
Reinforced Branching Processes – Exercises Cécile Mailler

Exercise 1: The exponential law
Recall that a random variable X follows the exponential distribution of parameter a > 0 if and only if, for all
x ≥ 0,

P(X ≥ x) =
∫ ∞
x

ae−ax dx.

Let X,X1, . . . , Xn be i.i.d. random variables exponentially distributed of parameter 1.

(a) What is the distribution of mini=1..nXi?

(b) What is the probability that mini=1..nXi = X1?

(c) Show that for all 0 ≤ x < y,
P(X ≥ y |X ≥ x) = P(X ≥ y − x).

(We say the the exponential distribution “lacks memory”.)

Exercise 2: The Yule process
Recall that the Yule process of parameter η is characterised as follows: Let τ be an exponential random variable
of parameter η, then Y (t) = 1 for all t < τ , and for all t ≥ τ , Yt = Y (1)

t−τ + Y (2)
t−τ where Y (1) and Y (2) are two

independent copies of Y .
Let (Yt : t ≥ 0) be a Yule process with rate η.

(a) Let a > 0 and show that (Yat : t ≥ 0) is a Yule process with rate aη.

(b) Show that (e−ηtYt : t ≥ 0) is a martingale.

(c) Infer that there exists a random variable ξ such that, almost surely,

lim
t→∞

e−ηtYt = ξ.

(d) Show that ξ is exponentially distributed with parameter one.

(e) Show that supt≥0 Ee−2ηtY 2
t <∞.

Solution:
(a) Fix a > 0 and let Ŷt := Yat. Then, for all t < τ/a, we have Ŷt = 1, and for all t ≥ τ/a,

Ŷt = Yat = Y (1)
at−τ + Y (2)

at−τ = Ŷ (1)
a(t−τ/a) + Ŷ (2)

a(t−τ/a),

where Ŷ (1) and Ŷ (2) are two independent copies of Ŷ . Note that the random variable τ̂ = τ/a is exponentially
distributed of parameter aη, implying that Ŷ is indeed a Yule process of parameter aη.

(b) Let us first calculate the expectation of Yt for all t ≥ 0. Using that, by definition,

Yt = 1t<τ +
(
Y (1)
t−τ + Y (2)

t−τ
)

1t>τ ,

where τ is exponentially distributed of parameter η, we get that

EYt = e−ηt +
∫ ∞

0
2EYt−u ηe−ηu du = e−ηt + 2ηe−ηt

∫ ∞
0

EYs eηs ds.

Thus, if we denote by y(t) = eηtEYt, we get, for all t ≥ 0, y′(t) = 2ηy(t), implying that, since y(0) = 1,
y(t) = e2ηt for all t ≥ 0. Thus, for all t ≥ 0, EYt = eηt.

For all s, t ≥ 0, using the Markov property,

E [Yt+s | Fs] = E

[
Ys∑
i=1

Y
(i)
t

∣∣∣Fs] ,



where the Y (i) are independent copies of Y , independent of Ys. Thus,

E [Yt+s | Fs] = YsEYt = Yse
ηt,

implying that (e−ηtYt)t≥0 is indeed a martingale.

(c) The martingale (e−ηtYt)t≥0 is non-negative and thus converges almost surely to a random variable ξ.

(d) We define the random variables Ti as the random distances between successive jump times of the Yule
process (Yt)t≥0. Let T0 = 0 and, for all i ≥ 1, let Ti = inf{s > Ti−1 : Ys = i + 1}. Note that at time
T1 + · · ·+ Ti−1, the Yule process is the sum of i independent copies of itself and each of them thus jumps after
a random time of exponential law of parameter η. Thus, the time to wait before the next jump time is the
minimum of these i random variables. Ti is thus exponentially distributed of parameter iη.
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Figure 1 – The k i.i.d. random variables E1, . . . , Ek are represented by the
length of the vertical sticks. The Ti are independent random variables

exponentially distributed, of respective parameters iη.

For all t ≥ 0 and k ∈ N, we have

P(Yt ≥ k) = P(T1 + T2 + · · ·+ Tk ≤ t) = P (max(E1, . . . , Ek) ≤ t) ,

where (Ei)i≥1 is a sequence of i.i.d. exponential random variables of parameter η (see Figure 1 for an explanation
of the last equality). Thus, P(Yt ≥ k) = (1− e−ηt)k for all integers k and for all t ≥ 0. It implies that

P(e−ηtYt ≥ x) = P(Yt ≥ xeηt) = (1− e−ηt)bxe
ηtc → e−x,

when t goes to infinity, which concludes the proof.

(e) Using again the fact that Yt = 1t<τ +
(
Y (1)
t−τ + Y (2)

t−τ
)

1t>τ , we get that (we skip the details since it is
very similar to the calculation of Yt in the solution of (b))

y2(t) := eηtEY 2
t = 1 +

∫ t

0

(
2EY 2

s + 2
(
EYs

)2
)
ηeηsds = 1

3 + 2e3ηt

3 + 2η
∫ t

0
y2(s) ds,

because EYs = eηs for all s ≥ 0. We thus get that

y′2(t) = 2ηy2(t) + 2e3ηt, and y2(0) = 1.

Solving this equation gives

y2(t) = eηtEY 2
t = e2ηt

(
1 + 2

η

(
eηt − 1

))
,

and thus
e−2ηtEY 2

t = e−ηt
(

1 + 2
η

(
eηt − 1

))
→ 2

η
,

when t goes to infinity, which implies the result.



Exercise 3: Scale-free property of the BB tree
Let us denote by

Θt := 1
M(t)

M(t)∑
n=1

δZn(t)

is the empirical distribution of degrees in the Bianconi and Barabási continuous time tree at time t.

(a) Show that under Assumption 1 we have

lim
t→∞

Θt = ν almost surely,

where

ν(k) =
∫ 1

0

λ?

kx+ λ?

k−1∏
i=1

ix

ix+ λ?
dµ(x).

(b) Show that λ? ∈ (1, 2) and that ν is a probability measure

(c) Show that ν(k) = k−(1+λ?)+o(1) and hence the power law exponent ranges between the values 2 and 3, which
is sometimes referred to as the supercritical regime.

Solution:
(a) Combining examples (2) and (5) and applying Theorem 3.1 we get that

lim
t↑∞

Θt(k) = λ?
∫ ∞

0
e−λ

?t P(Y (t) = k) dt,

where (Y (t) : t > 0) is a Yule process with random parameter X. We use the notation of the first exercise to
write

P(Y (t) = k) = P(T1 + · · ·+ Tk−1 < t)− P(T1 + · · ·+ Tk < t),

where Tj is exponential with parameter jX. Now∫ ∞
0

e−λ
?t P(T1 + · · ·+ Tk < t) dt = E

∫ ∞
T1+···+Tk

e−λ
?t dt = 1

λ?

∫
dµ(x)

k∏
i=1

E
[
e−λ

?Ti
∣∣X = x

]
= 1
λ?

∫
dµ(x)

k∏
i=1

1
1 + λ?

ix

.

Hence,

λ?
∫ ∞

0
e−λ

?t P(Y (t) = k) dt =
∫
dµ(x)

( k−1∏
i=1

ix

ix+ λ?
−

k∏
i=1

ix

ix+ λ?

)
=
∫
dµ(x) λ?

kx+ λ?

k−1∏
i=1

ix

ix+ λ?
.

(1)

Observe that if ν is identified as a probability measure then the convergence holds automatically in the stronger
total variation sense.

(b) λ? is the unique solution of the equation∫
x

λ− x
dµ(x) = 1.

The left hand side is monotonically decreasing in λ and takes a value > 1 for λ = 1 and a value < 1 for λ = 2.
Hence the solution lies in the interval (1, 2). Summing over k = 1, 2, . . . in (1) shows that ν is a probability
measure.



(c) Note that, for k > n,

log
k−1∏
i=n

ix

ix+ λ?
=
k−1∑
i=n

log 1
1 + λ?

ix

= −(1 + on(1))
k−1∑
i=n

λ?

ix
= −(1 + on(1))λ

?

x

(
log
(
k/n
)

+ on(1)
)
.

We infer (without spelling out all details here) that for large k the main contribution to the integral comes from
values of f close to one and that therefore∫

dµ(x) λ?

kx+ λ?

k−1∏
i=1

ix

ix+ λ?
= k−(1+λ?)+ok(1).

Exercise 4: Size of the largest family
Show that, in distribution as t→∞,

e−γ(t−T (t)) max
n∈N

Zn(t)→W−
γ
λ? ,

where W is exponentially distributed with parameter Γ(α+ 1)Γ(1 + λ?

γ )(λ?)−α

Solution:
We fix x > 0 and apply the vague convergence proved in Theorem 4.1 to the compact set

K := [−∞,+∞]× [0,∞]× [x,∞].

We get that
M(t)∑
n=1

1K(τn − T (t), t(1−Xn), e−γ(t−T (t))Zn(t))⇒ Poisson
(∫
K
dζ
)
.

Hence

P
(

e−γ(t−T (t)) max
n∈{1,...,M(t)}

Zn(t) ≥ x
)
→ P

(
Poisson

(∫
K
dζ
)
≥ 1
)

= 1− exp
(
−
∫
K
dζ
)
. (2)

Integrating out gives ∫
K

dζ =
∫ +∞

−∞

∫ ∞
0

∫ ∞
x

αfα−1λ?eλ
?se−ze

γ(s+f)
eγ(s+f)dz df ds

=
∫ ∞

0
e−w

∫ ∞
0

αfα−1
∫ 1

γ log w
x−f

−∞
λ?eλ

?sds df dw

=
(∫ ∞

0
e−w

(w
x

)λ?
γ

dw
)(∫ ∞

0
αfα−1e−λ

?fdf
)

=
Γ(α+ 1)Γ(1 + λ?

γ )
(λ?)α x−

λ?

γ .

Thus, the right hand side in (2) is 1− exp(−Λx−η), for Λ = Γ(α+ 1)Γ(1 + λ?

γ )(λ?)−α and η = λ?

γ , which proves
the statement.


