν) is

winning (resp. Hurewicz, Scheepers, Menger) provided so is (X, λ).

Proof. Because of simplicity of all of the items, we shall only proof the �winning� part of the

seventh one. For this purpose we have to consider more formally the notion of a winning

strategy in the game CB on a multicovered space (X, λ). By a strategy of the second



player we understand a map Θ: λ<ω → P(X) assigning to each finite sequence of covers
(u0, . . . , un) ∈ λ<ω a un-bounded subset Θ(u0, . . . , un) of X, where λ<ω =

⋃
n∈ω λ

n. Such a

strategy is winning, if the family {Θ(u0, . . . , un) : n ∈ ω} is a cover of X for any sequence

(un)n∈ω.

Now, assume that ΘY is a winning strategy of the second player in the game CB on

a multicovered space (Y, ν). Construct a map φ : λ → ν such that f−1(B) is u-bounded
for every φ(u)-bounded subset B of Y . It sufficies to observe that ΘX : (u0, . . . , un) 7→
f−1(ΘY (φ(u0), . . . , φ(un))) is a winning strategy of the second player in the game CB on

(X, λ).

We shall exploit the following important result of V. Pestov, see [19] or [31, 2.8].

Proposition 13. Let X be a Tychonoff space. Then the natural uniformity on A(X)
generates the universal uniformity U(X) on X.

We shall also use the following straightforward consequence of Lemma 1.0 of [18].

Corollary 14. If X is a Lindel�of regular space and u is an open cover of X, then there exists

a pseudometric d on X such that a subset Y of X is u-bounded provided diamd(Y ) < ∞
(Here, as usual, diamd(Y ) = sup{d(y1, y2) : y1, y2 ∈ Y }).
Corollary 15. Let X be a Lindel�of regular space. Then the multicovers O(X) and λU(X)

are equivalent.

Proof. Since every uniform cover has an open uniform refinement, we conclude that λU(X) ≺
O(X).

To prove that O(X) ≺ λU(X), fix an arbitrary open cover u of X and find a pseudometric

d on X such as in Lemma 14. Then for the uniform cover v = {Bd(x, 1) : x ∈ X} ∈ λU(X)

we obviously have u ≺ v, which finishes our proof.

Let A be a subset of the Cartesian product X×Y . From now on we shall use the following

notations: A−1 = {(y, x) ∈ Y ×X : (x, y) ∈ A}, A(x) = {y ∈ Y : (x, y) ∈ A}, where x ∈ X.
Recall from [12] that a unifom space (X,U) is ω-bounded, if each uniform cover contains a
countable subcover. In particular, any topological group G is ω-bounded, if so is the uniform
space (G,U), where U is the left uniformity of G.

Lemma 16. Let X be a space such that (X,U(X)) is ω-bounded and G ⊃ X be an abelian

topological group such that every continuous map φ : X → R can be extended to a continuous

homomorphism φ̃ : G → R. Then the maps ψn : Xn → G, where ψn : (x1, x2 . . . , xn) 7→
x1 + x2 + · · ·+ xn, are perfect with respect to λU(X)n and λ(G) for all n ∈ N.

Proof. Given any u0 · . . . · un−1 ∈ λU(X)n , find U ∈ U(X) such that the uniform cover

u = {U(x) : x ∈ X} is an upper bound of the family {ui : i < n} with respect to ≺. Let
ρ be a pseudometric on X such that {(x, y) ∈ X2 : ρ(x, y) < 1} ⊂ U . Since (X,U(X)) is

ω-bounded, the space (X, ρ) is Lindel�of. Applying Lemma 14 to the regular Lindel�of space

(X, ρ) and the cover w = {Bρ(x, 1) : x ∈ X}, we can find a continuous pseudometric d on

X such that each Y ⊂ X is w-bounded provided diamd(Y ) <∞. Fix arbitrary x0 ∈ X and

define a map f : X → R letting f(x) = d(x, x0). From the above it follows that f−1(−r, r)
is w-bounded, and hence u-bounded for every r ∈ R. Let f̂ : G → R be a continuous

homomorphism extending f and O be an open neighborhood of the identity of G such that

f̂(O) ⊂ (−1, 1).



Let us fix arbitrary finite subset K of G. Our proof will be completed as soon as we shall

show that B = ψ−1
n (O +K) is wn-bounded. By our choice of O there exists r > 0 such that

f̂(O+K) ⊂ (−r, r). Therefore, B ⊂ ψ−1
n (f̂−1(−r, r)). Let us note, that f̂ ◦ψn(x1, . . . , xn) =

f(x1) + . . . + f(xn), consequently 0 ≤ f(xi) < r for every (x1, . . . , xn) ∈ B and i ≤ n, and
finally B is wn-bounded being a subset of (f−1(−r, r))n.

Next, we shall deal with preservation of selection principles by operations of finite

products and countable unions.

Lemma 17. A multicovered space (X, λ) is Scheepers if and only if (Xn, λn) is Menger for

all n ∈ ω. Consequently the class of Scheepers multicovered spaces is closed under taking

finite powers of its elements.

Proof. Suppose that (Xn, λn) is Menger for every n ∈ ω. To see that (X, λ) is Scheepers,

fix any sequence (un)n∈ω ∈ λω. For every n ∈ ω we can apply the Menger property of Xn to

find a cover {Bn
n,k : k ≥ n} of Xn by powers of uk-bounded sets Bn,k ⊂ X.

For every k ∈ ω let Bk =
⋃

n≤k Bn,k. We claim that {Bn : n ∈ ω} is an ω-cover of X.

Indeed, fix any finite subset F = {x1, . . . , xn} of X. Since the family {Bn
n,k : k ≥ n} covers

Xn, (x1, . . . , xn) ∈ Bn
n,k for some k ≥ n. Consequently, F ⊂ Bn,k ⊂ Bk, which completes the

proof of the �if� part.

To prove the �only if� part, suppose that (X, λ) is Scheepers. To show that the powers
of X are Menger, fix some n ∈ ω and a sequence of covers (wk)k∈ω in λn. For every k ∈ ω
we can write wk in the form wk = uk1 · . . . · ukn, where uki ∈ λ, i ∈ {1, . . . , n}. Since (X, λ)
is centered, for every k ∈ ω we can find uk ∈ λ such that uk � uki for all i ∈ {1, . . . , n}.
Using the Scheepers property of X, find an ω-cover {Bk : k ∈ ω} by a uk-bounded subsets

Bk ⊂ X. We claim that Xn =
⋃

k∈ω B
n
k , which clearly implies the mengerness of (Xn, λn).

Indeed, fix any x = (x1, . . . , xn) ∈ Xn and find k ∈ ω such that {x1, . . . , xn} ⊂ Bk. Then
x ∈ Bn

k .

We need the following auxiliary notion: a family {An : n ∈ ω} is called a proper ω-cover
of a set X, if for every finite subset K of X the set {n ∈ ω : K ⊂ An} is infinite.

Lemma 18. Let (X, λ) be a Scheepers multicovered space. Then for each sequence (un)n∈ω ∈
λω there exists a proper ω-cover {Bn : n ∈ ω} of X such that Bn is un-bounded for all n ∈ ω.

Proof. Let (un)n∈ω ∈ λω be a sequence of covers of X. Using the Scheepers property of

(X, λ), for every k ∈ ω we can find a sequence (Ak,n)n≥k of un-bounded subsets Ak,n ⊂ X
such that the family {Ak,n : n ≥ k} is an ω-cover of X. For every n ∈ ω consider the

un-bounded subset Bn =
⋃

k≤nAk,n of X and note that {Bn : n ∈ ω} is a proper ω-cover of
X, which finishes our proof.

Lemma 19. The product (X × Y, λX · λY ) of Hurewicz multicovered spaces (X, λX) and

(Y, λY ) is Hurewicz. Consequently the class of Hurewicz multicovered spaces is closed under

taking finite products of its elements.

Proof. Let us fix a sequence (wn)n∈ω ∈ (λX · λY )ω. For every n ∈ ω find un ∈ λX and

vn ∈ λY such that wn = un · vn. By the definition of the Hurewicz property, there are

sequences (An)n∈ω and (Bn)n∈ω of subsets of X and Y respectively such that each An (Bn)
is un- (vn-) bounded, and the families {An : n ∈ ω} and {Bn : n ∈ ω} are γ-covers of Y . For
every n ∈ ω put Cn = An ×Bn. It is a simple matter to verify that the family {Cn : n ∈ ω}
is a γ-cover of X × Y and each Cn is wn-bounded, which finishes our proof.



Lemma 20. Let An, n ∈ ω, be subspaces of a multicovered space (X, λ). If every subspace

An, n ∈ ω, is winning (resp. Menger, Hurewicz), then so is their union A =
⋃

n∈ω An.

Proof. 1. Assume that all the subspaces An, n ∈ ω, are winning. For every n ∈ ω fix a

winning strategy Θn : λ<ω → P(X) of the second player in the game CB on An. Define a

strategy Θ: λ<ω → P(X) of the second player in the game CB on A =
⋃

n∈ω An letting

Θ(u0, . . . , un) =
⋃

k≤n Θk(uk, . . . , un) for (u0, . . . , un) ∈ λ<ω. The un-boundedness of the sets

Θk(uk, . . . , un), k ≤ n, implies the un-boundedness of their union Θ(u0, . . . , un).
We claim that A ⊂ ⋃n∈ω Θ(u0, . . . , un) for any infinite sequence (un)n∈ω ∈ λω. Fix any

k ∈ ω. Regarding the sequence (un)n≥k as the moves of the first player in the Menger game

on Ak, we see that Ak ⊂ ⋃
n≥k Θk(uk, . . . , un) (according to the choice of Θk as a winning

strategy). Then

A =
⋃
k∈ω

Ak ⊂
⋃
k∈ω

⋃
n≥k

Θk(uk, . . . , un) =
⋃
n∈ω

⋃
k≤n

Θk(uk, . . . , un) =
⋃
n∈ω

Θ(u0, . . . , un)

and hence Θ is a winning strategy of the second player in the Menger game on A =
⋃

n∈ω An.

2. Next, assume that all the subspaces An, n ∈ ω, are Menger (Hurewicz). To show that

the union A =
⋃

n∈ω An is Menger (Hurewicz), fix an infinite sequence of covers (un)n∈ω ∈ λω.
By the Menger (Hurewicz) property of An, n ∈ ω, for every k ∈ ω there is a (γ-)cover
{Bk

n : n ≥ k} of Ak such that each set Bk
n, n ≥ k, is un-bounded. Letting Bn =

⋃
k≤nB

k
n,

we see that each set Bn, n ∈ ω, is un-bounded and {Bn : n ∈ ω} is a (γ−)cover of A. This
proves that the union A =

⋃
n∈ω An is Menger (Hurewicz).

Concerning the Scheepers property, the situation with unions is much more delicate. As
it is shown in [6], the class of Scheepers multicovered spaces is closed under finite unions if
and only if two arbitrary ultrafilters are coherent, i.e. the NCF principle holds, see [37] for

corresponding definitions.

Lemma 21. Let X be a topological space such that the multicovered space (X, λU(X)) is

winning (resp. Hurewicz, Scheepers, Menger). Then so is the product (X × Y, λU(X×Y )) for

every σ-compact space Y .

Proof. Given arbitrary σ-compact space Y , write it as a union ∪{Kn : n ∈ ω} of a countable
family of its compact subspaces. Without loss of generality, Kn ⊂ Kn+1 for all n ∈ ω. Let us
denote by hn the restriction to X ×Kn of the projection prX : X × Y → X. We claim that
hn is perfect with respect to multicovers λU(X×Y )|(X ×Kn) and λU(X) respectively. Indeed,

let u ∈ λU(X×Y ) and d be a pseudometric on X × Y such that w = {Bd(z, 1) : z ∈ X × Y }
is inscribed into u. For every n ∈ ω define a function dn : X2 → R letting dn(x1, x2) =
sup{d((x1, y), (x2, y)) : y ∈ Kn} and observe that dn is a continuous pseudometric on X. Let

us fix arbitrary x ∈ X. The perfectness of hn follows from w-boundedness of h−1
n (Bdn(x, 1/3)),

which can be proven by a standard argument involving compactness of Kn and the definition

of dn.
Applying Proposition 12(7), we conclude that (X × Kn, λU(X×Y )|(X × Kn)) is winning

(resp. Hurewicz, Scheepers, Menger) for all n ∈ ω. Thus Lemma 20 completes our proof in

winning, Hurewicz, and Menger cases. For the Scheepers property we need some auxiliary
arguments. Assuming that (X, λU(X)) is Scheepers, fix a sequence (un)n∈ω ∈ λω

U(X×Y ). For

every n ∈ ω find vn ∈ λU(X) such that h−1
n (B) is un-bounded for every vn-bounded subset

B of X. Then Lemma 18 yields a proper ω-cover {Bn : n ∈ ω} of X such that each Bn



is vn-bounded. It sufficies to show that {h−1
n (Bn) : n ∈ ω} is an ω-cover of X × Y . For

this purpose fix a finite subset C = {(xi, yi) : i ≤ m} of X × Y and find n ∈ ω such that

{xi : i ≤ m} ⊂ Bn and {yi : i ≤ m} ⊂ Kn. Then C ⊂ Bn ×Kn = h−1
n (Bn), which means

that {h−1
n (Bn) : n ∈ ω} is an ω-cover of X × Y and thus finishes our proof.

Remark 1. It is well-known that under additional set-theoretic assumptions there exists

a Hurewicz subspace S of R such that S2 is not Menger, see [25, Theorem 43]. But this

does not contradict Lemmas 17 and 19. In order to explain this, let us consider Tychonoff

spaces X and Y . Then the topological space X × Y is Menger if and only if so is the

multicovered space (X×Y,O(X ×Y )), while the product (X,O(X))× (Y,O(Y )) is Menger

if and only if so is the multicovered space (X × Y,O(X) × O(Y )). It is easy to see, that

O(X) × O(Y ) ⊂ O(X × Y ), and these multicovers coincide if and only if |X| = 1 or
|Y | = 1, and consequently (X × Y,O(X × Y )) and (X × Y,O(X) × O(Y )) are different

multicovered spaces. But in light of Proposition 12(5) it is more interesting to find out when

the multicovers O(X) × O(Y ) and O(X × Y ) are isomorphic. A direct verification shows

that this is so when both of them are locally-compact or Lindel�of P -spaces, while from the

above mentioned Theorem 43 of [25], Proposition 12(5), and Lemma 19 we conclude that
O(S)2 is not equivalent to O(S2). 2

Lemma 22. Let (X, λ) be a winning multicovered space. Then there exists a winning

strategy Θ1 of the second player in the game CB such that {Θ1(u0, . . . , un) : n ∈ ω} is

a γ-cover of X for all sequences (un)n∈ω ∈ λω.

Proof. Let us fix some winning strategy Θ of the second player in the game CB on (X, λ).
We claim that the map Θ1 : λ<ω → P(X),

Θ1 : (u0, u1, . . . , un) 7→
⋃

0≤i0≤i1≤···≤ik=n

Θ(ui0, ui1, . . . , uik)

is a winning strategy of the second player in the game CB on (X, λ) with the required
property.

Suppose, to the contrary, that there exists a sequence of covers (un)n∈ω ∈ λω, a sub-
sequence (ik)k∈ω ∈ ωω, and x ∈ X such that x 6∈ ⋃

k∈ω Θ1(u0, u1, . . . , uik). But Θ is a

winning strategy in the Menger game on (X, λ), which together with definition of Θ1 gives
us X =

⋃
k∈ω Θ(ui0, ui1, . . . , uik) ⊂

⋃
k∈ω Θ1(u0, u1, . . . , uik), a contradiction.

Corollary 23. The class of winning multicovered spaces is closed under finite products of

its elements.

Proof. Let (X, λ) and (Y, ν) be two winning multicovered spaces and ΘX and ΘY be winning

strategies of the second player in the game CB on (X, λ) and (Y, ν) respectively having the

property from Lemma 22. A direct verification shows that the strategy

Θ : (u0 · v0, . . . , un · vn) 7→ ΘX(u0, . . . , un) × ΘY (v0, . . . , vn)

is winning in the game CB on the product (X × Y, λX × λY ).

The next corollary answers [15, Problem 1] in negative.

Corollary 24. The product of finitely many strictly o-bounded topological groups is strictly

o-bounded.



Proof. Follows from the observation that a topological group G is strictly o-bounded if

and only if the multicovered space (G, λL(G)) is winning, see Corollary 23, and Propositi-

on 12(2,5).

The following lemma is the central part of the paper.

Lemma 25. Let G be a topological group and X ⊂ G be a set of its generators. If the

multicovered space (X ∪X−1, λR(G)|X ∪X−1) is winning, then so is (G, λR(G)).
If, additionaly,G is abelian and (X, λ(G)|X) is Hurewicz (Scheepers), then so is (G, λ(G)).

Proof. 1. We start by proving the �winning� part. Assuming that (X∪X−1, λR(G)|X∪X−1)
is winning, find a strategy Θ : λ<ω

R → P(G) such that {Θ(u0, . . . , uk) : k ∈ ω} is a γ-cover
of X ∪X−1 for every sequence (un)n∈ω ∈ λω

R. Let B be the family of all open neighborhoods

of the identity of G.
Next, for every s ∈ λ<ω

R we shall construct a sequence w(s) = (w(s)n)n∈ω ∈ λω
R. Let

s = (u0, . . . , um), U ∈ B be such that um ≺ {Uz : z ∈ G}, and U0 ∈ B be such that U ⊃ U2
0 .

Put w(s)0 = {U0z : z ∈ G} and A0(s) = Θ(ŝ w(s)0). Assume that for some n ∈ ω and for

all k ≤ n we have already constructed w(s)k = {Ukz : z ∈ G} ∈ λR and Ak(s) ⊂ G such

that the following conditions are satisfied:

(i) Ak(s) = Θ(ŝ w(s)0ˆ· · ·ˆw(s)k);

(ii) Uk ⊃ U2
l for all k < l ≤ n;

(iii) Ak(s)B is w(s)k−1-bounded for every w(s)l-bounded subset B of G, where k < l ≤ n
and w(s)−1 = um.

Since An(s) is {Unz : z ∈ G}-bounded, there exists a finite subset K of G such that An(s) ⊂
UnK. Let us find Un+1 ∈ B such that zUn+1z

−1 ⊂ Un for all z ∈ K and U2
n+1 ⊂ Un, and

set w(s)n+1 = {Un+1z : z ∈ G}. Given any k < n + 1 and an w(s)n+1-bounded subset B of

G, consider the product C = Ak(s)B. If k < n, then the w(s)k−1-boundedness of C follows
from (iii) and the equation w(s)n ≺ w(s)n+1. Thus, it sufficies to consider the case k = n.
Let L be a finite subset of G such that B ⊂ Un+1L. Then

C = An(s)B ⊂ UnKUn+1L ⊂ UnUnKL ⊂ U2
nKL ⊂ Un−1KL,

which yields the w(s)n−1-boundedness of C, and thus completes our inductive construction
of the sequence (w(s)n)n∈ω satisfying (i) − (iii) for all n ∈ ω. Observe, that condition (iii)
implies that the product A0(s)A2(s) · · ·A2n(s) is um = w(s)−1-bounded for all n ∈ ω.

Given any s = (u0, . . . , un−1) ∈ λ<ω
R , construct a finite sequence (q0(s), . . . , q2n−2(s)) ∈

(λ<ω
R )<ω as follows:

q0(s) = (u0), q2k+1(s) = q2k(s)̂ w(q2k(s))|(2k + 1), q2k+2(s) = q2k+1(s)̂ uk+1.

Let Θ1(s) = A0(q2n−2(s))A2(q2n−2(s)) · · ·A2n−2(q2n−2(s)). We claim that Θ1 is a winning

strategy of the second player in the game CB on (G, λR). Indeed, from the above it follows

that Θ1(s) is w−1(q2n−2(s)) = un−1-bounded, which implies that Θ1 is a strategy of the

second player. To show that it is winning, consider arbitrary z = x0x1 · · ·xm ∈ G, where
xi ∈ X ∪X−1 for all i ≤ m. Let t = (un)n∈ω ∈ λω

R be a sequence of covers of G. Our proof
will be completed as soon as we show that there exists n ∈ ω such that Θ1(t|n) 3 z. For this
aim consider the sequence (vk)k∈ω ∈ λω

R such that for every n ∈ ω there exists kn ∈ ω such



that q2n−2(t|n) = (v0, . . . , vkn−1) (the definition of q−(−) easily yields such a sequence, and
kn = kn−1 + (2n− 2) + 1). From the above it follows that

Θ1(t|n) = A0(q2n−2(t|n))A2(q2n−2(t|n)) · · ·A2n−2(q2n−2(t|n)) =

= Θ(v0, . . . , vkn−1)Θ(v0, . . . , vkn, vkn−1+1, vkn−1+2) · · ·Θ(v0, . . . , vkn−1 , . . . , vkn−1+2n−2).

By our choice of Θ, the family {Θ(v0, . . . , vk) : k ∈ ω} is a γ-cover of X ∪X−1, consequently

there exists l ∈ ω such that {x0, . . . , xm} ⊂ Θ(v0, . . . , vk) for all k ≥ l. Let n > m be such

that kn−1 > l. Then {x0, . . . , xm} ⊂ Θ(v0, . . . , vkn−1 , . . . , vkn−1+2i) for all i ∈ {0, 2, . . . , 2n−2},
which implies z ∈ Θ1(t|n).

2. Let us assume that the multicovered space (X, λ(G)|X) is Scheepers and set λ = λ(G).
Given a sequence (un)n∈ω ∈ λω, find a sequence (On)n∈ω of open neighborhoods of the neutral

element e such that un ≺ {g + On : g ∈ G}, −On = On, and 2On+1 ⊂ On for all n ∈ ω. By
the definition of the Scheepers property applied to (X, λ|X) there exists a sequence (Kn)n∈ω

of finite subsets of G such that the family v = {Kn +On : n ∈ ω} is a proper ω-cover of X.

Without loss of generality, Kn = −Kn and Kn + Kn ⊂ Kn+1 for all n ∈ ω. We claim that

v1 = {K2n +On : n ∈ ω} is an ω-cover of G.
Indeed, from the above it follows that K+On ⊃ X for every n ∈ ω, where K =

⋃
n∈ω Kn.

Consequently for every x ∈ X we can define a nondecreasing number sequence z(x) letting
z(x)n = min{m ∈ ω : x ∈ Km +On}. Since v is a proper ω-cover of X, for every finite subset
S of X the set IS = {n ∈ ω : z(x)n ≤ n for all x ∈ S} is infinite. Now, consider an arbitrary
finite subset A of G and find some finite subset S of X and m ∈ N such that A ⊂ m(S−S).
Let us fix arbitrary l ∈ IS ∩ [3m,+∞). Then

S − S ⊂ Kl +Ol −Kl −Ol ⊂ Kl+1 +Ol−1, 2(S − S) ⊂ 2(Kl+1 +Ol−1) ⊂ Kl+2 +Ol−2

and so on. Proceeding in this fashion, we obtain

A ⊂ m(S − S) ⊂ Kl+m +Ol−m.

Since l ≥ 3m, there exists n ∈ ω such that n ≤ l−m and 2n ≥ l+m, which yields On ⊃ Ol−m

and K2n ⊃ Kl+m. From the above it follows that Kl+m + Ol−m ⊂ K2n + On, which proves
that the multicovered space (G, λ) is Scheepers.

3. The proof of the �Hurewicz� part is similar to that of the �Scheepers� one. Let λ,
(un)n∈ω ∈ λω, and (On)n∈ω be such as in the previous item. Since the multicovered space
(X, λ|X) is Hurewicz, there exists a sequence (Kn)n∈ω of finite subsets of G such that the
family v = {Kn + On : n ∈ ω} is a γ-cover of X. Without loss of generality, Kn = −Kn

and Kn + Kn ⊂ Kn+1 for all n ∈ ω. We claim that v1 = {K2n + On : n ∈ ω} is a γ-cover
of G. Let K and z(x) ∈ ω↑ω be such as in the second item. Since v is a γ-cover of X, for

every finite subset S of X the set IS = {n ∈ ω : z(x)n ≤ n for all x ∈ S} is cofinite, i.e. the
complement ω \ IS is finite. Now, consider arbitrary z ∈ G and find some finite subset S of

X and m ∈ N such that z ∈ m(S−S). Let us fix some l ≥ 3m such that [l,+∞) ⊂ IS. Then
for every p ≥ l we have

S − S ⊂ Kp +Op −Kp −Op ⊂ Kp+1 +Op−1, 2(S − S) ⊂ 2(Kp+1 +Op−1) ⊂ Kp+2 +Op−2

and so on. Proceeding in this fashion, we obtain z ∈ m(S−S) ⊂ Kp+m+Op−m. Since p ≥ l ≥
3m, p+m ≤ 2(p−m), and consequently Kp+m ⊂ K2(p−m), which yields z ∈ K2(p−m) +Op−m.

Since p ≥ l was chosen arbitrary, we conclude that z ∈ On + K2n for all n ≥ l −m, which

means that v1 is a γ-cover of G.



Remark 2. The winning property of any abelian topological group H containing X as a set

of its generators can be derived from the winning property of (X, λ(H)|X) much easier than

in the general case considered in Lemma 25. Given any finite sequence j = (j0, . . . , jn−1) ∈
{−1, 1}<ω, define a map ψj : Xn → G letting ψj(x0, . . . , xn−1) = j0x0 + · · · + jn−1xn−1. A

direct verification shows that ψj is uniformly-bounded with respect to multicovers (λ(H)|X)n

and λ(H) (here commutativity is essentially used), and hence (ψj(X
n), λ(H)|ψj(X

n)) is

winning for each j ∈ {−1, 1}<ω. Now it sufficies to use Corollary 23, Proposition 12(8), and

Lemma 20.

The same arguments work for the Hurewicz property. In case of the Scheepers property

we additionaly have to prove that the countable union of uniformly-bounded images of finite

powers of a Scheepers space (X, λ(H)|X) is Scheepers (the union of Scheepers multicovered

spaces could be not Scheepers, see the discussion following Lemma 20). 2

Proofs of Theorems 1 and 3. We shall prove these theorems by showing that conditions

(1)-(8) of Theorem 1 are equivalent to the Scheepers property of (X, λU(X)) (note that

Theorem 3 states that (1) is equivalent to the Scheepers property of (X, λU(X))), and the

last condition will be denoted by (9). The implication (2) ⇒ (1) is obvious. The implications

(5) ⇒ (4) and (4) ⇒ (3) follow from the continuity of linear maps ϕ : Ls(X) → L(X)
and ψ : L(X) → Lp(X) extending the identity map idX , and the simple fact that the o-
boundedness is preserved by continuous homomorphic images, see, e.g., [30].

In addition, we shall prove the subsequent implications: (1) ⇒ (9), (9) ⇒ (2), (9) ⇒ (5),
(3) ⇒ (9), (6) ⇔ (9), (7) ⇔ (1), (8) ⇔ (1).

(1) ⇒ (9). Since A(X) is o-bounded, it is ω-bounded, and thus the uniform space

(X,U(X)) as well as the multicovered space (X, λU(X)) are ω-bounded by Proposition 13.
Therefore X and G = A(X) satisfy the conditions of Lemma 16, and consequently for

every n ∈ N the map ψn defined there is perfect with respect to λn
U(X) and λ(A(X)). As

it was stressed in Introduction, the o-boundedness of the group A(X) is equivalent to the
Menger property of the multicovered space (A(X), λ(A(X))). Applying Proposition 12(7), we
conclude that (Xn, λn

U(X)) is Menger for all n ∈ N, and consequently (X, λU(X)) is Scheepers
by Lemma 17.

(9) ⇒ (2). Assume that (X, λU(X)) is Scheepers. Then so is (X, λ(A(X))|X). Applying
Lemma 25, we conclude that (A(X), λ(A(X))) is Scheepers too, and thus (A(X)n, λ(A(X))n)
is Menger for all n ∈ N by Lemma 17, which means that A(X)n is o-bounded for all n ∈ N.

(9) ⇒ (5). Let us note that we have already proven the equivalence of items (1), (2),
and (9). Let X be a topological space satisfying (9). Then (X, λU(X)) is Scheepers, and hence

so is the multicovered space (X × R, λU(X×R)) by Lemma 21. Consequently A(X × R)n is

o-bounded for all n ∈ N. Consider the map h : X × R → Ls(X), h(x, r) = rx. Since Ls(X)
is a linear topological space, h is continuous, and hence it admits a continuous extension to

a homomorphism h̃ : A(X × R) → Ls(X). A direct verification shows that h̃ is surjective.

Therefore Ls(X) is a continuous homomorphic image of A(X×R), and consequently Ls(X)n

is a continuous homomorphic image of A(X × R)n for all n ∈ N.

(3) ⇒ (9). It suffices to use the fact that X and G = Lp(X) satisfy the conditions of

Lemma 16, see [3, Chapter 0], and apply the same argument as in the proof of the implication
(1) ⇒ (9).

(9) ⇔ (6). Assuming that (X, λU(X)) is Scheepers, fix a continuous surjective function

f : X → Y onto a metrizable space Y . Then f is uniformly bounded with respect to multi-

covers λU(X) and λU(Y ) being uniformly continuous with respect to uniformities U(X) and



U(Y ). Therefore (Y, λU(Y )) is Scheepers by Proposition 12(8). In particular, this implies that
Y is Lindel�of and hence λU(Y ) is equivalent to O(Y ) by Corollary 15. Then the multicovered

space (Y,O(Y )) is Scheepers by Proposition 12(5).

Next, assume that (X, λU(X)) is not Scheepers and find a sequence (un)n∈ω ∈ λω
U(X)

witnessing for this. For every n find an entourage Un ∈ U(X) such that wn = {Un(x) :
x ∈ X} is inscribed into un. Let d be a continuous pseudometric on X such that vn =
{Bd(x, 2

−n) : x ∈ X} is inscribed into wn. Then the identity map idX is perfect with respect

to multicovers λ1 = {un : n ∈ ω} and λ2 = {vn : n ∈ ω} of X. Since (X, λ1) is not Scheepers,
so is (X, λ2) by Proposition 12(7). Consequently X endowed with the topology generated

by d is not Scheepers, and hence there are non-Scheepers metrizable images of X.

(7) ⇔ (1). Let us note that we have already proven the equivalence (1) ⇔ (6). It is well
known that every Lindel�of space is Hewitt-complete and every continuous map f : X → Y
from a space X into a Hewitt-complete space Y extends to a continuous map f̂ : νX → Y ,
see [10, Th. 3.11.12, 3.11.16]. Let X be such that A(X) is o-bounded and Y be a continuous

metrizable image of νX under a map f . Then Y is Lindel�of containing a dense Lindel�of (even

Scheepers) subspace Z = f(X). Therefore Y as well as Z are Hewitt-complete, and hence

the map f |X extends to a continuous map g : νX → Z. Since f and g coincide on the dense

subset X of νX, we get f = g, and hence Y = Z = f(X). Thus we have already proven

that each continuous metrizable image of νX is Scheepers, which implies the o-boundedness
of A(νX).

Now, assume that A(νX) is o-bounded. It follows that each metrizable image of νX
is Scheepers. The same argument as in the previous paragraph gives that each metrizable
image of X is Scheepers as well, and hence A(X) is o-bounded.

(8) ⇔ (1). It is well-known [10, 8.5.8(b)] that there are natural embeddings of νX and

µX into the Stone-�Cech compactification βX such that X ⊂ µX ⊂ νX ⊂ βX. This permits

us to apply the same argument as in the proof of the equivalence of (1) and (7) and conclude
that X and µX have the same continuous metrizable images, and then apply already proven
equivalence (1) ⇔ (6).

Proof of Theorem 2. A part of the proof of this theorem runs fairly in a similar way as that of

Theorem 1. Namely, the implications (4) ⇒ (8), (8) ⇒ (2), (4) ⇒ (7), and (5) ⇒ (8) can be
proven similarly to the implications (1) ⇒ (9), (9) ⇒ (2), (2) ⇒ (5), (3) ⇒ (9) of Theorem 1

respectively (one has to additionaly use that the product of winning multicovered spaces is
winning, and (X ∪X−1, λR(X ∪X−1)) is winning provided so is (X, λU(X)) by Lemma 20).

The implications (3) ⇒ (2), (2) ⇒ (1), and (7) ⇒ (6), (6) ⇒ (5) immediately follow

from the corresponding definitions. Thus we are left with the task of proving the impli-
cations (1) ⇒ (4) and (2) ⇒ (3). Concerning the implication (1) ⇒ (4), it follows from

Proposition 12(8) and the fact that the homomorphism f : F (X) → A(X) extending the
identity map on X is uniformly continuous with respect to the uniformities UL∧R(F (X))
and U(A(X)), and hence is uniformly bounded with respect to the multicovers λL∧R(F (X))
and λ(A(X)) of F (X) and A(X) respectively.

(2) ⇒ (3). Let us note that in light of Corollary 23 it sufficies to prove that the multi-

covered space (F (X), λL∨R) is winning. Set ∆F (X) = {(x, x) : x ∈ F (X)}. Then the map

i : X 3 x 7→ (x, x) ∈ ∆F (X) as well as its inverse are obviously perfect with respect
to multicovers λL∨R and λL × λR|∆F (X) of F (X) and ∆F (X) respectively. Since F (X) is

strictly o-bounded, both of the multicovered space (F (X), λR) and (F (X), λL) are winni-

ng, and hence so is the product (F (X)2, λR × λL), and finally the multicovered spaces



(∆F (X), λR × λL|∆F (X)) and (F (X), λL∨R) are winning as well.

Example 26. There exists a countably-compact space Z and a pseudometric d on Z2 such

that the pseudometric space (Z2, d) is not Lindel�of.

Proof. To begin with, let us note that it sufficies to construct two countably-compact

spaces X and Y and a pseudometric d on their product X × Y such that the corresponding

pseudometric space is not Lindel�of, and then the topological sum Z of X and Y obviously

admits a required pseudometric. Let D be a discrete space of size |D| = ℵ1. Similarly to

Example 3.10.19 of [10] we define a function f assigning to each countable subset A of βD
some element f(A) ∈ A \ A. Let X0 = D and

Xα =

(⋃
γ<α

Xγ

)
∪ f


[⋃

γ<α

Xγ

]ℵ0



for 0 < α < ω1, where [A]ℵ0 stands for the family of all countable subsets of a set A.
Thus we have already defined a transfinite sequence (Xα)α<ω1 of subsets of βD. The space

X =
⋃

α<ω1
Xα is obviously countably-compact (every countable subset A of X is contained

in some Xα, and hence is not closed in X). It is easy to prove that |X| ≤ c. Set Y =
D ∪ (βD \X). According to Theorem 3.6.14 of [10], |A| = 2c for every countable A ⊂ βD,
and hence Y is countably-compact as well. It suffices to observe that X × Y contains an

open discrete subspace ∆D = {(x, x) : x ∈ D} of size ℵ1, and hence admits a non-Lindel�of
pseudometric.

Proof of Theorem 4. The proof of this theorem is quite similar to that of Theorem 1 and is
left to the reader.

Remark 3. The characterization of spaces X such that F (X) is o-bounded is the same as
in the abelian case. But its proof requires a technique of (semi)filter games investigated by
C. Laflamme, and is not within the methods used here. This problem is to be considered in

[6] from a more general point of view. 2
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