
DIPLOMARBEIT

Abzählung von Automaten, formalen
Sprachen und verwandten Strukturen

Ausgeführt am Institut für
Diskrete Mathematik und Geometrie
der Technischen Universität Wien

unter der Anleitung von
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Bernhard Gittenberger

durch

Georg Sedlitz
Vogelsanggasse 39-41/8-9

1050 Wien

Datum Unterschrift

DIPLOMA THESIS

Enumeration of Automata, Formal
Languages and Related Structures

Author
Georg Sedlitz

Supervisor
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Bernhard Gittenberger

Abstract

One way of characterizing regular languages is through finite deterministic or

nondeterministic automata. A counting sequence can be obtained by consid-

ering automata with n states over an input alphabet of size k. We study the

asymptotic behaviour of this sequence for different classes of automata and

their relations to other structures. Upper and lower bounds are obtained for

the number of automata and the number of accepted languages using a variety

of methods ranging from number theory and graph theory to complex analy-

sis. Furthermore, we will introduce a method of random sampling for initially

connected automata.

1

Acknowledgement

I want to thank my supervisor, Dr. Bernhard Gittenberger, for introducing

me to this topic and for his encouragement during the writing process of this

thesis. Furthermore I want to thank both Dr. Bernhard Gittenberger and Dr.

Alois Panholzer for their excellent lectures on enumerative combinatorics and

analysis of algorithms, which were a joy to attend and provided the basis for

this thesis.

I also want to thank my family for supporting me throughout my studies

and always being there for me. Finally I want to thank my girlfriend Astrid

for thoroughly proofreading this thesis and for her much valued advices.

2

Contents

1 Introduction 5

1.1 Basic definitions and notions . 7

1.1.1 Automata and regular expressions 7

1.1.2 The Myhill-Nerode theorem 9

1.1.3 Equivalence of DFAs and NFAs 12

1.1.4 A small example . 13

1.2 Some words on asymptotics . 15

2 Important Methods 19

2.1 Powerseries . 19

2.2 Lagrange’s inversion formula . 21

2.3 Combinatorial structures . 22

2.4 Multivariate generating functions 25

2.5 Introduction to the saddle point method 27

3 Minimal Deterministic Finite Automata 31

3.1 The unary case . 32

3.2 Alphabets with more than one letter 36

3.2.1 Lower bounds . 36

3.2.2 Upper bounds . 38

4 Nondeterministic Finite Automata 43

4.1 The unary case . 43

4.1.1 Lower bounds . 43

4.1.2 Upper bounds . 49

3

CONTENTS

4.2 Alphabets with more than one letter 59

4.2.1 Lower bounds . 59

4.2.2 Upper bounds . 60

4.3 NFA vs. DFA . 61

5 Finite Languages and Their Acceptors 65

5.1 Finite language DFAs . 65

5.2 Finite language NFAs . 67

6 Initially Connected DFAs 71

6.1 Representation and enumeration 73

6.1.1 String representation . 74

6.1.2 Boxed Dyck diagrams 81

6.1.3 Asymptotics of ICDFAs 86

6.2 A closer look at the Stirling numbers 87

7 Random Sampling 93

7.1 The Boltzmann Model . 94

7.1.1 Building a Boltzmann sampler 95

7.1.2 Exponential Boltzmann samplers 100

7.2 Sampling automata . 101

7.2.1 An open conjecture . 105

4

Chapter 1

Introduction

Regular expressions and finite automata were originally developed with neu-

ron nets and switching circuits in mind [12, p.9]. Since then, a wide range

of different applications has arisen. To name a few: the lexical analyzer of

a compiler, pattern matching and text processing in text editors [12, p.46],

natural language processing and speech recognition [18].

Probably the clearest and most accessible example of finite automata is the

use in vending machines [2].

Example: A vending machine Let us consider a vending machine that

only accepts e 1 and 50 ct coins. Chocolate bars can be bought for a price of

e 1.50. There are 3 possible inputs for this machine: Inserting e 1, inserting

e 0.50 and selecting a chocolate bar. The vending machine will keep track of

the balance. If there is enough money to buy a chocolate bar, the machine

will dispense the chocolate bar and, if necessary, the change. The machine will

not react to invalid inputs such as selecting a chocolate bar when the balance

is only e 0.50 or inserting more money when the balance is already e 1.50. In

this case the additional money is dispensed immediately. The behaviour of

this machine can be visualized with the diagram in Figure 1.1.

5

CHAPTER 1. INTRODUCTION

0.0

0.5 1.0 1.5

2.0

s

s s 50, 1

50, 1

50

50 50

1

1

1

s

s

Figure 1.1: A vending machine with inputs “s” for selecting, “50” for inserting

50 ct and “1” for inserting e 1.

Aside from the applications in software engineering and computer science,

finite automata and regular languages are also of interest from a strictly math-

ematical point of view, due to the naturalness of the concept of regular lan-

guages. The class of regular languages can be defined not only using regular

expressions, regular grammars or finite automata, but also by purely algebraic

approaches such as recognizing monoids or right-congruence classes.

In this thesis we will focus on enumerating automata and their languages.

The study of automata and their counting sequences according to various crite-

ria goes back to the year 1959, when Victor A. Vyssotsky [26] wrote a technical

report on this subject at the Bell Telephone Laboratories. Since then a lot of

work has gone into counting automata, but often ignoring the languages. More

recently, not only automata with different properties have been enumerated,

but also the accepted languages of automata with special properties [5]. We

try to cover the most important results on this subject and will introduce some

works of Jeffrey Shallit, Robert W. Robinson, Michael Domaratzky, Valery A.

Liskovets et al.

6

CHAPTER 1. INTRODUCTION

1.1 Basic definitions and notions

1.1.1 Automata and regular expressions

We can think of a deterministic finite automaton (DFA) as a machine that

reads words letter by letter. Depending on the letter it reads, the automaton

changes its state. After the word is read, the automaton does or does not

accept the word, depending on the current state.

Definition 1.1. More precisely, a DFA is a 5-tuple (Q,Σ, δ, q0, F) where

• Q is a finite set of states,

• Σ is the alphabet, a finite set of letters,

• δ is the transition function, a map Q×Σ→ Q, which gives the next

state depending on the current state and the letter that is being

read,

• q0 is the initial state,

• and F ⊆ Q is the set of accepting states.

The transition function can be naturally extended to all pairs of states q and

finite words ω in Σ∗ as follows: Let ω ∈ Σ∗ be a word, a ∈ Σ a letter and q ∈ Q
a state, then we can recursively define δ(q, ωa) := δ(δ(q, ω), a). Sometimes we

want to write q · ω instead of δ(q, ω) in favour of readability if the context is

clear.

Definition 1.2. Let M = (Q,Σ, δ, q0, F) be a DFA, then we say that M

accepts the word ω if and only if δ(q0, ω) ∈ F and the language accepted

by M is the set of all words accepted by M .

7

CHAPTER 1. INTRODUCTION

Definition 1.3. We say that a DFA is initially connected if for every state

p there exists a word ω such that δ(q0, ω) = p.

A DFA is minimal if there exists no other DFA with fewer states ac-

cepting the same language.

It is well known that minimal automata are unique up to isomorphism, meaning

that for two minimal automata M = (Q,Σ, δ, q0, F) and M ′ = (Q′,Σ, δ′, q′0, F
′)

accepting the same language, there exists a bijection φ : Q → Q′ such that

φ(F) = F ′ and φ(δ(q, ω)) = δ′(φ(q), ω) for all states q, q′ and all words ω (see

[12], Theorem 3.10 and Subsection 1.1.2).

Definition 1.4. Two states p, q of a DFA are said to be equivalent if for

all words ω we have δ(p, ω) ∈ F ⇔ δ(q, ω) ∈ F .

A DFA with two equivalent states cannot be minimal, since one could replace

the two states with a single state.

A nondeterministic finite automaton (NFA) is defined as above as a 5-tuple

(Q,Σ, δ, q0, F), except for the transition function δ : Q × Σ → 2Q which now

maps a pair (q, a) to a subset of states. We say that an NFA accepts some

word ω if there exists a path in the transition diagram starting at q0, labelled

with the letters of ω and ending at an accepting state. Initial connectedness

of an NFA is defined in the same way as for a DFA: Every state is reachable

from the initial state q0.

There are different ways of defining regular expressions, for example as the

class of languages accepted by a DFA. Another approach to the class of regular

languages is through regular expressions. Naturally, every regular expression

describes a regular language.

8

CHAPTER 1. INTRODUCTION

Definition 1.5. A regular expression over a finite alphabet Σ can be

defined using a small set of rules:

• ∅ and ε, the empty string, are regular expressions.

• Every letter α ∈ Σ is a regular expression.

• For regular expressions E1 and E2 we have: E1 ∪ E2, E1 · E2 and

E∗1 are again regular expressions, thus regular languages are closed

under union, concatenation and the Kleene star.

Note that Σ = {a} ∪ {b} ∪ . . . is also a regular expression as a finite union of

singletons.

Another special type of automaton is an NFA with ε-transitions. The def-

inition of an NFA can be extended such that changes of states are possible

without reading a letter. We will not go into the details, but nonetheless want

to state the following important result.

Theorem 1.6. The following classes of languages are one and the same,

namely the regular languages:

• languages accepted by a DFA

• languages accepted by an NFA

• languages accepted by an NFA with ε-transitions

• languages defined by a regular expression.

For the proof and additional information we refer to John E. Hopcroft [12,

pp.13-35].

1.1.2 The Myhill-Nerode theorem

The previously mentioned property of uniqueness up to isomorphism of DFAs

does not hold for minimal NFAs.

9

CHAPTER 1. INTRODUCTION

To get a small glimpse of automata theory and a better understanding of

minimal DFAs we want to briefly present the Myhill-Nerode theorem and its

proof. Not only will we get a proof for the uniqueness of minimal DFAs but

also see a purely algebraic approach to regular languages.

Definition 1.7. Let D be a DFA with alphabet A. The relation ∼D
defined by

v, w ∈ A∗ : v ∼D w :⇔ δ(q0, v) = δ(q0, w)

is called the right congruence of D and is an equivalence relation on A∗.

We identify two words if they end in the same state when read by the automa-

ton. This means that the automaton is not able to distinguish between those

words.

Definition 1.8. Let L be a language. The relation ∼L defined by

w1, w2 ∈ A∗ : w1 ∼L w2 :⇔ ∀v ∈ A∗ : w1v ∈ L⇔ w2v ∈ L

is called the right congruence of L and is an equivalence relation on A∗.

We observe that v ∼D w implies v ∼L(D) w, therefore ∼D is a refinement

of ∼L(D).

We define w−1L := {v|wv ∈ L} as the left quotient of the language L.

Note that the left quotients are exactly the equivalence classes of the right

congruence of L, since

∀w1, w2 ∈ A∗ : w1 ∼L w2 ⇔ w−1
1 L = w−1

2 L.

10

CHAPTER 1. INTRODUCTION

Theorem 1.9 (Myhill-Nerode). Let A be a finite alphabet and L ⊂ A∗.

We call the number of equivalence classes of ∼L the index of ∼L. The

following two statements are equivalent.

1. L is a regular language.

2. The index of ∼L is finite.

Sketch of the proof: (1. ⇒ 2.) If L is regular then there is a DFA M =

(Q,Σ, δ, q0, F) that accepts L. W.l.o.g. the automaton M is initially con-

nected. The set of states Q is finite and the equivalence classes of ∼M can be

identified with the states q ∈ Q. Because ∼M is a refinement of ∼L(M) we get

index(∼L) ≤ index(∼M) <∞.

(2.⇒ 1.) Given the fact that L is of finite index, a canonical automaton that

accepts L can be constructed using the left quotients as states. We define:

• Q := {w−1L|w ∈ A∗}

• q0 := ε−1L = L

• F := {w−1L|w ∈ L}

• δ(w−1L, v) := v−1(w−1L) = (wv)−1L.

This automaton not only accepts L, but is also minimal since for any other

(initially connected) DFA M ′ with L(M ′) = L and states Q′ we have

|Q| = index(∼L) ≤ index(∼M ′) = |Q′|.

Furthermore it can be shown that every other minimal DFA that accepts L is

isomorphic to the constructed automaton M by a natural bijection [12, p.68].

11

CHAPTER 1. INTRODUCTION

1.1.3 Equivalence of DFAs and NFAs

Since DFAs and NFAs are of the same expressive power, the set of all languages

over a fixed alphabet accepted by NFAs equals the set of languages accepted

by DFAs. We find:

Theorem 1.10. Let Σ be an alphabet.

1. For every DFA there exists an NFA accepting the same language.

2. For every NFA there exists a DFA accepting the same language.

Proof. 1. A given deterministic finite automaton D = (Q,Σ, δ, q0, F) is basi-

cally already an NFA. More precisely: The transition diagram does not change,

but formally one has to modify the transition function from δ(q, a) = qa to

δ(q, a) = {qa}.
2. For a given NFA N = (Q,Σ, δ, q0, F) we construct a DFA D over the

same alphabet, in the following manner:

• D := (Q′,Σ, δ′, q′0, F
′)

• Q′ := 2Q, the set of all subsets of Q.

• The transition function δ′ is chosen in such a way that it can keep track

of all possibles states in the NFA for some input word,

q′0 := {q0} and δ′(q′, a) :=
⋃
q∈q′

δ(q, a).

With this choice the set δ′(q′0, ω) contains all the states that can be

reached reading the word ω in the original given NFA N .

• Therefore every state in Q′ that contains at least one of N ′s final state

should be final and

F ′ :=
{
q′ ∈ 2Q|q′ ∩ F 6= ∅

}
.

12

CHAPTER 1. INTRODUCTION

The construction above gives gk(n) ≤ Gk(n) ≤ gk (2n) with Gk(n) denoting

the number of distinct languages accepted by NFAs with n states and gk(n)

denoting the number of distinct languages accepted by DFAs with n states,

which will be examined later in this thesis. The constructed DFA has 2n states

but is not necessarily minimal, thus the minimal DFA of an NFA language has

≤ 2n states. For now it remains unclear if this bound is tight. In other words:

Are there NFAs with n states such that the minimal DFA accepting the same

language has exactly 2n states? We will give an answer to this question in

Theorem 4.16 as observed by Domaratzki, Kisman and Shallit [5].

1.1.4 A small example

Let us recap this section by studying a simple language over the alphabet

Σ = {a, b},
L = {a, b}∗aa{a, b}∗.

This is the language of all words containing at least two consecutive a’s. L is

regular. According to the Myhill-Nerode theorem the relation ∼L is of finite

index and can be used to construct the minimal DFA accepting L. To calculate

all the left-quotients of L, we use the identities

• w−1(v−1L) = (vw)−1L,

• w−1(L1 ∪ L2) = w−1L1 ∪ w−1L2 and

• (w−1L)c = w−1(Lc).

We start with q0 := ε−1L = L and calculate left quotients until this process

does not generate new ones,

a−1L = a−1
(
Σ+aaΣ∗ ∪ aaΣ∗

)
= Σ∗aaΣ∗ ∪ aΣ∗ = L ∪ aΣ∗.

This will be the state δ(q0, a). Now we calculate δ(q0, b) by

b−1L = b−1 (Σ∗aaΣ∗) = L.

13

CHAPTER 1. INTRODUCTION

This is again q0. Next we try δ(q0, aa). This approach can be thought of as a

breadth-first search in the transition diagram. We calculate (aa)−1L by

a−1
(
a−1L

)
= a−1 (L ∪ aΣ∗) = Σ∗.

This is a dead end since for all words ω we have ω−1Σ∗ = Σ∗. So our next

transition to be calculated is δ(q0, ab),

b−1
(
a−1L

)
= b−1 (L ∪ aΣ∗) = L ∪ ∅ = L.

Since this set of left-quotients is closed under forming left-quotients we have

found our states and already know the transition function. The states are

q0 := L, q1 := a−1L = L ∪ aΣ∗ and q2 := (aa)−1L = Σ∗.

The final states are the states ω−1L with ω ∈ L. Since ε /∈ L and a /∈ L but

aa ∈ L, the single final state is q2. The resulting DFA in Figure 1.2 is the

unique (up to isomorphism) minimal DFA accepting L.

q0 q1 q2

b

a

b

a

a,b

Figure 1.2: The DFA obtained from the left-quotients of L

The language L can also be described using an NFA.

q0 q1 q2

a,b

a a

a,b

Figure 1.3: An NFA accepting L

14

CHAPTER 1. INTRODUCTION

To get a better picture of the equivalence of DFA and NFA languages, let

us take a look at the algorithm for finding a DFA accepting the same language.

The states of the new DFA are all the subsets of the NFA,

∅, {q0}, {q1}, {q2}, {q0, q1}, {q0, q2}, {q1, q2} and {q0, q1, q2}.

We will name these states ∅, 0, 1, 2, 01, 02, 12 and 012. The initial state is

{q0} = 0 and the final states are all sets containing a final state of the original

automaton: 2, 02, 12 and 012. Now we just have to detect which set of states

can be reached from a set of states using a single letter. The resulting DFA is

visualized in Figure 1.4.

0 01 012 02

∅ 1 2 12

b

a

b

a

a

b

a

b

a,b

b

a

a,b

a,b

Figure 1.4: A DFA accepting L

Notice that the states ∅, 1, 2 and 12 are unreachable. This procedure

simply gives one DFA accepting L, not necessarily the minimal DFA.

1.2 Some words on asymptotics

Upper and lower bounds give us an idea of the growth of a sequence or func-

tion. More precise estimates are given by other (simpler) terms with the same

asymptotic behaviour.

15

CHAPTER 1. INTRODUCTION

Definition 1.11. The functions f and g are said to be asymptotically

equivalent, written

f ∼ g

if and only if

lim
x→∞

f(x)

g(x)
= 1.

This is an equivalence relation.

In terms of the Landau notation we find that f ∼ g ⇔ f − g = o(g).

As an example for asymptotic equivalence we give Stirling’s well known ap-

proximation formula. It states that

n! ∼
(n
e

)n√
2πn. (1.1)

This asymptotic estimate is often of great use, since factorials arise in many

counting problems.

Another example is the following observation: Two polynomials p(x) and q(x)

are asymptotically equivalent if and only if they are of the same order and

their leading coefficients are the same. Note that one can multiply and divide

when working with asymptotic functions, given that the functions are nonzero.

For example let an/bn ∼ cn then we get an ∼ bn · cn.

Another example for handling asymptotic functions is

an ∼ bn ⇒ log an ∼ log bn.

This is true since

lim
n→∞

log an
log bn

= lim
n→∞

log an − log bn
log bn

+ 1 = lim
n→∞

log an
bn

log bn
+ 1

= lim
n→∞

log 1

log bn
+ 1 = 1.

On the other hand, we have n ∼ n+ 1 but exp(n) � exp(n+ 1) since

exp(n)/ exp(n+ 1)→ 1/e 6= 1. This raises the question:

For which functions h does f ∼ g imply h(f) ∼ h(g)?

16

CHAPTER 1. INTRODUCTION

Furthermore: Under which conditions does f ∼ g imply f−1 ∼ g−1? Answers

to both of these questions are provided by R. C. Entringer [7]. Without proof

we state the following theorem.

Theorem 1.12.

1. Let f(x) → ∞ and f(x) ∼ g(x) as x → ∞. If h(x) is monotonic

and h′(x)/h(x) = O(1/x) then h(f(x)) ∼ h(g(x)).

2. If h′(x) is strictly monotonic for x sufficiently large and h(x)/h′(x) =

o(1), then there are functions f(x) and g(x) such that f(x) ∼ g(x)

but h(f(x)) � h(g(x)).

For example the natural logarithm h(x) = log(x) satisfies these conditions

since
h′(x)

h(x)
=

1

x log(x)
= O(1/x) for x→∞.

For the proof of Theorem 4.2 we will need the following conditions that preserve

asymptotic equivalence for inverse functions.

Theorem 1.13.

1. Let f(x)→∞ and f(x) ∼ g(x) as x→∞. If h(x) ∼ f−1(x), g−1(x)

exists, h is monotonic and h′(x)/h(x) = O(1/x), then h(x) ∼ g−1(x).

Therefore f−1(x) ∼ g−1(x).

2. Let f(x) → ∞ and h(x)/h′(x) = o(1). If h(x) = f−1(x) and both

h′(x) and h(x)/h′(x) are strictly increasing for x sufficiently large

then there is a function g(x) with inverse g−1(x) such that we have

f(x) ∼ g(x) but f−1(x) � g−1(x).

.

17

CHAPTER 1. INTRODUCTION

18

Chapter 2

Important Methods

In this thesis we will not explain enumerative combinatorics from scratch. We

will roughly outline the most important methods we use and refer to other

works like [25], that provide an introduction to this topic.

2.1 Powerseries

Definition 2.1. For a real or complex sequence (an)n∈N we call the power

series

A(z) =
∑
n≥0

anz
n

its generating function (GF), or ordinary generating function (OGF). The

power series

Â(z) =
∑
n≥0

anz
n

n!

is called the exponential generating function (EGF) of an.

Generating functions are an important tool when studying counting sequences.

They can be approached as formal power series or as analytic functions. Formal

power series can be observed without worrying about convergence (this would

be a problem for fast-growing coefficients). The big advantage of analytic

functions is that many results from complex analysis are applicable. We will

19

CHAPTER 2. IMPORTANT METHODS

distinguish between these two approaches only if necessary.

A few examples: The generating function of the sequence

〈12, 8, 4, 0, 0, 0, 0, ...〉 is 12 + 8z + 4z2.

The GF of the constant sequence an = 1 is∑
n≥0

zn =
1

1− z
.

The GF of fn = n for n ∈ N can be obtained by observing(
1

1− z

)′
=
(
1 + z + z2 + z3 + ...

)′
= 1 + 2z + 3z2 + 4z3 +

and multiplying with z

∑
n≥0

nzn = z ·
(

1

1− z

)′
=

z

(1− z)2
.

We often want to obtain the coefficients for a given GF. We write [zn]F (z) for

the n-th coefficient of the function F (z),

[zk]F (z) = [zk]
∑
n≥0

fnz
n = fk.

The n-th coefficient can be obtained by deriving and then evaluating at 0,

i.e. fn = F (n)(0)
n!

. Sometimes a closed expression can be found, for example

[zn](1 + z)α =

(
α

n

)
.

Using Newton’s generalized binomial coefficients,(
r

k

)
=
r · (r − 1) · ... · (r − k + 1)

k!
,

we get an even stronger result. For r ∈ C and k ∈ N we have the following

lemma.

20

CHAPTER 2. IMPORTANT METHODS

Lemma 2.2. If α, β ∈ C then it holds that

[zn]
1

(1− βz)α
=

(
α + n− 1

n

)
βn.

Proof. We apply the binomial theorem.

[zn]
1

(1− βz)α
= [zn]

∑
k≥0

(
−α
k

)
(−β)kzk =

(
−α
n

)
(−1)nβn

=
−α · (−α− 1) · ... · (−α− n+ 1)

n!
(−1)nβn

=
α · (α + 1) · ... · (α + n− 1)

n!
βn =

(
α + n− 1

n

)
βn

We observe some important properties for coefficients of GFs.

Lemma 2.3. For power series A(z), B(z) and λ ∈ C we have

[zn] (A(z) +B(z)) =[zn]A(z) + [zn]B(z),

[zn] (λA(z)) =λ · [zn]A(z) and

[zn]A(z) =[zn+1] (z · A(z)) .

2.2 Lagrange’s inversion formula

For a given formal power series g(z) =
∑

n≥0 gnz
n an inverse power series g−1

exists if and only if g0 = 0 and g1 6= 0. It follows that g(z) can be written as

g(z) = z
(
g1 + g2z + g3z

2 + . . .
)

= z
1

φ(z)
,

with some power series φ with φ(0) 6= 0. We substitute z with g−1(z) to get

the identity

z =
g−1(z)

φ(g−1(z))

21

CHAPTER 2. IMPORTANT METHODS

which can be used to calculate the coefficients of g−1(z). This explains the

name of the following theorem, Lagrange’s inversion formula. Not only can

it be applied to inverse functions, but also to functions which are not given

explicitly, but instead as a specific solution of an equation.

Theorem 2.4 (Lagrange’s inversion formula). Let φ(x) =
∑

n≥0 φnx
n

with φ0 6= 0 and f(u) be another power series. If further z = u
φ(u)

then

[zn]f(u) =
1

n
[un−1]f ′(u) (φ(u))n .

Let us for example consider the inverse function of x 7→ xex, the Lambert-W

function, which we will need later. Let us call this function W0. We would like

to give a formula for

[zn]W0(z) = [zn]
∑
n≥0

wnz
n,

although there is no closed expression for W0(z). Nevertheless it is possible

using Theorem 2.4. We apply it to the function W0. As W0 is the inverse of

x 7→ xex we know that z = W0(z)eW0(z). Thus, we have

z =
W0

e−W0
.

Theorem 2.4 is applicable with f(u) = u, u = W0(z) and φ(u) = e−u. We get

[zn]W0(z) =
1

n
[un−1]e−nu =

1

n
[un−1]

∑
k≥0

(−nu)k

k!
=

(−n)n−1

n!
.

2.3 Combinatorial structures

For a comprehensive introduction to enumerative combinatorics see [25], [24]

and [8].

22

CHAPTER 2. IMPORTANT METHODS

Definition 2.5. A countable set A with a real valued weight function w

is called a combinatorial structure, if and only if:

• ∀a ∈ A : w(a) ∈ N

• ∀n ∈ N : |w−1(n)| <∞.

Given such a structure, we can write

An := {x ∈ A|w(x) = n}

and study the counting sequence of A, which we denote by an := |An|. The

GF of this sequence is

A(z) =
∑
α∈A

zw(α) =
∑
n≥0

anz
n.

We will refer to this sequence simply as the GF of A if the weight function is

unambiguous. There is a very useful correspondence between the construction

of a combinatorial structure and its GF.

Theorem 2.6. Let A and B be combinatorial structures with generating

functions A(z) =
∑

n≥0 anz
n and B(z) =

∑
n≥0 bnz

n. Then we have:

• If A ∩ B = ∅ then the GF of C = A∪̇B is C(z) = A(z) +B(z).

• The Cartesian product D = A×B with the weight function (a, b) 7→
w(a) + w(b) has the generating function D(z) = A(z) ·B(z).

In addition to

Disjoint union: A ∪̇ B → A(z) +B(z),

Cartesian product: A×B → A(z) ·B(z),

we also observe finite sequences and substitution of combinatorial structures:

Sequences: A∗ → 1

1− A(z)
,

Substitution: A(B)→ A(B(z)).

23

CHAPTER 2. IMPORTANT METHODS

Finite sequences, also written as Seq(A) instead of A∗, are defined by

A∗ := {ε} ∪̇ A ∪̇ (A×A) ∪̇ (A×A×A) ∪̇ . . .

For the substitution, objects in A are made up of atoms and every atom is

replaced with an object of B. Note that the structure B must not contain an

object of size 0.

Labelled structures: The exponential generating functions will be of use

when handling labelled structures. A labelled combinatorial structure of size

n has n distinct labels, one for each atom, for example the integers 1 to n.

Without any claim to comprehensiveness we give some important constructions

for labelled structures and their exponential generating functions:

Disjoint union: A ∪̇ B → Â(z) + B̂(z),

Labelled product: A∗B → Â(z) · B̂(z),

Sequences: A∗ → 1

1− Â(z)
,

Set: Set(A) → exp(Â(z)),

Cycles: Cyc(A)→ log

(
1

1− Â(z)

)
.

The labelled product of two objects with n1 and n2 labels is the Cartesian

product of the unlabelled objects with (n1 + n2) labels assigned to the atoms.

Let us demonstrate these ideas by finding the EGF of permutations of n

elements. We write Z for an atom and P for the class of all permutations. A

permutation is a set of labelled cycles, therefore

P = Set(Cyc(Z)).

It follows that the EGF of P is

P̂ (z) = exp

(
log

1

1− z

)
=

1

1− z
=
∑
n≥0

n!zn

n!
,

which is the EGF of the sequence n!.

24

CHAPTER 2. IMPORTANT METHODS

2.4 Multivariate generating functions

A multivariate generating function is a power series with two or more argu-

ments. For example, the bivariate case is

F (x, y) =
∑
n,k≥0

fn,kx
nyk.

The sequence of coefficients has a multi-index. It can be used as a “refinement”

of an ordinary generating function. The coefficient fn,k could for example equal

the number of objects of size n and parameter k.

Example: Binary trees They can be specified by the equation

B = {◦} ∪̇ B×{•}×B

where ◦ is the tree consisting only of a root and • is an internal node. When

counting binary trees with n internal nodes the above equation translates to

B(z) = 1 + zB2(z)

for the OGF B(z). This gives

B(z) =
1−
√

1− 4z

2z
.

Now we are interested in the number of binary trees with n internal nodes and

k of them being right side descendants of the root (see Figure 2.1). Let dn,k

be this number and

D(z, y) =
∑
n,k≥0

dn,kz
nyk

the bivariate GF. We can modify the construction of the binary trees and mark

every right side internal node with the variable y. We get

D(z, y) = 1 + zB(z)B(yz) = 1 +
(1−

√
1− 4z)(1−

√
1− 4yz)

4yz
.

Knowing that

[zn]B(z) =
1

n+ 1

(
2n

n

)
,

25

CHAPTER 2. IMPORTANT METHODS

Figure 2.1: A binary tree with n = 4 and k = 1

we can deduce

dn,k = [znyk]D(z, y) =
1

k + 1

(
2k

k

)
1

n− k

(
2n− 2k − 2

n− k − 1

)
.

This is not surprising, since a binary tree of this kind can be interpreted as a

pair of two binary trees with sizes n− k − 1 and k.

Example: Set partitions In Chapter 6 we will come across the Stirling

numbers of the second kind, which count the number of partitions of a set of

size n into k parts. Throughout this thesis, when speaking of Stirling numbers,

we will always mean the Stirling numbers of the second kind. Let
{
n
k

}
be the

number of said partitions and let P be the class of all partitions. A partition

can be constructed as a set of labelled sets of size > 0,

P = Set(Set≥1(Z)).

This translates directly to the EGF

P (z) = ee
z−1.

We can now mark each part making up the partition with the variable y. We

get the bivariate EGF

ey(ez−1) =
∑
n,k≥0

{
n
k

}
znyk

n!
.

26

CHAPTER 2. IMPORTANT METHODS

2.5 Introduction to the saddle point method

A comprehensive guide to this method is found in the book Analytic Combi-

natorics by Flajolet and Sedgewick [8]. A saddle point of an analytic function

f is a solution of the saddle point equation

f ′(z) = 0

with f(z) 6= 0. Let ζ be a saddle point. Imagining the function |f | as a

landscape, we see that ζ is really a saddle point in terms of real analysis. The

reason for this is the maximum modulus principle which states that for any

z0 in the domain of some analytic function, z0 cannot be a local maximum of

|f(z)|. It can also not be a local minimum if z0 is a nonzero of f(z).

The general idea of the saddle point method is to estimate some complex

integral. This can be done by choosing a path of integration that goes through

a saddle point of the integrand in such a way, that in an asymptotic sense,

only the parts of the curve close to the saddle point are of interest.

We want to focus on Cauchy coefficient integrals, which appear when studying

enumerative combinatorics.

Let us demonstrate the saddle point method by finding an asymptotic

estimate for the inverse factorial (which we already know due to Stirling’s

formula). We define

Kn :=
1

n!
= [zn]ez =

1

2πi

∮
ez

zn+1
dz.

The integrand F (z) = ez · z−n−1 has a saddle point at ζ = n + 1. Now we fix

a path of integration encircling the origin. Usually we would choose r := ζ,

but often it is sufficient to settle for an integration path that passes near the

saddle point, but does not go right through it. For convenience we fix r := n

and get

Kn =
1

2πi

∮
ez

zn+1
dz =

1

2π

∫ π

−π

ene
iθ

(neiθ)n+1
· neiθdθ

=
1

2π

en

nn

∫ π

−π
en(eiθ−iθ−1)dθ.

27

CHAPTER 2. IMPORTANT METHODS

We will denote the new exponent by f and eiθ − iθ − 1 by h(θ), thus f(θ) =

n · h(θ). We see that the integrand peaks at θ = 0 since

|enh(θ)| = |en(eiθ−iθ−1)| = eRe(n(eiθ−iθ−1)) = en(cos θ−1).

Our next step is to split the integral into two parts,

In := K(0)
n +K(1)

n =

∫ θ0

−θ0
enh(θ)dθ +

∫ 2π−θ0

θ0

enh(θ)dθ,

with integration paths C0 and C1 such that:

1. The second part does not contribute in the sense of asymptotics, meaning

K
(1)
n = o (In).

2. Along the path of integration of the relevant part K
(0)
n it holds that

f(z) = f(ζ) +
1

2
f ′′(ζ)(z − ζ)2 +O(ηn)

with ηn → 0 for n → ∞ uniformly on C0. This guarantees an approxi-

mation with a Gaussian Integral.

Looking at the second condition for our function nh(θ) = n
∑∞

k=2(iθ)k/k!, we

find that nθ3 →∞ must hold.

This perfectly fits the rule of thumb for the choice of θ0 for Cauchy coefficient

integrals from Analytic Combinatorics [8]:

f ′′(ζ)θ2
0 →∞, f ′′′(ζ)θ3

0 → 0.

Flajolet and Sedgewick refer to this choice as the saddle-point dimensioning

heuristic. Following this heuristic, we want to satisfy

nθ2
0 →∞ and nθ3

0 → 0

with θ0 = nα, which leads us to −1
2
< α < −1

3
. Let θ0 := n−

2
5 . We show that

K
(1)
n does not contribute to In by verifying that it is exponentially small for

n→∞:

|K(1)
n | =

∣∣∣∣∫ 2π−θ0

θ0

enh(θ)dθ

∣∣∣∣ ≤ ∫ 2π−θ0

θ0

|enh(θ)|dθ ≤ 2πen(cos θ0−1)

= 2πen(cosn−0.4−1) = O
(
e−

1
2
n1/5
)
.

28

CHAPTER 2. IMPORTANT METHODS

The last identity can be verified by

n(cosn−2/5 − 1) = n

∞∑
k=1

n−4k/5

(2k)!
(−1)k = −n

1/5

2
+
∞∑
k=2

n1−4k/5

(2k)!
(−1)k

and ∣∣∣∣∣
∞∑
k=2

n1−4k/5

(2k)!
(−1)k

∣∣∣∣∣ ≤
∞∑
k=0

1

(2k)!
= cosh(1).

Now let us move to the central part K
(0)
n . We have h(θ) = −θ2/2 +O(θ3) for

|θ| ≤ θ0, thus

K(0)
n =

∫ θ0

−θ0
enh(θ)dθ =

∫ n−2/5

−n−2/5

e−nθ
2/2dθ

(
1 +O(n−1/5)

)
.

We substitute t :=
√
nθ and get an incomplete Gaussian integral,

K(0)
n =

1√
n

∫ n1/10

−n1/10

e−t
2/2dt

(
1 +O(n−1/5)

)
.

Lemma 2.7. For c > 0 it holds that∫ ∞
c

e−t
2/2dt = O

(
e−c

2/2
)
.

Proof.∫∞
c
e−t

2/2dt

e−c2/2
=

∫ ∞
c

e−(t2−c2)/2dt ≤
∫ ∞
c

e−(t−c)2/2dt =

∫ ∞
0

e−u
2/2du =

√
π

2

Therefore we have

K(0)
n ∼

1√
n

∫ ∞
−∞

e−t
2/2dt =

√
2π

n
.

Finally we estimate

1

n!
=

1

2π

en

nn

∫ π

−π
en(eiθ−iθ−1)dθ =

1

2π

en

nn
In ∼

1

2π

en

nn

√
2π

n
=

1

e−nnn
√

2πn
,

which is exactly the asymptotic behaviour we expected.

29

CHAPTER 2. IMPORTANT METHODS

30

Chapter 3

Minimal Deterministic Finite

Automata

Throughout this thesis we will use the same notation as Domaratzki, Kisman

and Shallit used in [5].

Theorem 3.1. Let fk(n) be the number of different minimal DFAs up to

isomorphism with n states and a k letter input alphabet and let gk(n) be

the number of distinct languages accepted by DFAs with n states over a

k letter alphabet. Then we have

gk(n) = fk(1) + fk(2) + ...+ fk(n).

Proof. The right-hand side of the equation is the number of different minimal

DFAs with at most n states. This is also the number of distinct languages

accepted by DFAs with at most n states. For any language accepted by an

automaton M with m < n states, we can simply add some isolated states, such

that the language is also accepted by an automaton with n states. Thus, the

right-hand side equals gk(n).

31

CHAPTER 3. MINIMAL DETERMINISTIC FINITE AUTOMATA

q6

q5

q4q3

q11

q10

q9 q8

q7

q2q1q0

Figure 3.1: A minimal DFA with 12 states and Σ = {a}

3.1 The unary case

The results in this section are based on the work of Domaratzki, Kisman and

Shallit [5]. For a one letter alphabet we can characterize the minimal DFAs

with n states by three conditions.

Theorem 3.2. A DFA M with states Q = {q0, q1, ..., qn−1} and Σ = {a}
is minimal if and only if all of the following conditions hold.

a) M is initially connected. Thus, it consists of a “tail” and a “loop”, i.e.

δ(qi, a) = qi+1 for 0 ≤ i ≤ n− 2 and δ(qn−1, a) = qj for some j.

b) The loop (containing the states qj, qj+1, ..., qn−1) is minimal. It cannot

be replaced by an equivalent smaller loop.

c) If j 6= 0, the states qj−1 and qn−1 have to be of opposite “finality”.

Therefore exactly one of them is an element of F .

To count these automata, one has to find a formula for the number of prim-

itive words. A word ω is said to be primitive if and only if it cannot be written

as ω = αj for some α ∈ Σ∗ and some integer j ≥ 2. The loop in the transition

diagram is minimal, if and only if the 0-1-sequence obtained by the sequence

of finalities of states is a primitive word. For example the cycle [q3, q4, . . . , q11]

in Figure 3.1 would translate to the sequence [1, 0, 0, 1, 0, 0, 1, 0, 1]. The word

32

CHAPTER 3. MINIMAL DETERMINISTIC FINITE AUTOMATA

100100101 is primitive, thus the given loop is minimal.

To count primitive words we use the Möbius function: µ(n) = (−1)j if n is

the product of j distinct prime numbers and µ(n) = 0 otherwise.

Theorem 3.3. The number of primitive words of length n over a k-letter

alphabet denoted by T (n, k) is

T (n, k) =
∑
d|n

µ(d)kn/d.

Proof. A nonprimitive word is the power of some unique primitive word. Since

the number of primitive words is the number of all words minus the number

of nonprimitive words we get

T (n, k) = kn −
∑
d|n
d<n

T (d, k).

Now we show that the explicit formula satisfies this recursion. We get∑
d|n

µ(d)kn/d = kn −
∑
d|n
d<n

∑
j|d

µ(j)kd/j

kn =
∑
d|n

µ
(n
d

)
kd +

∑
j·i|n
j·i<n

µ(j)ki

0 =
∑
d|n
d<n

µ
(n
d

)
kd +

∑
j·i|n
j·i<n

µ(j)ki.

We compare the coefficients of ki for every i|n and i < n which gives

0 = µ
(n
i

)
+
∑
j|n/i
j<n/i

µ(j) =
∑
j|n/i

µ(j).

The last equation is a well known property of the Möbius function and can be

proven by induction over the number of prime factors.

If an automaton with n states has a tail of length j for some 1 ≤ j < n,

then there exists one state with fixed finality. This is the state right before

entering the loop. There are no restrictions regarding the other states in the

tail. Therefore we can give the following formula.

33

CHAPTER 3. MINIMAL DETERMINISTIC FINITE AUTOMATA

Theorem 3.4. As before, let T (n, k) be the number of primitive words

of length n over a k-letter alphabet. Then we have

f1(n) = T (n, 2) +
∑

1≤j≤n−1

T (n− j, 2)2j−1.

To get an asymptotic estimate for g1(n) (and also for f1(n)) we use the identity

g1(n) =
∑

1≤t≤n

f1(t)

and another formula for g1(n).

Theorem 3.5. The number g1(n) of languages over a 1-letter alphabet

satisfies

g1(n) =
∑

1≤t≤n

T (t, 2)2n−t.

Proof.

g1(n) =
∑

1≤t≤n

f1(t) =
∑

1≤t≤n

(
T (t, 2) +

∑
1≤j≤t−1

T (t− j, 2)2j−1

)

=
∑

1≤t≤n

(
T (t, 2) +

∑
1≤i≤t−1

T (i, 2)2t−i−1

)

=
∑

1≤t≤n

T (t, 2) +
∑

1≤i≤t−1

T (i, 2) ·

(
n∑

t=i+1

2t−i−1

)
=
∑

1≤t≤n

T (t, 2) +
∑

1≤i≤t−1

T (i, 2) ·
(
2n−i − 1

)
=
∑

1≤t≤n

T (t, 2)2n−t

Now we get a good asymptotic estimate for g1(n).

34

CHAPTER 3. MINIMAL DETERMINISTIC FINITE AUTOMATA

Theorem 3.6. We have

g1(n) = 2n
(
n− α +O

(
n2−n/2

))
where α is a constant with α ∈ [1.38, 1.39].

Proof. Using Theorem 3.3 and Theorem 3.5 we get

g1(n) =
∑

1≤t≤n

T (t, 2)2n−t =
∑

1≤t≤n

∑
d|t

µ(d)2t/d

 2n−t

= 2n

 ∑
1≤t≤n

∑
d|t

µ(d)2t/d−t

 = 2n

n+
∑

1≤t≤n

∑
d|t
d6=1

µ(d)2t/d−t

 .

Thus, we only need to further investigate the expression∑
1≤t≤n

∑
d|t
d6=1

µ(d)2t/d−t.

We use the substitution t = kd and get∑
1≤t≤n

∑
d|t
d 6=1

µ(d)2t/d−t =
∑

2≤d≤n

µ(d)
∑

1≤k≤n
d

2k−kd

=
∑

2≤d≤n

µ(d)

∑
k≥1

2k(1−d) −
∑
k>n

d

2k(1−d)


=
∑

2≤d≤n

µ(d)

(
21−d

1− 21−d +O
(
2n/d−n

))

=

(∑
2≤d≤n

µ(d) · 1

2d−1 − 1

)
+O

(
n2n/2−n

)
=

(
−
∑

2≤d≤n

µ(d)

1− 2d−1

)
+O

(
n2−n/2

)
.

We define α by

α :=
∞∑
d=2

µ(d)

1− 2d−1
.

35

CHAPTER 3. MINIMAL DETERMINISTIC FINITE AUTOMATA

This concludes the proof.

Since f1(n) = g1(n)− g1(n− 1) we also obtain a good asymptotic estimate for

the number of unary minimal DFAs.

Corollary 3.7. The number of distinct unary minimal DFAs with n states

is

f1(n) = 2n−1
(
n+ 1− α +O

(
n2−n/2

))
.

3.2 Alphabets with more than one letter

As it becomes more and more difficult to count automata with larger input

alphabets, we will now focus on lower and upper bounds for fk(n) and gk(n).

3.2.1 Lower bounds

We start with a simple constructive lower bound for fk(n) as given in [5].

Theorem 3.8. The numbers fk(n) satisfy for all n the inequality

fk(n) ≥ f1(n)n(k−1)n.

Proof. Every minimal DFA with n states and alphabet Σ = {0} can be ex-

tended to the alphabet {0, 1, ..., k − 1} by extending its transition function δ.

This can be done in n(k−1)n ways, since for every n states there are (k − 1)

remaining letters and there are n possible images (states) to choose from.

Domaratzki, Kisman and Shallit [5] give an even tighter bound, by varying the

letter for the unary DFA and taking care of double-counted automata.

Theorem 3.9. The numbers fk(n) also satisfy for all n the inequality

fk(n) ≥ f1(n)

(
kn(k−1)n −

(
k

2

)
n!n(k−2)n

)
.

36

CHAPTER 3. MINIMAL DETERMINISTIC FINITE AUTOMATA

Proof. Like in the previous theorem we construct a minimal DFA, but now

we observe reductions to every letter in Σ = {0, 1, ..., k − 1}. This gives us

f1(n)kn(k−1)n automata, but we double-count the automata whose restriction

is minimal for more than one letter. The number of those automata is at

most f1(n)
(
k
2

)
n!n(k−2)n, that is:

(
k
2

)
choices for two letters i < j, f1(n) ways

of constructing a minimal DFA with the letter i, n! possibilities for the j-

transitions, such that the restriction to j is initially connected and n(k−2)n

ways of defining the transition function for the remaining letters.

Note that not all of these constructed automata, which are enumerated by

the expression f1(n)
(
k
2

)
n!n(k−2)n, have minimal restrictions for the two chosen

letters. With a little more effort we can further improve this bound given by

Domaratzki, Kisman and Shallit [5] using the well known principle of inclusion

and exclusion and describing a class of minimal automata.

Corollary 3.10. A lower bound for fk(n) is given by

fk(n) ≥ f1(n) · 1

n!

(
nnk − (nn − n!)k

)
=: rk(n),

where rk(n) denotes the number of DFAs for which the restriction to at

least one letter is initially connected and the restriction to the smallest

letter according to Σ = {0, 1, 2, ..., k − 1} is minimal.

Proof. Interpreting the expression f1(n)
(
k
2

)
n!n(k−2)n as the number of DFAs

where the restriction to at least two letters is initially connected and the re-

striction of the smallest of those letters is minimal, we see that the given bound

in the previous theorem contains just the first terms of the principle of inclu-

sion and exclusion. Thus, the automata with said properties are enumerated

37

CHAPTER 3. MINIMAL DETERMINISTIC FINITE AUTOMATA

as follows:

rk(n) =

= f1(n)

((
k

1

)
nn(k−1) −

(
k

2

)
(n!)1nn(k−2) + ...− (−1)k

(
k

k

)
(n!)k−1nn·0

)
=
f1(n)

n!

((
k

1

)
(n!)1nn(k−1) −

(
k

2

)
(n!)2nn(k−2) + ...− (−1)k

(
k

k

)
(n!)knn·0

)
=
f1(n)

n!
· nnk − f1(n)

n!
· (nn − n!)k

= f1(n) · 1

n!

(
nnk − (nn − n!)k

)
.

This result is a tighter bound, though it does not improve the asymptotic

estimate, as n! = o(nn) according to Stirling’s formula (1.1). Thus, the relevant

term in the expression

f1(n)

((
k

1

)
(n!)0nn(k−1) −

(
k

2

)
(n!)1nn(k−2) + · · · − (−1)k

(
k

k

)
(n!)k−1nn·0

)
is still f1(n)knn(k−1).

There is also a direct interpretation of the obtained closed formula. As nn

counts all possible transition functions for one specific letter and n! counts the

ones that are initially connected, it follows that there are (nn−n!)k transition

functions, where the restriction to no letter is initially connected. So there are

(nnk − (nn − n!)k) transition functions with at least one letter with initially

connected restriction. Now, we remove the choices made for the smallest letter

with the factor 1/n! and replace it with an unary minimal DFA with the factor

f1(n). This includes choosing the final states.

3.2.2 Upper bounds

An upper bound for the number of minimal DFAs can be found by a simple

argument given by Robinson [21].

38

CHAPTER 3. MINIMAL DETERMINISTIC FINITE AUTOMATA

Theorem 3.11. Let fk(n) be the number of distinct minimal DFAs with

n states over a k letter alphabet then

fk(n) ≤ 2nnkn

(n− 1)!
.

Proof. There are 2n possible ways of choosing the set of final states and nkn

ways of choosing the transition function. We can remove the automata ob-

tained this way that are not initially connected and still have an upper bound,

since every minimal DFA is initially connected. For the remaining automata

the names of the states do not matter with the exception of the initial state q0.

Thus, we can divide by (n − 1)! to not longer distinguish between automata

which are isomorphic.

This bound is easily improved by considering only initially connected transition

structures. We write Ck(n) for the number of initially connected deterministic

finite automata with n states over a k letter alphabet without final states,

fk(n) ≤ 2nCk(n)

(n− 1)!
.

We see that Ck(n)
(n−1)!

is the number of unlabelled initially connected deterministic

finite automata without final states. In Chapter 6 we will take a closer look

at initially connected deterministic finite automata and obtain formulas for

Ck(n) and Ck(n)
(n−1)!

.

We claim that there is an even stronger result: This upper bound also

holds for the number of DFA languages gk(n). Our claim is, that initially

connected DFAs with n states accept all languages with minimal DFAs of size

n or smaller. This statement is reduced to the following lemma.

Lemma 3.12. For every DFA with m < n states there is an initially

connected DFA with n states which accepts the same language.

Proof. To see this, we take the initially connected component of a DFA and

show that we can add one state without violating the initial connectedness.

39

CHAPTER 3. MINIMAL DETERMINISTIC FINITE AUTOMATA

The underlying graph of every DFA over k ≥ 2 letters has at least one

state with at least two input edges. More precisely, for every DFA M =

(Q,Σ, δ, q0, F) we have

∃q ∈ Q : ∃(qi, ai) 6= (qj, aj) : δ(qi, ai) = δ(qj, aj).

This holds since the in-degrees d− and out-degrees d+ satisfy

∑
q∈Q

d−(q) =
∑
q∈Q

d+(q) =
∑
q∈Q

k = nk ≥ 2n.

Let δ(qi, ai) = δ(qj, aj) like mentioned above. We can now redirect (qj, aj) to a

new state q̃t which is a copy of qt = δ(qj, aj). Not only do we copy the finality

of qt but also the behaviour of the transition function.

We get an automaton M ′ = (Q′,Σ, δ′, q0, F
′) with the following construc-

tion.

• Q′ := Q ∪̇ q̃t, i.e. we add one new state to Q.

• δ′ := δ with the exception of δ′(qj, aj) = q̃t. Furthermore we define

δ′(q̃t, a) := δ(qt, a) for all a ∈ Σ.

• If qt ∈ F then F ′ := F ∪ q̃t. Otherwise F ′ := F .

See Figures 3.2 and 3.3 for an example.

For an input alphabet of size k = 1 this construction is not always possible.

It fails if and only if the unary automaton is just a cycle. W.l.o.g. we have

qi · a = qi+1 for i ∈ [0, n− 2] and qn−1 · a = q0. In this case we have

δ(q0, ε) = δ(qn−1, a) = q0

and we are able to add a copy of q0 to separate these two transitions like

above.

40

CHAPTER 3. MINIMAL DETERMINISTIC FINITE AUTOMATA

qi

qt

qj

qx

ai
aj, az

ay

Figure 3.2: Two edges are targeting the same node of the underlying graph of

a DFA

qi

qt

qj

qx

q̃t

ai
az

ay

aj

ay

Figure 3.3: One state is added to the DFA, still preserving the initial connect-

edness

Using this idea we can argue that instead of all the possible transition

functions it suffices to observe only initially connected automata without final

states, as we do not loose any languages.

41

CHAPTER 3. MINIMAL DETERMINISTIC FINITE AUTOMATA

Theorem 3.13. Let Ck(n) be the number of initially connected determin-

istic finite automata with n states over a k letter alphabet without final

states, then we have

fk(n) ≤ gk(n) ≤ 2nCk(n)

(n− 1)!
.

Proof. We have fk(n) ≤ gk(n) as explained in Theorem 3.1 and gk(n) ≤ 2nCk(n)
(n−1)!

as a result of Lemma 3.12.

42

Chapter 4

Nondeterministic Finite

Automata

In this chapter we want to focus on nondeterministic automata and their lan-

guages. We already know from Subsection 1.1.3 that the regular languages over

a fixed alphabet are accepted by DFAs and NFAs respectively. The difference

here is the state complexity of a given language.

We will focus on NFA languages and write Gk(n) for the number of different

languages accepted by NFAs with n states and alphabet size k. Remember

that we used gk(n) to denote the number of different languages accepted by

DFAs with n states and alphabet size k. In this chapter we will present results

by Pomerance, Robson and Shallit [20] and Domaratzki, Kisman and Shallit

[5].

4.1 The unary case

4.1.1 Lower bounds

Let Σ = {a}. A simple lower bound for G1(n) is 2n as every subset of the pow-

ers {ε, a, a2, ..., an−1} can be accepted by an NFA. The following automaton,

for example, accepts the language L = {a, a2, a4}.

43

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

q0 q1 q2 q3 q4
a a a a

We want to improve this lower bound for G1(n) by constructing specific NFAs.

To do so, we need some basic results from number theory.

Theorem 4.1 (Prime number theorem). Let π(x) be the number of primes

smaller or equal to x. Then

π(x) ∼ x

log x
.

A short proof of Theorem 4.1 was found by D. J. Newman [27].

Theorem 4.2. Let pn be the n-th prime number, then

pn ∼ n log n.

Proof. As in [11, p.9], we look at the function y = x/(log x). We get

log y = log x− log log x.

Since log log x = o(log x) for x→∞, we get

log y ∼ log x and x = y log x ∼ y log y.

Thus, the inverse function to x/ log x is asymptotically equivalent to x log x.

Since π(pn) = n, the result follows.

There are tighter bounds for the growth of primes for larger values of n. We

refer to Rosser and Schoenfeld [22]. We even have

n(log n+ log log n− 3/2) < pn < n(log n+ log log n− 1/2)

for n ≥ 20. We only need the weaker result

pn < n(log n+ log log n) for n ≥ 6

for the estimate in the proof of the following theorem, which was observed by

Domaratzki, Kisman and Shallit [5].

44

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

Theorem 4.3. For G1(n), the number of one letter NFA languages, we

get

G1(n) > 2
n+(2.295−o(1))

√
n

logn .

Here the expression o(1) will always represent a positive zero sequence.

Proof. Let C ≥ 2 be a constant to be determined later. For a given n ≥ 2

there is a unique whole number b that satisfies

bpbCbc ≤ n < (b+ 1)pbC(b+1)c,

since the intervals [bpbCbc, (b+ 1)pbC(b+1)c[are a partition of N. We get

b+ 1 >
n

pbC(b+1)c

>
n

C(b+ 1) (logC(b+ 1) + log logC(b+ 1))
.

Note that log log x = o(log x). Also since n ≤ pn and C ≥ 2 we have

(b+ 1)pbC(b+1)c ≤ n

(b+ 1)C(b+ 1) ≤ n
√
C(b+ 1) ≤

√
n

log
√
C + log(b+ 1) ≤ 1

2
log n

log(b+ 1) ≤ 1

2
log n.

Using this we can estimate

b+ 1 >
n

C(b+ 1) logC(b+ 1) (1 + o(1))

(b+ 1)2 >
n

C logC(b+ 1) (1 + o(1))

>
n

C
(
logC + 1

2
log n

)
(1 + o(1))

=
n

C 1
2

log n (1 + o(1))
.

45

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

We use (1 + o(1))−1 = (1− o(1)) and calculate the square root:

b+ 1 >

√
2n

C log n
(1− o(1)) .

Finally, we get

b >

√
2n

C log n
(1− o(1))− 1 (4.1)

=

√
2n

C log n

(
1− o(1)−

√
C log n

2n

)
(4.2)

=

(√
2

C
− o(1)

)√
n

log n
. (4.3)

From the first bCbc prime numbers we choose b distinct primes ri such that

r1 < r2 < ... < rb. There are
(bCbc

b

)
ways of doing so. We define an NFA with

a tail of length s := n − (r1 + r2 + ... + rb). Note that by construction s is

a positive integer. The last state of the tail splits nondeterministically into b

cycles with length ri for the i-th cycle. In Figure 4.1 we present an example

for s = 3 and primes r1 = 2, r2 = 3 and r3 = 5. The final states for this

automaton are yet to be chosen. A word ω = at with t ∈ N is accepted either

in the tail or in one of the cycles (or not at all). The states of the cycles (for

some prime ri) are labelled with qi,0, qi,1, ..., qi,ri−1 with respect to the order of

the cycle. We distinguish the following cases:

• Case 1: t < s

ω is accepted ⇔ the state qt is final.

• Case 2: t ≥ s

ω is accepted ⇔ there is one of the chosen primes ri with t − s ≡ e

(mod ri) and qi,e is final.

Now let us consider all possible choices of final states for the tail and the cycles

such that for every cycle it holds that

• there is at least one final state and

46

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

q0 q1 q2

q1,0

q1,1

q2,0

q2,2

q2,1

q3,0

q3,1

q3,2

q3,4

q3,3

Figure 4.1: An unary NFA with cycles of prime length

• there is at least one nonfinal state,

otherwise the cycle could be reduced. We claim that all of these described

n-state automata accept distinct languages.

Suppose that there are two different automata M = (Q,Σ, δ, q0, F) and

M ′ = (Q′,Σ, δ′, q′0, F
′) with cycle lengths R = {r1, ..., rb} and R′ = {r′1, ..., r′b}

accepting the same language i.e. L(M) = L(M ′). We look at the case R = R′:

We get w.l.o.g. Q = Q′ and ∀i ∈ {1, ..., b} : ri = r′i. Since the two automata

are not the same but accept the same language, they have to differ in their

finalities of the cycles. Assume that this happens in the cycle with length rl

and w.l.o.g. ql,e ∈ F but ql,e /∈ F ′. By construction, in every other cycle there

is at least one nonfinal state. For j 6= l we have qj,cj /∈ F ′. By the Chinese

remainder theorem there exists a t ≥ s (actually there is an infinite number of

them) such that

• t− s ≡ e (mod rl) and

• t− s ≡ cj (mod rj) for j 6= l.

47

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

Therefore at is accepted by M but not by M ′. This is a contradiction to

L(M) = L(M ′).

Now we look at the case R 6= R′:

W.l.o.g. let rl ∈ R and rl /∈ R′. Then there is a state ql,e ∈ F and for all other

cycles in M ′ with length r′j ∈ R′ there is a state q′j,cj /∈ F
′. Again we can use

the Chinese remainder theorem to get a t with t > s and t > s′ such that

• t− s ≡ e (mod rl) and

• t− s′ ≡ cj (mod r′j) for all r′j ∈ R′.

This concludes the proof of our claim that all these automata accept different

languages. Now we will count them to receive the desired lower bound.

Let N be the number of automata in this construction. We had
(bCbc

b

)
ways of choosing the prime numbers. In the tail every choice of final states is

allowed, in a cycle only two choices are forbidden (all final and all nonfinal).

This gives

2s(2r1 − 2)(2r2 − 2) . . . (2rb − 2) = 2n(1− 21−r1)(1− 21−r2) . . . (1− 21−rb)

possible ways of choosing the final states. We estimate

(1− 21−r1)(1− 21−r2) . . . (1− 21−rb) ≥
∏
i≥1

(1− 21−pi).

Since this infinite product converges to β ≈ 0.34564, we get N ≥ β2n
(bCbc

b

)
.

We apply Stirling’s approximation formula (1.1) to the binomial coefficient.

Of course Cb is not necessarily an integer, so for example by (Cb)! we actually

mean the gamma function. We get(
bCbc
b

)
=

bCbc!
b!(bCbc − b)!

>
(Cb− 1)!

b!(Cb− b)!
=

(Cb)!

Cb · b!(b(C − 1))!

∼
√

2πCb ·
(
Cb
e

)Cb
Cb ·
√

2πb
(
b
e

)b√
2πb(C − 1)

(
b(C−1)

e

)b(C−1)

= CCb(C − 1)b(1−C)(2πC(C − 1))−1/2b−3/2

= 2b[C log2 C+(1−C) log2(C−1)+1/b log2((2πC(C−1))−1/2b−3/2)].

48

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

Since lim
b→∞

b1/b = 1, we have

N ≥ β2n+b(γ+o(1)),

where γ = C log2C+(1−C) log2(C−1). We can now apply the previously ob-

tained estimate 4.3. The constant β vanishes since log2 β
√

logn
n

also converges

to zero. We have

N ≥ 2
n+(γ̃−o(1))

√
n

logn

with γ̃ =
√

2/C(C log2C + (1− C) log2(C − 1)). We choose C such that γ̃ is

maximized. This gives C ≈ 4.141 and γ̃ > 2.295.

4.1.2 Upper bounds

Before we move on to larger alphabets, we take a look at upper bounds for

G1(n). In this subsection, we will present the bound given by Pomerance,

Robson and Shallit [20] (with a minor modification), which seems to be the

best upper bound known at this time. This is done by finding a decomposition

for the NFA languages, which can be described by a few parameters. To get

there, we have to introduce some notation first.

Definition 4.4. Let L ⊂ {a}∗ be a unary language and c ∈ N.

• L is c-monotonic :⇔

∀n ≥ 0 : an ∈ L⇒ ac+n ∈ L.

• L is c-periodic after N :⇔

∀n ≥ N : an ∈ L⇔ ac+n ∈ L.

If a language is c-monotonic, then for every word ω ∈ L the words ωakc ∈ L
for k ∈ N. So at some point, for sufficiently big words, the question whether a

word ω = ax is part of the language L depends only on the value of x (mod c).

Given a unary NFA M = (Q,Σ, δ, q0, F), let us write G(M) for the underlying

digraph of M . The transition diagram of M can already be interpreted as

49

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

a graph, more precisely, G(M) is a graph with vertices V := Q and edges

E := {(q1, q2) ∈ Q × Q : q2 ∈ δ(q1, a)}. Furthermore, we will write L(M, s)

for the set of strings having an accepting path that contains the state s. An

accepting path is a “witness” for the fact that ω ∈ L. This can be defined

recursively or in the unary case as a path in G(M) consisting of |ω|+ 1 nodes

starting in q0 and ending in a final state.

Lemma 4.5. Some properties needed for the desired decomposition:

a) For unary languages L1 and L2 we have: If L1 and L2 are c-monotonic,

so is L1 ∪ L2. If L1 and L2 are c-periodic after N , so is L1 ∪ L2.

b) Let M be an NFA with q states, s a state of M and let there exist a

directed cycle of length c containing s. Then L(M, s) is c-monotonic.

Also, L(M, s) is c-periodic after (c+ 1)(q − 1).

Proof. We will only give a proof for the c-periodicity of L(M, s).

Let al ∈ L = L(M) with l ≥ (c+ 1)q− 1 = (c+ 1)(q− 1) + c, let s be part of a

cycle of length c and let there be an accepting path of al which contains s. Let

this path be P = (p0, p1, . . . , pl). We will show that there is an accepting path

through s for the word al−kc for some positive integer k. This suffices because

of the mentioned monotonicity.

Let pi = s be the first occurrence of s in the path P . We split the path in

prefix P = (p0, . . . , pi = s) and suffix S = (pi = s, . . . , pl). Together they

consist of l + 2 > (c+ 1)q states. Now let p′ and s′ be two states which occur

most frequently in P respectively S. Note that the sum of the occurrences of

p′ and s′ is at least c+ 2. If two of these nodes in the path P are separated by

a subpath containing exactly k ≡ 0 (mod c) edges, we can cut out this cycle

and receive an accepting path of al−kc through s.

If we do not find such a subpath, consider the following. Cut out the cycle

from any occurrence of p′ to the last occurrence of p′ in P . These cycles all have

different length (number of edges) modulo c. If the lengths were in the same

residue class, their difference would be a cycle with length k ≡ 0 (mod c), so

we would have found that cycle in the last step. We cut out the cycle from the

50

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

first occurrence of s′ in S to any other occurrence. Again, the lengths are all

in different residue classes mod c. Let the length of the cycle we removed from

P be d and the length of the cycle we removed from S be e. None of these

lengths are congruent 0 (mod c). Let vk be the number possible values for k

(mod c) and ve the number of possible values for −e (mod c). By construction

it holds that vk + ve ≥ c. By the pigeon hole principle there are two cycles in

P and S with d + e ≡ 0 (mod c). Thus, removing those finally results in an

accepting path of al−kc through s.

For our next step towards the upper bound we can make use of a result observed

by S. Rao Kosaraju [15] that states the following.

Lemma 4.6. In an undirected graph the following statement is true: If

every 3 circuits have a vertex in common, then there exists a vertex that

is part of every circuit.

We say that a directed graph is of girth c if and only if every directed cycle

is at least of length c and c is the maximal value with this property. If the

graph is acyclic, we define its girth as∞. In combination with Lemma 4.6 this

gives:

Lemma 4.7. Let G be a directed graph with q vertices. If the girth of

G is larger than 2q/3, then there exists at least one vertex that is part of

every cycle.

Proof. If every cycle has more than 2q/3 vertices, every two cycles have more

than 2q/3−(q−2q/3) = q/3 vertices in common. Thus, every three cycles have

more than q/3− (q − 2q/3) = 0 vertices in common. The result follows.

Now we are ready to formulate the decomposition.

51

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

Theorem 4.8. Let M be a unary nondeterministic finite automaton with

q states. Then there exists an integer r ≥ 0, a strictly increasing sequence

c1 < · · · < cr, languages L1, . . . , Lr and an NFA Mr+1 such that

L(M) =

(⋃
1≤i≤r

Li

)
∪ L(Mr+1)

and the languages Li are ci-monotonic and ci-periodic after (cr+1)(q−1).

In addition, if Mr+1 has q′ states, then the girth of G(Mr+1) is larger than

2q′/3. If r ≥ 1 then q′ ≥ cr/2. It holds that q′ = q − (c1 + · · ·+ cr).

Proof. We give a recursive algorithm to decompose L(Mi). Let ni be the

number of states in Mi and ci be its girth. If the girth of Mi is larger than

2ni/3, our algorithm terminates with r = 0 and Mi = M . Note that this is

also the case when ci =∞. In every other case we further decompose

L(Mi) = Li ∪ L(Mi+1),

where Li is the language of all words ω for which there exists an accepting path

containing a cycle of length ci. The automaton Mi+1 is obtained by removing

all states in all cycles of length ci. This reduction results in the disjoint union

L(Mi) = Li ∪̇L(Mi+1). The language Li is ci-monotonic and ci-periodic. This

can be shown using the previous lemma. We may need the union of more than

one ci-monotonic (and ci-periodic) language, as we may have to remove more

than one cycle. Lemma 4.5 also gives us the ci-periodicity after (cr +1)(q−1).

If necessary, we can construct Mi+1 in a way so that it has exactly ni − ci

states as we remove at least ci states and can leave some states disconnected

as “dummy states”. Therefore q′ = q − (c1 + · · · + cr) holds. If we reach the

termination condition cr+1 > 2q′/3 we have cr ≤ 2nr/3 and q′ = nr − cr, thus

q′ ≥ 3cr/2− cr = cr/2, which concludes the proof.

We have not used Lemma 4.6 yet, but we will need it soon.

First, we claim that with the described decomposition, a unary NFA lan-

guage is completely specified given

52

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

1) the integers c1 < · · · < cr,

2) for 1 ≤ i ≤ r and 0 ≤ j ≤ ci (0 ≤ j < ci already covers all the congruence

classes) the information whether or not there exists n such that n ≡ j

(mod ci) and an ∈ Li,

3) for 1 ≤ i ≤ r and 0 ≤ j ≤ ci the cardinality of

Lij :=

{
an ∈ Li \

⋃
1≤t<i

Lt : n < (cr + 1)(q − 1) ∧ n ≡ j (mod ci)

}

4) and the residual language L(Mr+1).

We know from Lemma 4.5 that all languages Li are ci-monotonic and ci-

periodic after (cr + 1)(q − 1), so it suffices to know the words of Li with

length less than (cr + 1)(q − 1) and the congruence classes modulo ci that are

eventually covered by Li. Actually it is enough to know the first occurrence of

a word from some congruence class, as the later occurrences are “produced” by

the ci-monotonicity. Thus, we only have to specify for each j < ci the shortest

word with length congruent to j (mod ci). This has to be done only if the

word was not mentioned for some other language Lt with t < i. It follows that

Li is determined by the cardinality given in 4).

Our goal is find upper bounds for the possible choices of the parameters

1), 2), 3) and 4). This will allow us to give an upper bound for G1(n). We

start with the following observation:

Lemma 4.9. 1) The integers c1 < · · · < cr ≤ q are a subset of {1, 2, . . . , q},
thus we have 2q possibilities to choose them.

2) For each ci we have to decide ci times if there exists such a word,

therefore we have

2
∑r
i=1 ci = 2q−q

′

possibilities.

We move on to 3), the cardinalities of the sets Lij. In order to get an upper

bound, we have to prove the following lemma.

53

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

Lemma 4.10. Let q > 0 and let q′ be the local extremum of the function

f : [0, q]→ R : x 7→ xq−x.

Then it holds that

q′ = O
(

q

log q

)
for q →∞.

Proof. We differentiate f and want to find the zero of the derivation

f ′(x) = xq−x ·
(
− log(x) +

q − x
x

)
= xq−x ·

(q
x
− 1− log(x)

)
.

We proceed to solve for x,

0 =
q

x
− 1− log x

log x =
q

x
− 1

x = e
q
x
−1

qe =
q

x
e
q
x

W0(qe) =
q

x

x =
q

W0(qe)
.

The function W0 is the Lambert-W function mentioned in Section 2.2. It

remains to be shown that

q

W0(qe)
= O

(
q

log q

)
.

Let α > 1. Then we have

log q

α
· q

1
α
−1 ≤ e

54

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

for q sufficiently large. Furthermore, this gives:

log q

α
· q

1
α
−1 ≤ e⇔ log q

α
· e

log q
α ≤ qe

⇔ log q

α
≤ W0(qe)

⇔ q

W0(qe)
≤ α · q

log q

⇔ q

W0(qe)
= O

(
q

log q

)
.

This concludes the proof.

Lemma 4.11. There are less than (Cq/ log q)q possibilities for the param-

eters in 3).

Proof. We know that there are (
m+ n− 1

n− 1

)
ways of choosing n (ordered) integers which sum to the value m. Therefore,

there are (
m+ n

n

)
ways of choosing n + 1 integers which sum to m. We can also reinterpret it

by dropping the last integer to get the number of choices for n integers which

sum to a value ≤ m. We estimate(
m+ n

n

)
<

(m+ n)n

n!
.

For every ci and for every congruence class we have to choose one integer, i.e.

q − q′ integers that sum up to at most (cr + 1)(q − 1). Using the estimate we

have at most

((cr + 1)(q − 1) + q − q′)q−q
′

(q − q′)!

55

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

possibilities. We have shown already that cr ≤ 2q′. With this inequality and

Stirling’s approximation formula we have

((cr + 1)(q − 1) + q − q′)q−q
′

(q − q′)!
=

(2qq′ + 2q − 3q′ − 1)q−q
′

(q − q′)!

≤ (4qq′)q−q
′

(q − q′)!

∼ (4eqq′)q−q
′

(q − q′)q−q′
√

2π(q − q′)

≤
(
cqq′

q − q′

)q−q′
=: B

as an upper bound with c = 4e. If q′ > 2q/3 then

B ≤ (cq2)q/3 = (c1/3q2/3)q = O
(
c1/3q

log q

)q
.

Notice that we can use the notation O once the term only depends on q. The

other case is q′ < 2q/3, where

B ≤
(
cqq′

1
3
q

)q−q′
= (3cq′)q−q

′ ≤ (3c)q · (q′)q−q′ .

We try to maximize the term (q′)q−q
′
. Through differentiation one can see that

the optimal choice for q′ satisfies q′ = O(q/ log q) for q →∞. We showed this

in Lemma 4.10. We have

B ≤ (3cq′)q ≤
(

3cαq

log q

)q
.

In every case our bound satisfies B ≤ (Cq/ log q)q for some constant C. The

result follows.

This leaves us with the different choices for the residual language 4).

Lemma 4.12. There are less than 210q choices for the residual language

L(Mr+1) in 4).

56

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

p0

pi

v

...

Figure 4.2: Every cycle contains the state v.

Proof. If the graph G(Mr+1) is acyclic, then the language L(Mr+1) is finite

and there are 2q
′

possibilities to choose it. Otherwise the girth of G(Mr+1) is

larger than 2q′/3. Thus, with Lemma 4.7 there is one vertex that is part of

every cycle. We split the language L(Mr+1) = A ∪̇B with

A := {an|n < q′ ∧ an ∈ L(Mr+1)} , B := {an|n ≥ q′ ∧ an ∈ L(Mr+1)} .

There are 2q
′

possibilities for A. Let ω be a word in B and (p0, p1, . . . , pf)

an accepting path of ω. Let pi be the first state to be repeated. Because of

Lemma 4.7 there is a vertex v in this cycle, that is also part of every other cycle.

Starting from this vertex v we take the remaining accepting path (v, . . . , pf).

If its length is still larger than or equal to q′ we can again apply the pigeon

hole principle to find the first repeating state in this path. It has to be v, since

v lies in every cycle. See Figure 4.2. Therefore every accepting path for a word

ω ∈ B can be split into

a) an initial part of length less than q′;

b) a concatenation of cycles; note that two of these cycles can have more than

one state in common and the set of these cycles can also be empty;

c) a tail of length less than q′.

57

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

These accepting paths are specified when given

i) the different lengths of acyclic paths from the state p0 to v, which form a

subset of {0, 1, . . . , q′ − 1};

ii) the different cycle lengths as a subset of]2q′/3, q′];

iii) the different lengths of acyclic paths from v to any final state as a subset

of {0, 1, . . . , q′ − 1}.

This gives at most 2q
′ · 2q′/3 · 2q′ = 27q′/3 possibilities for B. We multiply with

the 2q
′

choices for A and get

210q′/3 + 2q
′ ≤ 210q

possibilities for L(Mr+1), which include the acyclic graphs too.

Finally we can put things together to get an upper bound for G1(n).

Theorem 4.13. [20] The number of distinct unary languages accepted by

NFAs with n states G1(n) satisfies

G1(n) ≤
(

cn

log n

)n
for some constant c.

Proof. To sum up: For the four parts of the decomposition we have the upper

bounds

2q, 2q−q
′
, (Cq/ log q)q, 210q

as observed in Lemma 4.9, Lemma 4.11 and Lemma 4.12. Multiplying them

gives the desired result. With q′ ≤ q, the product is

G1(n) ≤ 2n · 2n ·
(
Cn

log n

)n
· 210n ≤

(
cn

log n

)n
for some constant c > 0.

58

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

4.2 Alphabets with more than one letter

Let Gk(n) be the number of distinct languages accepted by automata with n

states and alphabet size k ≥ 2.

4.2.1 Lower bounds

For a lower bound, we can use a similar approach as in Theorem 3.8. Again

we follow the work of Domaratzki, Kisman and Shallit [5].

Theorem 4.14. For k ≥ 2 we have

Gk(n) ≥ n2(k−1)n2

.

Proof. We build an automaton with n states and alphabet Σ = {0, 1, . . . , k−1}
in such a way, that the reduction to the letter 0 is one single loop. Exactly one

state is chosen to be final. The transition function for the letters {1, . . . , k−1}
are chosen arbitrarily. We refer to Figure 4.3 for the transition diagram of a

specific automaton with 12 states constructed in this way.

More precisely we define for Q = {q0, q1, . . . , qn−1} the transition function

δ(ql, 0) := q(l+1 mod n) and for j 6= 0 δ(ql, j) := Hl,j

with Hl,j ⊂ Q any subset of states and the set of final states F := {qi} for

some i. We claim that two distinct automata built this way accept different

languages. We see that the final states cannot differ because if they would,

the restricted languages to {0} would differ, therefore the accepted languages

could not be the same.

Now let M = (Q,Σ, δ, q0, F) and M ′ = (Q′,Σ, δ′, q′0, F
′) be two different

automata (obtained by the mentioned construction) with both state sets Q =

Q′ = {q0, q1, . . . , qn−1} and F = F ′ = {qi}. Speaking in terms of the transition

diagram: The two diagrams differ, therefore w.l.o.g. there is at least one edge

in M that is not in M ′. Let this edge connect the states qa and qb labelled

with the letter α 6= 0. We have qb ∈ δ(qa, α) but qb /∈ δ′(qa, α). We can now

59

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

q0

q1

q2 q3 q4

q5

q6

q7

q8q9q10

q11

0

0
0 0

0

0

0

0
00

0

0

1

1

1, 2

2

1

1, 2

Figure 4.3: A constructed NFA with 12 states and alphabet size k = 3

give a word

ω := 0aα0(i−b mod n)

with

ω ∈ L(M) but ω /∈ L(M ′).

Thus, two distinct automata accept different languages.

We have n possibilities to choose the final state. For the transition functions

we have to choose (k− 1)n times one of the 2n possible subsets of states. This

leaves n2(k−1)n2
choices.

4.2.2 Upper bounds

Theorem 4.15. The number Gk(n) of distinct languages accepted by an

NFA with n states over a k-letter alphabet satisfies

Gk(n) ≤ (2n− 1)2kn
2

+ 1.

60

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

Proof. We count the possibilities for the transition function δ : Q × Σ → 2Q.

There are 2|Q|·|Q|·|Σ| = 2kn
2

such functions. Now let us choose the final states. If

there is at least one final state, then q0 is either final or nonfinal and the other

final states are {q1, q2, . . . , qt} with t ≤ n−1. This holds w.l.o.g., as the names

of all states except q0 are interchangeable. If q0 is final, t can be any number

from 0 to n − 1. If q0 is not final, t can range from 1 to n − 1. That gives

n+(n−1) = 2n−1 possibilities for the final states, if there is at least one. The

only case left is the NFA without any final states. This gives one additional

language, the empty language. Therefore we have (2n− 1)2kn
2

+ 1.

4.3 NFA vs. DFA

As every DFA can be interpreted as an NFA, more languages are recognized

by NFAs with n states than by DFAs with n states. We want to put the state

complexity of DFA and NFA languages further into relation [5, p.11].

Theorem 4.16. Let Σ be an alphabet of size ≥ 2 and let n ≥ 2. Then

there are at least 2n−2 distinct languages L over the alphabet Σ such that

• L has an NFA acceptor with n states and

• the minimal DFA of L has 2n states.

Proof. W.l.o.g. we have {a, b} ⊂ Σ. We construct 2n−2 NFAs with n states

that accept different languages which have minimal DFA acceptors of size 2n.

We will only use the letters a and b since every language L ⊂ {a, b}∗ is also a

language over the alphabet Σ. For every subset S ⊂ {q1, . . . , qn−1} we define

an NFA M(S) = (Q,Σ, δS, q0, F) with

Q = {q0, q1, . . . , qn−1}

Σ = {a, b}

F = {qn−1}

61

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

q0

q1 q2 q3

q4

b

a,b

a,b a,b

a,b

b

Figure 4.4: The NFA M(S) for n = 5 and S = ∅

q0

q1 q2 q3

q4

b

a,b

a,b a,b

a,b

b

b

b

Figure 4.5: The NFA M(S) for n = 5 and S = {q1, q3}

and the transition function

δS(qi, a) =

{
{qi+1} for 0 ≤ i < n− 1

∅ for i = n− 1

δS(qi, b) =


{q0, q1} for i = 0

{q0, qi+1} for 1 ≤ i ≤ n− 2 ∧ qi ∈ S
{qi+1} for 1 ≤ i ≤ n− 2 ∧ qi /∈ S
{q0} for i = n− 1.

See Figure 4.4 and Figure 4.5 for an example. We remember the corresponding

DFA explained in Subsection 1.1.3 and claim the following.

For every word of the form bn−1w with |w| = n, we reach a different subset of

Q. Thus, every state of the corresponding DFA is reachable.

When reading bn−1, every state of M(S) is reached. After this, reading the

62

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

letter a results in a right shift of the reachable states, making q0 unreachable.

Reading the letter b results in a cyclic permutation in the same direction

whereupon q0 is reachable. Thus, the 2n words of the form bn−1w correspond

to the 2n states in the DFA. Note that this holds for every set S. To prove

the minimality of the DFA we have to show that no two sets of states are

equivalent. Let T, U ⊂ Q be two states of the DFA with T 6= U . W.l.o.g. we

have qi ∈ T and qi /∈ U for some i. Then δS(T, an−1−i) contains the final state

qi and is therefore a final state of the DFA, but δS(U, an−1−i) does not contain

the final state.

Now we have to show that for two different subsets S 6= S ′ the automata

M(S) and M(S ′) accept different languages. Again, w.l.o.g., let qi ∈ S but

qi /∈ S ′ for some 1 ≤ i ≤ n − 2. Then the word w = aiban−1 is accepted by

M(S) but not by M(S ′).

63

CHAPTER 4. NONDETERMINISTIC FINITE AUTOMATA

64

Chapter 5

Finite Languages and Their

Acceptors

The acceptor of a finite language cannot contain a cycle with a final state.

This fact keeps the structure of these automata simple to a certain degree.

For the unary case explicit formulas can be obtained. We write f ′k(n) for the

number of minimal DFAs accepting a finite language, g′k(n) for the number of

distinct finite languages accepted by some DFA and G′k(n) for the number of

distinct finite languages accepted by some NFA, always observing automata

with n states and input alphabet size k. The bounds we give were observed

by Domaratzki, Kisman and Shallit [5].

5.1 Finite language DFAs

For the unary case we make use of Theorem 3.2.

Theorem 5.1. For a one letter alphabet we get f ′1(1) = 1, f ′1(n) = 2n−2

for n ≥ 2 and g′1(n) = 2n−1.

Proof. With only one state, a unary DFA can only accept ∅ and {a}∗. Only

one of these languages is finite.

Since a unary DFA always consists of a tail and a cycle, the cycle has to

be of size one, otherwise the DFA would accept an infinite language. This last

65

CHAPTER 5. FINITE LANGUAGES AND THEIR ACCEPTORS

state must be nonfinal and the state before this sink has to be final (because of

the minimality). For the remaining n− 2 states the final states can be chosen

at will and produce 2n−2 automata.

We use g′1(n) = f ′1(1)+f ′1(2)+ · · ·+f ′1(n) and the geometric series to obtain

g′1(n) = 2n−1.

Before we move on to larger alphabets we have to better understand the struc-

ture of finite language DFAs.

Lemma 5.2. If M is a DFA with n ≥ 2 states accepting a finite language,

then it is isomorphic to a DFA M ′ = (Q,Σ, δ, q0, F) with the following

properties:

a) δ(qn−1, a) = qn−1 for all letters a ∈ Σ,

b) δ(qn−2, a) = qn−1 for all letters a ∈ Σ,

c) qn−1 /∈ F ,

d) qn−2 ∈ F ,

e) δ(qi, a) = qj with i < n− 1 implies i < j.

Note that for n = 1 only a), c) and e) hold. The properties a) to d) specify that

there is one dead state which reaches only itself and is not final. Furthermore

there is a pre-dead state (see also [17]) which is final and reaches only the dead

state. Property e) is possible because the DFA has no cycle including a final

state.

Proof. Since M is minimal, it has to be initially connected. We discard the

states from which a final state cannot be reached. There is at least one such

state, otherwise there would be a cycle containing a final state. Actually,

there is exactly one such state, since two of these states would be equivalent,

contrary to the assumption that M is minimal. The remaining graph is acyclic.

Therefore we can rename the states in such a way that e) holds. Now we add

the sink again with the name qn−1, which then satisfies a) and c) and we get a

66

CHAPTER 5. FINITE LANGUAGES AND THEIR ACCEPTORS

minimal automaton M ′. The conditions b) and d) remain to be shown. Since

transitions from qn−2 only reach higher numbered states, they have to point

to qn−1. If qn−2 was not final, it would be equivalent to the state qn−1. Thus,

M ′ would not be minimal.

Theorem 5.3. Let k ≥ 2 and n ≥ 2, then we have

f ′k(n) ≥ 2n−2 ((n− 1)!)k−1 .

Proof. We construct different automata with states Q = {q0, q1, . . . , qn−1} such

that the restriction to the letter 0 is of the form

δ(qi, 0) = qi+1 for 0 ≤ i ≤ n− 2 and δ(qn−1, 0) = qn−1.

Furthermore we choose the final states to be any subset F ⊂ Q with qn−1 /∈ F
and qn−2 ∈ F . There are 2n−2 ways of doing so. To satisfy e) from Lemma 5.2

we have (n− 1)! possible ways of choosing the transition function for a single

letter, since the index of the state that is pointed to has to always be larger.

Two such automata accept distinct languages and are minimal because of the

minimality of the restriction to 0.

The characterization of minimal finite language DFAs in Lemma 5.2 would

give us an upper bound of f ′k(n) ≤ 2n−2((n− 1)!)k but the bound obtained in

Theorem 3.11 is tighter in terms of asymptotics. The bound

f ′k(n) ≤ fk(n) ≤ 2nnkn

(n− 1)!
= o

(
2n−2((n− 1)!)k

)
is indeed the best bound known so far.

5.2 Finite language NFAs

Moving on to NFAs accepting finite languages, we get an exact formula for the

unary case and bounds for larger alphabets.

67

CHAPTER 5. FINITE LANGUAGES AND THEIR ACCEPTORS

Theorem 5.4. We have G′1 = 2n and for k ≥ 2 we get

2(k−1)n(n−1)/2 ≤ G′k(n) ≤ 2n−1+kn(n−1)/2.

Proof. As we observed in Subsection 4.1.1, every subset of {ε, a, a2, . . . , an−1}
can be accepted by an NFA with n states, so G′1(n) ≥ 2n. If such an NFA

accepted a word w with |w| > n then the accepting path would contain a cycle

thus the accepted language would not be finite. Thus G′1 = 2n.

For the bounds on G′k(n), we assume that transitions go only from lower

labelled states to higher labelled states. This is possible by a similar argument

as in Lemma 5.2. In addition, the state qn−1 is final, otherwise all edges

pointing towards qn−1 could be removed. The state qi has n − i − 1 possible

transitions to higher labelled states for each letter. This gives us

n−1∏
i=0

2k(n−1−i)

ways of choosing the transition function and 2n−1 ways of choosing the remain-

ing final states. As an upper bound we get

2n−1

n−1∏
i=0

2k(n−1−i) = 2n−1+
∑n−1
i=0 k(n−1−i) = 2n−1+k

∑n−1
j=0 j = 2n−1+kn(n−1)/2.

For the lower bound we use a similar technique as in the proof of Theo-

rem 4.14. We construct different automata accepting distinct languages. Let

M = (Q,Σ, δ, q0, F) be an automaton with the following properties:

• Q = {q0, q1, . . . , qn−1}

• Σ = {0, 1, . . . , k − 1}

• Transitions only occur towards higher labelled states.

• δ(qi, 0) = {qi+1} for i 6= n− 1

• F = {qn−1} .

68

CHAPTER 5. FINITE LANGUAGES AND THEIR ACCEPTORS

The transitions for the letters 1 to k − 1 are chosen in all possible (valid)

ways. Again, we see that the accepted languages are distinct for two of these

automata. If we have qa+m ∈ δ(qa, α) but qa+m /∈ δ′(qa, α) for transition

functions δ and δ′ of two different automata and α 6= 0, then we can give a

word

ω := 0aα0n−1−a−m

that is accepted by one of these automata but not by the other. Now the

number of all the possible transition functions can be obtained. There are
(
n
2

)
edges pointing to a higher labelled state, thus for each of the k − 1 remaining

letters we decide whether or not to include this edge. Thus,

G′k(n) ≥ 2(k−1)n(n−1)/2.

69

CHAPTER 5. FINITE LANGUAGES AND THEIR ACCEPTORS

70

Chapter 6

Initially Connected DFAs

An important class of deterministic finite automata is the class of initially

connected DFAs. In these automata every state is reachable by some word

starting from q0. This condition is quite reasonable, since we can always cut

away nonreachable parts of an automaton without altering its behaviour. Ini-

tial connectedness is not as strong as the condition to be minimal, since there

are still initially connected DFAs that are not minimal.

As an example we have three automata accepting the language

L = {0, 1}∗ \ {ε, 0, 1} .

The automata shown in Figure 6.1, Figure 6.2 and Figure 6.3 all accept the

language L but have different properties.

Throughout this chapter we will study initially connected DFAs with and

without final states, in short ICDFAs and ICDFA∅s. We will write

• Bk(n) for the number of nonisomorphic ICDFA∅s, or for the number of

ICDFAs with unlabelled states and

• Ak(n) = 2nBk(n) for the number of nonisomorphic ICDFAs

with n and k representing the number of states and the alphabet size.

71

CHAPTER 6. INITIALLY CONNECTED DFAS

q0start

q1

q3

q2

q4

0

1

0,1

0,1

0,1

0,1

Figure 6.1: A not initially connected DFA

q0start

q1

q3

q2

0

1

0,1

0,1

0,1

Figure 6.2: A not minimal but initially connected DFA

72

CHAPTER 6. INITIALLY CONNECTED DFAS

q0start

q1

q2

0,1 0,1

0,1

Figure 6.3: A minimal DFA

6.1 Representation and enumeration

Both Robinson [21] and Liskovets [16] independently gave the following for-

mula.

Theorem 6.1. For the number of nonismorphic ICDFA∅s Bk(n) it holds

that

Bk(n) =
Ck(n)

(n− 1)!

with

Ck(n) = nkn −
∑

1≤j<n

(
n− 1

j − 1

)
Ck(j)n

k(n−j),

where Ck(n) is the number of ICDFA∅ transition structures, i.e. ICDFAs

without final states but not necessarily nonisomorphic.

Proof. There are nkn different transition structures. We subtract those that

are not initially connected, to be more precise, all automata with an initially

connected component of size < n. If the initally connected component is

of size j, the state q0 has to be part of the initially connected component.

The remaining j − 1 states are chosen from the n − 1 other states. Then

there are Ck(j) initially connected transition structures to connect the chosen

j states. The transition function for the remaining n − j states is chosen in

every possible way, giving nk(n−j) possibilities. Finally Ck(n) can be divided

by (n − 1)! since the names of the states other than q0 are irrelevant. This

concludes the proof.

73

CHAPTER 6. INITIALLY CONNECTED DFAS

When generating automata randomly to get experimental results, the comput-

ing time depends strongly on the internal representation of the automaton.

Almeida, Moreira and Reis [1] used a string representation for ICDFA∅s. We

will also see a different formula for Bk(n) as a direct positive summation.

6.1.1 String representation

The results in this subsection were observed by Almeida, Moreira and Reis

[1]. As noted before, the names of the states of an ICDFA∅ are irrelevant. A

representation using those names would therefore not be unique. We give a

way of obtaining a canonical order on the states, making their names obsolete.

Let M = (Q,Σ, δ, q0) be an ICDFA∅ with Σ = {0, 1, . . . , k − 1} and |Q| = n.

We construct a numbering φ : Q→ {0, . . . , n− 1} by traversing the transition

function in a breadth-first way. We will use brackets to denote intervals of

integers, for example [a, b[= {x ∈ Z|a ≤ x < b}. The number φ(qi) will be the

canonical state number of qi. The function φ is defined by the Algorithm 1.

Algorithm 1 Construct canonical state numbers

1: φ(q0)← 0

2: i← 0

3: s← 0

4: repeat

5: for j ∈ [0, k − 1] do

6: if δ(φ−1(s), j) /∈ φ−1([0, i]) then

7: φ(δ(φ−1(s), j))← i+ 1

8: i← i+ 1

9: i← i+ 1

10: until s ≥ i

In words: The initial state q0 gets the number 0. Every adjacent state that

is not numbered yet gets a new number according to the order of the letter it

is reached with. If every neighbour has a number, repeat this procedure for

the state with the next number until every state has a number. The variable

74

CHAPTER 6. INITIALLY CONNECTED DFAS

q0start q1 q2 q3

q4 q5

0 0,1 0,1
0,1

1

1
1

00

Figure 6.4: An ICDFA∅

i tracks the highest used number and s is the number of the state that is

currently checking all of its adjacent states.

The function φ is a bijection. The new ordering of the states can be thought

of like this: φ(qa) < φ(qb) if one of the following two conditions hold:

• The state qa is reached by a shorter word than qb.

• qa and qb are reached by equally short words, but the state qa is reached

by a smaller word in a lexicographical sense.

We can now replaceQ with [0, n−1] according to the given algorithm. Applying

the numbering algorithm to the ICDFA∅ given in Figure 6.4 results in the

numbering φ(q0) = 0, φ(q1) = 1, φ(q4) = 2, φ(q2) = 3, φ(q5) = 4 and φ(q3) = 5.

A string representation is now possible by simply giving all the transitions for

all states and all letters. For the automaton in Figure 6.4 the representing

string is

s = [δ(0, 0), δ(0, 1), δ(1, 0), δ(1, 1), δ(2, 0), δ(2, 1), δ(3, 0), . . . , δ(5, 1)]

= [1, 2, 3, 3, 1, 4, 5, 5, 3, 4, 5, 5].

More generally the i-th entry of the representing string is

si = δ (bi/kc , i mod k) for i ∈ [0, kn[.

We are now able to translate an ICDFA∅ to a string, but not every string

s ∈ [0, n[∗ of length kn corresponds to an ICDFA∅. We give a characterization

of these strings as observed by Almeida, Moreira and Reis [1].

75

CHAPTER 6. INITIALLY CONNECTED DFAS

Theorem 6.2. There is a bijection between the nonisomorphic ICDFA∅s

with n states over the alphabet Σ = [0, k[and the strings (si)i∈[0,kn[with

si ∈ [0, n[satisfying the conditions

∀m ∈ [2, n[: ∀i ∈ [0, kn[: (si = m⇒ ∃j ∈ [0, i[: (sj = m− 1)) , (R1)

∀m ∈ [1, n[: ∃j ∈ [0, km[: (sj = m) . (R2)

From now on, we will call the representing string of a given ICDFA∅ its canon-

ical string.

Proof. The condition (R1) guarantees that a state m can only occur in the

string, if its predecessor already occurred earlier in the string. This corresponds

to the canonical numbering of states φ. A violation of (R2) would result

in the state m being unreachable from the initial state 0. In addition (R2)

guarantees that every state occurs at least once in the string. We see that the

automaton obtained from a string satisfying (R2) is initially connected since

we can backtrack every state to the initial state.

Instead of (R1) and (R2) we use a different set of rules to be able to

enumerate ICDFA∅s. For a canonical string of an ICDFA∅ we define fj as the

index (starting at 0) of the first occurrence of the label j for j ∈ [1, n[and call

them the sequence of flags. Corresponding to (R1) and (R2) we get

∀m ∈ [2, n[: (fj > fj−1) , (G1)

∀m ∈ [1, n[: (fm < km) . (G2)

Let Fk,n be the number of allowed flags for ICDFA∅s with n states over k

letters. Since the flags represent newly discovered states in a breadth-first

approach, the flags can be seen as the internal nodes of the k-ary search tree.

The rules (G1) and (G2) together describe the outline of a generalized Dyck

path. Dyck paths and numerous other Catalan objects are enumerated by the

Fuss-Catalan numbers C
(k)
n [10, p.361]. Other structures like k-ary rooted trees

and bijections between these structures are given by Schmidthammer [23]. We

will use k-ary trees to prove the following theorem.

76

CHAPTER 6. INITIALLY CONNECTED DFAS

Theorem 6.3. We have

Fk,n = C(k)
n =

1

(k − 1)n+ 1

(
kn

n

)
.

Proof. The flags correspond to the internal nodes of the search tree of an

ICDFA∅ in a natural way. Internal nodes are newly discovered states and leaves

are transitions to already known states. The rules (G1) and (G2) guarantee

the connectedness. The inequality f1 < k for example says that the state

number 1 has to be discovered by the initial state.

Thus, a formula for Fk,n is obtained by counting k-ary trees with n internal

nodes. Let T be the class of k-ary trees. It holds that

T = {•} ×
(
{ε} ∪̇ T k

)
.

The GF of T (counting all the nodes, not just internal ones) satisfies

T (z) = z
(
1 + T k(z)

)
.

Theorem 2.4 can be applied. Note that a tree with n internal nodes has kn+1

nodes. We have

Fk,n = [zkn+1]T (z)

=
1

kn+ 1
[ukn](1 + uk)kn+1

=
1

kn+ 1
[ukn]

kn+1∑
j=0

(
kn+ 1

j

)
ukj

=
1

kn+ 1

(
kn+ 1

n

)
=

1

(k − 1)n+ 1

(
kn

n

)
.

Let us recall the ICDFA∅ in Figure 6.4. The flags of its canonical string

are [f1, . . . , f5] = [1, 2, 3, 6, 7] and the corresponding binary tree is given in

77

CHAPTER 6. INITIALLY CONNECTED DFAS

q0

q1

q2

q3

X X

X

X

q4

X q5

X X

Figure 6.5: The search tree corresponding to the flags of a canonical string

Figure 6.5, where a left child corresponds to the letter 0, a right child to the

letter 1 and a node labelled with X to a state that was already discovered. For

each allowed sequence of flags we can choose the remaining string entries as

follows:

i < f1 ⇒ si = 0, (G3)

∀j ∈ [1, n− 2] : (fj < i < fj+1 ⇒ si ∈ [0, j]) , (G4)

i > fn−1 ⇒ si ∈ [0, n[. (G5)

This set of rules, (G1)-(G5), also characterizes the canonical strings of all

possible ICDFA∅s. It can be used for the generation of all ICDFA∅s shown by

Almeida, Moreira and Reis [1]. We note the relation to Catalan objects and

will focus on the random generation of ICDFA∅s in Chapter 7.

If we consider only strings s ∈ [0, n[kn that satisfy (G1), we get an upper

bound for Bk(n). The last k symbols in the canonical string s can be chosen

from [0, n[without any restriction. This gives nk possibilities. The other part

of the string is an element of the language

{a1a2 . . . ak ∈ [0, n[∗ |∀i : ai ≤ max{a1, . . . , ai−1}+ 1} ,

78

CHAPTER 6. INITIALLY CONNECTED DFAS

where every letter in [1, n[occurs at least once. The set of these strings can

also be defined by a regular expression

Ln := L

0∗
∏
j∈[1,n[

j(0 + · · ·+ j)∗

 .

Every word of length m in Ln corresponds to a partition of [1,m] into at most n

parts, as observed by Moreira and Reis [19]. Since we study initially connected

automata, all the states {1, . . . , n−1} occur in the canonical string. The state

0 does not necessarily occur, thus the resulting partition has either n parts

or n − 1 parts. We will obtain a partition from a string s = s1, s2, . . . , sm by

constructing classes Ai with j ∈ Asj . The string s = [0, 0, 1, 0, 2] for example

translates to the partition

{{1, 2, 4}, {3}, {5}} .

We recall the string we obtained from Figure 6.4,

s = [1, 2, 3, 3, 1, 4, 5, 5, 3, 4, 5, 5].

This would result in a partition with only 5 classes, even though the automaton

has 6 states. We can fix this by adding the letter 0 to the beginning of every

string, guaranteeing the occurrence of every letter. This confirms the result

given by Almeida, Moreira and Reis [1] that for c ∈ N the words in Lc with

length m are enumerated by the Stirling numbers
{
m+1
c

}
. In addition this

insight gives a neat formula for the ordinary generating function of the Stirling

numbers, since the regular expression of

0 · Lc = L

 ∏
j∈[0,c[

j(0 + · · ·+ j)∗


translates directly to

∑
n≥0

{
n

c

}
zn =

zc

(1− z)(1− 2z) . . . (1− cz)
.

79

CHAPTER 6. INITIALLY CONNECTED DFAS

Note that the additional zero is the reason for the shift to
{
m+1
c

}
instead of{

m
c

}
. We can also write the Stirling numbers of the second kind as

{
n

k

}
=

1

k!

k∑
j=0

(
k

j

)
(−1)j(k − jn)

as described in [8, pp.735–737]. For the asymptotic analysis of the Stirling

numbers we will only work with the exponential generating function.

Theorem 6.4. By counting the possibilities for the first kn− k entries in

the canonical string and the last k separately and multiplying the number

of possibilities, we have

Bk(n) ≤
{
k(n− 1) + 1

n

}
nk.

This bound given by Almeida, Moreira and Reis [1] is tighter than the bound

given by Bassino and Nicaud [3], which we get as a consequence of this esti-

mate.

Corollary 6.5. We have

Bk(n) ≤ n

{
kn

n

}
.

Proof. We show this weaker result by proving{
n− i
m

}
≤ 1

mi

{
n

m

}
by induction over i for 0 ≤ i ≤ n − m, which can be applied to the bound

given in Theorem 6.4.

Let i = 0. Obviously
{
n−i
m

}
≤ 1

mi

{
n
m

}
. Using the well known identity{

n

m

}
= m

{
n− 1

m

}
+

{
n− 1

m− 1

}
,

80

CHAPTER 6. INITIALLY CONNECTED DFAS

we estimate for i ∈ [1, n−m[that{
n− i− 1

m

}
≤ 1

m

{
n− i
m

}
≤ 1

mi+1

{
n

m

}
.

Our goal now is to obtain an exact formula for Bk(n) as a direct positive

summation by counting all possible canonical strings. For a string to satisfy

both (R1) and (R2) we have to consider the sequence of flags fj with j ∈ [1, n[.

We define fn := kn. The set of possible canonical strings for a given sequence

of flags is given by the expression

0f1
∏
j∈[1,n[

j(0 + · · ·+ j)fj+1−fj−1. (6.1)

We take all possible flag sequences into consideration to get a regular expression

for all canonical strings:

k−1∑
f1=0

2k−1∑
f2=f1+1

· · ·
(n−1)k−1∑

fn−1=fn−2+1

0f1
∏
j∈[1,n[

j(0 + · · ·+ j)fj+1−fj−1

 .

Using this regular expression, the canonical strings can be easily enumerated.

Note that for a given flag sequence the language defined by (6.1) is of size∏n
j=1 j

fj−fj−1−1. As observed by Almeida, Moreira and Reis [1], this gives the

following formula.

Theorem 6.6. The number of nonisomorphic ICDFA∅s with n states over

k letters satisfies

Bk(n) =
k−1∑
f1=0

2k−1∑
f2=f1+1

· · ·
(n−1)k−1∑

fn−1=fn−2+1

(
n∏
j=1

jfj−fj−1−1

)
.

6.1.2 Boxed Dyck diagrams

A similar approach to the representation of ICDFA∅s is shown by Bassino and

Nicaud [3]. This subsection is based on their work. Again we will come across

81

CHAPTER 6. INITIALLY CONNECTED DFAS

Figure 6.6: The boxed diagram corresponding to (2, 3, 3, 5, 5) and (1, 2, 1, 5, 3)

Catalan objects and set partitions. This time, we will use the representation

as the basis for the random sampler explained in Chapter 7.

For a given ICDFA∅ M = (Q,Σ, δ, q0) with n states over k letters, we

find a natural order of the states by the lexicographical order of words. More

precisely, we give an order of the states Q according to the words

w(q) := min
lex
{w ∈ Σ∗|δ(q0, w) = q}.

We choose the numbers {1, 2, . . . , n} as the canonical names of the states,

such that w(1) < w(2) < · · · < w(n). Note that this order of words leads to

a depth-first traversal of the ICDFA∅ contrary to the last approach, which led

to a breadth-first traversal. An ICDFA∅ can be represented as a diagram with

special properties. A diagram is a sequence of integers (x1, x2, . . . , xm) that

can be drawn as a nondecreasing sequence of columns. A boxed diagram has

exactly one marked box for each column, see Figure 6.6. We can describe such

a diagram with two sequences, (xi)i∈[1,m] and (yi)i∈[1,m] with xi ≥ yi for all

i ∈ [1,m]. The diagram is of width n and height m if it consists of n columns

with xm = n. The diagrams that represent an ICDFA∅ are the k-Dyck boxed

diagrams.

Definition 6.7. A k-Dyck boxed diagram of size n is a boxed diagram of

width (k − 1)n + 1 and height n, with column heights (x1, . . . , x(k−1)n+1)

satisfying the Dyck condition xi ≥ di/(k − 1)e for i ≤ (k − 1)n.

We see the similarity to the string representation of ICDFA∅s, as Dyck dia-

grams are also enumerated by the Catalan numbers.

We give an algorithm to obtain the strings (xi)i∈I and (yi)i∈I with I =

[1, (k− 1)n+ 1] as a pseudo code taken from [3]. These strings will be denoted

82

CHAPTER 6. INITIALLY CONNECTED DFAS

by Max and Boxed, which are initialized as empty lists. The variable “nbr”

is the number of labelled (or discovered) states. The algorithm (Algorithm 2)

Algorithm 2 From DFA to boxed Dyck

1: procedure FromDfaToBoxedDyck(D)
2: Max = (); Boxed = ();

3: i← 0

4: s← 0

5: for q in Q do

6: Visited[q] = false

7: Number[q] = 0

8: nbr = 0

9: DepthFirst(D, q0,Max,Boxed, nbr)

10: return(Max,Boxed)

11:

12: procedure DepthFirst(D, q,Max,Boxed, nbr)

13: Visited[q] = true

14: nbr = nbr + 1

15: Number[q] = nbr

16: for a in Σ, in the lexicographical order do

17: if Visited[q · a] then

18: Append(Max, nbr)

19: Append(Boxed,Number[q · a])

20: else

21: DepthFirst(D, q · a,Max,Boxed, nbr)

can be described as follows:

• Traverse the ICDFA∅ in a depth-first manner according to the lexico-

graphical order of words.

• The initial state gets the number 1.

• If a new state is encountered during this process, assign the next unused

state number.

83

CHAPTER 6. INITIALLY CONNECTED DFAS

1start 2

3

b

a a,c

b

cb

c

a

Figure 6.7: An ICDFA∅ with canonical state names

• If the traversal of the ICDFA∅ leads to an already discovered state, create

a new column in the diagram of height equal to the number of currently

labelled states and mark the i-th box of this new column, where i is the

already known state we reached in this step.

Let us execute this algorithm for the automaton given in Figure 6.7, an au-

tomaton with n = 3 states over k = 3 letters. We list all the words ω that

are considered during the depth-first traversal together with the number of

currently known states xi and the number of the state q0 · ω, which is yi.

ω xi yi new state

ε 1

a 1 1

b 2

ba 2 2

bb 2 1

bc 2 2

c 3

ca 3 2

cb 3 1

cc 3 3

84

CHAPTER 6. INITIALLY CONNECTED DFAS

Figure 6.8: The boxed diagram corresponding to Max = (1, 2, 2, 2, 3, 3, 3) and

Boxed = (1, 2, 1, 2, 2, 1, 3)

The resulting sequences are x = (1, 2, 2, 2, 3, 3, 3) and y = (1, 2, 1, 2, 2, 1, 3).

Since 3 = n = k, the sequences are of length (k − 1)n + 1 = 7. Figure 6.8

shows the corresponding diagram. This process can be easily reversed to obtain

an ICDFA∅ from a given k-Dyck boxed diagram. The representation of an

ICDFA∅ as a diagram allows us to establish a connection to set partitions.

Lemma 6.8. There is a bijection from the set of boxed diagrams of width

m and height n to the set of partitions of a set with n+m elements into

n parts.

Proof. Starting with a boxed diagram of width m and height n we add n

columns with heights 1, 2, . . . , n. The topmost box in these new columns is

marked. Each new column is inserted at the leftmost position that does not

violate the definition of a diagram. This gives n + m columns. We can now

construct a partition according to the marked boxes: The numbers i and j are

in the same part if and only if the i-th and the j-th column have marks at the

same height.

We take the diagram from Figure 6.8 as an example. It is of width 7 and of

height 3. We insert the columns , and at the leftmost possible positions

which results in the following diagram.

1 2 3 4 5 6 7 8 9 10

85

CHAPTER 6. INITIALLY CONNECTED DFAS

The partition of the set {1, 2, . . . , 10} according to the marked boxes is

{{1, 2, 5, 9}, {3, 4, 6, 8}, {7, 10}} .

This approach proves again, that every ICDFA∅ with n states over k letters

corresponds to exactly one set partition of kn+ 1 elements into n parts. Note

that this does not hold the other way around, since we disregarded the Dyck

condition for the diagrams. Therefore we only get the upper bound

Bk(n) ≤
{
kn+ 1

n

}
.

To slightly improve this bound and to prove again the bound obtained in

Subsection 6.1.1 we split a diagram of width (k− 1)n+ 1 and height n into its

last column, which is of height n, and the shorter diagram of width (k − 1)n.

There are n possibilities to mark a box in the last column and each residual

diagram corresponds to one of
{
kn
n

}
set partitions. This gives

Bk(n) ≤ n

{
kn

n

}
,

which we have already shown using the string representation.

6.1.3 Asymptotics of ICDFAs

We note that since Ak(n) = 2nBk(n), we have Ak(n) ≤ n2n
{
kn
n

}
. In [3],

Bassino and Nicaud give a tight lower bound for Ak(n). For a fixed alphabet

size of k they write Fm,n and Sm,n for the set of k-Dyck boxed diagrams

and boxed diagrams of width m and height n. We have Fm,n ⊂ Sm,n and

Bk(n) = n|F(k−1)n,n|. To obtain a lower bound for Bk(n) the equation

|F(k−1)n,n| = |S(k−1)n,n| − |S(k−1)n,n \ F(k−1)n,n|

=

{
kn

n

}
− |S(k−1)n,n \ F(k−1)n,n|

is used and the term |S(k−1)n,n \F(k−1)n,n| is overestimated. Together with the

upper bound, Bassino and Nicaud find that Ak(n) = Θ(n2n
{
kn
n

}
). There is

an even stronger relation to the Stirling numbers as observed by Korshunov in

[13] and [14]. The original result does not use the notion of Stirling numbers

or set partitions. Korshunov stated the following:

86

CHAPTER 6. INITIALLY CONNECTED DFAS

Theorem 6.9. The number of nonisomorphic initially connected deter-

ministic finite automata Ak(n) satisfies

Ak(n) ∼
(

1− kak
1 + ak

)−1/2

Êk
2nνn(k)nkn

(n− 1)!

with

Êk =
1 +

∑∞
r=1

1
r

(
kr
r−1

) (
ekν(k)

)−r
1 +

∑∞
r=1

(
kr
r

)
(ekν(k))−r

.

We will use this without proof and are interested in establishing a connection

to set partitions. Bassino and Nicaud [3] were able to reformulate this estimate

in terms of Stirling numbers (see Theorem 6.11). Thus, we have to further in-

vestigate the numbers of distinct set partitions. The search of a better estimate

of our bounds boils down to the question: What is the asymptotic growth of

the Stirling numbers
{
kn
n

}
? This question has already been answered by Good

[9]. He gave an asymptotic expansion for
{
n
m

}
with n/m = Θ(1).

6.2 A closer look at the Stirling numbers

We base our calculations on the work of Flajolet and Sedgewick [8]. To es-

timate the Stirling numbers we are interested in, we have to take a look at

the bivariate generating function of set partitions as mentioned in Section 2.4.

The combinatorial construction of set partitions

P = Set(Set≥1(Z))

gives the EGF ∑
n,k≥0

{
n

k

}
znyk

n!
= ey(ez−1).

Our goal is to estimate{
kn

n

}
= (kn)![zknyn]ey(ez−1) = (kn)![zkn]

(ez − 1)n

n!
.

87

CHAPTER 6. INITIALLY CONNECTED DFAS

For the estimate of [zkn](ez − 1)n we use the saddle point method of Flajolet

and Sedgewick [8, p.587]. Our problem can be regarded as a special case of

this method, since the power of the generating function increases with the

coefficient we want to extract. The method is applicable as follows.

We observe functions of the form A(z) ·B(z)n which satisfy the conditions

L1 : A and B are analytic at 0 with nonnegative coefficients and B(0) 6= 0.

L2 : B is aperiodic in a sense that there is no analytic function β and integer

p ≥ 2 such that B(z) = β(zp).

L3 : The radius of convergence of A is at least as large as the radius of B.

Theorem 6.10. Under the conditions L1, L2 and L3, we get

[zλn]A(z) ·B(z)n ∼ A(ζ)
B(ζ)n

ζλn+1
√

2πnη
,

where ζ is the unique positive solution to

ζ
B′(ζ)

B(ζ)
= λ

and

η =
d2

dz2
(log(B(z))− λ log(z))

∣∣∣∣
z=ζ

.

We apply this to our initial problem and get

[zkn](ez − 1)n = [zkn]zn
(
ez − 1

z

)n
= [z(k−1)n]

(
ez − 1

z

)n
.

Note that (ez − 1) cannot be assigned to B(z) since we need B(0) 6= 0. Thus,

we have A(z) = 1, B(z) = ez−1
z

and λ = k − 1. We get

ζ
B′(ζ)

B(ζ)
= k − 1

⇔ ζeζ

eζ − 1
− 1 = k − 1

⇔(ζ − k)eζ−k = −ke−k

⇔ ζ = W0(−ke−k) + k,

88

CHAPTER 6. INITIALLY CONNECTED DFAS

where we abbreviate ζk by ζ and where W0 is the Lambert-W function we

mentioned in Section 2.2.

Note that W0(−ke−k) 6= −k even though W0 is the inverse function of

f : x 7→ xex. This is due to the fact that f is bijective on [−1,∞[, therefore

W0(x) is well defined for x ∈ [−1/e,∞[. In the previous calculation −ke−k is

a valid argument for W0 but as k > 1 the value of −k leaves the range [−1,∞[

thus W0(−ke−k) 6= −k.

Now we have to determine the value of η by

η =
d2

dz2
(log(B(z))− λ log(z))

∣∣∣∣
z=ζ

=
d2

dz2
log

(
ez − 1

zk

) ∣∣∣∣
z=ζ

=
d

dz

(
ez

ez − 1
− k

z

) ∣∣∣∣
z=ζ

=
−eζ

(eζ − 1)2
+
k

ζ2
.

Since ζ = W0(−ke−k) + k, we also have eζ = k
k−ζ . This gives

η =

−k
k−ζ(

k
k−ζ − 1

)2 +
k

ζ2
=

k

ζ2
(ζ − (k − 1)) .

Using the same notation as in Theorem 6.10, we have

{
kn

n

}
=

(kn)!

n!
[zkn] (ez − 1)n .

Together with Stirling’s approximation formula, which gives

(kn)!

n!
∼ (kn/e)kn

√
2πkn

(n/e)n
√

2πn
= kkn

(n
e

)(k−1)n√
k,

89

CHAPTER 6. INITIALLY CONNECTED DFAS

we get {
kn

n

}
∼ kkn

(n
e

)(k−1)n√
k

B(ζ)n

ζ(k−1)n+1
√

2πnη

= kkn
(n
e

)(k−1)n√
k

B(ζ)n

ζ(k−1)n+1
√

2πn k
ζ2

(ζ − (k − 1))

=

√
1

2π (ζ − (k − 1))

kkn

(eζ)(k−1)n
B(ζ)nn(k−1)n−1/2

= α
kkn

(eζ)(k−1)n
B(ζ)nn(k−1)n−1/2

= αβnn(k−1)n−1/2

with

α :=

√
1

2π(ζ − (k − 1))
and β :=

kk(eζ − 1)

ek−1ζk
.

We can now give the asymptotic estimate of Ak(n) using the Stirling numbers

of the second kind by reformulating Korshunov’s result [13, 14].

Theorem 6.11. It holds that

Ak(n) ∼ Ekn2n
{
kn

n

}
with

Ek =
1 +

∑∞
r=1

1
r

(
kr
r−1

) (
ekν(k)

)−r
1 +

∑∞
r=1

(
kr
r

)
(ekν(k))−r

.

Proof. We explore Korshunov’s result given in Theorem 6.9 and establish a

connection to the Stirling numbers. Korshunov [13, 14] writes ak for the unique

root of 1 + x = xek/(1+x) in the interval [0, 1]. Note that k ≥ 2. In addition he

defines

ν(k) := aakk (1 + ak)
k−1−ak .

We claim that ζ = k
1+ak

. We already know the identity k/(k − ζ) = eζ . It

90

CHAPTER 6. INITIALLY CONNECTED DFAS

follows that

k

k − ζ
= eζ ⇔ k = (k − ζ)eζ

⇔ k

ζ
=

(
k

ζ
− 1

)
eζ

⇔ 1 +

(
k

ζ
− 1

)
=

(
k

ζ
− 1

)
e

k

1+(kζ−1)

⇔
(
k

ζ
− 1

)
is the root of 1 + x = xek/(1+x).

Thus, ak = k
ζ
− 1 and ak = k

ζ
e−ζ . For the first term in Korshunov’s estimate

we get

(
1− kak

1 + ak

)−1/2

= (1− ζ(k7ζ − 1))−1/2 =

√
1

ζ − (k − 1)
= α
√

2π.

Recall that

β =
kk(eζ − 1)

ek−1ζk
.

We find that

ν(k) = aakk (1 + ak)
k−1−ak

=

(
k

ζ
e−ζ
) k

ζ
−1(

k

ζ

)k− k
ζ

=

(
k

ζ

)k−1

eζ−k.

Using the identity

eζ =
k

ζ
(eζ − 1),

we get

eν(k) =
kk−1

ζk−1ek−1
eζ =

kk

ek−1

(eζ − 1)

ζk
= β.

We have ekν(k) = βek−1, thus the quotients Êk and Ek are equal. We are now

91

CHAPTER 6. INITIALLY CONNECTED DFAS

able to transform Korshunov’s estimate [13, 14]

Ak(n) ∼
(

1− kak
1 + ak

)−1/2

Êk
2nνn(k)nkn

(n− 1)!

= α
√

2πEk
2nβnnkn+1

en(n!)

∼ α
√

2πEk
2nβnnkn−n+1

√
2πn

= Ekn2nαβnn(k−1)n−1/2

∼ Ekn2n
{
kn

n

}
.

This concludes the proof.

Bassino and Nicaud [3] also provide numerical results for

An(k)

2nn
{
kn
n

} .
This is of interest since these quotients will give the probability of successfully

generating an ICDFA from a random set partition. Due to the asymptotic

equivalence we have

Ek = lim
n→∞

An(k)

2nn
{
kn
n

} .
It holds that lim

k→∞
Ek = 1. The obtained numerical results include for ex-

ample E2 ≈ 0.74490782, E3 ≈ 0.87341820, E4 ≈ 0.93931196 and E26 ≈
0.99999999987. The calculations suggest that even for small alphabets we have

a reliable percentage of set partitions that can be transformed to ICDFAs.

92

Chapter 7

Random Sampling

In this chapter our goal is to randomly generate automata using the previous

results, primarily the representations of ICDFAs as boxed Dyck diagrams. Not

only do we want to generate automata of a fixed size, but to do this uniformly.

Let us demonstrate this with a small example.

Example: Set partitions We want to randomly generate partitions of the

set {1, 2, 3, 4} consisting of 2 parts. The
{

4
2

}
= 7 partitions we are interested

in are given in Figure 7.1. Naturally, when sampling combinatorial objects,

we want to avoid listing all possible objects at all cost. To sample one of these

7 partition we could proceed as follows.

• Draw 2 elements at random from {1, 2, 3, 4}.

• Declare them to be elements of different parts.

• Assign the remaining 2 elements to a randomly chosen part with proba-

bilities 1/2 each.

{{1, 2, 3}, {4}} {{1, 2, 4}, {3}} {{1, 3, 4}, {2}} {{1, 2}, {3, 4}}

{{1, 3}, {2, 4}} {{1, 4}, {2, 3}} {{1}, {2, 3, 4}}

Figure 7.1: All partitions of 4 elements consisting of 2 parts

93

CHAPTER 7. RANDOM SAMPLING

Let γ be the partition obtained by this procedure. We see that

P (γ = {{1, 2, 3}, {4}}) =
3(
4
2

) (1

2

)2

=
1

8
, but

P (γ = {{1, 2}, {3, 4}}) =
4(
4
2

) (1

2

)2

=
1

6
.

Thus, this method does not uniformly create partitions. This brings us to

the Boltzmann model, which provides a framework for random generation of

objects where the probability for a certain object only depends on its size.

7.1 The Boltzmann Model

The idea behind the Boltzmann model is to relax the condition of generating

objects of a fixed size. Instead we will generate objects with fixed average

size, which we can tune to fit our requirements. This approach is easy to

implement, uses little amount of pre-calculation and generates objects of the

same size with the same probability. We use a method as explained by Duchon,

Flajolet, Louchard and Schaeffer [6], the notion of a Boltzmann sampler.

Definition 7.1. Let C be a combinatorial structure with a weight function

| · | with OGF C(z) =
∑

n≥0Cnz
n and x > 0 a real number smaller than

the radius of convergence of C. The Boltzmann model with parameter x

is the probability distribution

Px(γ) =
1

C(x)
· x|γ|.

Analogously for the exponential generating function Ĉ(z) =
∑

n≥0Cn
zn

n!
the

exponential Boltzmann model is

Px(γ) =
1

Ĉ(x)
· x
|γ|

|γ|!
.

Note that these are probability distributions for Ω = C since∑
γ∈C

Px(γ) =
1

C(x)

∑
γ∈C

x|γ| =
1

C(x)
C(x) = 1.

94

CHAPTER 7. RANDOM SAMPLING

The parameter x can be used to change the average size of the generated

objects. Let the random variable N be the size of the generated object. The

first and second moments of N are

Ex(N) =
|γ|x|γ|

C(x)
= x

C ′(x)

C(x)
and

Ex(N2) =
x2C ′′(x) + xC ′(x)

C(x)
.

Thus, the variance can be obtained by

Vx(N) = Ex(N2)− Ex(N)2

=
x2C ′′(x) + xC ′(x)

C(x)
− x2C

′(x)2

C(x)2

= x · d
dx
Ex(N).

Note that choosing the parameter x such that Ex(N) = n yields the best

results for sampling objects of size n. There is a simple explanation for this:

We want to maximize the probability

Px(|γ| = n) = Cn
xn

C(x)
.

To get
d

dx
Px(|γ| = n) = Cn

nxn−1C(x)− xnC ′(x)

C(x)2
= 0

we have to satisfy

n = x
C ′(x)

C(x)
.

The term xC
′(x)
C(x)

is exactly the expected value of N .

In the following we will write ΓA(x) or simply ΓA for the Boltzmann sam-

pler with parameter x which uniformly generates objects of the combinatorial

structure A.

7.1.1 Building a Boltzmann sampler

To build a working sampler we make use of the fact that many combinatorial

structures can be defined by basic set operations. We can reduce the problem

of generating complex objects to generating simpler ones.

95

CHAPTER 7. RANDOM SAMPLING

We will write Bern(x) for a random sample drawn from a Bernoulli dis-

tribution with parameter x. Analogously we will write Geom(x), Pois(x),

NonzeroPoisson(x), Loga(x) and Uniform(x) for a geometric distribution,

Poisson distribution, nonzero Poisson distribution, logarithmic distribution

and uniform distribution.

Disjoint union: Suppose we have combinatorial structures A and B with

C = A∪̇B. If we already have Boltzmann samplers ΓA and ΓB we can proceed

as follows. The Boltzmann model for C is

Px(γ) =
x|γ|

A(x) +B(x)
.

The probability to generate an object of the class A is

Px(γ ∈ A) =
∑
γ∈A

x|γ|

A(x) +B(x)
=

A(x)

A(x) +B(x)
.

Thus, we obtain the sampler ΓC, which uses ΓA with probability A(x)/C(x)

and ΓB with probability B(x)/C(x). We write

ΓC(x) =

(
Bern

(
A(x)

C(x)

)
→ ΓA(x)

∣∣∣ΓB(x)

)
,

which reads as follows: If a Bernoulli random variable is 1 then execute ΓA(x).

Else, execute ΓB(x).

Cartesian product: Let C = A × B and let γ = (α, β) ∈ C be some fixed

element in C. Then we have

Px(γ) =
x|γ|

C(x)
=

x|α|+|β|

A(x)B(x)
=

x|α|

A(x)
· x

|β|

B(x)
,

which is exactly the product of the probabilities for obtaining α and β with

ΓA and ΓB independently. Thus, the sampler ΓC returns just the ordered

pair results from the samplers ΓA and ΓB,

ΓC(x) = (ΓA(x),ΓB(x)) .

96

CHAPTER 7. RANDOM SAMPLING

Sequences: Let C = Seq(A) be the class of finite sequences of elements

from A and γ ∈ C. Then we have

Px(γ ∈ Ak) =
A(x)k

C(x)
= A(x)k (1− A(x)) ,

which is a geometric distribution with parameter λ = 1−A(x). The geometric

distribution P(X = k) = (1 − λ)kλ can also be implemented as an iterated

Bernoulli experiment until the first successful outcome. We get the sampler

ΓC(x) =
(

(ΓA(x))k with k = Geom(1− A(x))
)
,

or since C(z) = 1 + A(z)C(z) we can also define

ΓC(x) =
(
Bern(1− A(x))→ Γ1

∣∣∣(ΓA(x),ΓC(x))
)
.

Note that Γ1 is the Boltzmann sampler of the class {ε}. This sampler always

returns the object ε (the sequence of length 0), since the Boltzmann sampler

of a singleton set always returns the only available object. This is the reason

why the recursive approach terminates.

The three presented constructions hold for the ordinary Boltzmann model

as well as the exponential model. Before moving on to exponential Boltzmann

samplers, we want to give an example.

Example: Products with parentheses Given a product of n+1 numbers

separated by n multiplication operations, for example ((a ∗ (a ∗ a)) ∗ a), there

are Cn ways of defining the order of multiplication by inserting parentheses.

It is well known that

Cn =
1

n+ 1

(
2n

n

)
and C(z) =

∑
n≥0

Cnz
n =

1−
√

1− 4z

2z
.

The numbers Cn with n ∈ N are the Catalan numbers, or the Fuss-Catalan

numbers C
(2)
n we already observed in Theorem 6.3. Binary trees, Dyck paths

and noncrossing partitions are only a few of the structures also enumerated by

these numbers. The class of products with parentheses P can be defined by

the equation

P = {a} ∪̇ P × {∗} × P ,

97

CHAPTER 7. RANDOM SAMPLING

thus the generating function C(z) satisfies

C(z) = 1 + zC(z)2.

The corresponding Boltzmann sampler is

ΓC(x) =

(
Bern

(
1

C(x)

)
→ Γ1

∣∣∣ (ΓC(x), ∗,ΓC(x))

)
.

Here the sampler Γ1 always returns the product “a” with only one number and

n = 0 multiplication signs and (ΓC(x), ∗,ΓC(x)) denotes a triple consisting of

a a randomly sampled product, a multiplication sign and another product. To

generate a product of size n we have to find a suitable value for the parameter

x. We find that

Ex(N) = x
C ′(x)

C(x)
=

1

2

(
1√

1− 4x
− 1

)
.

For n ∈ N and n = Ex(N) we find that

x =
1

4

(
1− 1

(2n+ 1)2

)
.

If, for example, we want to generate a product with n = 5 multiplication signs,

we set the parameter x to 30/121.

The probability that the Boltzmann sampler with parameter x that satisfies

n = Ex(N) returns a product with exactly n+ 1 numbers is therefore

Px(|γ| = n) = Cn
xn

C(x)

=
1

n+ 1

(
2n

n

) 1
4n+1

(
1− 1

(2n+1)2

)n+1

1
2

(
1− 1

2n+1

)
∼ 1

2n3/2
√
π

(
1− 1

2n+ 1

)n(
1 +

1

2n+ 1

)n+1

∼ 1

2n3/2
√
π
.

The value for Px(|γ| = n) with n = 5 is Px(|γ| = 5) ≈ 0.0214628444286. Thus,

on average we have to sample ≈ 47 products to get one with size 5. This

98

CHAPTER 7. RANDOM SAMPLING

Listing 7.1: A Boltzmann sampler for products with n + 1 factors and n

multiplication operations, written in Python.

from math import sqrt

from scipy.special import binom

from scipy.stats import bernoulli

def C(x):

return (1-sqrt (1-4*x))/(2*x)

def construct(p):

if bernoulli.rvs(p):

return "a"

else:

return "(" + construct(p) + "*" +construct(p) + ")"

def sample_product(n):

x=1/4*(1 -1/(2*n+1) **2)

p=1/C(x)

product=""

while product.count("*")!=n:

product=construct(p)

return product

approach is known as the rejection method: Generate random samples until

a sample satisfies certain conditions. In our case, this results in a uniform

distribution on all objects of size n.

The sampler for products with parentheses including the rejection method

is easily implemented for example in Python as shown in Listing 7.1. A lan-

guage like C++ is of course more suitable for serious experiments. We only

want to show the ease of implementation and choose Python in favour of read-

ability and a more compact code.

99

CHAPTER 7. RANDOM SAMPLING

7.1.2 Exponential Boltzmann samplers

When dealing with labelled objects we use exponential generating functions to

describe counting sequences. The disjoint union construction for Boltzmann

samplers works exactly like in the unlabelled case with ordinary generating

functions. For EGFs Â(z) and B̂(z) the product Ĉ(z) = Â(z) · B̂(z) corre-

sponds to the labelled product C = A ? B. A sampler ΓC for the labelled

product is obtained in the following manner:

• Generate objects with ΓA and ΓB independently. Let us call these ob-

jects α and β.

• Randomly assign the labels {1, . . . , |α|+ |β|} to the atoms in (α, β).

Sampling finite sequences of labelled objects is again a combination of disjoint

union and the labelled product.

Sets: Let A be a labelled combinatorial structure and C = Set(A). The

EGFs of A and C satisfy Ĉ(z) = exp(Â(z)). The Boltzmann sampler generates

an object γ ∈ C with the probability

Px(γ) =
1

Ĉ(x)

x|γ|

|γ|!
.

Furthermore the probability for γ to be a set of k components from A is

1

Ĉ(x)

Â(x)k

k!
= e−Â(x) Â(x)k

k!
,

which is a Poisson distribution with parameter λ = Â(x). It is defined by the

law P(X = k) = e−λλk/k!. This gives the Boltzmann sampler

ΓC(x) =
(

(ΓA(x))k with k = Pois(Â(x))
)
,

where (ΓA(x))k denotes the labelled product of k independently sampled ob-

jects of A.

100

CHAPTER 7. RANDOM SAMPLING

Cycles: For the sake of completeness we also give a Boltzmann sampler for

the cycle construction mentioned in Section 2.3. Let C = Cyc(A), thus

Ĉ(z) = log

(
1

1− Â(z)

)
=
∑
k≥1

Â(z)k

k
.

The probability for a sampled object γ to be a cycle of k components from A
is

1

Ĉ(x)

Â(x)k

k
=

1

− log(1− Â(x))

Â(x)k

k
,

which is a logarithmic distribution with parameter λ = Â(x). The logarithmic

distribution is defined by the law

P(X = k) =
−1

log(1− λ)

λk

k
.

The Boltzmann sampler is essentially the same as for the set construction,

where the Poisson distribution is simply replaced by a logarithmic distribution,

ΓC(x) =
(

(ΓA(x))k with k = Loga(Â(x))
)
.

7.2 Sampling automata

In this section we want to efficiently sample ICDFAs with n states over an

alphabet of size k. Thus, we have to build a sampler for set partitions of kn

elements with n parts. We recall the set partitions we counted in Section 6.2

and their EGF. Let Pn be the class of set partitions with n parts, then the

EGF of Pn is

Pn(z) =
(ez − 1)n

n!
.

We will now observe the exponential Boltzmann model of Pn. Let M be the

size of the partition generated by the Boltzmann sampler with parameter x.

The expected value of M is

Ex(M) = x
P ′n(x)

Pn(x)
= nx

ex

ex − 1
.

101

CHAPTER 7. RANDOM SAMPLING

Our goal is to generate an object of size kn, thus nx ex

ex−1
= kn. We see that the

parameter x only depends on k and has the same value as ζ which we calcu-

lated during the application of Theorem 6.10. Therefore x = W0(−ke−k) + k.

The exponential generating function of the nonempty sets is N(z) = ez − 1,

thus the probabilities of the Boltzmann model are those of a nonzero Poisson

distribution,

P(X = k) =
λk

(eλ − 1)k!
for k ≥ 1

with parameter λ = x. The Boltzmann sampler is therefore

ΓPn(x) =
(

return a relabelled set of n independent calls of ΓN(x)
)

and

ΓN(x) =
(

return the set {1, . . . , k} with k = NonzeroPois(x)
)
.

There is a simple algorithm that generates random values according to the

nonzero Poisson law using only a uniform random number generator. See

Algorithm 3 for the pseudo code.

Algorithm 3 Nonzero Poisson

1: procedure NonzeroPois(λ)

2: k ← 1

3: p← λ(eλ − 1)−1

4: u← Uniform([0, 1[)

5: while u ≥ p do

6: u← u− p
7: k ← k + 1

8: p← λp/k

9: return k

The probability that the Boltzmann sampler ΓPn(x) succeeds in generating

a partition of size kn is

Px(N = kn) =
xkn

Pn(x)
[zkn]Pn(z) =

n!xkn

(ex − 1)n

{
kn
n

}
(kn)!

.

Using the estimate for the Stirling numbers from Section 6.2 we deduce that

the average number of rejections is O(
√
n). The code in Listing 7.2 shows a

possible implementation of a sampler including the rejection method.

102

CHAPTER 7. RANDOM SAMPLING

Listing 7.2: A Boltzmann sampler for partitions of kn elements into n parts,

written in Python.

from math import e

from scipy.special import lambertw

import random

def nonzero_pois(x):

k=1

p=x/(e**x-1)

u=random.random ()

while u >=p:

u-=p

k+=1

p*=x/k

return k

def sample_partition(n,k):

zeta=lambertw(-k*e**(-k))+k

sizes =[]

while sum(sizes)!=n*k:

sizes =[]

for _ in range(n):

sizes.append(nonzero_pois(zeta))

labels=list(range(1,k*n+1))

random.shuffle(labels)

partition =[]

for i in sizes:

l = []

for _ in range(i):

l.append(labels.pop())

partition.append(l)

return partition

103

CHAPTER 7. RANDOM SAMPLING

We bring together the previous results and give the random sampling

algorithm for ICDFAs with n states and alphabet size k:

S1 Calculate x = W0(−ke−k) + k.

S2 Sample a set partition with ΓPn(x) until it produces a partition of size

kn.

S3 Transform the partition to a boxed diagram of width (k − 1)n and

height n as explained in Lemma 6.8.

S4 If the resulting diagram does not satisfy the Dyck condition mentioned

in Definition 6.7, go to S2.

S5 Append a column of height n with one randomly chosen marked box.

S6 Transform the k-Dyck boxed diagram of size n obtained this way to

an ICDFA∅ M = (Q,Σ, δ, q0) according to the inverse algorithm to

Algorithm 2, which gave a bijection from k-Dyck boxed diagrams to

ICDFA∅s.

S7 Randomly add final states, i.e. for every state q ∈ Q decide whether q

is final with probability 1/2.

Let us demonstrate the whole procedure by completely showing one possible

scenario. Let n = 4 and k = 2. Suppose that the sampler outputs the partition

{{1, 2, 4}, {3, 8}, {5, 7}, {6}} .

We get the following diagram:

1 2 3 4 5 6 7 8

After removing the leftmost column of each height and appending one column

of height 4 we have the following diagram:

104

CHAPTER 7. RANDOM SAMPLING

Luckily the Dyck condition holds for this boxed diagram. With the sequences

Max = (1, 2, 4, 4, 4) and Boxed = (1, 1, 3, 2, 2) the ICDFA∅ shown in Figure 7.2

is obtained.

1start 2 3

4

a

b

a

b

b

a ab

Figure 7.2: An ICDFA∅ generated with a Boltzmann sampler

There are now 24 possibilities to randomly choose final states to get an

ICDFA.

7.2.1 An open conjecture

This sampler can be extended easily to generate minimal DFAs by adding a

last rejection step:

S8 If the resulting automaton is not minimal go to S2.

Using this this method, Bassino and Nicaud [3] observed through experiments

that on average, less than two draws are enough to sample a minimal DFA over

an alphabet of two or more letters. This suggests that a constant percentage

of ICDFAs is minimal. The results obtained by Champarnaud and Paranthoën

[4] show that the empirical probability of a two letter DFA to be minimal is

approximately 80%. Furthermore through tests with larger alphabets and 100

105

CHAPTER 7. RANDOM SAMPLING

states it was observed that almost all DFAs are minimal with the exception of

automata with trivial finalities, i.e. automata with no final states or all final

states. A proof for this claim has yet to be found. It would guarantee the

efficiency of the random sampler of minimal DFAs and provide an estimate of

the form fk(n) = Θ(n2n
{
kn
n

}
) for the number of minimal DFAs.

106

Bibliography

[1] Marco Almeida, Nelma Moreira, and Rogério Reis. Enumeration and

generation with a string automata representation. Theoretical Computer

Science, 387(2):93–102, 2007.

[2] Ashwag Alrehily, Ruqiah Fallatah, and Vijey Thayananthan. Design of

Vending Machine using Finite State Machine and Visual Automata Sim-

ulator. International Journal of Computer Applications, 115(18), 2015.

[3] Frédérique Bassino and Cyril Nicaud. Enumeration and random genera-

tion of accessible automata. Theoretical Computer Science, 381(1-3):86–

104, 2007.

[4] Jean-Marc Champarnaud and Thomas Paranthoën. Random generation

of DFAs. Theoretical Computer Science, 330(2):221–235, 2005.

[5] Michael Domaratzki, Derek Kisman, and Jeffrey Shallit. On the Num-

ber of Distinct Languages Accepted by Finite Automata with n States.

Journal of Automata, Languages and Combinatorics, 7(4):469–486, 2002.

[6] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaef-

fer. Boltzmann Samplers for the Random Generation of Combinatorial

Structures. Combinatorics, Probability and Computing, 13(4-5):577–625,

2004.

[7] R. C. Entringer. Functions and Inverses of Asymptotic Functions. The

American Mathematical Monthly, 74(9):1095–1097, 1967.

107

BIBLIOGRAPHY

[8] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cam-

bridge University Press, 2009. accessed 17.04.2017. URL: http://algo.

inria.fr/flajolet/Publications/book.pdf.

[9] Irving J. Good. An asymptotic formula for the differences of the powers

at zero. The Annals of Mathematical Statistics, 32(1):249–256, 1961.

[10] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete

Mathematics. Addison-Wesley, second edition, 1994.

[11] Godfrey H. Hardy and Edward M. Wright. An Introduction to the Theory

of Numbers. Oxford at the Clarendon Press, 4th edition, 1960.

[12] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata The-

ory, Languages, and Computation. Addison-Wesley, 1979.

[13] Aleksey D. Korshunov. Enumeration of finite automata. Problemy Kiber-

netiki, 34:5–82, 1978. (in Russian).

[14] Aleksey D. Korshunov. On the number of non-isomorphic strongly con-

nected finite automata. Journal of Information Processing and Cybernet-

ics, 22(9):459–462, 1986.

[15] S. Rao Kosaraju. On independent circuits of a digraph. Journal of Graph

Theory, 1(4):379–382, 1977.

[16] Valery A. Liskovets. The number of initially connected automata. Kiber-

netika, 3:16–19, 1969.

[17] Valery A. Liskovets. Exact enumeration of acyclic deterministic automata.

Discrete Applied Mathematics, 154(3):537–551, 2006.

[18] Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted Finite-

State Transducers in Speech Recognition. Computer Speech & Language,

16(1):69–88, 2002.

[19] Nelma Moreira and Rogério Reis. On the density of languages representing

finite set partitions. Journal of Integer Sequences, 8(05.2):8, 2005.

108

http://algo.inria.fr/flajolet/Publications/book.pdf
http://algo.inria.fr/flajolet/Publications/book.pdf

BIBLIOGRAPHY

[20] Carl Pomerance, John M. Robson, and Jeffrey Shallit. Automaticity II:

Descriptional complexity in the unary case. Theoretical computer science,

180(1):181–201, 1997.

[21] Robert W. Robinson. Counting strongly connected finite automata. In

Graph theory with applications to algorithms and computer science, pages

671–685. Wiley, 1985.

[22] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some

functions of prime numbers. Illinois Journal of Mathematics, 6:64–94,

1962.

[23] Jürgen Schmidthammer. Catalan-Zahlen. Zulassungsarbeit zum Staat-

sexamen, February 1996. accessed 17.04.2017. URL: http://www.

bnv-bamberg.de/home/ba2636/catalanz.pdf.

[24] Richard P. Stanley. Enumerative Combinatorics Vol. II. Cambridge Uni-

versity Press, 2001.

[25] Richard P. Stanley. Enumerative Combinatorics: Volume 1. Cambridge

University Press, 2nd edition, 2011.

[26] Victor A. Vyssotsky. A counting problem for finite automata. Technical

report, Bell Telephone Laboratories, May 1959.

[27] Don Zagier. Newman’s Short Proof of the Prime Number Theorem. The

American mathematical monthly, 104(8):705–708, 1997.

109

http://www.bnv-bamberg.de/home/ba2636/catalanz.pdf
http://www.bnv-bamberg.de/home/ba2636/catalanz.pdf

	Introduction
	Basic definitions and notions
	Automata and regular expressions
	The Myhill-Nerode theorem
	Equivalence of DFAs and NFAs
	A small example

	Some words on asymptotics

	Important Methods
	Powerseries
	Lagrange's inversion formula
	Combinatorial structures
	Multivariate generating functions
	Introduction to the saddle point method

	Minimal Deterministic Finite Automata
	The unary case
	Alphabets with more than one letter
	Lower bounds
	Upper bounds

	Nondeterministic Finite Automata
	The unary case
	Lower bounds
	Upper bounds

	Alphabets with more than one letter
	Lower bounds
	Upper bounds

	NFA vs. DFA

	Finite Languages and Their Acceptors
	Finite language DFAs
	Finite language NFAs

	Initially Connected DFAs
	Representation and enumeration
	String representation
	Boxed Dyck diagrams
	Asymptotics of ICDFAs

	A closer look at the Stirling numbers

	Random Sampling
	The Boltzmann Model
	Building a Boltzmann sampler
	Exponential Boltzmann samplers

	Sampling automata
	An open conjecture

