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Introduction

Let q be a prime power. In this talk, we consider monic univariate
polynomials over a finite field Fq.

We review a methodology from analytic combinatorics that allows:

counting polynomials;

random polynomials properties in algorithms;

average-case analysis of algorithms; and

decomposition of random polynomials in its irreducible factors.

It is well-known that a polynomial of degree n over Fq is
irreducible with probability close to 1/n.

Can we say something more like we can for the decomposition of
integers into primes?
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How many irreducible factors a random polynomial has?

How often will it be squarefree or k-free?

What is the expected largest (smallest) degree among its
irreducible factors?

How is the degree distribution among its irreducible factors?

How often a polynomial is m-smooth (all irreducible factors of
degree ≤ m)?

How often two polynomials are m-smooth and coprime?

How is the degree distribution among the irreducible factors of
the gcd of several polynomials?

What is the expected degree of the splitting field of a random
polynomial?

and so on.
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Algebraic algorithms that deal with polynomials over finite fields
can often be analyzed counting polynomials with particular
properties. Examples:

irreducibility tests for polynomials,

polynomial factorization,

gcd computations, and

discrete logarithm problem.

The most important characteristics of these algorithms can be
treated systematically by a methodology based on generating
functions and asymptotic analysis: analytic combinatorics.

This methodology relates finite fields and their applications to
combinatorics and number theory.
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However, we also briefly comment on other techniques that have
been used in this area:

Arratia, Barbour and Tavaré probabilistic approach;

polynomials coming from random matrices (cycle index);

expected polynomial splitting degree (Erdös-Turán order of a
random permutation).

Finally, we provide some open problems from actual research areas
in finite fields where univariate polynomials play a central role but
no technique from probabilistic and analytic combinatorics have
been successfully employed so far.
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General framework

Let In be the number of monic irreducible polynomials in Fq. The
generating functions of monic irreducible polynomials and monic
polynomials are

I(z) =
∑
n≥1

Inz
n, and

P (z) =
∏
k≥1

(1 + zk + z2k + · · · )Ik =
∏
k≥1

(1− zk)−Ik .

Since [zn]P (z) is qn, we have P (z) = (1− qz)−1, and these
relations implicitly determine In

In =
1

n

∑
k|n

µ(k)qn/k.

The proportion of irreducible polynomials of degree n over Fq is
close to 1/n.
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As usual, we consider bivariate generating functions to take care of
critical parameters of the problems we are interested in.
Asymptotic analysis is then used to extract coefficient information.

Example: number of irreducible factors. Let

P (u, z) =
∏
j≥1

(1 + uzj + u2z2j + · · · )Ij =
∏
j≥1

(1− uzj)−Ij

where [ukzn]P (u, z) is the number of polynomials of degree n with
k irreducible factors.

Differentiating two times with respect to the parameter, putting
u = 1 and asymptotic analysis gives expectation log n and
standard deviation

√
log n.

Flajolet and Soria (1990) prove that the number of irreducible
factors has a Gaussian distribution.
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Theorem. Let Ωn be a random variable counting the number of
irreducible factors of a random polynomial of degree n over Fq,
where each factor is counted with its order of multiplicity.

1 The mean value of Ωn is asymptotic to log n (Berlekamp;
Knuth).

2 The variance of Ωn is asymptotic to log n (Knopfmacher and
Knopfmacher; Flajolet and Soria).

3 For any two real constants λ < µ,

Pr
{

log n+ λ
√

log n < Ωn < log n+ µ
√

log n
}
→ 1√

2π

∫ µ

λ
e−t

2/2dt.

4 The distribution of Ωn admits exponential tails (Flajolet and
Soria).

5 A local limit theorem holds (Gao and Richmond).

6 The behaviour of Pr{Ωn = m} for all m is known (Cohen;
Car; Hwang).
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A general factorization algorithm

Folklore Algorithm

ERF Elimination of repeated factors replaces a polynomial
by a squarefree one which contains all the irreducible
factors of the original polynomial with exponents
reduced to 1.

DDF Distinct-degree factorization splits a squarefree
polynomial into a product of polynomials whose
irreducible factors have all the same degree.

EDF Equal-degree factorization factors a polynomial
whose irreducible factors have the same degree.

Polynomials over finite fields Daniel Panario



Introduction Basic methodology Algorithms Random properties Other techniques Open problems

Distinct-degree factorization (DDF)

Theorem. For i ≥ 1, the polynomial xq
i − x ∈ Fq[x] is the

product of all monic irreducible polynomials in Fq[x] whose degree
divides i.

procedure DDF(a : polynomial); [a squarefree]

n := deg(a); g := a; h := x;

for k := 1 to n do

1. h := h^q mod g;

2. b[k] := gcd(h-x,g);

3. g := g/b[k]; [a w/o factors deg<=k]

4. if b[k] <> 1 then h := h mod g fi;

od;

return(b[1].b[2]...b[n]);

end;
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The computation in step 1 is done by means of the classical
repeated squaring method. Let ν(q) be the number of ones in the
binary representation of q. The number of products needed to
compute hq mod g by this method is

λ(q) = blog2 qc+ ν(q)− 1.

Let τ1n
2 and τ2n

2 be the costs of computing the product and the
gcd of two polynomials of degree at most n, respectively (classical
arithmetic).

Theorem. (Flajolet, Gourdon and Panario, 2001)
The expected cost of the basic DDF phase satisfies, as n→∞,

DDFn ∼
5

12
(λ(q)τ1 + τ2)n

3.
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Proof (Sketch). The cost of the basic DDF is
∑4

j=1Cj , where

Cj is the cost of line j. Let Cj be the expectation of Cj .

Since the mean number of factors of f is O(log n),
C3 + C4 = O(n2 log n).

Let dk denote the degree of polynomial g when the kth iteration
starts; the parameter dk is also the sum of the degrees of the
distinct factors of f with degree ≥ k. The quantity C1 + C2 is
equal to (λ(q)τ1 + τ2)

∑
k≥1 d

2
k.

The bivariate generating function associated with dk is

Pk(z, u) =
∏
j<k

(
1

1− zj

)Ij ∏
j≥k

(
1 + uj

zj

1− zj

)Ij
.
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The expected value of C =
∑n

k=1 d
2
k is then given by

C = 1
qn [zn]Q(z), where

Q(z) =

n∑
k=1

(
∂2Pk(z, u)

∂u2
+
∂Pk(z, u)

∂u

)∣∣∣∣
u=1

.

Singularity analysis entails that [zn]Q(z) ∼ 5
12q

n n3. 2

Flajolet and Odlyzko’s singularity analysis (1990): If f(z) near its
dominant singular at z = 1/q behaves like

f(z) =
1

(1− qz)α

(
log

1

1− qz

)k
(1 + o(1))

then, for α 6= 0,−1,−2, . . ., we have

[zn]f(z) = qn
nα−1

Γ(α)
(log n)k (1 + o(1)).
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Irreducibility tests

Take polynomials at random and test them for irreducibility. The
proportion of irreducible polynomials of degree n is close to 1/n.

We need an irreducibility test!

Theorem. For i ≥ 1, the polynomial xq
i − x ∈ Fq[x] is the

product of all monic irreducible polynomials in Fq[x] whose degree
divides i.

The algorithm tests the irreducibility of a polynomial by searching
for irreducible factors degree by degree.

It stops when the smallest degree irreducible factor is found.
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Technical issue: probability that a random polynomial of degree n
contains no irreducible factors of degree up to certain value m (the
so-called m-rough polynomials).

Panario and Richmond (1998) give the probability that a random
polynomial be m-rough, 1 ≤ m ≤ n, in terms of the Buchstab
function when m→∞, and singularity analysis when m is fixed;
see also Car (1987).

The Buchstab function, ω(u), is the unique continuous solution of
the difference-differential equation

uω(u) = 1 1 ≤ u ≤ 2,

(uω(u))
′
= ω(u− 1) u > 2.
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Figure: The relation between the Buchstab function and e−γ in the
interval [1, 4].

Odlyzko (1984) and then Gourdon (1996) studied m-smooth
polynomials and the largest irreducible factors in terms of the
Dickman function (that also appears in Quickselect studies).
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A simplified picture of a random polynomial:

it is irreducible with probability tending to 0 as n→∞;

it is k-free with probability 1− 1/qk−1;

it has log n irreducible factors (concentrated);

it has a factor of degree r with probability 1/r (not concent.);

it has no linear factors with asymptotic probability ranging
from 0.25 to 0.3678 . . . as q grows;

it has irreducible factors of distinct degree with asymptotic
probability between 0.6656 . . . and e−γ = 0.5614 . . . as
q →∞;
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it has ckn expected kth largest degree irreducible factor,
where c1 = 0.62433 . . ., c2 = 0.20958 . . ., c3 = 0.08831 . . .
and the remaining irreducible factors have small degree (here
c1 is Dickman-Golomb’s constant);

it has expected first and second smallest degree factors
asymptotic to e−γ log n and e−γ log2 n/2 (not concentrated);

the limiting distribution of Zt(~n) is a geometric distribution,
and the distributions of Zd(~n) and Zr(~n) are very close to
Poisson distributions when q ≥ 64;

and so on.
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Other results

We briefly comment on other techniques used in this area.

(1) Probabilistic approach.

Arratia, Barbour and Tavaré study the joint degree distribution of
the irreducible factors from a probabilistic point of view (see:
“Logarithmic Combinatorial Structures: a Probabilistic Approach”,
2003).

Let C
(n)
j , 1 ≤ j ≤ n, be the number of irreducible factors of degree

j in a polynomial of degree n. They consider the discrete
dependent nonnegative integer-valued random process

C(n) = (C
(n)
1 , . . . , C

(n)
n ) satisfying∑
j

jC
(n)
j = n, n = 1, 2, . . . .
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The joint distribution satisfies the conditioning relation:

L(C
(n)
1 , . . . , C(n)

n ) = L(Z1, . . . , Zn|
∑
j

jZj = n),

where the random variables (Zj , j ≥ 1) are independent and take
nonnegative integer values.

These Zj random variables also satisfy the following logarithmic
condition for some θ > 0:

iP[Zi = 1]→ θ, iEZi → θ, as i→∞.

This applies to other structures, exactly as Flajolet and Soria
(1990) exp-log class.

Open problem: can a similar approach be applied to alg-log
structures?
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(2) Polynomials from random matrices over finite fields.

Generating functions have been used in the enumeration of groups
of random matrices over finite fields (see: Memoirs of the AMS,
vol. 830, by Fulman, Neumann and Praeger, 2005).

The decomposition of the characteristic polynomial of a random
matrix over finite fields has been considered by Stong (1988).

Hansen and Schmutz (1993) show that, ignoring factors of small
degree, the decomposition into irreducibles of the characteristic
polynomial of a random matrix over finite fields behaves like the
decomposition into irreducibles of a random polynomial over Fq.
Hence, previous results on random polynomials can be used.

We have that as q →∞ random polynomials over Fq behave like
permutations, giving further connections in this asymptotic case.
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(3) Other results

Dixon and Panario (2004) study the expected degree of the
splitting field of a random polynomial over a finite field. This is
closely related to the order of a permutation studied by Goh and
Schmutz (1991) and Stong (1998), and to the normal distribution
of the logarithm of the order of a permutation studied by Erdös
and Turán (1967).
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Open problems

We provide some open problems from actual research areas in
finite fields where univariate polynomials play a central role but no
technique from probabilistic and analytic combinatorics have been
successfully employed so far.

(1) Irreducibles with prescribed coefficients

(1.1) Reducibility of fewnomials

Swan (1962) characterizes the parity of the number of irreducible
factors of a trinomial over F2: if the number of irreducible factors
of a polynomial is even, the trinomial is reducible.

Consequence of Swan’s result: There are no irreducible trinomials
over F2 with degree a multiple of 8.
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In practice, we prefer sparse irreducible polynomials, like trinomials
or pentanomials over F2. However, we do not even know the
density of n’s such that there is an irreducible trinomial of degree
n over F2!.

The technique of proof relates the discriminant of the trinomial to
the parity of the number of factors (Stickelberger 1897).
Main problem: the calculation of the discriminant of the
polynomial is hard when the polynomial has even moderate
number of terms.

By now, over Fq, we know when binomials are reducible, and
partial results for trinomials and tetranomials. The reducibility of
few pentanomials is also known.
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(1.2) Existence of irreducibles with prescribed coefficients
There are results for the existence of irreducibles with prescribed
coefficients. The Hansen-Mullen conjecture (1992) asks for
irreducibles over Fq with any coefficient prescribed.

Wan (1997) proved the Hansen-Mullen conjecture. By now there
are results for the existence of irreducibles with up to half
coefficients prescribed (Hsu 1995) and variants. However,
experiments show that we could prescribe almost all coefficients
and obtain irreducible polynomials!

Techniques used so far: basic number theory (discriminants,
characters, bounds on character sums).

Open problem: prefix some coefficients to some values; prove that
there exist irreducible polynomials with those coefficients
prescribed to those values.
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(1.3) The number of irreducibles with prescribed coefficients

Results so far include: exact results for the number of irreducibles
with up to 2 coefficients (xn−1 and x0, or xn−1 and xn−2) over
any finite field. Over F2 there are also results with up to 3 most
significant coefficients prescribed to any value... nothing else!

Open problem: give exact (asymptotic?) counting for irreducibles
with prescribed coefficients.

(2) Relations between integers and polynomials

We showed that classical results from the decomposition of
integers into primes can be derived for the decomposition of
polynomials over finite fields into irreducibles.
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Also some classical number theoretic problems have been
translated to polynomials. For example, the twin primes conjecture
has been proved for all finite fields of order bigger than 2.
There have been some results about additive properties for
polynomials related to Goldbach conjecture and their
generalizations (sum of 3 irreducibles). See: Effinger, Hicks and
Mullen, The Mathematical Intelligencer (2005).

New relations between integers and polynomials?
Several recent results in number theory have not been translated
into polynomials, including studies of divisors and shifted divisors,
irreducibles in small gaps, digital functions for polynomials
(equidistributions of digital sums); etc.
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(3) Other areas

(3.1) Permutation polynomials over finite fields

A permutation polynomial (PP) over a finite field is a bijection
which maps the elements of Fq onto itself. They can be defined
over other rings and fields. For example Nöbauer in the 80’s
characterized PPs on several variables and over residue class rings.

There have been massive amount of work on PPs since the 19th
century. Many results have appeared on the last 20 years due to
the cryptographic applications of PPs. However, similar questions
as before applied: find PPs with prescribed coefficients, give
existence of PPs, count PPs, etc.

Polynomials over finite fields Daniel Panario



Introduction Basic methodology Algorithms Random properties Other techniques Open problems

(3.2) Multivariate polynomials over finite fields

We did not treat multivariate polynomials over finite fields at all.
There are some results about counting those polynomials (Carlitz,
Cohen, etc) or more recently by von zur Gathen, Viola and
Ziegler), but no analysis of algorithms yet.

Recent results. Green-Tao uses Gowers norms to derive uniform
distribution properties for polynomials in several variables and
bounded degree over a fixed finite field of prime order.
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