Limit laws of anticipated rejection
and related algorithms

Axel Bacher

Coauthors: Olivier Bodini, Alice Jacquot, Andrea Sportiello

Université Paris Nord

October 9th, 2017

Outline

@ Anticipated rejection

© “Recovering” algorithms

© Density of the limit laws

@ Perspectives

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

o Complexity: O(y/n) tries,

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

o Complexity: O(y/n) tries, cost O(y/n) per try

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

o Complexity: O(y/n) tries, cost O(y/n) per try = O(n).

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

o Complexity: O(y/n) tries, cost O(y/n) per try = O(n).
@ Limit law analysis [Louchard 1999].

Florentine algorithm

[Barcucci, Pinzani, Sprugnoli 1994]

o Complexity: O(y/n) tries, cost O(y/n) per try = O(n).
@ Limit law analysis [Louchard 1999].
@ Motivation: directed animal random generation.

Florentine algorithms in the quarter-plane

/
. 74

o Numer of tries O(n?/*). o Number of tries O(n?/?).
o Cost of a try O(n'/*). o Cost of a try O(n'/?).
o Complexity O(n). o Complexity O(n).

Florentine algorithms in the quarter-plane

/
. 74

o Numer of tries O(n?/*). o Number of tries O(n?/?).
o Cost of a try O(n'/?). o Cost of a try O(n'/?).
e Complexity O(n). o Complexity O(n).

o Efficient random generation of a wider set of quarter-plane walks
[Lumbroso, Mishna, Ponty 2016].

@ Other families of walks: walks in a cone, d dimensions, etc.

Binary trees

/ / /
grafting é\@ repointing
/ N\

Random binary tree [B., Bodini, Jacquot 2013]

Start from a pointed leaf and repeat n times:

o graft a new leaf to the left or right (flip a coin) and point it;
o flip a coin; if tails, repoint;

o If repointing failed, delete the tree and start over.

Binary trees

/ / /
grafting é\@ repointing
/ N\

Random binary tree [B., Bodini, Jacquot 2013]

Start from a pointed leaf and repeat n times:

o graft a new leaf to the left or right (flip a coin) and point it;
o flip a coin; if tails, repoint;

o If repointing failed, delete the tree and start over.

@ At each iteration, the tree is uniformly distributed.

Binary trees

/ / /
grafting é\@ repointing
/ N\

Random binary tree [B., Bodini, Jacquot 2013]

Start from a pointed leaf and repeat n times:

o graft a new leaf to the left or right (flip a coin) and point it;
o flip a coin; if tails, repoint;

o If repointing failed, delete the tree and start over.

At each iteration, the tree is uniformly distributed.
Complexity in random bits: O(y/n) x O(y/n) = O(n).

Binary trees

/ / /
grafting é\@ repointing
/ N\

Random binary tree [B., Bodini, Jacquot 2013]

Start from a pointed leaf and repeat n times:

o graft a new leaf to the left or right (flip a coin) and point it;
o flip a coin; if tails, repoint;

o If repointing failed, delete the tree and start over.

At each iteration, the tree is uniformly distributed.
Complexity in random bits: O(y/n) x O(y/n) = O(n).
This is a variant of Rémy's algorithm, which has complexity O(nlogn).

Limit law of anticipated rejection

@ Let (X;);>0 be i.i.d. positive random variables such that, for > 0:

P[X > at

o 1.
PIX > 1] t_woa: , I<a<

o Let fort > 0:

Limit law of anticipated rejection

@ Let (X;);>0 be i.i.d. positive random variables such that, for > 0:

P[X > at

- 1.
PIX > 1] P 0<ac<

o Let fort > 0:

Theorem [B., Sportiello 2015]
The random variable S(¢)/t¢ tends in distribution to D,,, with:

n=1

E[e™%] = (1 s n“aj;) -

Limit law of anticipated rejection

@ Let (X;);>0 be i.i.d. positive random variables such that, for > 0:

P[X > at

o 1.
PIX > 1] t_woa: , I<a<

o Let fort > 0:

Theorem [B., Sportiello 2015]
The random variable S(¢)/t¢ tends in distribution to D,,, with:

n=1

E[e™%] = (1 s n“aj;) -

o If a > 1, the scaling factor is superlinear and the limit law exponential.

Limit law of anticipated rejection

@ Let (X;);>0 be i.i.d. positive random variables such that, for > 0:

P[X > at

o 1.
PIX > 1] t_)ooa: , I<a<

o Let fort > 0:

i(t) =min{i | X; >t} and S(t) = Xo+--+ X;p)—1-

Theorem [B., Sportiello 2015]
The random variable S(¢)/t¢ tends in distribution to D,,, with:

n=1

E[e™%] = (1 s n“gjﬁ) -

o If a > 1, the scaling factor is superlinear and the limit law exponential.
@ The law D, is the Darling-Mandelbrot law. [Darling 1952, Lew 1994]

Second round of rejection

/

@ A second round of rejection may occur when the size n is reached,
with probability tending to p.

Second round of rejection

/

@ A second round of rejection may occur when the size n is reached,
with probability tending to p.

o If p=3/(1+ 5), the complexity has limit law D, g, with:

o0

E[e*Pes] = (1 B “”’”")1.

_ |
=1 n a n.:

Recovering algorithm for binary trees

— 5\
grafting repomtlng

Random binary tree [B., Bodini, Jacquot 2013]

Start from a pointed leaf and repeat n times:

e graft a new leaf to the left or right (flip a coin) and point it;
o flip a coin; if tails, repoint;

@ If repointing failed, pick a new point uniformly at random.

Recovering algorithm for binary trees

— 5\
grafting repomtlng

Random binary tree [B., Bodini, Jacquot 2013]

Start from a pointed leaf and repeat n times:

e graft a new leaf to the left or right (flip a coin) and point it;
o flip a coin; if tails, repoint;

@ If repointing failed, pick a new point uniformly at random.

o Average cost in random bits: 2n + O(log® n) (entropic algorithm).

Recovering algorithm for binary trees

— 5\
grafting repomtlng

Random binary tree [B., Bodini, Jacquot 2013]

Start from a pointed leaf and repeat n times:

e graft a new leaf to the left or right (flip a coin) and point it;
o flip a coin; if tails, repoint;

@ If repointing failed, pick a new point uniformly at random.

Average cost in random bits: 2n + O(log® n) (entropic algorithm).

@ Does not work on unary-binary trees (uniformity is lost).

Recovering algorithm for Dyck prefixes

NSNS

AN NN s ASV
unfolding P

Random Dyck prefix [B. 2016]
Start from the empty path and repeat n times:

@ Add a random step to P.
o If P is not a Dyck prefix, pick a point uniformly at random and unfold.

Recovering algorithm for Dyck prefixes

NSNS

AN NN s ASV
unfolding P

Random Dyck prefix [B. 2016]
Start from the empty path and repeat n times:

@ Add a random step to P.
o If P is not a Dyck prefix, pick a point uniformly at random and unfold.

@ At each iteration, the path is uniformly distributed.

Recovering algorithm for Dyck prefixes

NSNS

AN NN s ASV
unfolding P

Random Dyck prefix [B. 2016]
Start from the empty path and repeat n times:

@ Add a random step to P.
o If P is not a Dyck prefix, pick a point uniformly at random and unfold.

@ At each iteration, the path is uniformly distributed.
e Cost: .+ O(log” n) random bits, O(n) time.

Recovering algorithm for Dyck prefixes

NSNS

/\/\/\/\/\/\/\/\ SN /\/\/
unfolding P

Random Dyck prefix [B. 2016]

Start from the empty path and repeat n times:

@ Add a random step to P.

o If P is not a Dyck prefix, pick a point uniformly at random and unfold.

@ At each iteration, the path is uniformly distributed.
e Cost: .+ O(log” n) random bits, O(n) time.

@ Possible extension to m-Dyck paths (+1/—m),
entropic if we have an entropic source of Bernoulli().

Recovering algorithm for Dyck prefixes

NSNS

/\/\/\/\/\/\/\/\ SN /\/\/
unfolding

Random Dyck prefix [B. 2016]

Start from the empty path and repeat n times:
@ Add a random step to P.

o If P is not a Dyck prefix, pick a point uniformly at random and unfold.

At each iteration, the path is uniformly distributed.
Cost: .+ O(log” n) random bits, O(n) time.
Possible extension to m-Dyck paths (+1/—m),

entropic if we have an entropic source of Bernoulli().

@ Does not work on Motzkin or Schréder paths.

Limit laws

o Let B, and M, be the cost in random bits and memory accesses
of the “recoveries” in the Dyck prefix algorithm.

Theorem
The variable B,, tends to a Gaussian law, with:

log® n log® n

E[B,] ~ , n] ~ :
[Bnl 4log 2 61og” 2

The variable M, /n tends to L; />, where the law L, is defined by:

Ly, = > Unif[0, 7]

z €Poisson (g, 1) %

E[ezL@] = exp(Z n(naﬂ—]_)jl‘>

n=1

Density of the law D,

zDo0 _ = o i
E[e }_<1 ;n—an!

Density of the law D,

I n -1 0,5 Do
E[ewu}:<1_z < Z)

n—an!

n=1
0 1 2
@ The Laplace transform of D, takes the form:
Z—Oé
Az) = =———
ple-e.] _ _AC) B = ta—a
= 1— B(Z), B e’} efyyflfa J

G =] T

Density of the law D,

o0

E[e*P:] = (1_ P

n=1

n—an!

0,5 Dy

@ The Laplace transform of D, takes the form:

E[e_ZD"‘] _ A(Z)

@ lts density is therefore:

flz) = i axb*™*(z),
k=0

- 1-B(2)’

Alz) = I'1l-a)
o o yyflfa
Be) = [
o) = singTaW) o1
b() = _sin(am) (z —)¢ 1,0

Density of the law D,

o A\ L 0,5 Diys
zDo0 _ o i
E[e }_<1 gn—an!>

0 1 2
@ The Laplace transform of D, takes the form:
Z—Oé
Alz) = ——
ple-e.] _ _AC) B = ta—a
= 1— B(Z), B e’} efyyflfa J
G =] T
@ lts density is therefore:
_ o) = sin(am) 4
T
flz) = Z axb*™*(z),
k=0 sin(am) (r — 1)¢
ba) — _Snlom) (=1
m T

and satisfies:

Density of the law L

Ly

0,5
i [1 on ’
E[e*hr] = exp(Z mmn')

n=1

Density of the law L

0o 1 n 0,5 Laj
zL § : 2
E[e 1/2} =€ p(72”(,”])TL')

n=1

@ The Laplace transform of L/, takes the form:

E [e_ZLl/z] = A(z) eXp(B(z)),

Density of the law L

0o 1 n 0,5 Laj
zL § : 2
E[e 1/2} =€ p(72”(,”])TL')

n=1

0 1 2

@ The Laplace transform of L/, takes the form:
Ele *M12] = A(z) exp(B(2)),

o lts density f(x) is therefore:

() PTWcos\/ﬁ
© a* bk (x nr)=e T
f(ac)zz k'() x—lr

Density of the law L

o0

1 n 0,5 Ly
z
E[ele/ﬂ = exp(E)
“— 2n(n+1)n!

0 1 2

@ The Laplace transform of L/, takes the form:
Ele *M12] = A(z) exp(B(2)),

o lts density f(x) is therefore:

alz) = el_TW cos 2z
X ax bk - ™
fly =y D, o v
k=0 b(.%') = o 1z>1

and satisfies:

20 f"(x) +3f'(2) + f(2) = fx - 1).

Distribution tails

3 0 1 2 3 0 1 2 3

0,5 Liys 0,5 L,

e %

Perspectives

@ Can we make the “recovery” idea work with other walks or trees?
(Motzkin, Schréder, +a/—b, etc.)

@ Are there other interesting distributions with similar properties?
(ex: Dickman function in number theory)

	Anticipated rejection
	``Recovering'' algorithms
	Density of the limit laws
	Perspectives

