
Limit laws of anticipated rejection
and related algorithms

Axel Bacher
Coauthors: Olivier Bodini, Alice Jacquot, Andrea Sportiello

Université Paris Nord

October 9th, 2017

Outline

1 Anticipated rejection

2 “Recovering” algorithms

3 Density of the limit laws

4 Perspectives

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries,

cost O(
√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries, cost O(

√
n) per try

⇒ O(n).
Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries, cost O(

√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries, cost O(

√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].

Motivation: directed animal random generation.

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Complexity: O(
√
n) tries, cost O(

√
n) per try ⇒ O(n).

Limit law analysis [Louchard 1999].
Motivation: directed animal random generation.

Florentine algorithms in the quarter-plane

Numer of tries O(n3/4).
Cost of a try O(n1/4).
Complexity O(n).

Number of tries O(n2/3).
Cost of a try O(n1/3).
Complexity O(n).

Efficient random generation of a wider set of quarter-plane walks
[Lumbroso, Mishna, Ponty 2016].
Other families of walks: walks in a cone, d dimensions, etc.

Florentine algorithms in the quarter-plane

Numer of tries O(n3/4).
Cost of a try O(n1/4).
Complexity O(n).

Number of tries O(n2/3).
Cost of a try O(n1/3).
Complexity O(n).

Efficient random generation of a wider set of quarter-plane walks
[Lumbroso, Mishna, Ponty 2016].
Other families of walks: walks in a cone, d dimensions, etc.

Binary trees

−−−−→
grafting

−−−−−→
repointing

Random binary tree [B., Bodini, Jacquot 2013]
Start from a pointed leaf and repeat n times:
graft a new leaf to the left or right (flip a coin) and point it;
flip a coin; if tails, repoint;
If repointing failed, delete the tree and start over.

At each iteration, the tree is uniformly distributed.
Complexity in random bits: O(

√
n)×O(

√
n) = O(n).

This is a variant of Rémy’s algorithm, which has complexity O(n logn).

Binary trees

−−−−→
grafting

−−−−−→
repointing

Random binary tree [B., Bodini, Jacquot 2013]
Start from a pointed leaf and repeat n times:
graft a new leaf to the left or right (flip a coin) and point it;
flip a coin; if tails, repoint;
If repointing failed, delete the tree and start over.

At each iteration, the tree is uniformly distributed.

Complexity in random bits: O(
√
n)×O(

√
n) = O(n).

This is a variant of Rémy’s algorithm, which has complexity O(n logn).

Binary trees

−−−−→
grafting

−−−−−→
repointing

Random binary tree [B., Bodini, Jacquot 2013]
Start from a pointed leaf and repeat n times:
graft a new leaf to the left or right (flip a coin) and point it;
flip a coin; if tails, repoint;
If repointing failed, delete the tree and start over.

At each iteration, the tree is uniformly distributed.
Complexity in random bits: O(

√
n)×O(

√
n) = O(n).

This is a variant of Rémy’s algorithm, which has complexity O(n logn).

Binary trees

−−−−→
grafting

−−−−−→
repointing

Random binary tree [B., Bodini, Jacquot 2013]
Start from a pointed leaf and repeat n times:
graft a new leaf to the left or right (flip a coin) and point it;
flip a coin; if tails, repoint;
If repointing failed, delete the tree and start over.

At each iteration, the tree is uniformly distributed.
Complexity in random bits: O(

√
n)×O(

√
n) = O(n).

This is a variant of Rémy’s algorithm, which has complexity O(n logn).

Limit law of anticipated rejection

Let (Xi)i≥0 be i.i.d. positive random variables such that, for x > 0:

P[X ≥ xt]
P[X ≥ t] −−−→t→∞

x−α, 0 < α < 1.

Let for t > 0:

i(t) = min{i | Xi ≥ t} and S(t) = X0 + · · ·+Xi(t)−1.

Theorem [B., Sportiello 2015]
The random variable S(t)/t tends in distribution to Dα, with:

E
[
ezDα

]
=
(

1−
∞∑
n=1

α

n− α
zn

n!

)−1

.

If α ≥ 1, the scaling factor is superlinear and the limit law exponential.
The law Dα is the Darling-Mandelbrot law. [Darling 1952, Lew 1994]

Limit law of anticipated rejection

Let (Xi)i≥0 be i.i.d. positive random variables such that, for x > 0:

P[X ≥ xt]
P[X ≥ t] −−−→t→∞

x−α, 0 < α < 1.

Let for t > 0:

i(t) = min{i | Xi ≥ t} and S(t) = X0 + · · ·+Xi(t)−1.

Theorem [B., Sportiello 2015]
The random variable S(t)/t tends in distribution to Dα, with:

E
[
ezDα

]
=
(

1−
∞∑
n=1

α

n− α
zn

n!

)−1

.

If α ≥ 1, the scaling factor is superlinear and the limit law exponential.
The law Dα is the Darling-Mandelbrot law. [Darling 1952, Lew 1994]

Limit law of anticipated rejection

Let (Xi)i≥0 be i.i.d. positive random variables such that, for x > 0:

P[X ≥ xt]
P[X ≥ t] −−−→t→∞

x−α, 0 < α < 1.

Let for t > 0:

i(t) = min{i | Xi ≥ t} and S(t) = X0 + · · ·+Xi(t)−1.

Theorem [B., Sportiello 2015]
The random variable S(t)/t tends in distribution to Dα, with:

E
[
ezDα

]
=
(

1−
∞∑
n=1

α

n− α
zn

n!

)−1

.

If α ≥ 1, the scaling factor is superlinear and the limit law exponential.

The law Dα is the Darling-Mandelbrot law. [Darling 1952, Lew 1994]

Limit law of anticipated rejection

Let (Xi)i≥0 be i.i.d. positive random variables such that, for x > 0:

P[X ≥ xt]
P[X ≥ t] −−−→t→∞

x−α, 0 < α < 1.

Let for t > 0:

i(t) = min{i | Xi ≥ t} and S(t) = X0 + · · ·+Xi(t)−1.

Theorem [B., Sportiello 2015]
The random variable S(t)/t tends in distribution to Dα, with:

E
[
ezDα

]
=
(

1−
∞∑
n=1

α

n− α
zn

n!

)−1

.

If α ≥ 1, the scaling factor is superlinear and the limit law exponential.
The law Dα is the Darling-Mandelbrot law. [Darling 1952, Lew 1994]

Second round of rejection

A second round of rejection may occur when the size n is reached,
with probability tending to p.

If p = β/(1 + β), the complexity has limit law Dα,β , with:

E
[
ezDα,β

]
=
(

1−
∞∑
n=1

α+ βn

n− α
zn

n!

)−1

.

Second round of rejection

A second round of rejection may occur when the size n is reached,
with probability tending to p.
If p = β/(1 + β), the complexity has limit law Dα,β , with:

E
[
ezDα,β

]
=
(

1−
∞∑
n=1

α+ βn

n− α
zn

n!

)−1

.

Recovering algorithm for binary trees

−−−−→
grafting

−−−−−→
repointing

Random binary tree [B., Bodini, Jacquot 2013]
Start from a pointed leaf and repeat n times:
graft a new leaf to the left or right (flip a coin) and point it;
flip a coin; if tails, repoint;
If repointing failed, pick a new point uniformly at random.

Average cost in random bits: 2n+O(log2 n) (entropic algorithm).
Does not work on unary-binary trees (uniformity is lost).

Recovering algorithm for binary trees

−−−−→
grafting

−−−−−→
repointing

Random binary tree [B., Bodini, Jacquot 2013]
Start from a pointed leaf and repeat n times:
graft a new leaf to the left or right (flip a coin) and point it;
flip a coin; if tails, repoint;
If repointing failed, pick a new point uniformly at random.

Average cost in random bits: 2n+O(log2 n) (entropic algorithm).

Does not work on unary-binary trees (uniformity is lost).

Recovering algorithm for binary trees

−−−−→
grafting

−−−−−→
repointing

Random binary tree [B., Bodini, Jacquot 2013]
Start from a pointed leaf and repeat n times:
graft a new leaf to the left or right (flip a coin) and point it;
flip a coin; if tails, repoint;
If repointing failed, pick a new point uniformly at random.

Average cost in random bits: 2n+O(log2 n) (entropic algorithm).
Does not work on unary-binary trees (uniformity is lost).

Recovering algorithm for Dyck prefixes

−−−−−→
unfolding

Random Dyck prefix [B. 2016]
Start from the empty path and repeat n times:
Add a random step to P .
If P is not a Dyck prefix, pick a point uniformly at random and unfold.

At each iteration, the path is uniformly distributed.
Cost: n+O(log2 n) random bits, O(n) time.
Possible extension to m-Dyck paths (+1/−m),
entropic if we have an entropic source of Bernoulli

(1
1+m

)
.

Does not work on Motzkin or Schröder paths.

Recovering algorithm for Dyck prefixes

−−−−−→
unfolding

Random Dyck prefix [B. 2016]
Start from the empty path and repeat n times:
Add a random step to P .
If P is not a Dyck prefix, pick a point uniformly at random and unfold.

At each iteration, the path is uniformly distributed.

Cost: n+O(log2 n) random bits, O(n) time.
Possible extension to m-Dyck paths (+1/−m),
entropic if we have an entropic source of Bernoulli

(1
1+m

)
.

Does not work on Motzkin or Schröder paths.

Recovering algorithm for Dyck prefixes

−−−−−→
unfolding

Random Dyck prefix [B. 2016]
Start from the empty path and repeat n times:
Add a random step to P .
If P is not a Dyck prefix, pick a point uniformly at random and unfold.

At each iteration, the path is uniformly distributed.
Cost: n+O(log2 n) random bits, O(n) time.

Possible extension to m-Dyck paths (+1/−m),
entropic if we have an entropic source of Bernoulli

(1
1+m

)
.

Does not work on Motzkin or Schröder paths.

Recovering algorithm for Dyck prefixes

−−−−−→
unfolding

Random Dyck prefix [B. 2016]
Start from the empty path and repeat n times:
Add a random step to P .
If P is not a Dyck prefix, pick a point uniformly at random and unfold.

At each iteration, the path is uniformly distributed.
Cost: n+O(log2 n) random bits, O(n) time.
Possible extension to m-Dyck paths (+1/−m),
entropic if we have an entropic source of Bernoulli

(1
1+m

)
.

Does not work on Motzkin or Schröder paths.

Recovering algorithm for Dyck prefixes

−−−−−→
unfolding

Random Dyck prefix [B. 2016]
Start from the empty path and repeat n times:
Add a random step to P .
If P is not a Dyck prefix, pick a point uniformly at random and unfold.

At each iteration, the path is uniformly distributed.
Cost: n+O(log2 n) random bits, O(n) time.
Possible extension to m-Dyck paths (+1/−m),
entropic if we have an entropic source of Bernoulli

(1
1+m

)
.

Does not work on Motzkin or Schröder paths.

Limit laws

Let Bn and Mn be the cost in random bits and memory accesses
of the “recoveries” in the Dyck prefix algorithm.

Theorem
The variable Bn tends to a Gaussian law, with:

E[Bn] ∼ log2 n

4 log 2 , V[Bn] ∼ log3 n

6 log2 2
.

The variable Mn/n tends to L1/2, where the law Lα is defined by:

Lα =
∑

x∈Poisson(0,1]
α
x

Unif[0, x]

E
[
ezLα

]
= exp

(
∞∑
n=1

α

n(n+ 1)
zn

n!

)
.

Density of the law Dα

E
[
ezDα

]
=
(

1−
∞∑
n=1

α

n− α
zn

n!

)−1

0 1 2 3

0,5 D1/2

The Laplace transform of Dα takes the form:

A(z) = z−α

Γ(1− α)
E
[
e−zDα

]
= A(z)

1−B(z) ,
B(z) =

∫ ∞
z

e−yy−1−α

Γ(−α) dy.

Its density is therefore:

a(x) = sin(απ)
π

xα−1

f(x) =
∞∑
k=0

a ∗ b∗k(x),

b(x) = − sin(απ)
π

(x− 1)α

x
1x>1

and satisfies:
xf ′(x) + (1− α)f(x) = −αf ∗ f(x− 1).

Density of the law Dα

E
[
ezDα

]
=
(

1−
∞∑
n=1

α

n− α
zn

n!

)−1

0 1 2 3

0,5 D1/2

The Laplace transform of Dα takes the form:

A(z) = z−α

Γ(1− α)
E
[
e−zDα

]
= A(z)

1−B(z) ,
B(z) =

∫ ∞
z

e−yy−1−α

Γ(−α) dy.

Its density is therefore:

a(x) = sin(απ)
π

xα−1

f(x) =
∞∑
k=0

a ∗ b∗k(x),

b(x) = − sin(απ)
π

(x− 1)α

x
1x>1

and satisfies:
xf ′(x) + (1− α)f(x) = −αf ∗ f(x− 1).

Density of the law Dα

E
[
ezDα

]
=
(

1−
∞∑
n=1

α

n− α
zn

n!

)−1

0 1 2 3

0,5 D1/2

The Laplace transform of Dα takes the form:

A(z) = z−α

Γ(1− α)
E
[
e−zDα

]
= A(z)

1−B(z) ,
B(z) =

∫ ∞
z

e−yy−1−α

Γ(−α) dy.

Its density is therefore:

a(x) = sin(απ)
π

xα−1

f(x) =
∞∑
k=0

a ∗ b∗k(x),

b(x) = − sin(απ)
π

(x− 1)α

x
1x>1

and satisfies:
xf ′(x) + (1− α)f(x) = −αf ∗ f(x− 1).

Density of the law Dα

E
[
ezDα

]
=
(

1−
∞∑
n=1

α

n− α
zn

n!

)−1

0 1 2 3

0,5 D1/2

The Laplace transform of Dα takes the form:

A(z) = z−α

Γ(1− α)
E
[
e−zDα

]
= A(z)

1−B(z) ,
B(z) =

∫ ∞
z

e−yy−1−α

Γ(−α) dy.

Its density is therefore:

a(x) = sin(απ)
π

xα−1

f(x) =
∞∑
k=0

a ∗ b∗k(x),

b(x) = − sin(απ)
π

(x− 1)α

x
1x>1

and satisfies:
xf ′(x) + (1− α)f(x) = −αf ∗ f(x− 1).

Density of the law L1/2

E
[
ezL1/2

]
= exp

(
∞∑
n=1

1
2n(n+ 1)

zn

n!

)
0 1 2 3

0,5 L1/2

The Laplace transform of L1/2 takes the form:

A(z) = e
1−γ

2 e
− 1

2z z−1/2

E
[
e−zL1/2

]
= A(z) exp

(
B(z)

)
,

B(z) =
∫ ∞
z

e−y

2y2 dy.

Its density f(x) is therefore:

a(x) = e
1−γ

2 cos
√

2x√
πx

f(x) =
∞∑
k=0

a ∗ b∗k(x)
k! ,

b(x) = x− 1
2x 1x>1

and satisfies:
2xf ′′(x) + 3f ′(x) + f(x) = f(x− 1).

Density of the law L1/2

E
[
ezL1/2

]
= exp

(
∞∑
n=1

1
2n(n+ 1)

zn

n!

)
0 1 2 3

0,5 L1/2

The Laplace transform of L1/2 takes the form:

A(z) = e
1−γ

2 e
− 1

2z z−1/2

E
[
e−zL1/2

]
= A(z) exp

(
B(z)

)
,

B(z) =
∫ ∞
z

e−y

2y2 dy.

Its density f(x) is therefore:

a(x) = e
1−γ

2 cos
√

2x√
πx

f(x) =
∞∑
k=0

a ∗ b∗k(x)
k! ,

b(x) = x− 1
2x 1x>1

and satisfies:
2xf ′′(x) + 3f ′(x) + f(x) = f(x− 1).

Density of the law L1/2

E
[
ezL1/2

]
= exp

(
∞∑
n=1

1
2n(n+ 1)

zn

n!

)
0 1 2 3

0,5 L1/2

The Laplace transform of L1/2 takes the form:

A(z) = e
1−γ

2 e
− 1

2z z−1/2

E
[
e−zL1/2

]
= A(z) exp

(
B(z)

)
,

B(z) =
∫ ∞
z

e−y

2y2 dy.

Its density f(x) is therefore:

a(x) = e
1−γ

2 cos
√

2x√
πx

f(x) =
∞∑
k=0

a ∗ b∗k(x)
k! ,

b(x) = x− 1
2x 1x>1

and satisfies:
2xf ′′(x) + 3f ′(x) + f(x) = f(x− 1).

Density of the law L1/2

E
[
ezL1/2

]
= exp

(
∞∑
n=1

1
2n(n+ 1)

zn

n!

)
0 1 2 3

0,5 L1/2

The Laplace transform of L1/2 takes the form:

A(z) = e
1−γ

2 e
− 1

2z z−1/2

E
[
e−zL1/2

]
= A(z) exp

(
B(z)

)
,

B(z) =
∫ ∞
z

e−y

2y2 dy.

Its density f(x) is therefore:

a(x) = e
1−γ

2 cos
√

2x√
πx

f(x) =
∞∑
k=0

a ∗ b∗k(x)
k! ,

b(x) = x− 1
2x 1x>1

and satisfies:
2xf ′′(x) + 3f ′(x) + f(x) = f(x− 1).

Distribution tails

0 1 2 3

0,5 D1/4

0 1 2 3

0,5 D1/2

0 1 2 3

0,5 D3/4

0 1 2 3

0,5 L1/2

0 1 2 3

0,5 L1

The tails of Dα and Lα are of the form: [Lew 1994]

P[Dα ≥ x] = e−a0

α
e−a0x +O(e−a1x)

P[Lα ≥ x] =
(

αe

x log2 x

)x
eo(x).

Perspectives

0 1 2 3

0,5 D1/2

0 1 2 3

0,5 L1/2

Can we make the “recovery” idea work with other walks or trees?
(Motzkin, Schröder, +a/−b, etc.)
Are there other interesting distributions with similar properties?
(ex: Dickman function in number theory)

	Anticipated rejection
	``Recovering'' algorithms
	Density of the limit laws
	Perspectives

