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Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

o Complexity: O(y/n) tries, cost O(y/n) per try = O(n).
@ Limit law analysis [Louchard 1999].
@ Motivation: directed animal random generation.
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Florentine algorithms in the quarter-plane
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o Numer of tries O(n?/*). o Number of tries O(n?/?).
o Cost of a try O(n'/?). o Cost of a try O(n'/?).
e Complexity O(n). o Complexity O(n).

o Efficient random generation of a wider set of quarter-plane walks
[Lumbroso, Mishna, Ponty 2016].

@ Other families of walks: walks in a cone, d dimensions, etc.
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Random binary tree [B., Bodini, Jacquot 2013]

Start from a pointed leaf and repeat n times:

o graft a new leaf to the left or right (flip a coin) and point it;
o flip a coin; if tails, repoint;

o If repointing failed, delete the tree and start over.
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Random binary tree [B., Bodini, Jacquot 2013]

Start from a pointed leaf and repeat n times:

o graft a new leaf to the left or right (flip a coin) and point it;
o flip a coin; if tails, repoint;

o If repointing failed, delete the tree and start over.

At each iteration, the tree is uniformly distributed.
Complexity in random bits: O(y/n) x O(y/n) = O(n).
This is a variant of Rémy's algorithm, which has complexity O(nlogn).
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Limit law of anticipated rejection

@ Let (X;);>0 be i.i.d. positive random variables such that, for > 0:

P[X > at

o 1.
PIX > 1] t_)ooa: , I<a<

o Let fort > 0:

i(t) =min{i | X; >t} and S(t) = Xo+--+ X;p)—1-

Theorem [B., Sportiello 2015]
The random variable S(¢)/t¢ tends in distribution to D,,, with:

n=1

E[e™%] = (1 s n“gjﬁ) -

o If a > 1, the scaling factor is superlinear and the limit law exponential.
@ The law D, is the Darling-Mandelbrot law. [Darling 1952, Lew 1994]
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Second round of rejection

/

@ A second round of rejection may occur when the size n is reached,
with probability tending to p.

o If p=3/(1+ 5), the complexity has limit law D, g, with:

o0

E[e*Pes] = (1 B “”’”")1.

_ |
=1 n a n.:
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Random binary tree [B., Bodini, Jacquot 2013]

Start from a pointed leaf and repeat n times:

e graft a new leaf to the left or right (flip a coin) and point it;
o flip a coin; if tails, repoint;

@ If repointing failed, pick a new point uniformly at random.

Average cost in random bits: 2n + O(log® n) (entropic algorithm).

@ Does not work on unary-binary trees (uniformity is lost).
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o If P is not a Dyck prefix, pick a point uniformly at random and unfold.
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Recovering algorithm for Dyck prefixes

NSNS

/\/\/\/\/\/\/\/\ SN /\/\/
unfolding

Random Dyck prefix [B. 2016]

Start from the empty path and repeat n times:
@ Add a random step to P.

o If P is not a Dyck prefix, pick a point uniformly at random and unfold.

At each iteration, the path is uniformly distributed.
Cost: .+ O(log” n) random bits, O(n) time.
Possible extension to m-Dyck paths (+1/—m),

entropic if we have an entropic source of Bernoulli( ).

@ Does not work on Motzkin or Schréder paths.



Limit laws

o Let B, and M, be the cost in random bits and memory accesses
of the “recoveries” in the Dyck prefix algorithm.

Theorem
The variable B,, tends to a Gaussian law, with:

log® n log® n

E[B,] ~ , n] ~ :
[Bnl 4log 2 61og” 2

The variable M, /n tends to L; />, where the law L, is defined by:

Ly, = > Unif[0, 7]

z €Poisson (g, 1) %

E[ezL@] = exp(Z n(naﬂ—]_)jl‘>

n=1
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@ The Laplace transform of D, takes the form:

E[e_ZD"‘] _ A(Z)

@ lts density is therefore:
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Density of the law D,
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@ The Laplace transform of D, takes the form:
Z—Oé
Alz) = ——
ple-e.] _ _AC) B = ta—a
= 1— B(Z), B e’} efyyflfa J
G =] T
@ lts density is therefore:
_ o) = sin(am) 4
T
flz) = Z axb*™*(z),
k=0 sin(am) (r — 1)¢
ba) — _Snlom) (=1
m T

and satisfies:
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@ The Laplace transform of L/, takes the form:

E [e_ZLl/z] = A(z) eXp(B(z)),
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@ The Laplace transform of L/, takes the form:
Ele *M12] = A(z) exp(B(2)),

o lts density f(x) is therefore:
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Density of the law L

o0

1 n 0,5 Ly
z
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@ The Laplace transform of L/, takes the form:
Ele *M12] = A(z) exp(B(2)),

o lts density f(x) is therefore:

alz) = el_TW cos 2z
X ax bk - ™
fly =y D, o v
k=0 b(.%') = o 1z>1

and satisfies:

20 f"(x) +3f'(2) + f(2) = fx - 1).
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Perspectives

@ Can we make the “recovery” idea work with other walks or trees?
(Motzkin, Schréder, +a/—b, etc.)

@ Are there other interesting distributions with similar properties?
(ex: Dickman function in number theory)
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