Asymptotic expansions for the profile of random trees

Henning Sulzbach

ALEA in Europe, Vienna, 10 October 2017

with Zakhar Kabluchko (Münster) and Alexander Marynych (Kyev)

Trees of interest

- data structures
- analysis of algo.
- real-world networks

Comparison-based: binary (*m*-ary) search trees, random recursive trees, preferential attachment trees

Multidimensional: quadtrees, K-d trees

Digital: digital search trees, tries

Trees are **flat** (i.e. logarithmic) and **wide**.

Quantities of interest

Global quantities:

- typical depths and distances,
- maximal depths and distances,
- total pathlength (sum over all node depths),
- mode and width.

Local quantities:

- degree distribution,
- fringe subtrees.

Put simply, the profile.

Outline

 $1. \ \, {\rm One-split} \ \, {\rm branching} \ \, {\rm random} \ \, {\rm walks}$

2. Profile of binary search trees: a summary

3. Main result: an asymptotic profile expansion

Outline

$1. \ \mbox{One-split}$ branching random walks

2. Profile of binary search trees: a summary

3. Main result: an asymptotic profile expansion

Model: Use iid unif[0, 1] random variables U_1, U_2, U_3, \ldots

 $X_n(k) = #\{ \text{nodes with depth } k \}, \quad k \ge 0,$ $U_n(k) = \#\{ \text{boxes with depth } k \}, \quad k \ge 0.$

 $X_n = (1, 2, 4, 6, 5, 0, 0, \ldots)$ $U_n = (0, 0, 0, 2, 7, 10, 0, \ldots)$

The binary search tree - three simulations

 $n = 10^{10}$, heights between 87 and 91.

The binary search tree - Logplot

 $n = 10^{10}$, heights between 87 and 91.

The random recursive tree - three simulations

 $n = 10^{10}$, heights between 57 and 62.

weight of $v: 1 + d_v$

degree profile: j^{-2}

Input: random point process ζ on \mathbb{Z}

Input: random point process ζ on \mathbb{Z}

 $Z_n(k)$: # of particles at k at time n

 $Z_0(k) = \delta_{0,k}$

$$Z_0 = (\ldots, 0, 0, 1_*, 0, 0, \ldots)$$

- $1 \leq \zeta(\mathbb{Z}) \leq C, \mathbb{P}(\zeta(\mathbb{Z}) > 1) > 0$ and ζ has bounded support,
- $\mathbb{P}\left(\zeta(c\mathbb{Z}) < \zeta(\mathbb{Z})\right) > 0$ for all $c \geq 2$. (wlog)

Input: random point process ζ on \mathbb{Z}

 $Z_n(k)$: # of particles at k at time n

 $Z_0(k) = \delta_{0,k}$

$$Z_0 = (\ldots, 0, 0, 1_*, 0, 0, \ldots)$$

- $1 \leq \zeta(\mathbb{Z}) \leq C, \mathbb{P}(\zeta(\mathbb{Z}) > 1) > 0$ and ζ has bounded support,
- $\mathbb{P}\left(\zeta(c\mathbb{Z}) < \zeta(\mathbb{Z})\right) > 0$ for all $c \geq 2$. (wlog)

Input: random point process ζ on \mathbb{Z}

 $Z_n(k)$: # of particles at k at time n

 $Z_0(k) = \delta_{0,k}$

- $1 \leq \zeta(\mathbb{Z}) \leq C, \mathbb{P}(\zeta(\mathbb{Z}) > 1) > 0$ and ζ has bounded support,
- $\mathbb{P}\left(\zeta(c\mathbb{Z}) < \zeta(\mathbb{Z})\right) > 0$ for all $c \geq 2$. (wlog)

Input: random point process ζ on \mathbb{Z}

 $Z_n(k)$: # of particles at k at time n

 $Z_0(k) = \delta_{0,k}$

$$Z_1 = (\ldots, 0, 1, 0_*, 0, 1, 1, 0, \ldots)$$

- $1 \leq \zeta(\mathbb{Z}) \leq C, \mathbb{P}(\zeta(\mathbb{Z}) > 1) > 0$ and ζ has bounded support,
- $\mathbb{P}\left(\zeta(c\mathbb{Z}) < \zeta(\mathbb{Z})\right) > 0$ for all $c \geq 2$. (wlog)

Input: random point process ζ on \mathbb{Z}

 $Z_n(k)$: # of particles at k at time n

 $Z_0(k) = \delta_{0,k}$

$$Z_1 = (\ldots, 0, 1, 0_*, 0, 1, 1, 0, \ldots)$$

- $1 \leq \zeta(\mathbb{Z}) \leq C, \mathbb{P}(\zeta(\mathbb{Z}) > 1) > 0$ and ζ has bounded support,
- $\mathbb{P}\left(\zeta(c\mathbb{Z}) < \zeta(\mathbb{Z})\right) > 0$ for all $c \geq 2$. (wlog)

Input: random point process ζ on \mathbb{Z}

 $Z_n(k)$: # of particles at k at time n

 $Z_0(k) = \delta_{0,k}$

- $1 \leq \zeta(\mathbb{Z}) \leq C, \mathbb{P}(\zeta(\mathbb{Z}) > 1) > 0$ and ζ has bounded support,
- $\mathbb{P}\left(\zeta(c\mathbb{Z}) < \zeta(\mathbb{Z})\right) > 0$ for all $c \geq 2$. (wlog)

Input: random point process ζ on \mathbb{Z}

 $Z_n(k)$: # of particles at k at time n

 $Z_0(k) = \delta_{0,k}$

$$Z_2 = (\ldots, 0, 1, 1_*, 0, 0, 1, 1, 0 \ldots)$$

- $1 \leq \zeta(\mathbb{Z}) \leq C$, $\mathbb{P}(\zeta(\mathbb{Z}) > 1) > 0$ and ζ has bounded support,
- $\mathbb{P}\left(\zeta(c\mathbb{Z}) < \zeta(\mathbb{Z})\right) > 0$ for all $c \geq 2$. (wlog)

Input: random point process ζ on \mathbb{Z}

 $Z_n(k)$: # of particles at k at time n

 $Z_0(k) = \delta_{0,k}$

$$Z_2 = (\dots, 0, 1, 1_*, 0, 0, 1, 1, 0 \dots)$$

- $1 \leq \zeta(\mathbb{Z}) \leq C$, $\mathbb{P}(\zeta(\mathbb{Z}) > 1) > 0$ and ζ has bounded support,
- $\mathbb{P}\left(\zeta(c\mathbb{Z}) < \zeta(\mathbb{Z})\right) > 0$ for all $c \geq 2$. (wlog)

Input: random point process ζ on \mathbb{Z}

 $Z_n(k)$: # of particles at k at time n

 $Z_0(k) = \delta_{0,k}$

- $1 \leq \zeta(\mathbb{Z}) \leq C, \mathbb{P}(\zeta(\mathbb{Z}) > 1) > 0$ and ζ has bounded support,
- $\mathbb{P}\left(\zeta(c\mathbb{Z}) < \zeta(\mathbb{Z})\right) > 0$ for all $c \geq 2$. (wlog)

Input: random point process ζ on \mathbb{Z}

 $Z_n(k)$: # of particles at k at time n

 $Z_0(k) = \delta_{0,k}$

Input: random point process ζ on \mathbb{Z}

 $Z_n(k)$: # of particles at k at time n

 $Z_0(k) = \delta_{0,k}$

$$Z_3 = (\dots, 0, 2, 0_*, 0, 0, 2, 1, 0 \dots)$$

- $1 \leq \zeta(\mathbb{Z}) \leq C, \mathbb{P}(\zeta(\mathbb{Z}) > 1) > 0$ and ζ has bounded support,
- $\mathbb{P}\left(\zeta(c\mathbb{Z}) < \zeta(\mathbb{Z})\right) > 0$ for all $c \geq 2$. (wlog)

BST:
$$\zeta = (..., 0, 0_*, 2, 0, ...) = 2\delta_1$$

RRT: $\zeta = (..., 0, 1_*, 1, 0, ...) = \delta_0 + \delta_1$

Note: ζ is deterministic.

Outline

 $1. \ \, {\rm One-split} \ \, {\rm branching} \ \, {\rm random} \ \, {\rm walks}$

2. Profile of binary search trees: a summary

3. Main result: an asymptotic profile expansion

Binary search tree - a rough picture

For $k = \alpha \log n + o(\log n)$, as $n \to \infty$,

$$U_n(k) = n^{\eta(\alpha) + o(1)}, \quad \alpha_- < \alpha < \alpha_+.$$

As $n \to \infty$,

$$\frac{D_n - 2\log n}{\sqrt{2\log n}} \stackrel{d}{\to} \mathcal{N}$$

and

Height $\sim \alpha_+ \log n$, Fill-up level $\sim \alpha_- \log n$.

Devroye '86 -'88

Profile - central regime

With

$$x_n(k) := \frac{k - 2\log n}{\sqrt{2\log n}},$$

uniformly over $k \in \mathbb{N}$, almost surely and in mean,

$$U_n(k) = \frac{n}{\sqrt{2\pi \cdot 2\log n}} \cdot e^{-\frac{1}{2}x_n^2(k)} \cdot (1+o(1)).$$

HWANG '95, CHAUVIN, DRMOTA AND JABBOUR-HATTAB '01

Width and mode

$$W_n := \max\{U_n(k) : k \ge 1\}$$
$$m_n := \max\{k : U_n(k) = W_n\}$$

$$W_n = \frac{n}{\sqrt{4\pi \log n}} \cdot (1 + o(1))$$

Open: Limit theorem for W_n

The sequence

$$(m_n - 2\log n)_{n\geq 1}$$

is tight.

Devroye and Hwang '06

Open: Limit theorem for $m_n - 2 \log n$

Theorem (HWANG '95)

For C > 0, uniformly in $0 \le k \le C \log n$, as $n \to \infty$,

$$\mathbb{E}\left[U_n(k)\right] \sim \frac{1}{\Gamma(\alpha_k) \cdot \sqrt{2\pi\alpha_k}} \cdot \frac{n^{\eta(\alpha_k)}}{\sqrt{\log n}}, \quad \alpha_k = \frac{k}{\log n}.$$

Theorem (Chauvin, Klein, Marckert and Rouault '05)

There exists a random analytic function X on a complex domain G with $(\alpha_{-}, \alpha_{+}) \subseteq G$ with $\mathbb{E}[X(\alpha)] = 1$ and X > 0 on (α_{-}, α_{+}) :

$$\sup_{\alpha_k\in(\overline{\alpha_-},\overline{\alpha_+})}\left|\frac{U_n(k)}{\mathbb{E}\left[U_n(k)\right]}-X(\alpha_k)\right|\xrightarrow{a.s.}0.$$

The special regimes

The limit $X(\alpha)$ is random if $\alpha \notin \{1, 2\}$.

Theorem (Fuchs, Hwang and Neininger '06)

Let $c \in \{1, 2\}$. For $k = c \log n + c_n$ with $c_n = o(\log n)$ and $|c_n| \to \infty$, we have

 $U_n(k)^* \stackrel{d}{\longrightarrow} (X'(c))^*.$

 $(U_n(k)^*)_{n\geq 1}$ does not converge in distribution if $c_n = O(1)$.

For $P_n := \sum_k k \cdot U_n(k)$:

 $P_n^* \xrightarrow{a.s.} (X'(2))^*.$

Régnier '89, Rösler '91

The internal profile

$$2^{k} - X_{n}(k) = n^{\eta(\alpha) + o(1)}, \quad \alpha_{-} < \alpha < 1.$$

Analogous mean expansions and limit theorems for

$$X_n(k) \qquad \text{for } \frac{k}{\log n} \in (\overline{1}, \overline{\alpha_+}),$$

$$2^k - X_n(k) \quad \text{for } \frac{k}{\log n} \in (\overline{\alpha_-}, \overline{1}).$$

HWANG '95, CHAUVIN, DRMOTA AND JABBOUR-HATTAB '01

Techniques and references

FORWARD

- JABBOUR-HATTAB '01
- Chauvin, Drmota and Jabbour-Hattab '01
- Chauvin, Klein, Marckert and Rouault '05
- Katona '05
- LABARBE '08
- Schopp '10
- Mailler and Marckert '17

BACKWARD

- Drmota and Hwang '04
- Drmota and Hwang '05
- Fuchs, Hwang and Neininger '06
- Devroye and Hwang '06
- Hwang '07
- Drmota, Janson Neininger '08

Outline

 $1. \ \, {\rm One-split} \ \, {\rm branching} \ \, {\rm random} \ \, {\rm walks}$

2. Profile of binary search trees: a summary

3. Main result: an asymptotic profile expansion

Classical Chebyshev-Edgeworth-Cramér expansion

Let Z_1, Z_2, \ldots be iid integer random variables with

- $\mathbb{E}\left[e^{tZ_1}\right] < \infty$ in a neighbourhood of 0,
- $\mathbb{E}[Z_1] = 0$, $Var(Z_1) = 1$,
- Z_1 is not concentrated on a non-trivial sublattice.

Then, with $S_n = Z_1 + \cdots + Z_n$, $x_n(k) = \frac{k}{\sqrt{n}}$ and $r \in \mathbb{N}_0$:

$$n^{\frac{r+1}{2}} \sup_{k \in \mathbb{Z}} \left| \mathbb{P}(S_n = k) - \frac{e^{-\frac{1}{2}x_n^2(k)}}{\sqrt{2\pi n}} \sum_{s=0}^r \frac{Q_s(x_n(k))}{n^{s/2}} \right| \to 0,$$

where Q_s is a polynomial of degree 3s expressed through the cumulants $\kappa_2, \ldots, \kappa_{s+2}$. $Q_0 = 1$ and

$$Q_1(x) = \frac{\kappa_3}{6} \operatorname{He}_3(x), \quad Q_2(x) = \frac{\kappa_4}{24} \operatorname{He}_4(x) + \frac{\kappa_3^2}{72} \operatorname{He}_6(x).$$

Profile expansion for the binary search tree

Theorem (KABLUCHKO, MARYNYCH AND S. '16)

Let $U_n(k)$ be the external profile of a sequence of random binary search trees. Set

$$x_n(k) = x_n(k; \alpha) = \frac{k - \alpha \log n}{\sqrt{\alpha \log n}}, \quad \frac{\alpha_k}{\log n} = \frac{k}{\log n}.$$

Fix $r \ge 0, K \subseteq (\alpha_-, \alpha_+)$ *compact. Uniformly in* $k \in \mathbb{N}$ *and* $\alpha \in K$

$$\left(\log n\right)^{\frac{r+1}{2}} \left| \frac{U_n(k)}{n^{\alpha-1-\alpha_k \cdot \log \alpha/2}} - \frac{e^{-\frac{1}{2}x_n^2(k)}}{\sqrt{2\pi \cdot \alpha \log n}} \sum_{s=0}^r \frac{F_s(x_n(k);\alpha)}{(\log n)^{s/2}} \right| \xrightarrow{a.s.} 0,$$

where $F_s(x; \alpha)$ is a polynomial in x of degree 3s whose coefficients are linear combinations of

 $X(\alpha),\ldots,X^{(s)}(\alpha).$

Profile expansion for the binary search tree

$$\left(\log n\right)^{\frac{r+1}{2}} \left| \frac{U_n(k)}{n^{\alpha-1-\alpha_k \cdot \log \alpha/2}} - \frac{e^{-\frac{1}{2}x_n^2(k)}}{\sqrt{2\pi \cdot \alpha \log n}} \sum_{s=0}^r \frac{F_s(x_n(k);\alpha)}{(\log n)^{s/2}} \right| \xrightarrow{a.s.} 0,$$

where $F_0(x; \alpha) = X(\alpha)$ and

$$F_{1}(x;\alpha) = \frac{X'(\alpha)}{\sqrt{\alpha}}x + \frac{X(\alpha)}{6\sqrt{\alpha}}\mathsf{He}_{3}(x),$$

$$F_{2}(x;\alpha) = \frac{X''(\alpha)}{2\alpha}\mathsf{He}_{2}(x) + \left(\frac{X(\alpha)}{24\alpha} + \frac{X'(\alpha)}{6\alpha}\right)\mathsf{He}_{4}(x)$$

$$+ \frac{X(\alpha)}{72\alpha}\mathsf{He}_{6}(x),$$

and the first Hermite polynomials are

$$\begin{aligned} &\mathsf{He}_2(x) = x^2 - 1, &\mathsf{He}_3(x) = x^3 - 3x, \\ &\mathsf{He}_4(x) = x^4 - 6x^2 + 3, &\mathsf{He}_6(x) = x^6 - 15x^4 + 45x^2 - 15. \end{aligned}$$

External BST profile - central regime

Recall: For $k = 2 \log n + c_n$ and $c_n = O(1)$, the sequence $\left(\frac{U_n(k) - \mathbb{E}[U_n(k)]}{\sqrt{\operatorname{Var}(U_n(k))}}\right)_{n \ge 1}$

does not converge in distribution.

Corollary (KABLUCHKO, MARYNYCH AND S. '16)

Let $k = \lfloor 2 \log n \rfloor + a$ with $a \in \mathbb{Z}$. Then, as $n \to \infty$,

$$\frac{(\log n)^{3/2}}{n} (U_n(k) - \mathbb{E}[U_n(k)]) - \frac{\chi'(2)}{4\sqrt{\pi}} (\{2\log n\} + a + 1/2)$$
$$\xrightarrow{a.s.}{\rightarrow} -\frac{\chi - \mathbb{E}[\chi]}{8\sqrt{\pi}},$$

where $\{x\} := x - \lfloor x \rfloor$ and $\chi = X''(2) - X'(2)^2$.

External BST profile - mode

Recall: $m_n - 2 \log n, n \ge 1$ is a tight sequence.

Corollary (KABLUCHKO, MARYNYCH AND S. '16)

For all *n* sufficiently large, m_n takes its value(s) in the set

 $\{\lfloor 2 \log n + X'(2) - 1/2 \rfloor, \lceil 2 \log n + X'(2) - 1/2 \rceil\}.$

For a set of asymptotic frequency 1, m_n is equal to the integer closest to

 $2 \log n + X'(2) - 1/2.$

The width - more periodicities

Recall: $W_n \sim \frac{n}{\sqrt{4\pi \log n}}$ almost surely.

Corollary (KABLUCHKO, MARYNYCH AND S. '16)

Let

$$\overline{W}_n := 4 \log n \left(1 - \frac{\sqrt{4\pi \log n} W_n}{n} \right).$$

Then,

$$\overline{W}_n - \theta_n^2 \xrightarrow{a.s.} \chi - \frac{1}{12}$$

where

$$\chi = X''(2) - X'(2)^2,$$

$$\theta_n = \min_{k \in \mathbb{Z}} |2 \log n + X'(2) - 1/2 - k|.$$

Outline

 $1. \ \, {\rm One-split} \ \, {\rm branching} \ \, {\rm random} \ \, {\rm walks}$

2. Profile of binary search trees: a summary

3. Main result: an asymptotic profile expansion
Discussion - the proof

Fourier inversion using

$$W_n(\lambda) = \sum_{k \in \mathbb{N}} U_n(k) \cdot e^{\lambda k}, \quad \lambda \in \mathbb{C}.$$

Then,

$$\mathbb{E}\left[W_n(\lambda)\right] = rac{n^{2e^{\lambda}-1}}{\Gamma(2e^{\lambda})} \cdot (1+o(1)), \quad \Re(\lambda) > 0.$$

BROWN AND SHUBERT '84, JABBOUR-HATTAB '01

Theorem (CHAUVIN, KLEIN, MARCKERT, ROUAULT '05)

There exists a complex domain G with $(\log \frac{\alpha_{-}}{2}, \log \frac{\alpha_{+}}{2}) \subseteq G$ such that, almost surely, uniformly on compact sets $K \subseteq G$ with polynomial rate of convergence,

$$\frac{W_n(\lambda)}{\mathbb{E}\left[W_n(\lambda)\right]} \to W(\lambda),$$

and $X(\alpha) = W(\log \frac{\alpha}{2})$.

BIGGINS '77, '92

Discussion - generalisations

Analogous expansions for

• general profiles $A_n(k), k \in \mathbb{Z}, n \ge 1$ with

$$e^{-w_n\cdot arphi(\lambda)}\cdot \sum_{k\in\mathbb{Z}} A_n(k)\cdot e^{\lambda k} o \Psi(\lambda),$$

with an analytic function $\boldsymbol{\Psi},$ where

- $w_n o \infty$,
- φ is strictly convex on \mathbb{R} ,
- the convergence is exponential in w_n on compact subsets of a domain close to the real axis,
- $e^{-w_n \cdot \varphi(\theta)} \cdot \sum_{k \in \mathbb{Z}} A_n(k) \cdot e^{(\theta + i\eta)k} \to 0$ for $\varepsilon < |\eta| < \pi$ with exponential rate of convergence.
- the profile of one-split branching random walks,
- the expected profile if $\zeta(\mathbb{Z})$ is deterministic,
- standard lattice BRWs

Grübel and Kabluchko '15

Summary and conclusion

- full uniform asymptotic profile expansion,
- precise information on occupation numbers, mode and width can be extracted almost automatically,
- extends to more general profiles $A_n(k), k \in \mathbb{Z}, n \ge 1$ upon controlling

$$\sum_{k\in\mathbb{Z}}^{\infty}A_n(k)\cdot e^{\lambda k}.$$

• martingale-free trees? Split trees?

THANK YOU