УДК 512, 515.1

L. S. Zdomskyy

CAN A BOREL GROUP BE GENERATED BY A HUREWICZ SUBSPACE?

L. S. Zdomskyy. Can a Borel group be generated by a Hurewicz subspace? Matematychni Studii, 25 (2006) 219-224.

In this paper we formulate three problems concerning topological properties of sets generating Borel non- σ -compact groups. In the case of a concrete $F_{\sigma\delta}$ -subgroup of $\{0,1\}^{\omega\times\omega}$ this gives an equivalent reformulation of the Scheepers diagram problem.

Л. С. Здомский. Может ли борелевская группа порождаться подпространством Гуревича? // Математичні Студії. – 2006. – Т.25, №2. – С.219–224.

В данной работе мы формулируем три проблемы о топологических свойствах пространств порождающих борелевские не σ-компактные группы. В случае конкретной $F_{\sigma\delta}$ -подгруппы $\{0,1\}^{\omega\times\omega}$ мы получаем эквивалентную формулировку одной проблемы М. Шиперза.

Introduction. The Hurewicz property was introduced in [5] as a cover counterpart of the σ -compactness: a topological space X is said to have this property, if for every sequence $(u_n)_{n\in\omega}$ of open covers of X there exists a sequence $(v_n)_{n\in\omega}$, where each v_n is a finite subset of u_n such that each element $x \in X$ belongs to $\bigcup v_n$ for all but finitely many $n \in \omega$. It is easy to see that each σ -compact space is Hurewicz (= has the Hurewicz property). The converse statement is known to fail in ZFC, see [6]. By a *Borel* space we mean a separable metrizable space which is a Borel subset of its completion. This paper is devoted to problems close to the following one.

Problem 1. Can a Borel non- σ -compact group be generated by its Hurewicz subspace?

This problem is especially interesting for the concrete subgroup G of $\{0, 1\}^{\omega \times \omega}$ (standardly endowed with the coordinatewise addition modulo 2) being equivalent to the "Hurewicz" part of the Scheepers diagram problem (see [6, Problems 1,2], [14, Problems 4.1,4.2], [12, Problem 1], and [13, Problem 3.2]), where

$$\mathsf{G} = \left\{ x \in \{0, 1\}^{\omega^2} : x_{i,j} = 0 \text{ for every } j \in \omega \text{ and all but finitely many } i \right\}.$$

In order to formulate the Scheepers diagram problem we have to recall some definitions. M. Scheepers in his paper [10] introduced a long list of new properties looking similar to the Hurewicz one, and thus gave rise to the branch of set-theoretic topology known as *Selection Principles*. Selection principles may be thought as some combinatorial conditions on the family of open covers of a topological space. Let \mathcal{A} and \mathcal{B} be families of covers of a topological space X. Following [10] we say that X has the property

²⁰⁰⁰ Mathematics Subject Classification: 54D20, 22A10, 28A05.

- $\bigcup_{\text{fin}}(\mathcal{A},\mathcal{B})$, if for every sequence $(u_n)_{n\in\omega}\mathcal{A}^{\omega}$ there exists a sequence $(v_n)_{n\in\omega}$, where each v_n is a finite subset of u_n , such that $\{\bigcup v_n : n \in \omega\} \in \mathcal{B}$;
- $S_{fin}(\mathcal{A}, \mathcal{B})$, if for every sequence $(u_n)_{n \in \omega} \in \mathcal{A}^{\omega}$ there exists a sequence $(v_n)_{n \in \omega}$ where each v_n is a finite subset of u_n such that $\bigcup \{v_n : n \in \omega\} \in \mathcal{B}$.

Throughout the paper, \mathcal{A} and \mathcal{B} run over the families \mathcal{O} , Ω , and Γ of all open $(\omega$ -, γ -) covers of X. Given a family $u = \{U_i : i \in I\}$ of subsets of a set X, we define the map $\mu_u \colon X \to \mathcal{P}(I)$ letting $\mu_u(x) = \{i \in I : x \in U_i\}$ (μ_u is the Marczewski "dictionary" map introduced in [9]). In what follows, $I \in \{\omega, w^2\}$. Depending on the properties of $\mu_u(X)$ a family $u = \{U_n : n \in \omega\}$ is defined to be

- an ω -cover [4], if the family $\mu_u(X)$ is centered, i.e. for every finite subset K of X the intersection $\bigcap_{x \in K} \mu_u(x)$ is infinite;
- a γ -cover of X [4], if for every $x \in X$ the set $\mu_u(x)$ is cofinite in ω , i.e. $\omega \setminus \mu_u(x)$ is finite.

We shall consider here four selection principles: $\bigcup_{\text{fin}}(\mathcal{O},\Gamma)$, $\bigcup_{\text{fin}}(\mathcal{O},\Omega)$, $\bigcup_{\text{fin}}(\mathcal{O},\mathcal{O})$ and $S_{\text{fin}}(\Gamma,\Omega)$. Let us note that $\bigcup_{\text{fin}}(\mathcal{O},\Gamma)$ is nothing else but the Hurewicz property. Concerning $\bigcup_{\text{fin}}(\mathcal{O},\mathcal{O})$, it is the classical Menger covering property introduced in [8]. We are in a position now to formulate the

Scheepers diagram problem.

- (1) Does the property $\bigcup_{\text{fin}}(\mathcal{O},\Omega)$ imply $S_{\text{fin}}(\Gamma,\Omega)$?
- (2) And if not, then does $\bigcup_{\text{fin}}(\mathcal{O},\Gamma)$ imply $S_{\text{fin}}(\Gamma,\Omega)$?

One may ask the same question as in Problem 1 for the properties $\bigcup_{\text{fin}}(\mathcal{O},\Omega)$ and $\bigcup_{\text{fin}}(\mathcal{O},\mathcal{O})$.

Problem 2. Can a Borel non- σ -compact group be generated by its subspace with the property $\bigcup_{\text{fin}}(\mathcal{O},\Omega)$?

Problem 3. Can a Borel non- σ -compact group be generated by its subspace with the property $\bigcup_{\text{fin}}(\mathcal{O}, \mathcal{O})$?

The following theorem, which is the main result of this paper, is a reformulation of a Scheepers diagram problem in algebraic manner.

Theorem 4. The property $\bigcup_{\text{fin}}(\mathcal{O},\Gamma)$ (resp. $\bigcup_{\text{fin}}(\mathcal{O},\Omega)$, $\bigcup_{\text{fin}}(\mathcal{O},\mathcal{O})$) implies $S_{\text{fin}}(\Gamma,\Omega)$ if and only if the group G is not generated by its subspace with the property $\bigcup_{\text{fin}}(\mathcal{O},\Gamma)$ (resp. $\bigcup_{\text{fin}}(\mathcal{O},\Omega), \bigcup_{\text{fin}}(\mathcal{O},\mathcal{O})$).

In other words, the affirmative answer to the Scheepers diagram problem (1) (resp. (2)) is equivalent to the negative answer onto Problem 2 (resp. Problem 1) in the case of the group G.

The group G is a rather simple object from the point of view of the Descriptive Set Theory. For every $j \in \omega$ its projection onto $\{0,1\}^{\omega \times \{j\}}$ is homeomorphic to \mathbb{Q} being a countable metrizable space without isolated points. From the above it follows that G is a countable intersection of F_{σ} – subsets of $\{0,1\}^{\omega^2}$ (i.e. it is an $F_{\sigma\delta}$ - or, equivalently, Π_3^0 -subset) homeomorphic to \mathbb{Q}^{ω} . Therefore, it is a nowhere locally-compact, and it fails to have the property $\bigcup_{\text{fin}}(\mathcal{O}, \mathcal{O})$. For more simple groups from the point of view of Borel hierarchy Problem 1 can be answered in the negative. **Proposition 1.** No Borel non- σ -compact group B can be generated by its subspace X with the property $\bigcup_{\text{fin}}(\mathcal{O},\Gamma)$ provided B is an F_{σ} - or G_{δ} -subspace of a complete metric space.

Recall that a map f from a topological space X to a topological space Y is *Borel*, if for every Borel subset B of Y its preimage $f^{-1}(B)$ is a Borel subset of X. The following statement answers Problem 3 in the affirmative under the Continuum Hypothesis. On the other hand, it is known that the properties $\bigcup_{\text{fin}}(\mathcal{O},\Omega)$ and $\bigcup_{\text{fin}}(\mathcal{O},\mathcal{O})$ coincide in some models of ZFC, see [17]. Therefore the negative answer to Problem 2 would imply that the negative answer onto Problem 3 is consistent as well.

Proposition 2. Under the Continuum Hypothesis, a metrizable separable group B can be generated by its subspace X with the property $\bigcup_{\text{fin}}(\mathcal{O}, \mathcal{O})$ provided it is a Borel homomorphic image of a nonmeager metrizable separable group. In particular, G is generated by its subspace with the property $\bigcup_{\text{fin}}(\mathcal{O}, \mathcal{O})$ under CH.

Remark. None of the known methods of contruction of spaces with the property $\bigcup_{\text{fin}}(\mathcal{O}, \Gamma)$ can give a subspace of a Borel non- σ -compact group generating it. All finite powers of spaces with the property $\bigcup_{\text{fin}}(\mathcal{O},\Gamma)$ constructed in [6, Theorem 5.1], [15, Theorem 5.1], and [2, Theorem 10(1)] have the property $\bigcup_{\text{fin}}(\mathcal{O},\mathcal{O})$ or even $\bigcup_{\text{fin}}(\mathcal{O},\Gamma)$, and hence so is any group they generate. But every Borel (even analytic) space with the property $\bigcup_{\text{fin}}(\mathcal{O},\mathcal{O})$ is σ -compact, see [1]. While the Sierpinski sets S considered in [6] and [11] have the following property: for every Borel subset B containing S there exists a σ -compact L such that $S \subset L \subset B$, see [3].

Concerning the property $\bigcup_{\text{fin}}(\mathcal{O},\Omega)$, all known examples (excepting the Sierpinski sets) have the property $\bigcup_{\text{fin}}(\mathcal{O},\mathcal{O})$ in all finite powers, and hence cannot generate non- σ -compact Borel group.

Proofs. In what follows, $A \subset^* B$ standardly means that $A \setminus B$ is finite. In our proofs we shall exploit set-valued maps. By a *set-valued map* Φ from a set X into a set Y we understand a map from X into $\mathcal{P}(Y)$ and write $\Phi : X \Rightarrow Y$ (here $\mathcal{P}(Y)$ denotes the set of all subsets of Y). For a subset A of X we put $\Phi(A) = \bigcup_{x \in A} \Phi(x) \subset Y$. The set-valued map Φ between topological spaces X and Y is said to be

- compact-valued, if $\Phi(x)$ is compact for every $x \in X$;
- upper semicontinuous, if for every open subset V of Y the set $\Phi_{\subset}^{-1}(V) = \{x \in X : \Phi(x) \subset V\}$ is open in X.

For a set X we can identify $\mathcal{P}(X)$ with the compact space $\{0,1\}^X$ via the map $X \supset A \mapsto \chi_A \in \{0,1\}^X$ assigning to a subset of X its characteristic function. A family \mathcal{A} of subsets of a set X is called *upward closed*, for every $A \in \mathcal{A}$ and $B \supset A$ we have $B \in \mathcal{A}$. For a set $A \subset X$ we let $\uparrow A = \{B \subset X : A \subset B\}$. The following lemma is a more convenient reformulation of Theorem 4.

Lemma 1. Let P be a topological property preserved by images under upper semicontinuous compact-valued maps. Then the following conditions are equivalent:

- (1) The property P implies $S_{fin}(\Gamma, \Omega)$;
- (2) for every (upward-closed) $\mathcal{F} \subset \mathcal{P}(\omega^2)$ with the property P such that $\omega \times \{j\} \subset^* F$ for every $F \in \mathcal{F}$ and $j \in \omega$, there exists a sequence $(K_j)_{j \in \omega}$ of finite subsets of ω such that each element of the smallest filter containing \mathcal{F} meets $\bigcup_{n \in \omega} K_j \times \{j\}$.

221

Proof. (1) \Rightarrow (2). It simply follows from the definition of the property $S_{\text{fm}}(\Gamma, \Omega)$ and the observation that $\{F \in \mathcal{F} : F \ni (i, j)\} : i \in \omega\}$ is an open γ -cover of \mathcal{F} for every $j \in \omega$.

(2) \Rightarrow (1). Let X be a topological space with the property P and $(u_j)_{j\in\omega}$ be a sequence of open γ -covers of X. Let us write u_j in the form $u_j = \{U_{i,j} : i \in \omega\}$. Set $u = \{U_{i,j} : i, j \in \omega\}$. Consider the set-valued map $\Phi : X \Rightarrow \mathcal{P}(\omega^2), \Phi : x \mapsto \uparrow \mu_u(x)$. Applying Lemma 2 of [17], we conclude that Φ is compact-valued and upper semicontinuous, and hence $\mathcal{F} := \Phi(X)$ has the property P. The definition of Φ implies that \mathcal{F} is upward closed. Since u_j is a γ -cover of X for every $j \in \omega, \omega \times \{j\} \subset^* F$ for each $F \in \mathcal{F}$. From the above it follows that there exists a sequence $(K_j)_{j\in\omega}$ of finite subsets of ω such that each element of the smallest filter \mathcal{U} containing \mathcal{F} meets some $K_j \times \{j\}$. Then the family $\{U_{i,j} : i \in K_j\}$ is easily seen to be an ω -cover of X, which finishes our proof.

The properties $\bigcup_{\text{fin}}(\mathcal{O}, \mathcal{O})$, $\bigcup_{\text{fin}}(\mathcal{O}, \Omega)$, and $\bigcup_{\text{fin}}(\mathcal{O}, \Gamma)$ satisfy the conditions of the above lemma by [17, Lemma 1].

Proof of Theorem 4. Let P be any of the properties $\bigcup_{\mathrm{fin}}(\mathcal{O}, \mathcal{O}), \bigcup_{\mathrm{fin}}(\mathcal{O}, \Omega)$, and $\bigcup_{\mathrm{fin}}(\mathcal{O}, \Gamma)$. Assuming that P implies $\mathrm{S}_{\mathrm{fin}}(\Gamma, \Omega)$, fix a subspace X of G with the property P . Let us denote by φ the map assigning to any subset A of ω^2 its characteristic function $\chi_A \in \{0, 1\}^{\omega^2}$. Then the space $\mathcal{F} = \{\omega^2 \setminus A : A \in \varphi^{-1}(X)\}$ has the property P being homeomorphic to X, and $\omega \times \{j\} \subset^* F$ for every $F \in \mathcal{F}$ by our choice of $\mathsf{G} \supset X$. Applying Lemma 1, we conclude that there exists a sequence $(K_j)_{j \in \omega}$ of finite subsets of ω such that $\bigcup_{j \in \omega} K_j \times \{j\}$ meets all elements of the smallest filter containing \mathcal{F} . Now, a direct verification shows that the characteristic function $\chi_{\cup_{j \in \omega} K_j \times \{j\}}$ cannot be represented as a sum of elements of X, which means that X does not generate G .

Next, let us assume that P does not imply $S_{\text{fin}}(\Gamma, \Omega)$ and apply Lemma 1 to find an upward closed family \mathcal{F} of subsets of ω^2 such that for every sequence $(K_j)_{j\in\omega}$ of finite subsets of ω there exists a finite subset \mathcal{A} of \mathcal{F} such that

$$\left(\bigcup_{j\in\omega}K_j\times\{j\}\right)\cap\bigcap\mathcal{A}=\emptyset.$$

Set $X = \{\chi_{\omega^2 \setminus F} : F \in \mathcal{F}\}$. Then X has the property P being homeomorphic to \mathcal{F} . We claim that X is a set of generators of G. Indeed, let us fix any $g \in G$ and set $K_j = \{i \in \omega : g_{i,j} = 1\}$. Then each K_j is finite by the definition of G. For the sequence $(K_j)_{j \in \omega}$ find a finite subset $\mathcal{A} = \{A_i : i \leq n\}$ of \mathcal{F} as above. Using the upward closedness of \mathcal{F} , define inductively a finite subset $\mathcal{B} = \{B_i : i \leq n\}$ of \mathcal{F} letting $B_0 = A_0$ and $B_k = A_k \cup \bigcup_{l < k} (\omega^2 \setminus B_l)$ for all $0 < k \leq n$. It is easy to prove by induction over $k \leq n$ that $(\omega^2 \setminus B_l) \cap (\omega^2 \setminus B_k) = \varnothing$ for all l < k and $\bigcap_{l \leq k} B_k = \bigcap_{l \leq k} A_k$, consequently $\bigcap \mathcal{B} = \bigcap \mathcal{A} \subset (\omega^2 \setminus \bigcup_{j \in \omega} K_j \times \{j\})$. Let $C_k = B_k \cup (\omega^2 \setminus \bigcup_{j \in \omega} K_j \times \{j\})$, $k \leq n$. Then $\mathcal{C} = \{C_k : k \leq n\}$ has the following properties:

- (i) $\bigcup \mathcal{C} = \omega^2 \setminus \bigcup_{j \in \omega} K_j \times \{j\};$
- (*ii*) $(\omega^2 \setminus C) \cap (\omega^2 \setminus D) = \emptyset$ for all $C, D \in \mathcal{C}$;
- (*iii*) $\mathcal{C} \subset \mathcal{F}$.

It suffices to note that $\{\chi_{\omega^2 \setminus C_k} : k \leq n\} \subset X$ by (*iii*) and $\chi_{\omega^2 \setminus C_0} + \cdots + \chi_{\omega^2 \setminus C_n} = \chi_{\cup_{j \in \omega} K_j \times \{j\}} = g$, which finishes our proof.

Proof of Proposition 1. First assume that B is a non- σ -compact G_{δ} -subspace of a complete metric space and fix a subspace X of B with the property $\bigcup_{\text{fin}}(\mathcal{O},\Gamma)$. The same argument as in [6, Theorem 5.7] gives a σ -compact subset L of B such that $X \subset L$. Since B is not σ -compact, it is not generated by L, and hence by X as well.

Now consider a non- σ -compact Borel group B which is an F_{σ} -subset of a complete metric space Y and write B in the form $\bigcup_{n \in \omega} B_n$, where each B_n is closed in Y. Let X be a subspace of B with the property $\bigcup_{\text{fin}}(\mathcal{O}, \Gamma)$. Since the property $\bigcup_{\text{fin}}(\mathcal{O}, \Gamma)$ is preserved by closed subspaces, $X \cap B_n$ has the property $\bigcup_{\text{fin}}(\mathcal{O}, \Gamma)$ for all $n \in \omega$. In addition, each B_n is a G_{δ} -subspace of Y being closed. From the above it follows that there exists a σ -compact L_n such that $X \cap B_n \subset L_n \subset B_n$, and consequently $X \subset \bigcup_{n \in \omega} L_n \subset B$. It suffices to apply the same argument as in the first part of the proof. \Box

Proof of Proposition 2. Let C be a nonmeager metrizable separable topological group and $f: C \to B$ be a surjective Borel homomorphism. Almost literal repetition of the proof of Lemma 29 from [11] gives us a subspace Z of C such that Z generates C and each Borel image of Z has the property $\bigcup_{\text{fin}}(\mathcal{O}, \mathcal{O})$, see [11, Corollary 30]. It suffices to note that B is generated by f(Z).

Next, let us show that under CH the group **G** is generated by its subspace with the property $\bigcup_{\text{fin}}(\mathcal{O}, \mathcal{O})$. Indeed, let us denote by τ the Tychonoff product topology on $\{0, 1\}^{\omega^2} = \prod_{j \in \omega} \{0, 1\}^{\omega \times \{j\}}$, where $\{0, 1\}^{\omega \times \{j\}}$ is considered with the discrete topology for each $j \in \omega$. Then $\tau | \mathsf{G}$ is stronger than the natural topology on G , and $(\mathsf{G}, \tau | \mathsf{G})$ is a completely metrizable topological group being a countable product of countable discrete groups.

Acknowledgements. The author wishes to express his thanks to Professor Taras Banakh for supervising the writing of this paper.

REFERENCES

- Arhangel'skiĭ A.V. Hurewicz spaces, analytic sets, and fan tightness of function spaces, Soviet Math. Doklady 33 (1986), 396-399.
- 2. Bartoszyński T., Tsaban B. Hereditary Topological Diagonalizations and the Menger-Hurewicz Conjectures, Proc. Amer. Math. Soc., to appear.
- 3. Banakh T., Zdomskyy L. Separation properties between σ -compactness and the Hurewicz property, in progress.
- 4. Gerlits J., Nagy Zs. Some properties of C(X), I, Topology Appl. 14 (2) (1982), 151–163.
- 5. Hurewicz W. Über Folgen stetiger Functionen, Fund. Math. 9 (1927), 193-204.
- Just W., Miller A., Scheepers M., Szeptycki S. The combinatorics of open covers II, Topology Appl. 73 (1996), 241–266.
- 7. Kechris A. Classical Descriptive Set Theory. Grad. Texts in Math. 156, Springer, 1995.
- 8. Menger K. Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberichte. Abt. 2a, Mathematic, Astronomie, Physic, Meteorologie und Mechanic (Wiener Akademie) **133** (1924), 421–444.
- 9. Marczewski E. (Szpilrajn) The characteristic function of a sequence of sets and some of its applications, Fund. Math. **31** (1938), 207–233.
- 10. Scheepers M. Combinatorics of open covers I: Ramsey Theory, Topology Appl. 69 (1996), 31-62.

- 11. Scheepers M., Tsaban B. The combinatorics of Borel covers, Topology Appl. 121 (2002), 357-382.
- 12. Tsaban B. Selection principles in mathematics: A milestone of open problems, Note Mat. 22 (2003/2004), no 2, 179–208.
- 13. Tsaban B. Some new directions in infinite-combinatorial topology, submitted. http://arxiv.org/abs/math.GN/0409069
- 14. Tsaban B. (eds.), SPM Bulletin 2 (2003). http://arxiv.org/abs/math.GN/0302062
- 15. Tsaban B., Zdomskyy L. Scales, fields, and a problem of Hurewicz, submitted to J. Amer. Math. Soc.. http://arxiv.org/abs/math.GN/0507043.
- Vaughan J. Small uncountable cardinals and topology, In: Open Problems in Topology (J. van Mill, G.M. Reed, Eds.), Elsevier Sci. Publ., Amsterdam, 1990, 195-218.
- 17. Zdomskyy L. A semifilter approach to selection principles, Comment. Math. Univ. Carolin. 46 (2005), 525-540.

Ivan Franko National University of Lviv lzdomsky@rambler.ru

Received 01.09.2005