Reinforced Branching Processes — Exercises Cécile Mailler

Exercise 1: The exponential law
Recall that a random variable X follows the exponential distribution of parameter a > 0 if and only if, for all
x>0,

e}
P(X > ) :/ ae” " dx.

x

Let X, X1,..., X, beii.d. random variables exponentially distributed of parameter 1.
(a) What is the distribution of min;—y_, X;?
(b) What is the probability that min;—; , X; = X;?

(c¢) Show that for all 0 < z < y,
P(X > y|X >2) =B(X >y —a).

(We say the the exponential distribution “lacks memory™”.)

Exercise 2: The Yule process
Recall that the Yule process of parameter 7 is characterised as follows: Let 7 be an exponential random variable
of parameter 7, then Y (t) =1 for all t < 7, and for all t > 7, V; = ;. + Y. where Y® and Y® are two
independent copies of Y.

Let (Y;: t > 0) be a Yule process with rate 7.

(a) Let a > 0 and show that (Y, : ¢ > 0) is a Yule process with rate an.
(b) Show that (e"Y;: ¢ > 0) is a martingale.
(c) Infer that there exists a random variable £ such that, almost surely,

lim e”™Y; = €.
t—o0

(d) Show that £ is exponentially distributed with parameter one.
e) Show that su Ee21Y? < cc.
(e) Pt>o0 t

Solution: R R

(a) Fix a > 0 and let Y; := Yy;. Then, for all t < 7/a, we have Y; = 1, and for all ¢ > 7/a,
Vv _ _ v @ _ %46
Yo =Yoo = Yarr + Yarr = Yo( o) + Yaorsay

at—T

where Y® and Y® are two independent copies of Y. Note that the random variable 7 = 7/a is exponentially
distributed of parameter arn, implying that Y is indeed a Yule process of parameter an.

(b) Let us first calculate the expectation of Y; for all ¢ > 0. Using that, by definition,
Yi=1<r + (Yt(i)-r + Yt@r) s,
where 7 is exponentially distributed of parameter 7, we get that
o0 o0
EY, =e " + / 2RY;_,ne M du = e " + 277677715/ EY, "% ds.
0 0

Thus, if we denote by y(t) = e™EY;, we get, for all t > 0, y/(t) = 2ny(t), implying that, since y(0) = 1,
y(t) = €27 for all t > 0. Thus, for all ¢t > 0, EY; = .
For all s,t > 0, using the Markov property,
Bl

]E[Yt-&-SU:S]:E

Ys )
Z Yt(Z)
=1



where the Y are independent copies of Y, independent of Y,. Thus,
E[Yi+s | Fi] = Y,EY = Yie™,
implying that (e~7Y});>¢ is indeed a martingale.
(c) The martingale (e~"'Y;):>¢ is non-negative and thus converges almost surely to a random variable &.

(d) We define the random variables T; as the random distances between successive jump times of the Yule
process (Y)i>0. Let Tp = 0 and, for all ¢ > 1, let T; = inf{s > T;_1: Y, = i + 1}. Note that at time
Ty +---+T;_1, the Yule process is the sum of 7 independent copies of itself and each of them thus jumps after
a random time of exponential law of parameter 7. Thus, the time to wait before the next jump time is the
minimum of these ¢ random variables. T; is thus exponentially distributed of parameter .
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FIGURE 1 — The k i.i.d. random variables E1, ..., Ex are represented by the
length of the vertical sticks. The T; are independent random variables
exponentially distributed, of respective parameters in.
For all ¢ > 0 and k € N, we have
P(Y; > k) =P(T1 + To + - + T}, < t) = P(max(Ey, ..., Ey) <t),

where (E;);>1 is a sequence of i.i.d. exponential random variables of parameter 7 (see Figure 1] for an explanation
of the last equality). Thus, P(Y; > k) = (1 — e~")* for all integers k and for all ¢+ > 0. It implies that

P(e™Y; > x) = P(Y; > ze™) = (1 — e ™)l7e" ) 5 o7
when ¢ goes to infinity, which concludes the proof.

(e) Using again the fact that ¥; = 1, + (Y, + Y, ) 14~,, we get that (we skip the details since it is
very similar to the calculation of Y; in the solution of (b))

. nt 2 i 2 2 ns _ 1 2€3T7t ¢
yao(t) == emEY;” =1+ 2EY? + 2(EY;)” ) neds = 3 + 3 +2n [ wya(s)ds,
0 0

because EY; = €"* for all s > 0. We thus get that
yh(t) = 2nya(t) +2¢3",  and y2(0) = 1.

Solving this equation gives
2
ya(t) = eMEYR = 2t <1 + 2 (em - 1)) ,
n

and thus ) )
e2MEY? = ¢t (1 + = (e - 1)) - =,
0 n

when t goes to infinity, which implies the result.



Exercise 3: Scale-free property of the BB tree
Let us denote by

L MO
0, == i) n; 52, (t)

is the empirical distribution of degrees in the Bianconi and Barabéasi continuous time tree at time ¢.

(a) Show that under Assumption 1 we have

lim ©; =v almost surely,
t—o00
where -
1 — .
X ix
k)= d .
v(k) /0 ke + X Eiﬂx uiw)

(b) Show that X € (1,2) and that v is a probability measure

(c) Show that v(k) = k~(+X)+e(1) and hence the power law exponent ranges between the values 2 and 3, which
is sometimes referred to as the supercritical regime.

Solution:
(a) Combining examples (2) and (5) and applying Theorem 3.1 we get that

lim ©,(k) = x/ e NPP(Y (1) = k) dt,
0

tToo

where (Y'(¢): ¢ > 0) is a Yule process with random parameter X. We use the notation of the first exercise to
write

P(Y(t)Zk‘)ZP(Tl—F"'—FTk_l<t)—IP(T1+"'+Tk<t),

where T} is exponential with parameter jX. Now

k
o X '] . 1 %

Hence,
Y R L k ix
XN R = k) de = du(w)(H e —Hi:HA*)
=1 i=1 (1)
=
- [d .
/ ) x 1;[1 i+ X

Observe that if v is identified as a probability measure then the convergence holds automatically in the stronger
total variation sense.

(b) X* is the unique solution of the equation

/)\fxdu(x)zl.

The left hand side is monotonically decreasing in A and takes a value > 1 for A = 1 and a value < 1 for A = 2.
Hence the solution lies in the interval (1,2). Summing over k¥ = 1,2,... in shows that v is a probability
measure.




(¢) Note that, for k > n,

k=1 .\,

k—1 . k—1 .
log 1:[ TA* = Zlogﬁ = —(1+0,(1))) = =—(1+ On(l))/\;(log (k/n) + on(l)).

T L g1
="

We infer (without spelling out all details here) that for large &k the main contribution to the integral comes from
values of f close to one and that therefore

k—1 .
X ix .
— .~ (1+X)+or(1)
/d”(x)km+)\*nia:+)\* K '

=1

Exercise 4: Size of the largest family
Show that, in distribution as ¢t — oo,

e 1T max Z,,(t) — W3,
neN

where W is exponentially distributed with parameter I'(oo + 1)I'(1 + ’\7*)()\*)*0‘

Solution:
We fix = > 0 and apply the vague convergence proved in Theorem 4.1 to the compact set

K :=[—00,+00] X [0,00] X [z, 00].
We get that
M(t)
Z 1g(mn — T(t),t(1 — X,,),e 7T 72 (1)) = Poisson( [, dC).
n=1
Hence
]P’(efﬁ(t*T(t)) ne{l??)&(t)} Zn(t) > a:) — P(Poisson(fK d¢) > 1) =1—exp(— [,dC). (2)

Integrating out gives

/ a¢ = /+ / / af("_lx\*e’\*se_zeﬂsﬂ)67(s+f)dz df ds
K —00 0 T
%) 0 %log L_f .
:/ e*“’/ afo‘*l/ Ner 3ds df dw
0 0 —o0

(e (4) 7 aw)( [T areri)

Pla+1I(1+2) .
(A*) '

Thus, the right hand side in (2)) is 1 —exp(—Az~"), for A =T'(a+1)I'(1 + AT*)()\*)_“ and n = AT*’ which proves
the statement.



