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Motivation

Theorem (Hwang's Quasi-Power-Theorem)

Let Q, be a sequence of real random variables. Suppose the
moment generating function satisfies

E(eﬂ"s) _ eu(s)¢(n)+v(5)(1 + O(n;l))

under some conditions.

Then
EQ, = u'(0)®(n) + O(1),

VQ, = u"(0)d(n) + O(1).

If 2 := u"(0) # 0, then Q\"/%)" is asymptotically normally
distributed.

When is the variance bounded? l.l
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Transducers

o transducer 7 with a finite
number of states
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Transducers

o transducer 7 with a finite

number of states 110
1
@ Output(X,) = sum of the
output
o random word X, € A" as 0f1 n
input
o today: equidistribution on 0
An
0[0

@ read from right to left
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Transducers

o transducer 7 with a finite

number of states 110
1
@ Output(X,) = sum of the
output
o random word X, € A" as 0f1 n
input
o today: equidistribution on 0
An
0[0

@ read from right to left
Example with X, = 11001

input: 11001

output: Output(11001) =
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Transducers

o transducer 7 with a finite

number of states 110
1
@ Output(X,) = sum of the
output
o random word X, € A" as 0f1 11
input
o today: equidistribution on 0
An
0[0

@ read from right to left
Example with X, = 11001

input: 11001
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Transducers

o transducer 7 with a finite

number of states 110
1
@ Output(X,) = sum of the
output
o random word X, € A" as 01 n
input
o today: equidistribution on 0
An
0[0

@ read from right to left
Example with X, = 11001

input: 11001

output: 11 Output(11001) =

II'QLPEN RIA
UNIVERSIT

AAAAAAAAAAAAAAAAAAA




Transducers

o transducer 7 with a finite

number of states 110
1
@ Output(X,) = sum of the
output
o random word X, € A" as 0f1 n
input
o today: equidistribution on 0
An
0[0

@ read from right to left
Example with X, = 11001

input: 11001

output: 011 Output(11001) =
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Transducers

o transducer 7 with a finite

number of states 110
1
@ Output(X,) = sum of the
output
o random word X, € A" as 0f1 11
input
o today: equidistribution on 0
An
0[0

@ read from right to left
Example with X, = 11001

input: 11001

output: 1011 Output(11001) =
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Transducers

o transducer 7 with a finite

number of states 110
1
@ Output(X,) = sum of the
output
o random word X, € A" as 0f1 n
input
o today: equidistribution on 0
An
0[0

@ read from right to left
Example with X, = 11001

input: 11001

output: 01011  Output(11001) =
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Transducers

o transducer 7 with a finite

number of states 110
1
@ Output(X,) = sum of the
output
o random word X, € A" as 0f1 n
input
o today: equidistribution on 0
An
0[0

@ read from right to left
Example with X, = 11001

input: 11001

output: 101011  Output(11001) =
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Transducers

o transducer 7 with a finite

number of states 110
1
@ Output(X,) = sum of the
output
o random word X, € A" as 0f1 n
input
o today: equidistribution on 0
An
0[0

@ read from right to left
Example with X, = 11001

input: 11001

output: 101011  Output(11001) =4
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Other Probability Model and Several Outputs

0.2/(0,3)

0.8](1,9)
0.6](1,7)

0.4](0,1)

All results also possible for:

@ inputs coming from a
Markov chain

o for every transition a
probability

@ sum of probabilities of
output transitions is 1

Some results are independent of
the choice of this Markov chain.

Several simultaneous outputs.
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Applications

@ algorithms with finite memory usage
@ many digit expansions:

e Hamming weight

e sum of digits function, ...

@ many recursions

@ motifs
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Applications

@ algorithms with finite memory usage
@ many digit expansions:

e Hamming weight

e sum of digits function, ...

@ many recursions

@ motifs

@ completely g-additive functions
o digital sequences
@ g-automatic sequences
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Applications

0}0
11
o digit sum of binary expansion 8{—
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Applications

0]0
11
o digit sum of binary expansion —
@ Hamming weight of non-adjacent form
(NAF): oo | o oo 1]0
o digits {0, £1}, base 2 170 11
o at least one of any two adjacent 0 ! !
digits is 0
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Applications

0]0
11
o digit sum of binary expansion —
@ Hamming weight of non-adjacent form
(NAF): o | on oo 1o
o digits {0, £1}, base 2 170 11
o at least one of any two adjacent 0 ! !
digits is 0

@ Hamming weight of width-w NAF:
o digits {0, +1,+3,...,£(2¥"1 - 1)},
base 2
o at least w — 1 of w consecutive
digits are 0




Variability Condition

Theorem (Hwang's Quasi-Power-Theorem)

Let Q, be a sequence of real random variables. Suppose the
moment generating function satisfies

E(eﬂ"s) _ eu(s)¢(n)+V(S)(1 + O(Hgl))

under some conditions.

Then
= u'(0)®(n) + O(1),

VQ = u"(0)®(n) + O(1).

If 72 := u"(0) # 0, then % is asymptotically normally
distributed.

Assume that 7 is strongly connected.
Output(X,) satisfies all asumptions, except maybe the l.l )
variability condition o2 # 0. CNLIERSITET



Bounded Variance

Theorem (Heuberger—K.-Wagner 2015)

Let T be strongly connected. Then the following assertions are
equivalent:

@ The asymptotic variance o2 is 0.

@ There is a constant k such that the average output of every
cycle is k.

© There is a constant k such that Output(X,) = kn+ O(1).




Bounded Variance

Theorem (Heuberger—K.-Wagner 2015)

Let T be strongly connected. Then the following assertions are
equivalent:

@ The asymptotic variance o2 is 0.

@ There is a constant k such that the average output of every
cycle is k.

© There is a constant k such that Output(X,) = kn+ O(1).

Corollary (Heuberger—K.—~Wagner 201)

Let T be strongly connected, aperiodic with output

alphabet {0, 1}.

Then the asymptotic variance o is 0 if and only if all output
letters are the same.




Small Example

~» asymptotic variance # 0
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Small Example

~» asymptotic variance # 0
2 _ 432

Sage: 0¢ = 2%
g 2197 l.lﬂLPEN—nDRln
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Example: 7-adic Digit Expansion

o algebraic integer 7

@ joint expansion of d-dimensional vectors in Z[r]¢
@ redundant digit set D which satisfies

o DN7Z4 = {0}

e a subadditivity condition
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Example: 7-adic Digit Expansion

o algebraic integer 7

@ joint expansion of d-dimensional vectors in Z[r]¢
@ redundant digit set D which satisfies
o DN7Z4 = {0}
e a subadditivity condition
@ input: T-adic expansions with the irredundant digit set A of
length < n with equidistribution
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Example: 7-adic Digit Expansion

o algebraic integer 7
@ joint expansion of d-dimensional vectors in Z[r]¢
@ redundant digit set D which satisfies

o DN7Z4 = {0}

e a subadditivity condition

@ input: T-adic expansions with the irredundant digit set A of
length < n with equidistribution

Theorem (Heigl-Heuberger 2012)

If the asymptotic variance o2 of the minimal Hamming weight with
digit set D is # 0, then the minimal Hamming weight is
asymptotically normally distributed.
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Example: 7-adic Digit Expansion

Heigl-Heuberger construct a transducer for each 7 and D:

@ cycle with average output 0

o
o

0[0
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Example: 7-adic Digit Expansion

Heigl-Heuberger construct a transducer for each 7 and D:

cycle with average output 0

but not all minimal weights are 0

@ 0---0 always leads to the initial
°© ° state
@ ~- cycle with average output # 0
0]0
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Example: 7-adic Digit Expansion

Heigl-Heuberger construct a transducer for each 7 and D:

cycle with average output 0

but not all minimal weights are 0

@ 0---0 always leads to the initial
° ° state
@ ~- cycle with average output # 0
@ variability condition is satisfied
@ ~- asymptotic normality
00
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Bounded Variance

Theorem (Heuberger—K.-Wagner 2015)

Let T be strongly connected. Then the following assertions are
equivalent:

@ The asymptotic variance o2 is 0.

@ There is a constant k such that the average output of every
cycle is k.

© There is a constant k such that Output(X,) = kn+ O(1).

AAAAAAAAAAAAAAAAAAA



|dea of the Proof of the Theorem
1< 2:

@ assume: asymptotic expected value of Output(X,) is O
@ probability generating function

_y,Z) ZZaInK nyl z"

IeR n=0

with K = | A| and aj, = number of input words of length n
with output sum /

e A(1,z) has a simple dominant pole at z =1
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|dea of the Proof of the Theorem
1 < 2:

@ assume: asymptotic expected value of Output(X,) is O

@ probability generating function

z)= Z i amK "y 2"

IeR n=0

with K = | A| and aj, = number of input words of length n
with output sum /

e A(1,z) has a simple dominant pole at z =1

E(Output(X,)) = [z"]A,(1,2z) = O(1)
V(Output(X,)) = [2"Ay (1, 2) + O(1)
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Idea of the Proof of the Theorem

Decomposition:
cC
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|dea of the Proof of the Theorem

@ probability generating functions

C(y,z), P(y,2)

Decomposition:
cC
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|dea of the Proof of the Theorem

Decomposition: @ probability generating functions

ec
Cly,2), P(y,z2)
ec @ by the symbolic method:
Aly.2) = =Py 2)
= ————~ . Z
PETIS )
cP
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|dea of the Proof of the Theorem

Decomposition: @ probability generating functions

cC
Cly,2), Ply.2)
ec @ by the symbolic method:
Ay 2) = 1o P2)
PETI )
e P(1,z)is analyticin |z| <1+¢
cP
e P(1,1)#0
O— _ .
e 1—-C(1,2z) =(1—2)g(z) with
g(1) #0
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|dea of the Proof of the Theorem

@ Singularity Analysis ~
V(Output(X,)) = P(1,1)g(1)2Cyy(1,1)n + O(1)
e thus,

V(Output(X,)) = O(1)

— Gy(1,1)=0

= Z Output(C)2K ~teneth(€) — o
cecC

= VC € C: Output(C) =0
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Singular Variance-Covariance Matrix

Consider m different outputs ki, ..., kpy, of a transducer instead of
Output.
Using a multi-dimensional Quasi-Power-Theorem:

Theorem (K. 2015+)

The m output sums are asymptotically jointly normally distributed,
if and only if:

agLength(C) + a1ki(C) + -+ -+ amkm(C) =0

holding for all cycles C implies that ag = --- = a,, = 0.
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Bounded Covariance

e random variable (Input(X,), Output(X,))
@ 2-dimensional version of the Quasi-Power-Theorem

@ ~~ asymptotic normal distribution
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Bounded Covariance
random variable (Input(X,), Output(X,))
2-dimensional version of the Quasi-Power-Theorem

o
o
@ ~~ asymptotic normal distribution
@ When is the covariance bounded?
o

covariance bounded <+ components of the asymptotic random
variable are independent

Definition

An independent transducer is a transducer which has a bounded
covariance of (Input(Xp,), Output(Xp)).
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Functional Digraph

Definition (Functional Digraph)

A functional digraph is a directed graph

where every vertex has out-degree 1. O—>OQ

This is a map from a finite set into itself.
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Functional Digraph

Definition (Functional Digraph)

A functional digraph is a directed graph

where every vertex has out-degree 1. O—(:)Q

This is a map from a finite set into itself.

Definition
D1 and D, are the sets of functional %}

digraphs with one respectively two
components which are subgraphs of the
given transducer.
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Bounded Covariance

InputOutput(D) = Z Input(cycle)Output(cycle),
DEDl

InputOutput(D,) = Z Input(one cycle)Output(other cycle)
DeD,
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Bounded Covariance

InputOutput(D) = Z Input(cycle)Output(cycle),
DGDl

InputOutput(D,) = Z Input(one cycle)Output(other cycle)
DeD,

Theorem (Heuberger—K.-Wagner 2015)

Suppose the asymptotic expected value of
(Input(X,), Output(X,)) is (0,0).
Then the transducer is independent if and only if

InputOutput(D2) = InputOutput(Dy).

Also possible: 2 outputs, Markov chain l.l
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Width-w Non-Adjacent Form

@ asymptotic covariance =0
@ arbitrarily large independent
transducers

@ Hamming weight of binary expansion
and Hamming weight of w-NAF are
independent

o w = 2: NAF (Heuberger—Prodinger
2007)
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Width-w Non-Adjacent Form

2 <wy < wp with wy # wp — 1:
o closed walk with input 0
o closed walk with input 10%2~1

o closed walk with input
1owi—t1om-1p...0
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Gray Code

First values:

o] o[ 6] 101
1 1] 7| 100
1/0 2 11| 8 | 1100
3] 10] 9 | 1101
1= 4111010 1111
01 5111 [ 11 ] 1110

1)1

0|—
0]0
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Gray Code

110

0[1

0]—

11

0[0

First values:
0 0| 6 101
1 1|7 100
21 11| 8 | 1100
3| 10| 9 | 1101
41110 | 10 | 1111
51111 | 11| 1110

@ starting transitions unimportant
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Gray Code

First values:

0 0| 6 101
1 117 100
1o 2| 11| 8 [ 1100
3| 10| 9 | 1101
1= 4] 110 | 10 | 1111
0|1 5] 111 | 11 | 1110

th @ starting transitions unimportant
o= @ asymptotic covariance =0

00 @ independent transducer
@ Hamming weight of binary expansion

and Hamming weight of Gray code are
independent

AAAAAAAAAAAAAAAAAAA




Conclusion

@ combinatorial description for transducers with
e bounded variance
e singular variance-covariance matrix
e bounded covariance

@ ~~ asymptotically normally distributed

@ can be checked

e without long computations
e in general settings
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