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Limit law analysis [Louchard 1999].
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Florentine algorithms in the quarter-plane

Numer of tries O(n3/4).
Cost of a try O(n1/4).
Complexity O(n).

Number of tries O(n2/3).
Cost of a try O(n1/3).
Complexity O(n).

Efficient random generation of a wider set of quarter-plane walks
[Lumbroso, Mishna, Ponty 2016].
Other families of walks: walks in a cone, d dimensions, etc.
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Binary trees

−−−−→
grafting

−−−−−→
repointing

Random binary tree [B., Bodini, Jacquot 2013]
Start from a pointed leaf and repeat n times:
graft a new leaf to the left or right (flip a coin) and point it;
flip a coin; if tails, repoint;
If repointing failed, delete the tree and start over.

At each iteration, the tree is uniformly distributed.
Complexity in random bits: O(

√
n)×O(

√
n) = O(n).

This is a variant of Rémy’s algorithm, which has complexity O(n logn).
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Limit law of anticipated rejection

Let (Xi)i≥0 be i.i.d. positive random variables such that, for x > 0:

P[X ≥ xt]
P[X ≥ t] −−−→t→∞

x−α, 0 < α < 1.

Let for t > 0:

i(t) = min{i | Xi ≥ t} and S(t) = X0 + · · ·+Xi(t)−1.

Theorem [B., Sportiello 2015]
The random variable S(t)/t tends in distribution to Dα, with:

E
[
ezDα

]
=
(

1−
∞∑
n=1

α

n− α
zn

n!

)−1

.

If α ≥ 1, the scaling factor is superlinear and the limit law exponential.
The law Dα is the Darling-Mandelbrot law. [Darling 1952, Lew 1994]
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Second round of rejection

A second round of rejection may occur when the size n is reached,
with probability tending to p.

If p = β/(1 + β), the complexity has limit law Dα,β , with:

E
[
ezDα,β

]
=
(

1−
∞∑
n=1

α+ βn

n− α
zn

n!

)−1

.
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Recovering algorithm for binary trees

−−−−→
grafting

−−−−−→
repointing

Random binary tree [B., Bodini, Jacquot 2013]
Start from a pointed leaf and repeat n times:
graft a new leaf to the left or right (flip a coin) and point it;
flip a coin; if tails, repoint;
If repointing failed, pick a new point uniformly at random.

Average cost in random bits: 2n+O(log2 n) (entropic algorithm).
Does not work on unary-binary trees (uniformity is lost).
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Recovering algorithm for Dyck prefixes

−−−−−→
unfolding

Random Dyck prefix [B. 2016]
Start from the empty path and repeat n times:
Add a random step to P .
If P is not a Dyck prefix, pick a point uniformly at random and unfold.

At each iteration, the path is uniformly distributed.
Cost: n+O(log2 n) random bits, O(n) time.
Possible extension to m-Dyck paths (+1/−m),
entropic if we have an entropic source of Bernoulli

( 1
1+m

)
.

Does not work on Motzkin or Schröder paths.
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Limit laws

Let Bn and Mn be the cost in random bits and memory accesses
of the “recoveries” in the Dyck prefix algorithm.

Theorem
The variable Bn tends to a Gaussian law, with:

E[Bn] ∼ log2 n

4 log 2 , V[Bn] ∼ log3 n

6 log2 2
.

The variable Mn/n tends to L1/2, where the law Lα is defined by:

Lα =
∑

x∈Poisson(0,1]
α
x

Unif[0, x]

E
[
ezLα

]
= exp

(
∞∑
n=1

α

n(n+ 1)
zn

n!

)
.



Density of the law Dα

E
[
ezDα

]
=
(

1−
∞∑
n=1

α

n− α
zn

n!

)−1

0 1 2 3

0,5 D1/2

The Laplace transform of Dα takes the form:

A(z) = z−α

Γ(1− α)
E
[
e−zDα

]
= A(z)

1−B(z) ,
B(z) =

∫ ∞
z

e−yy−1−α

Γ(−α) dy.

Its density is therefore:

a(x) = sin(απ)
π

xα−1

f(x) =
∞∑
k=0

a ∗ b∗k(x),

b(x) = − sin(απ)
π

(x− 1)α

x
1x>1

and satisfies:
xf ′(x) + (1− α)f(x) = −αf ∗ f(x− 1).
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Distribution tails
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0,5 L1/2

0 1 2 3

0,5 L1

The tails of Dα and Lα are of the form: [Lew 1994]

P[Dα ≥ x] = e−a0

α
e−a0x +O(e−a1x)

P[Lα ≥ x] =
(

αe

x log2 x

)x
eo(x).



Perspectives

0 1 2 3

0,5 D1/2

0 1 2 3

0,5 L1/2

Can we make the “recovery” idea work with other walks or trees?
(Motzkin, Schröder, +a/−b, etc.)
Are there other interesting distributions with similar properties?
(ex: Dickman function in number theory)
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