
Strong Randomness Properties of (Hyper-)Graphs
Generated by Simple Hash Functions

Martin Aumüller

Technische Universität Ilmenau, Germany

AofA’15
Strobl, June 8, 2015

Joint work with Martin Dietzfelbinger and Philipp Woelfel.

M. Aumüller Graphs Generated by Simple Hash Functions 1/17

Example: Cuckoo Hashing (Pagh/Rodler, 2001/2004)
A hashing-based implementation of the dictionary data type.

Setting:

set S ⊆ U of n keys

two tables T1[0..m − 1]
and T2[0..m − 1],
m ≥ (1 + ε)n

two (hash) functions
h1, h2 with hi : U → [m]

Rules:

each table cell can hold exactly one key
a key x must be stored either in T1[h1(x)] or T2[h2(x)]
(fast lookups and deletions!)

Definition

If S can be stored according to these rules, we call (h1, h2) suitable for S .

M. Aumüller Graphs Generated by Simple Hash Functions 2/17

Example: Cuckoo Hashing (Pagh/Rodler, 2001/2004)
A hashing-based implementation of the dictionary data type.

Setting:

set S ⊆ U of n keys

two tables T1[0..m − 1]
and T2[0..m − 1],
m ≥ (1 + ε)n

two (hash) functions
h1, h2 with hi : U → [m]

Rules:

each table cell can hold exactly one key
a key x must be stored either in T1[h1(x)] or T2[h2(x)]
(fast lookups and deletions!)

Definition

If S can be stored according to these rules, we call (h1, h2) suitable for S .

M. Aumüller Graphs Generated by Simple Hash Functions 2/17

Improving Cuckoo Hashing: Stash

Original Analysis: (h1, h2) unsuitable with probability O(1/n).
In fact: Θ(1/n) (Schellbach ’09, Drmota/Kutzelnigg ’12)

(Kirsch/Mitzenmacher/Wieder ’08): Θ(1/n) is too large.

Proposal: Can put up to s = O(1) keys into additional storage

Theorem (K/M/W ’08)

Let S ⊆ U with |S | = n. If (h1, h2) are fully random, then

Pr((h1, h2) unsuitable for S with stash size s) = O(1/ns+1).

Again: Θ(1/ns+1). (Kutzelnigg ’10)

M. Aumüller Graphs Generated by Simple Hash Functions 3/17

Analysis of Cuckoo Hashing with a Stash
What is a criteria for (h1, h2) being unsuitable for stash size s?
Tool: Cuckoo graph G (S , h1, h2) (Devroye/Morin ’03)

Theorem (K/M/W ’08)

Let (V ′,E ′) consists of all connected components of G (S , h1, h2) having
more than one cycle. Then

Stash size = |E ′| − |V ′|.

M. Aumüller Graphs Generated by Simple Hash Functions 4/17

Analysis of Cuckoo Hashing with a Stash
What is a criteria for (h1, h2) being unsuitable for stash size s?
Tool: Cuckoo graph G (S , h1, h2) (Devroye/Morin ’03)

Theorem (K/M/W ’08)

Let (V ′,E ′) consists of all connected components of G (S , h1, h2) having
more than one cycle. Then

Stash size = |E ′| − |V ′|.

M. Aumüller Graphs Generated by Simple Hash Functions 4/17

Analysis of Cuckoo Hashing with a Stash
What is a criteria for (h1, h2) being unsuitable for stash size s?
Tool: Cuckoo graph G (S , h1, h2) (Devroye/Morin ’03)

Theorem (K/M/W ’08)

Let (V ′,E ′) consists of all connected components of G (S , h1, h2) having
more than one cycle. Then

Stash size = |E ′| − |V ′|.

M. Aumüller Graphs Generated by Simple Hash Functions 4/17

Analysis of Cuckoo Hashing with a Stash
What is a criteria for (h1, h2) being unsuitable for stash size s?
Tool: Cuckoo graph G (S , h1, h2) (Devroye/Morin ’03)

Excess (Janson et al. ’93): #edges - #vertices (Here: 3)

3 more keys than table cells ⇒ at least 3 keys must be put into stash

Minimal “bad subgraph”: a MOSs . (Example: s = 2.)

Theorem (K/M/W ’08)

Let (V ′,E ′) consists of all connected components of G (S , h1, h2) having
more than one cycle. Then

Stash size = |E ′| − |V ′|.

M. Aumüller Graphs Generated by Simple Hash Functions 4/17

Analysis of Cuckoo Hashing with a Stash
What is a criteria for (h1, h2) being unsuitable for stash size s?
Tool: Cuckoo graph G (S , h1, h2) (Devroye/Morin ’03)

Excess (Janson et al. ’93): #edges - #vertices (Here: 3)

3 more keys than table cells ⇒ at least 3 keys must be put into stash

Minimal “bad subgraph”: a MOSs . (Example: s = 2.)

Theorem (K/M/W ’08)

Let (V ′,E ′) consists of all connected components of G (S , h1, h2) having
more than one cycle. Then

Stash size = |E ′| − |V ′|.

M. Aumüller Graphs Generated by Simple Hash Functions 4/17

Analysis of Cuckoo Hashing with a Stash
What is a criteria for (h1, h2) being unsuitable for stash size s?
Tool: Cuckoo graph G (S , h1, h2) (Devroye/Morin ’03)

Excess (Janson et al. ’93): #edges - #vertices (Here: 3)

3 more keys than table cells ⇒ at least 3 keys must be put into stash

Minimal “bad subgraph”: a MOSs . (Example: s = 2.)

Theorem (K/M/W ’08)

Let (V ′,E ′) consists of all connected components of G (S , h1, h2) having
more than one cycle. Then

Stash size = |E ′| − |V ′|.

M. Aumüller Graphs Generated by Simple Hash Functions 4/17

Analysis of Cuckoo Hashing with a Stash
What is a criteria for (h1, h2) being unsuitable for stash size s?
Tool: Cuckoo graph G (S , h1, h2) (Devroye/Morin ’03)

Excess (Janson et al. ’93): #edges - #vertices (Here: 3)

3 more keys than table cells ⇒ at least 3 keys must be put into stash

Minimal “bad subgraph”: a MOSs . (Example: s = 2.)

Theorem (K/M/W ’08)

Let (V ′,E ′) consists of all connected components of G (S , h1, h2) having
more than one cycle. Then

Stash size = |E ′| − |V ′|.

M. Aumüller Graphs Generated by Simple Hash Functions 4/17

Analysis of Cuckoo Hashing with a Stash
What is a criteria for (h1, h2) being unsuitable for stash size s?
Tool: Cuckoo graph G (S , h1, h2) (Devroye/Morin ’03)

Excess (Janson et al. ’93): #edges - #vertices (Here: 3)

3 more keys than table cells ⇒ at least 3 keys must be put into stash

Minimal “bad subgraph”: a MOSs . (Example: s = 2.)

Theorem (K/M/W ’08)

Let (V ′,E ′) consists of all connected components of G (S , h1, h2) having
more than one cycle. Then

Stash size = |E ′| − |V ′|.

M. Aumüller Graphs Generated by Simple Hash Functions 4/17

Analysis of Cuckoo Hashing with a Stash
What is a criteria for (h1, h2) being unsuitable for stash size s?
Tool: Cuckoo graph G (S , h1, h2) (Devroye/Morin ’03)

Excess (Janson et al. ’93): #edges - #vertices (Here: 3)

3 more keys than table cells ⇒ at least 3 keys must be put into stash

Minimal “bad subgraph”: a MOSs . (Example: s = 2.)

Theorem (K/M/W ’08)

Let (V ′,E ′) consists of all connected components of G (S , h1, h2) having
more than one cycle. Then

Stash size = |E ′| − |V ′|.

M. Aumüller Graphs Generated by Simple Hash Functions 4/17

Analysis of Cuckoo Hashing with a Stash
What is a criteria for (h1, h2) being unsuitable for stash size s?
Tool: Cuckoo graph G (S , h1, h2) (Devroye/Morin ’03)

Theorem (K/M/W ’08)

Let (V ′,E ′) consists of all connected components of G (S , h1, h2) having
more than one cycle. Then

Stash size = |E ′| − |V ′|.

M. Aumüller Graphs Generated by Simple Hash Functions 4/17

The Quest

Analysis well understood when hash functions are fully random.

Replace fully random hash functions by an explicit, efficient
construction of hash functions.

“Simple hash functions that work in as many applications as possible”

Other recent approaches, e. g., Thorup/Pǎtraşcu ’11,
Reingold/Rothblum/Wieder ’14

Focus on hashing-based algorithms and data structures that allow
good enough bounds via first-moment method (C.H. [stash],
generalized C.H., load balancing, ...)

Generic approach?

M. Aumüller Graphs Generated by Simple Hash Functions 5/17

The Quest

Analysis well understood when hash functions are fully random.

Replace fully random hash functions by an explicit, efficient
construction of hash functions.

“Simple hash functions that work in as many applications as possible”

Other recent approaches, e. g., Thorup/Pǎtraşcu ’11,
Reingold/Rothblum/Wieder ’14

Focus on hashing-based algorithms and data structures that allow
good enough bounds via first-moment method (C.H. [stash],
generalized C.H., load balancing, ...)

Generic approach?

M. Aumüller Graphs Generated by Simple Hash Functions 5/17

The Quest

Analysis well understood when hash functions are fully random.

Replace fully random hash functions by an explicit, efficient
construction of hash functions.

“Simple hash functions that work in as many applications as possible”

Other recent approaches, e. g., Thorup/Pǎtraşcu ’11,
Reingold/Rothblum/Wieder ’14

Focus on hashing-based algorithms and data structures that allow
good enough bounds via first-moment method (C.H. [stash],
generalized C.H., load balancing, ...)

Generic approach?

M. Aumüller Graphs Generated by Simple Hash Functions 5/17

The Quest

Analysis well understood when hash functions are fully random.

Replace fully random hash functions by an explicit, efficient
construction of hash functions.

“Simple hash functions that work in as many applications as possible”

Other recent approaches, e. g., Thorup/Pǎtraşcu ’11,
Reingold/Rothblum/Wieder ’14

Focus on hashing-based algorithms and data structures that allow
good enough bounds via first-moment method (C.H. [stash],
generalized C.H., load balancing, ...)

Generic approach?

M. Aumüller Graphs Generated by Simple Hash Functions 5/17

The Quest

Analysis well understood when hash functions are fully random.

Replace fully random hash functions by an explicit, efficient
construction of hash functions.

“Simple hash functions that work in as many applications as possible”

Other recent approaches, e. g., Thorup/Pǎtraşcu ’11,
Reingold/Rothblum/Wieder ’14

Focus on hashing-based algorithms and data structures that allow
good enough bounds via first-moment method (C.H. [stash],
generalized C.H., load balancing, ...)

Generic approach?

M. Aumüller Graphs Generated by Simple Hash Functions 5/17

The Quest

Analysis well understood when hash functions are fully random.

Replace fully random hash functions by an explicit, efficient
construction of hash functions.

“Simple hash functions that work in as many applications as possible”

Other recent approaches, e. g., Thorup/Pǎtraşcu ’11,
Reingold/Rothblum/Wieder ’14

Focus on hashing-based algorithms and data structures that allow
good enough bounds via first-moment method (C.H. [stash],
generalized C.H., load balancing, ...)

Generic approach?

M. Aumüller Graphs Generated by Simple Hash Functions 5/17

The Quest

Analysis well understood when hash functions are fully random.

Replace fully random hash functions by an explicit, efficient
construction of hash functions.

“Simple hash functions that work in as many applications as possible”

Other recent approaches, e. g., Thorup/Pǎtraşcu ’11,
Reingold/Rothblum/Wieder ’14

Focus on hashing-based algorithms and data structures that allow
good enough bounds via first-moment method (C.H. [stash],
generalized C.H., load balancing, ...)

Generic approach?

M. Aumüller Graphs Generated by Simple Hash Functions 5/17

Key Ingredient: Linear Functions

h(x) = ((a · x + b) mod p) mod m,

where

p ≥ |U| is a prime, and

a and b are chosen uniformly at random from {0, . . . , p − 1}.
→ very simple structure!

(Remark: This function is 2-wise independent, i. e., for any pair
x , y ∈ U, x 6= y , h(x) and h(y) are fully random.)

M. Aumüller Graphs Generated by Simple Hash Functions 6/17

The Hash Class (Version for this Talk)
For given c, n ≥ 1, we combine linear functions with lookups in tables of
size
√
n filled with random values.

hi (x) = fi (x) ⊕
c⊕

j=1

z
(i)
j [gj(x)], i = 1, 2

Class of all these pairs (h1, h2) of hash functions: Z.
(Extension of hash functions from (Dietzfelbinger/Woelfel ’03))

M. Aumüller Graphs Generated by Simple Hash Functions 7/17

Example: Cuckoo Hashing with a Stash

Main Task

For given S and stash size s, calculate

Pr((h1, h2) unsuitable for S with stash size s).

Minimal bad subgraph: MOSs . (Example: s = 2.)

M. Aumüller Graphs Generated by Simple Hash Functions 8/17

Thus, we have

Pr
(h1,h2)∈Z

((h1, h2) unsuitable for S with stash size s)

= Pr
(h1,h2)∈Z

(∃T ⊆ S : G (T , h1, h2) forms a MOSs)

≤
∑
T⊆S

Pr
(h1,h2)∈Z

(G (T , h1, h2) forms a MOSs)

if (h1, h2) are fully random, we provide a direct counting argument
that this is O(1/ns+1)

giving an alternative proof to the original analysis by Kirsch,
Mitzenmacher and Wieder (who used machinery like Markov chain
coupling)

M. Aumüller Graphs Generated by Simple Hash Functions 9/17

Behavior of the Hash Class on Fixed T ⊆ S

Recall:

hi (x) = fi (x) ⊕
c⊕

j=1

z
(i)
j [gj(x)], i = 1, 2

Central Observation

Let T ⊆ S . If there is a gj such that at most one pair of keys in T collides
under gj (i. e., gj(x) = gj(y)), then h1, h2 are fully random on T .

if this is the case: (h1, h2) T -good.

otherwise (each gj has more than one colliding pair of keys): (h1, h2)
is T -bad.

M. Aumüller Graphs Generated by Simple Hash Functions 10/17

Collecting “Harmful” Hash Functions

We split our set of hash
functions into “harmful” and
“harmless” ones.

(h1, h2) are harmful, if there
exists T ⊆ S s.t.

G (T , h1, h2) forms a
MOSs , and

(h1, h2) is T -bad.

BMOSs := the set of all the
harmful pairs (h1, h2). (An
event in our probability space!)

M. Aumüller Graphs Generated by Simple Hash Functions 11/17

Splitting the Calculation
We calculate:

Pr(NMOSs
S > 0) ≤ Pr(NMOSs

S > 0 ∩ ¬BMOSs) + Pr(BMOSs)

for this summand, we have

Pr(NMOSs
S > 0 ∩ ¬BMOSs) ≤ E∗

(
NMOSs
S

)
,

which is O(1/ns+1).

The hard part: Calculating/bounding

Pr(BMOSs) = Pr(∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩(h1, h2) are T -bad)

Wish: Use full randomness nonetheless

Idea: Find a suitable event that contains BMOSs

M. Aumüller Graphs Generated by Simple Hash Functions 12/17

Splitting the Calculation
We calculate:

Pr(NMOSs
S > 0) ≤ Pr(NMOSs

S > 0 ∩ ¬BMOSs) + Pr(BMOSs)

for this summand, we have

Pr(NMOSs
S > 0 ∩ ¬BMOSs) ≤ E∗

(
NMOSs
S

)
,

which is O(1/ns+1).

The hard part: Calculating/bounding

Pr(BMOSs) = Pr(∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩(h1, h2) are T -bad)

Wish: Use full randomness nonetheless

Idea: Find a suitable event that contains BMOSs

M. Aumüller Graphs Generated by Simple Hash Functions 12/17

Splitting the Calculation
We calculate:

Pr(NMOSs
S > 0) ≤ O(1/ns+1) + Pr(BMOSs)

for this summand, we have

Pr(NMOSs
S > 0 ∩ ¬BMOSs) ≤ E∗

(
NMOSs
S

)
,

which is O(1/ns+1).

The hard part: Calculating/bounding

Pr(BMOSs) = Pr(∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩(h1, h2) are T -bad)

Wish: Use full randomness nonetheless

Idea: Find a suitable event that contains BMOSs

M. Aumüller Graphs Generated by Simple Hash Functions 12/17

Splitting the Calculation
We calculate:

Pr(NMOSs
S > 0) ≤ O(1/ns+1) + Pr(BMOSs)

for this summand, we have

Pr(NMOSs
S > 0 ∩ ¬BMOSs) ≤ E∗

(
NMOSs
S

)
,

which is O(1/ns+1).

The hard part: Calculating/bounding

Pr(BMOSs) = Pr(∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩(h1, h2) are T -bad)

Wish: Use full randomness nonetheless

Idea: Find a suitable event that contains BMOSs

M. Aumüller Graphs Generated by Simple Hash Functions 12/17

Peeling of Bad Graphs (Simplified)
Assume “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”.

#collisions
g1 5

g2 7
g3 4

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Peeling of Bad Graphs (Simplified)
Assume “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”.

#collisions
g1 5

g2 7
g3 4

Recall: hi (x) = fi (x)⊕
⊕c

j=1 z
(i)
j [gj(x)]

T -bad ⇔ each gj has more than one pair of colliding keys

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Peeling of Bad Graphs (Simplified)
Assume “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”.

#collisions
g1 5

g2 7
g3 4

12

128

7

4

7

8

5 4

5

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Peeling of Bad Graphs (Simplified)
Assume “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”.

#collisions
g1 4

g2 5
g3 4

128

7

4

7

8

5 4

5

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Peeling of Bad Graphs (Simplified)
Assume “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”.

#collisions
g1 4

g2 5
g3 4

128

7

4

7

8

5 4

5

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Peeling of Bad Graphs (Simplified)
Assume “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”.

#collisions
g1 4

g2 5
g3 4

128

7

4

7

8

5 4

5

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Peeling of Bad Graphs (Simplified)
Assume “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”.

#collisions
g1 4

g2 4
g3 3

128

7

4

7

8

5 4

5

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Peeling of Bad Graphs (Simplified)
Assume “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”.

#collisions
g1 3

g2 4
g3 3

12

7

4

7

8

5 4

5

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Peeling of Bad Graphs (Simplified)
Assume “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”.

#collisions
g1 3

g2 4
g3 3

12

7

4

7

8

5 4

5

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Peeling of Bad Graphs (Simplified)
Assume “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”.

#collisions
g1 2

g2 3
g3 3

12

4

7

8

5 4

5

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Peeling of Bad Graphs (Simplified)
Assume “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”.

#collisions
g1 2

g2 3
g3 3

12

4

7

8

5 4

5

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Peeling of Bad Graphs (Simplified)
Assume “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”.

#collisions
g1 2

g2 3
g3 3

12

4

7

8

5 4

5

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Peeling of Bad Graphs (Simplified)
Assume “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”

#collisions
g1 2

g2 3
g3 3

12

4

7

8

5 4

5

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Peeling of Bad Graphs (Simplified)
Assume “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”

#collisions
g1 1

g2 3
g3 3

12

4

7

8

5 4

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Peeling of Bad Graphs (Simplified)
Assume “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”

#collisions
g1 1

g2 3
g3 3

12

4

7

8

5 4T -good ⇔ exists gj with at most one pair of colliding keys

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Peeling of Bad Graphs (Simplified)
If “∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) are T -bad ”

#collisions
g1 1

g2 3
g3 3

12

4

7

8

5 4

then “∃T ′⊆S : G (T ′, h1, h2) forms “peeled graph” ∩ (h1, h2) are T ′-good”

M. Aumüller Graphs Generated by Simple Hash Functions 13/17

Result of Peeling

Pr(∃T ⊆ S : G (T , h1, h2) forms a MOSs ∩ (h1, h2) T -bad)

≤ Pr(∃T ′ ⊆ S : G (T ′, h1, h2) is peeling result ∩ (h1, h2) T ′-good)

can again use first-moment approach

resulting graphs are sparser → they are more likely to occur

use: when process stops each gj , 1 ≤ j ≤ c , has a colliding pair of keys

probability boost of ≈ (1/
√
n)c

probability of BMOSs is O(n/
√
n
c
), which is O(1/ns+1) for c = Θ(s)

Some applications need an additional “reduction step”.
(Preserve collisions, make graphs smaller.)

M. Aumüller Graphs Generated by Simple Hash Functions 14/17

Result

Graph property of interest: A, via first-moment approach

E∗(#subgraphs with property A) = O
(
n−α

)
.

Assume there exists peelable graph property B ⊇ A with

n∑
t=2

tO(1)E∗(#subgraphs with property B with t edges) = O
(
nβ
)
.

Trick: B can be quite general, e. g., “leafless”.

Using c ≥ 2(α + β) g -functions and tables gives

Pr
(h1,h2)∈Z

(Graph contains subgraph with property A) = O(n−α).

M. Aumüller Graphs Generated by Simple Hash Functions 15/17

Result

Graph property of interest: A, via first-moment approach

E∗(#subgraphs with property A) = O
(
n−α

)
.

Assume there exists peelable graph property B ⊇ A with

n∑
t=2

tO(1)E∗(#subgraphs with property B with t edges) = O
(
nβ
)
.

Trick: B can be quite general, e. g., “leafless”.

Using c ≥ 2(α + β) g -functions and tables gives

Pr
(h1,h2)∈Z

(Graph contains subgraph with property A) = O(n−α).

M. Aumüller Graphs Generated by Simple Hash Functions 15/17

Examples

Graphs:

Cuckoo hashing (with a stash)

Applications which need that largest component is O(log n) w.h.p.

Simulation of a uniform hash function (Pagh/Pagh ’03)

Constructing a perfect hash function (Bothelo/Pagh/Ziviani ’13)

Hypergraphs:

Parallel/Sequential Load Balancing: basically match bounds from
fully random case (Schickinger/Steger ’00).

Generalized cuckoo hashing (≥ 3 hash functions, ` ≥ 2 keys per cell):
Admits first-moment approach, but could not find suitable peelable
graph property in the hypergraph setting to prove table loads → 1.

M. Aumüller Graphs Generated by Simple Hash Functions 16/17

Examples

Graphs:

Cuckoo hashing (with a stash)

Applications which need that largest component is O(log n) w.h.p.

Simulation of a uniform hash function (Pagh/Pagh ’03)

Constructing a perfect hash function (Bothelo/Pagh/Ziviani ’13)

Hypergraphs:

Parallel/Sequential Load Balancing: basically match bounds from
fully random case (Schickinger/Steger ’00).

Generalized cuckoo hashing (≥ 3 hash functions, ` ≥ 2 keys per cell):
Admits first-moment approach, but could not find suitable peelable
graph property in the hypergraph setting to prove table loads → 1.

M. Aumüller Graphs Generated by Simple Hash Functions 16/17

Examples

Graphs:

Cuckoo hashing (with a stash)

Applications which need that largest component is O(log n) w.h.p.

Simulation of a uniform hash function (Pagh/Pagh ’03)

Constructing a perfect hash function (Bothelo/Pagh/Ziviani ’13)

Hypergraphs:

Parallel/Sequential Load Balancing: basically match bounds from
fully random case (Schickinger/Steger ’00).

Generalized cuckoo hashing (≥ 3 hash functions, ` ≥ 2 keys per cell):
Admits first-moment approach, but could not find suitable peelable
graph property in the hypergraph setting to prove table loads → 1.

M. Aumüller Graphs Generated by Simple Hash Functions 16/17

Examples

Graphs:

Cuckoo hashing (with a stash)

Applications which need that largest component is O(log n) w.h.p.

Simulation of a uniform hash function (Pagh/Pagh ’03)

Constructing a perfect hash function (Bothelo/Pagh/Ziviani ’13)

Hypergraphs:

Parallel/Sequential Load Balancing: basically match bounds from
fully random case (Schickinger/Steger ’00).

Generalized cuckoo hashing (≥ 3 hash functions, ` ≥ 2 keys per cell):
Admits first-moment approach, but could not find suitable peelable
graph property in the hypergraph setting to prove table loads → 1.

M. Aumüller Graphs Generated by Simple Hash Functions 16/17

Conclusion

We have seen:

a class of hash functions that behaves “well” in different applications

in first-moment type analyses: Can use full randomness, no properties
of hash class exposed

Open:

better bounds for some applications?

bounds beyond first moment?

Thank you!

M. Aumüller Graphs Generated by Simple Hash Functions 17/17

Conclusion

We have seen:

a class of hash functions that behaves “well” in different applications

in first-moment type analyses: Can use full randomness, no properties
of hash class exposed

Open:

better bounds for some applications?

bounds beyond first moment?

Thank you!

M. Aumüller Graphs Generated by Simple Hash Functions 17/17

	Random Graph Theory in the Analysis of Algorithms and Data Structures
	Graphs Generated by Simple Hash Functions

