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Motivation

Theorem (Hwang’s Quasi-Power-Theorem)

Let Ωn be a sequence of real random variables. Suppose the
moment generating function satisfies

E(eΩns) = eu(s)Φ(n)+v(s)(1 +O(κ−1
n ))

under some conditions.
Then

EΩn = u′(0)Φ(n) +O(1),

VΩn = u′′(0)Φ(n) +O(1).

If σ2 := u′′(0) 6= 0, then Ωn−EΩn√
VΩn

is asymptotically normally

distributed.

When is the variance bounded?
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Transducers

transducer T with a finite
number of states

Output(Xn) = sum of the
output

random word Xn ∈ An as
input

today: equidistribution on
An

read from right to left

0

1

0 |0

1 |0

0 |1
1 |1

Example with Xn = 11001

input: 11001
output:

101011

Output(11001) =

4
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Other Probability Model and Several Outputs

0.4 |(0, 1)

0.2 |(0, 3)

0.8 |(1, 9)
0.6 |(1, 7)

All results also possible for:

inputs coming from a
Markov chain

for every transition a
probability

sum of probabilities of
output transitions is 1

Some results are independent of
the choice of this Markov chain.

Several simultaneous outputs.
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Applications

algorithms with finite memory usage

many digit expansions:

Hamming weight
sum of digits function, . . .

many recursions

motifs

completely q-additive functions

digital sequences

q-automatic sequences
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Applications

digit sum of binary expansion

Hamming weight of non-adjacent form
(NAF):

digits {0,±1}, base 2
at least one of any two adjacent
digits is 0

Hamming weight of width-w NAF:

digits {0,±1,±3, . . . ,±(2w−1 − 1)},
base 2
at least w − 1 of w consecutive
digits are 0

0 |0
1 |1

0 1 1
1 |0

0 |00 |1

1 |1

0 |0 1 |0

1

w − 1

w w + 1
1 |1 0 |1

0 |0
1 |0

0 |0 1 |0

0 |0 1 |0

6



Applications

digit sum of binary expansion

Hamming weight of non-adjacent form
(NAF):

digits {0,±1}, base 2
at least one of any two adjacent
digits is 0

Hamming weight of width-w NAF:

digits {0,±1,±3, . . . ,±(2w−1 − 1)},
base 2
at least w − 1 of w consecutive
digits are 0

0 |0
1 |1

0 1 1
1 |0

0 |00 |1

1 |1

0 |0 1 |0

1

w − 1

w w + 1
1 |1 0 |1

0 |0
1 |0

0 |0 1 |0

0 |0 1 |0

6



Applications

digit sum of binary expansion

Hamming weight of non-adjacent form
(NAF):

digits {0,±1}, base 2
at least one of any two adjacent
digits is 0

Hamming weight of width-w NAF:

digits {0,±1,±3, . . . ,±(2w−1 − 1)},
base 2
at least w − 1 of w consecutive
digits are 0

0 |0
1 |1

0 1 1
1 |0

0 |00 |1

1 |1

0 |0 1 |0

1

w − 1

w w + 1
1 |1 0 |1

0 |0
1 |0

0 |0 1 |0

0 |0 1 |0

6



Variability Condition

Theorem (Hwang’s Quasi-Power-Theorem)

Let Ωn be a sequence of real random variables. Suppose the
moment generating function satisfies

E(eΩns) = eu(s)Φ(n)+v(s)(1 +O(κ−1
n ))

under some conditions.
Then

EΩn = u′(0)Φ(n) +O(1),

VΩn = u′′(0)Φ(n) +O(1).

If σ2 := u′′(0) 6= 0, then Ωn−EΩn√
VΩn

is asymptotically normally

distributed.

Assume that T is strongly connected.
Output(Xn) satisfies all asumptions, except maybe the
variability condition σ2 6= 0.
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Bounded Variance

Theorem (Heuberger–K.–Wagner 2015)

Let T be strongly connected. Then the following assertions are
equivalent:

1 The asymptotic variance σ2 is 0.

2 There is a constant k such that the average output of every
cycle is k.

3 There is a constant k such that Output(Xn) = kn +O(1).

Corollary (Heuberger–K.–Wagner 201)

Let T be strongly connected, aperiodic with output
alphabet {0, 1}.
Then the asymptotic variance σ2 is 0 if and only if all output
letters are the same.
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Small Example

1 |0

0 |0

0 |0 1 |0

0 |01 |0
0 |0 1 |0

1 |01 |0

0 |00 |00 |0
0 |0

1 |0 0 |1

1 |1

0 |1
1 |1

1 |2

1 |2

0 |2

1 |1

0 |2
1 |20 |2

1 |0 0 |0

 asymptotic variance 6= 0

Sage: σ2 = 432
2197
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Example: τ -adic Digit Expansion

algebraic integer τ

joint expansion of d-dimensional vectors in Z[τ ]d

redundant digit set D which satisfies

D ∩ τZd = {0}
a subadditivity condition

input: τ -adic expansions with the irredundant digit set A of
length ≤ n with equidistribution

Theorem (Heigl–Heuberger 2012)

If the asymptotic variance σ2 of the minimal Hamming weight with
digit set D is 6= 0, then the minimal Hamming weight is
asymptotically normally distributed.
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Example: τ -adic Digit Expansion

Heigl–Heuberger construct a transducer for each τ and D:

0 |0

cycle with average output 0

but not all minimal weights are 0

0 · · · 0 always leads to the initial
state

 cycle with average output 6= 0

variability condition is satisfied

 asymptotic normality
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Bounded Variance

Theorem (Heuberger–K.–Wagner 2015)
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Idea of the Proof of the Theorem

1 ⇔ 2:

assume: asymptotic expected value of Output(Xn) is 0

probability generating function

A(y , z) =
∑
l∈R

∞∑
n=0

alnK−ny lzn

with K = |A| and aln = number of input words of length n
with output sum l

A(1, z) has a simple dominant pole at z = 1

E(Output(Xn)) = [zn]Ay (1, z) = O(1)

V(Output(Xn)) = [zn]Ayy (1, z) +O(1)
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Idea of the Proof of the Theorem

Decomposition:

∈ C

∈ C

∈ P

probability generating functions

C (y , z), P(y , z)

by the symbolic method:

A(y , z) =
1

1− C (y , z)
P(y , z)

P(1, z) is analytic in |z | < 1 + ε

P(1, 1) 6= 0

1− C (1, z) = (1− z)g(z) with
g(1) 6= 0
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Idea of the Proof of the Theorem

Singularity Analysis  

V(Output(Xn)) = P(1, 1)g(1)−2Cyy (1, 1)n +O(1)

thus,

V(Output(Xn)) = O(1)

⇐⇒ Cyy (1, 1) = 0

⇐⇒
∑
C∈C

Output(C )2K−Length(C) = 0

⇐⇒ ∀C ∈ C : Output(C ) = 0
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Singular Variance-Covariance Matrix

Consider m different outputs k1, . . . , km of a transducer instead of
Output.
Using a multi-dimensional Quasi-Power-Theorem:

Theorem (K. 2015+)

The m output sums are asymptotically jointly normally distributed,
if and only if:

a0Length(C ) + a1k1(C ) + · · ·+ amkm(C ) = 0

holding for all cycles C implies that a0 = · · · = am = 0.
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Bounded Covariance

random variable (Input(Xn),Output(Xn))

2-dimensional version of the Quasi-Power-Theorem

 asymptotic normal distribution

When is the covariance bounded?

covariance bounded ↔ components of the asymptotic random
variable are independent

Definition

An independent transducer is a transducer which has a bounded
covariance of (Input(Xn),Output(Xn)).
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Functional Digraph

Definition (Functional Digraph)

A functional digraph is a directed graph
where every vertex has out-degree 1.

This is a map from a finite set into itself.

Definition

D1 and D2 are the sets of functional
digraphs with one respectively two
components which are subgraphs of the
given transducer.
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Bounded Covariance

InputOutput(D1) =
∑
D∈D1

Input(cycle)Output(cycle),

InputOutput(D2) =
∑
D∈D2

Input(one cycle)Output(other cycle)

Theorem (Heuberger–K.–Wagner 2015)

Suppose the asymptotic expected value of
(Input(Xn),Output(Xn)) is (0, 0).
Then the transducer is independent if and only if

InputOutput(D2) = InputOutput(D1).

Also possible: 2 outputs, Markov chain
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Width-w Non-Adjacent Form

1

w − 1

w w + 1
1 |1 0 |1

0 |0
1 |0

0 |0 1 |0

0 |0 1 |0

asymptotic covariance = 0

arbitrarily large independent
transducers

Hamming weight of binary expansion
and Hamming weight of w -NAF are
independent

w = 2: NAF (Heuberger–Prodinger
2007)
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Width-w Non-Adjacent Form

1

w − 1

w w + 1
1 |1 0 |1

0 |0
1 |0

0 |0 1 |0

0 |0 1 |0

2 ≤ w1 < w2 with w1 6= w2 − 1:

closed walk with input 0

closed walk with input 10w2−1

closed walk with input
10w1−110w1−10 · · · 0

⇒

1 0 0
∗ 1 1
∗ 2 1

 ·
a0

a1

a2

 = 0

 asymptotic normal distribution

21



Gray Code

1

2

3

0 |0

1 |0

0 |−

1 |−

0 |1
1 |1

First values:

0 0 6 101

1 1 7 100

2 11 8 1100

3 10 9 1101

4 110 10 1111

5 111 11 1110

starting transitions unimportant

asymptotic covariance = 0

independent transducer

Hamming weight of binary expansion
and Hamming weight of Gray code are
independent
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Conclusion

combinatorial description for transducers with

bounded variance
singular variance-covariance matrix
bounded covariance

 asymptotically normally distributed

can be checked

without long computations
in general settings
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