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Graphs

In this talk, all graphs are finite. Formally, G = (V ,E), where V
is any finite set, and E a set of (unordered) pairs from V .
Usually V = {1,2, . . . ,n}.

Graph encodes one bit of information per pair of vertices,
typically some notion of connectedness.
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Selected examples

Vertices Edge if

Atoms in crystal Bond between them
Computers Directly connected
People Know each other
Web pages Link from one to another
Chemicals in cell React

In most cases random graphs are natural models.
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Random graphs: classical models

Fix the vertex set [n] = {1,2, . . . ,n}.

G(n,p): include each possible edge with probability p,
independently. (Gilbert, 1959)
G(n,M): pick a graph with M edges, all such graphs
equally likely. (Erdős and Rényi, 1959)

Often equivalent, with p ∼ M/
(n

2

)
.

Systematic study started by Erdős and Rényi; both models
often named after them.

p can be constant or function of n; here appropriate scaling is
p = c/n.
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Small-world phenomenon

Many real-world networks show small diameter, or typical
distances – logarithmic in number of vertices.
E.g. ‘6 degrees of separation’.

Watts and Strogatz (1998) proposed model with this feature.
G(n,p) has it also!

In fact, even small amount of ‘global randomness’ gives small
diameter; e.g., Bollobás and Chung (1988).

Message: absence of small-world would need explanation.
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Percolation properties

We can ask many questions about graphs. Some of most
interesting concern ‘global connectivity’ properties.

What is the diameter?
Are most or all vertices connected? How big is the largest
connected part?
How much remains connected if edges fail randomly?
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Phase transition in G(n, p): p = c/n

Classical result of Erdős and Rényi (1960).
Let C1(G) denote the number of vertices in the largest
component.

Theorem

Let c be a constant, and let G = G(n, c/n).
If c < 1 then there is a constant A > 0 such that

C1(G) ≤ A log n whp (with high probability).
If c > 1 then there is a constant ρ such that C1(G)/n

p→ ρ.
If c = 1 then C1(G) is of order n2/3.
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Near the critical value

What about other functions p(n)?

Can suppose np → c.
For c 6= 1, result unchanged.
For c = 1, depends on how quickly.

Results proved by Bollobás 1984, Łuczak 1990,....,
Janson, Knuth, Łuczak and Pittel 1993,...

Here interested in ‘weak’ results, but for more general models.
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Branching processes

There is a natural local approximation to G(n, c/n).

The Galton–Watson process Xc

Start with one individual.
Each individual has random no. of children with a Poisson
Po(c) distribution.
Numbers independent.
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Survival probability

Let ρ(c) = P( Xc survives forever ).
Observation:

ρ(c) = 1− e−cρ(c)

Proof:
each individual in generation 1 survives with probability
ρ(c).
Number that survive Po(cρ(c)).
Process survives if at least one does.

Does not quite determine ρ(c): 0 also a solution.
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Degree distribution

In G(n, c/n), degree distribution asymptotically Poisson.

Many real-world examples asymptotically power-law.
(Barabási–Albert, Faloutsos3, KKRRT 1999)
Suggests need for inhomogeneous models.
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‘Scale-free’ models.

Barabási and Albert (BA) (1999)
Kumar, Raghavan, Rajagopalan, Sivakumar, Tomkins and Upfal
(2000)
Aiello–Chung–Lu (2000)
Linearized Chord Diagram model (Bollobás, R (2004-))
Buckley and Osthus (2004)
Cooper and Frieze (2003)
. . .
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Problems with models

Two main problems:
Many models hard to analyze. (But LCD ok.)
Analyzing models one by one is a never-ending process!
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Bollobás–Janson–Riordan model

Outline definition:
Vertices have “types” in some set S.
Usually S = [0,1]; can simply be finite.
Edge probabilities depend on both types, leading to
kernels κ: symmetric functions κ : [0,1]2 → [0,∞).
Types are random; given types (xi), edges independent,
with probabilities κ(xi , xj)/n.

The finite-type case is “folklore” as a model.
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Phase transition

The definition makes the BJR model amenable to analysis.

Key object: multi-type Poisson branching process Xκ.

Survival probability ρ(x) satisfies

ρ = 1− e−Tκρ,

where Tκ is the operator defined by

(Tκ(f ))(x) =

∫ 1

0
κ(x , y)f (y) dy .
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Phase transition

Theorem

Let κ : [0,1]2 → [0,∞) be a kernel, and let Gn = G(n, κ) denote
the random graph constructed by the BJR model.

(i) If ‖Tκ‖ ≤ 1, then C1(Gn) = op(n).
(ii) If ‖Tκ‖ > 1, then C1(Gn) = Θ(n) whp.

If κ is irreducible, then C1(Gn)/n
p→ ρ(κ) and C2(Gn) = op(n).

To study transition: parametrize. I.e., study function c 7→ ρ(cκ)
with κ constant.
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Examples

κ = 1: classical model G(n, c/n).

κ(x , y) = ψ(x)ψ(y): ‘rank 1’ case. Studied by (e.g.) Chung and
Lu, Norros and Reittu. Range of behaviour depending on which
norms of ψ are finite.

κ(x , y) = 1/
√

xy : approximation to Barabási–Albert model.

κ(x , y) = 1/max{x , y} (−1): CHKNS model or Turova’s model.
Infinite order phase transision.
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Susceptibility

Branching process analysis yields many other properties.
E.g., susceptibility (Janson and R. 2010+):

Theorem
In the subcritical case,

χ(κ) = 〈(I − Tκ)−11,1〉.

For supercritical case, use duality. (Janson and R. 2010+)
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Diameter

Bollobás, Janson and R. (2007) studied diameter (in certain
cases).

Result new for G(n, c/n)! (See also Fernholz and
Ramachandran.)

Previously, results for subcritical case by Łuczak (1998);
strongly supercritical by Bollobás. Some partial results in
between by Chung and Lu (2001).

Very precise results for entire supercritical range by R. and
Wormald (2010+).
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Diameter of G(n, p)

Theorem

Let λ > 1 be fixed, and define λ∗ < 1 by λ∗e−λ
∗

= λe−λ. Then

diam(G(n, λ/n)) =
log n
logλ

+ 2
log n

log(1/λ∗)
+ Op(1).

Same with λ→∞, with 2-point concentration.

Some version of this announced by Bruce Reed; not yet written
up.
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Diameter of G(n, p)

Theorem

Let ε = ε(n) (bounded) satisfy ε3n→∞. Set λ = λ(n) = 1 + ε,
and define λ∗ < 1 by λ∗e−λ

∗
= λe−λ. Then

diam(G(n, λ/n)) =
log(ε3n)

logλ
+ 2

log(ε3n)

log(1/λ∗)
+ Op(1/ε).

Independent weaker result by Ding, Kim, Lubetzky and Peres.

Inside the window: Addario-Berry, Broutin and Goldschmidt.
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Distribution of the error term

Let z1 > z2 > · · · list the points of a Poisson process P on R
with density function f (x) = 4γ1e−x in decreasing order. For
each 1 ≤ i < j , let Tij be a random variable with
P(Tij > x) = exp(−ex ), independent of each other and of P.
Let D = sup{zi + zj + Tij}.

Theorem

Let ε = ε(n) > 0 satisfy ε→ 0 and ε3n→∞, and let λ = 1 + ε.
For any constant c

P
(

diam(G(n, λ/n)) ≥ log(ε3n)

logλ
+ 2

log(ε3n)

log(1/λ∗)
+ c/ε

)
converges to P(D ≥ c) as n→∞.
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Summary

BJR model unifies many earlier sparse models.

Connection to a continuous object makes analysis possible.

Key tool: branching processes.

Methods feed back to give new results even for G(n,p).
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Extensions....

BJR model with clustering. (Bollobás, Janson, R. 2010)

Allows ‘tuning’ clustering coefficient, mixing coefficient, ....

Analysis involves multi-type compound Poisson branching
processes; operator T becomes non-linear.
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The need for metrics

A fundamental question is how to tell whether a (random or
deterministic) model graph is close to the real-world example.

Can consider particular parameters, but not satisfactory.
Typically not a sampling question: there is only one
world-wide web.
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The edit distance

Distance 0: isomorphic.
Distance 1: isomorphic after changing one edge.

The edit distance
If |G| = |H| = n then

dedit(G,H) = min
{
|E(G) ∆ E(H ′)| : H ′ ∼= H

}
.

Explicitly defined by Axenovich, Kézdy and Martin (2008).
Used by Erdős (1966) and Simonovits (1966).
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Two instances of G(n, 1/2)
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Two instances of G(n, 1/2)
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Two instances of G(n, 1/2)

In edit distance, far apart. However...

There is a very strong intuitive sense in which two ‘typical’
instances of G(n,1/2) are ‘similar’.

For ‘most’ properties, probability close to 0 or 1.
Typical numerical properties close: e.g., # triangles.

Goes back to Erdős and Rényi.

Oliver Riordan Percolation on graphs



Background and classical results
Inhomogeneous models

Metrics and models

The subgraph distance

The density of F in G is

s(F ,G) =
emb(F ,G)

emb(F ,Kn)
=

emb(F ,G)

n(n − 1) . . . (n − k + 1)

where n = |G|.

Definition
The subgraph metric may be defined by

dsub(G,H) =
∑

F

2−|F |
2 |s(F ,G)− s(F ,H)|.

Usually only care about the topology: (Gn) is Cauchy in dsub iff
s(F ,Gn) converges for all F .
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Limit points

Every sequence has a subsequence which is Cauchy, so
completion is compact. Is there a nice description?

Theorem (Lovász and Szegedy (2006))

Given numbers sF , there is a sequence (Gn) with |Gn| → ∞
such that s(F ,Gn)→ sF for all F if and only if there is a kernel
κ : [0,1]2 → [0,1] such that

sF = s(F , κ) =

∫
[0,1]k

∏
ij∈E(F )

κ(xi , xj)
k∏

i=1

dxi

for all F .

(We take vertex set of F to be [k ] where k = |F |.)
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Global similarity

Borgs, Chayes, Lovász, Sós and Vesztergombi (2008) defined
a metric, the cut metric that measures global similarity.

Roughly speaking, two graphs are close if can overlay them so
that inside each large set, or across each large cut, almost the
same number of edges in each..

Again limits are kernels; moreover, equivalent to subgraph
metric!
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Random subgraphs of arbitrary graphs

Can view G(n,p) as Kn(p): random subgraph of Kn.
Percolation threshold is p∗(n) = 1/n.
What is threshold in Hn(pn)?

Theorem (Bollobás, Borgs, Chayes, R. (2010))

Suppose Hn has n vertices and Θ(n2) edges. Let λn = largest
eigenvalue of Hn, let c > 0 be constant and set Gn = Hn(c/λn).

If c ≤ 1, then C1(Gn) = op(n).
If c > 1 then C1(Gn) = Θ(n) whp.

I.e., threshold is 1/λn; no assumptions on (Hn).
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Size of giant component

Certainly need to restrict (Hn) to get a result; natural
assumption is convergence in δ�.

Theorem
Suppose |Hn| = n and δ�(Hn, κ)→ 0. With c constant set
Gn = Hn(c/n).

(i) If c ≤ ‖Tκ‖−1, then C1(Gn) = op(n).
(ii) If c > ‖Tκ‖−1, then C1(Gn) = Θ(n) whp.

If κ is irreducible, then C1(Gn)/n
p→ ρ(cκ) and C2(Gn) = op(n).

Implies previous result by (sub)subsequences.
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Combining the results

Can represent a graph with independence between edges by
matrix An of edge probabilities. In fact, take probabilities as
aij/n; constant matrix gives G(n, c/n).

BJR result and BBCR result establish threshold assuming
convergence to κ.

BJR: κ arbitrary, strong (L1) notion of convergence.
BBCR: only need cut convergence, but κ and An bounded.

Bollobás, Janson, R. (2010+)
Need only cut convergence; no boundedness assumptions.
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Metrics and models

In dense case, natural random graph model for each
(bounded!) kernel, introduced by Lovász and Szegedy (2006).

Since any sequence has subsequence converging to a kernel,
this family of models is in some sense complete: any graph is
‘close’ to one of these random graphs.
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The sparse case

Main question
Is there a family of sparse random graph models that ‘covers’
the space of sparse graphs?

Many difficulties: which metric should we use? Are δ� and dsub
still equivalent?

Many partial results and open questions:
Bollobás and R., Metrics for sparse graphs, 2009,
Bollobás and R., Sparse graphs: metrics and random models.

(On arXiv).
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