УДК 515.12

L. S. Zdomskyy

A CHARACTERIZATION OF THE MENGER AND HUREWICZ PROPERTIES OF SUBSPACES OF THE REAL LINE

L. S. Zdomskyy. A characterization of the Menger and Hurewicz properties of subspaces of the real line, Matematychni Studii, **24** (2005) 115–119.

We characterize the covering properties of Menger, Hurewicz, and two other selection principles of subsets of the real line in terms of their continuous images in the Baire space \mathbb{N}^{ω} , and thus answer the corresponding question of B. Tsaban in positive.

Л. С. Здомский. Характеризация свойств Менгера и Гуревича подпространств действительной прямой // Математичні Студії. – 2005. – Т.24, №2. – С.115–119.

В данной работе мы характеризируем свойства Менгера, Гуревича и два других селекционных принципа подпространств прямой в терминах их непрерывных образов при отображениях в пространство \mathbb{N}^{ω} , и таким образом даем положительный ответ на соответствующий вопрос Б. Цабана.

The properties of Menger and Hurewicz, which are the basic and oldest selection principles, take their origin in papers [2] and [1]. Both of them appeared as cover counterparts of σ -compactness. Recall from [9], that a topological space X has the Menger (resp. Hurewicz) property, if for every sequence $(u_n)_{n\in\omega}$ of open covers of X there exists a sequence $(v_n)_{n\in\omega}$ such that every v_n is a finite subset of u_n and the family $\{\bigcup v_n : n \in \omega\}$ is a cover (resp. γ -cover) of X, where an indexed family $\{A_n : n \in \omega\}$ is a γ -cover of X if for every $x \in X$ the set $\{n \in \omega : x \notin A_n\}$ is finite. It is easy to see that every σ -compact space X has the Hurewicz property (\equiv is Hurewicz) and every Hurewicz space has the Menger property (\equiv is Menger).

One of the main results of [2] is the characterization of the above two properties of a space X in terms of continuous images of X under maps $f: X \to \mathbb{R}^{\omega}$. It involves the *eventual dominance* preorder \leq^* on \mathbb{R}^{ω} defined as follows: $(x_n)_{n \in \omega} \leq^* (y_n)_{n \in \omega}$ if and only if the set $\{n \in \omega : x_n > y_n\}$ is finite.

Theorem 1. (Hurewicz [2]) Let X be a metrizable separable space. Then

- (1) X has the Menger property if and only if f(X) is not cofinal with respect to \leq^* for every continuous function $f: X \to \mathbb{R}^{\omega}$;
- (2) X has the Hurewicz property if and only if f(X) is bounded with respect to \leq^* for every continuous function $f: X \to \mathbb{R}^{\omega}$.

²⁰⁰⁰ Mathematics Subject Classification: 03E15, 54D20.

It is observed that for a zero-dimensional space X the same characterization in terms of continuous images in \mathbb{N}^{ω} holds.

Theorem 2. (Reclaw [7]) Let X be a zero-dimensional metrizable separable space. Then

- (1) X has the Menger property if and only if f(X) is not cofinal with respect to \leq^* for every continuous function $f: X \to \mathbb{N}^{\omega}$;
- (2) X has the Hurewicz property if and only if f(X) is bounded with respect to \leq^* for every continuous function $f: X \to \mathbb{N}^{\omega}$.

In addition to the properties of Menger and Hurewicz, two other selection principles were recently characterized in spirit of Theorem 2. Their definitions involve some special types of covers introduced in [14] and [5] respectively. A family $\{A_n : n \in \omega\}$ is

- a τ^* -cover of X, if for every $x \in X$ there exists an infinite subset I_x of $\{n \in \omega : x \in A_n\}$ such that for all $x_1, x_2 \in X$ either $|I_{x_1} \setminus I_{x_2}| < \infty$ or $|I_{x_2} \setminus I_{x_1}| < \infty$;
- an ω -cover of X, if for every finite subset K of X there exists $n \in \omega$ with $K \subset A_n$.

A topological space is said to have the property $\bigcup_{\text{fin}}(\mathcal{O}, T^*)$ ($\bigcup_{\text{fin}}(\mathcal{O}, \Omega)$), if for every sequence $(u_n)_{n\in\omega}$ of open covers of X there exists a sequence $(v_n)_{n\in\omega}$, where v_n is a finite subset of u_n , such that { $\bigcup v_n : n \in \omega$ } is a τ^* - (ω -)cover of X.

Theorem 3. ([14, Theorem 7.8], [11, Theorem 2.1]) Let X be a zero-dimensional metrizable separable space. Then

- (1) X has the property $\bigcup_{\text{fin}}(\mathcal{O}, T^*)$ if and only if f(X) satisfies the weak excluded middle property for every continuous function $f: X \to \mathbb{N}^{\omega}$;
- (2) X has the property $\bigcup_{\text{fin}}(\mathcal{O},\Omega)$ if and only if f(X) is not finitely dominating for every continuous function $f: X \to \mathbb{N}^{\omega}$.

The reader is referred to papers [14] and [11] for corresponding definitions. Different forms of Theorem 2 are frequently used in literature, see [13] and [12]. It is well known, that every zero-dimensional metrizable separable space X is homeomorphic to a subspace of \mathbb{N}^{ω} , and thus to a subspace of the space of irrational numbers, see [8]. The following question was asked by B. Tsaban in private communication: Is the characterization in terms of images in \mathbb{N}^{ω} true for all subspaces of \mathbb{R} ?

The following theorem, which is the main result of this paper, answers this question in positive.

Theorem 4. Let X be a subspace of the real line. Then X has the Menger (resp. Hurewicz, $\bigcup_{\text{fin}}(\mathcal{O}, T^*), \bigcup_{\text{fin}}(\mathcal{O}, \Omega)$) property if and only if for every continuos function $f: X \to \mathbb{N}^{\omega}$ the image f(X) is not cofinal (resp. is bounded, has the weak excluded middle property, is not finitely dominating) with respect to \leq^* .

In the proof of Theorem 4 we shall use some properties of *set-valued maps*. Following [4] by a set-valued map from a set X into Y we understand a map $\Phi: X \to \mathcal{P}(Y) \setminus \{\emptyset\}$, where $\mathcal{P}(Y)$ denotes the family of all subsets of Y. Recall, that a set-valued map Φ from a topological space X into a topological space Y is called

- compact-valued, if $\Phi(x)$ is compact for every $x \in X$;
- upper semicontinuous, if for every open subset V of Y the set $\Phi_{\subset}^{-1}(V) = \{x \in X : \Phi(x) \subset V\}$ is open in X.

For a subset A of X and a set-valued map $\Phi : X \to \mathcal{P}(Y)$ we denote by $\Phi(A)$ the set $\bigcup_{x \in A} \Phi(X)$.

From now on we fix some property P among the Menger, Hurewicz, $\bigcup_{\text{fin}}(\mathcal{O}, T^*)$, and $\bigcup_{\text{fin}}(\mathcal{O}, \Omega)$ properties, and denote by ξ and S its counterparts among the four types of covers and among the properties of subsets of \mathbb{N}^{ω} according to Theorems 2 and 3. For example, if P is the property $\bigcup_{\text{fin}}(\mathcal{O}, T^*)$, then ξ -covers coincide with τ^* -covers, and S stands for the weak excluded middle property.

- **Lemma 1.** (1) Let X be a topological space with the property P and C be a closed subset of X. Then C has the property P .
- (2) Let $\Phi: X \to Y$ be a compact-valued upper semicontinuous map between topological spaces X and Y such that $\Phi(X) = Y$. Then Y has the property P provided so does X. In particular, every continuous image of a space with the property P has this property as well.
- (3) Let X be a topological space. Then the union $Y \cup Z$ of a subspace Y with the property P and a σ -compact subspace Z of X has the property P.

Proof. 1. This simple statement probably belongs to folklore and its proof is left to the reader.

2. Let us fix an arbitrary sequence $(w_n)_{n\in\omega}$ of open covers of Y. For every $n \in \omega$ consider the family $u_n = \{\Phi_{\subset}^{-1}(\cup v) : v \subset w_n, |v| < \infty\}$. Since Φ is upper semicontinuous and compact-valued, each u_n is an open cover of X. The property P of X implies the existence of a sequence $(c_n)_{n\in\omega}$, where each c_n is a finite subset of u_n , such that $\{\bigcup c_n : n \in \omega\}$ is a ξ -cover of X. From the above it follows that for every $n \in \omega$ we can find a finite subset v_n of w_n with $\Phi(\bigcup c_n) \subset \bigcup v_n$. Therefore for every $y \in Y$ and $x \in X$ such that $y \in \Phi(x)$ we have

$$\left\{n \in \omega : y \in \bigcup v_n\right\} \supset \left\{n \in \omega : x \in \bigcup c_n\right\},$$

consequently $\{\bigcup v_n : n \in \omega\}$ is a ξ -cover of Y, and thus Y has the property P.

3. A trivial verifivation is left to the reader.

Lemma 2. Let X be a subspace of \mathbb{R} . Then there exists a zero-dimensional metrizable space X^* such that X^* is a continuous image of X and X^* has the property P if and only if so does X.

Proof. First of all, denote by \mathcal{E} the family of all (connected) components of X containing more than one element. Then \mathcal{E} may be written in the form $\mathcal{E} = \mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \cup \mathcal{D}$, where $\mathcal{A} = \{(a^0_{\alpha}, a^1_{\alpha}) : \alpha \in A\}, \mathcal{B} = \{(b^0_{\beta}, b^1_{\beta}] : \beta \in B\}, \mathcal{C} = \{[c^0_{\xi}, c^1_{\xi}) : \xi \in C\}, \text{ and } \mathcal{D} = \{[d^0_{\zeta}, d^1_{\zeta}] : \zeta \in D\},$ where A, B, C and D are at most countable sets. For every $\alpha \in A$ fix some $a_{\alpha} \in (a^0_{\alpha}, a^1_{\alpha})$ and consider the map $f : X \to \mathbb{R}$,

$$f(x) = \begin{cases} a_{\alpha}, & \text{if } x \in (a_{\alpha}^{0}, a_{\alpha}^{1}) \\ b_{\beta}^{1}, & \text{if } x \in (b_{\beta}^{0}, b_{\beta}^{1}] \\ c_{\xi}^{0}, & \text{if } x \in [c_{\xi}^{0}, c_{\xi}^{1}) \\ x, & \text{otherwise.} \end{cases}$$

It is clear that f is continuous. Moreover, $f(X) \subset X$ and $X \setminus f(X)$ is open in \mathbb{R} , consequently f(X) is closed subset of X such that the complement $X \setminus f(X)$ is σ -compact, and thus Lemma 1 implies X has the property P if and only if so is $X_1 = f(X)$. The space X_1 obviously has the following property: each connected component of X_1 is compact. Moreover,

every component of X_1 coincides with the quasicomponent containing it, see [4, Ch.5, §46(V)] for corresponding definitions. Indeed, let G be a countable dense subset of $\mathbb{R} \setminus X$. Then the family $\mathcal{G} = \{(a, b) \cap X_1 : a, b \in G\}$ consists of clopen subsets of X_1 and every component of X_1 coincides with an itersection of all elements of \mathcal{G} containing it. Following [4], we denote by $Q(X_1)$ the space of quasicomponets of X_1 endowed with the topology τ generated by a base $\{U^+: U \text{ is clopen in } \mathbb{R}\}$, where $U^+ = \{K \in Q(X_1): K \subset U\}$. Let $g: X_1 \to Q(X_1)$ be a map assigning to a point $x \in X_1$ its quasicomponent. It follows from [4, Ch.5, §46(Va) Th.1] that g is continuous. In addition, $Q(X_1)$ is regular and zero-dimensional by [4, Ch.5, §46(Va), Th.2]. Next, we shall show that q^{-1} , considered as a set-valued map from $Q(X_1)$ into X_1 , is compact-valued upper semicontinuous. For this aim fix arbitrary $K \in Q(X_1)$ and an open subset U of X_1 with $K \subset W$. Let us write K in the form K = [c, d] and find $\varepsilon > 0$ such that $(c - \varepsilon, d + \varepsilon) \subset U$. Since K is a component of X_1 , there are $a \in G \cap (c - \varepsilon, c)$ and $b \in G \cap (d, d + \varepsilon)$. Now, it is clear that $g^{-1}(W) \subset U$, where $W = ((a, b) \cap X_1)^+$. Applying Lemma 1 once again, we conclude that $Q(X_1)$ has the property P if and only if so does X_1 . The above argument gives us that the family $\{((a, b) \cap X_1)^+ : a, b \in G\}$ is a countable base of the topology τ , consequently $Q(X_1)$ is metrizable separable being second-countable and regular space, see [3, Ch.4 Th.17]. And finally, $X^* = Q(X_1)$ satisfies the requirements of this lemma.

Proof of Theorem 4. Let X be a subspace of the real line. If X fails to have the property P, then Lemma 2 yields a zero-dimensional metrizable separable space X^* and a surjective continuous function $f: X \to X^*$ such that X^* fails to have the property P. Applying Theorems 2 and 3, we can find a continuous map $g: X^* \to \mathbb{N}^{\omega}$ such that $g(X^*)$ fails to have the property S. Then $(g \circ f)(X) = g(X^*)$ does not have the property S as well.

Now, assume that X has the property P. In this case it sufficies to note that the zerodimensionality of X was not used in the proofs of "only if" parts of Theorems 2 and 3, see [7], [14] and [11].

In our proof of Lemma 2 we used a simple structure of connected subspaces of \mathbb{R} . Since the family of connected subspaces of \mathbb{R}^2 is much more farious, Theorem 4 fails for subspaces of the plane.

Example. There exists a connected subspace X of \mathbb{R}^2 which fails to be Menger. Consequently every continuous image f(X) under a map $f: X \to \mathbb{N}^{\omega}$ contains only one point. To construct such a space, we denote by $\mathbb{I} \subset \mathbb{R}$ and $\mathbb{Q} \subset \mathbb{R}$ the sets of all irrational and rational numbers, respectively. Let

$$X = \mathbb{R} \times \{0\} \cup \mathbb{Q} \times [0,1) \cup \mathbb{I} \times \{1\} \subset \mathbb{R}^2.$$

Then the space X is obviously connected and fails to be Menger as a space containing a closed copy of irrationals, see [6]. \Box

Acknowledgments. The author gratefully acknowledges the many helpful suggestion of prof. T. Banakh and prof. B. Tsaban during the preparation of the paper.

REFERENCES

- 1. Menger K. Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberichte. Abt. 2a, Mathematic, Astronomie, Physic, Meteorologie und Mechanic (Wiener Akademie) **133**(1924), 421–444.
- 2. Hurewicz W. Über Folgen stetiger Functionen, Fundamenta Mathematicae 9 (1927), 193-204;
- 3. Келли Дж. Л. Общая топология. М.: Наука, 1968.
- 4. Куратовский К. Топология. М.: Мир, 1969.
- 5. Gerlits J., Nagy Zs. Some properties of C(X), I, Topol. Appl. 14 (1982), no.2, 151–163.
- 6. Архангельський А. В. Пространства Гуревича, аналитические множества и веерная теснота пространств функций, ДАН СССР, **287** (1986), №3, 525–528.
- 7. Reclaw I. Every Luzin set is undetermined in the point-open game, Fundamenta Mathematicae 144 (1994), 43-54.
- 8. Kechris A. Classical Descriptive Set Theory, Springer, 1995.
- 9. Scheepers M. Combinatorics of open covers I: Ramsey Theory, Topology and Appl. 69 (1996), 31-62.
- Just W., Miller A.W., Scheepers M., Szeptycki P.J. The combinatorics of open covers II, Topology and Appl. 73 (1996), 241-266.
- Tsaban B. A diagonalization property between Hurewicz and Menger, Real Analysis Exchange, 27 (2001/2002), no.2, 1–7.
- 12. Scheepers M., Tsaban B. The combinatorics of Borel covers, Topology and Appl. 121 (2002), 357-382.
- Tsaban B. The Hurewicz covering property and slaloms in the Baire space, Fundamenta Mathematicae 181 (2004), 273–280.
- 14. Tsaban B. Selection principles and the minimal tower problem, to appear in Note di Matematica, http://arxiv.org/abs/math.LO/0105045.

Ivan Franko National University of Lviv lzdomsky@rambler.ru

> Received 23.12.2004 Revised 07.02.2005