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A B S T R A C T

This thesis is concerned with the enumerative and asymptotic anal-
ysis of directed lattice paths and tree-like structures. We introduce
several new models and analyze some of their characterizing param-
eters, such as the number of returns to zero, or their average height
and final altitude.

The key tool in this context is the concept of generating functions.
Their algebraic and analytic properties will help us to solve the enu-
meration problems. The methods and many other helpful theorems
will be presented in the first part. Due to these methods this thesis
belongs to the field of analytic combinatorics.

The second part is dedicated to the study of directed lattice paths.
Its first chapter treats the half-normal distribution, and presents a
scheme for generating functions leading to such a distribution. We
also state applications of this result in the theory of lattice paths. The
next chapter continues the work of Cyril Banderier and Philippe Flajo-
let, and extends their work to the case when a boundary reflecting or
absorbing condition is added to the classical models. The subsequent
chapter then deals with a different family of paths: lattice paths below
a line of rational slope. This work deals with the delicate problem of
deriving asymptotic results for generating functions with a periodic
support. It also answers an open problem by Donald E. Knuth on the
asymptotics of such paths. The final chapter of this part deals with
another model: lattice paths with catastrophes, which are jumps from
any altitude to the x-axis.

The third part treats the analysis of trees and tree-like structures.
In the initial chapter we treat Pólya trees, which are unlabeled rooted
trees. We present a new interpretation as Galton-Watson trees with
many small forests. In the subsequent chapter we solve the counting
problem of compacted trees of bounded right-height. Most trees con-
tain redundant information in form of repeated occurrences of the
same subtree. These trees can be compacted by representing each oc-
currence only once. The positions of the removed subtrees will be
remembered by pointers which point to the common subtree. Such
structures are known as directed acyclic graphs.

The fourth and final part treats applications of analytic combina-
torics to number theory. We study the exact divisibility of binomial
coefficients by powers of primes by means of generating functions
and singularity analysis.

Some of the results presented in this thesis have already been pub-
lished in scientific articles by the present author. For a complete list
of the papers this thesis is based on, we refer to page xi.
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Z U S A M M E N FA S S U N G

Die vorliegende Dissertation beschäftigt sich mit der analytischen
und enumerativen Analyse von gerichteten Gitterwegen und baum-
artigen Strukturen. Es werden verschiedene, neue Modelle vorgestellt
und einige ihrer charakterisierenden Parameter, wie unter anderem
die Anzahl der Berührungen der x-Achse, oder ihre durchschnittliche
und finale Höhe, untersucht.

Das wichtigste Werkzeug in diesem Kontext sind erzeugende Funk-
tionen. Die vorliegenden Ergebnisse beruhen zum Großteil auf ihren
algebraischen und analytischen Eigenschaften, wie ihrer Singulari-
tätsstruktur. Aus diesem Grund ist die vorliegende Arbeit dem Feld
der analytischen Kombinatorik zuzuordnen. Eine Einführung in die-
ses Gebiet wird im ersten Teil dieser Arbeit gegeben.

Der zweite Teil behandelt das Thema der gerichteten Gitterwege.
Sein erstes Kapitel ist der Halbnormalverteilung gewidmet. Es wird
eine neue Methode zur Charakterisierung von bivariaten erzeugen-
den Funktionen, in denen ein Parameter markiert wurde, der dieser
Grenzverteilung gehorcht, präsentiert. Am Ende werden natürliche
Vorkommen dieser Situation vorgestellt. Das folgende Kapitel löst ein
offenes Problem von Donald E. Knuth über die Asymptotik von We-
gen unter einer Geraden mit rationaler Steigung. Die Lösung benötigt
die Behandlung von periodischen Trägern von erzeugenden Funktio-
nen, welche zu periodischen Singularitätsstrukturen führen. Das an-
schließende Kapitel präsentiert aufbauend auf der Arbeit von Cyril
Banderier und Philippe Flajolet ein neues Modell: das “reflection-
absorption model”. Dieses erlaubt die Modellierung einer reflektie-
renden oder absorbierenden Randbedingung. Das letzte Kapitel die-
ses Teils behandelt ein weiteres neues Modell für Gitterwege, in dem
“Katastrophen” eingeführt werden. Dies sind Sprünge von beliebiger
Höhe zur x-Achse.

Der dritte Teil handelt von Bäumen und baumartigen Strukturen.
Zunächst wird eine neue Interpretation von Pólya Bäumen (unmar-
kierten Wurzelbäumen) vorgestellt, welche diese als Galton-Watson
Bäume charakterisiert, an die viele kleine Wälder angehängt werden.
Im darauffolgenden Kapitel wird die Kompaktifizierung von binären
Bäumen behandelt. Dies führt zu baumartigen Strukturen, den so-
genannten “directed acyclic graphs”. Ein kompaktifizierter Baum ist
ein Baum in dem jeder Teilbaum eindeutig ist und mehrfach auftre-
tende Teilbäume durch Zeiger ersetzt wurden. Durch die Modellie-
rung solcher Objekte mittels exponentiell erzeugender Funktionen
wird das asymptotische Abzählproblem für kompaktifizierte Bäume
mit beschränkter rechtsseitiger Höhe gelöst.
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Im vierten und letzten Teil wird ein neuer Themenschwerpunkt
behandelt: Die Anwendung der analytischen Kombinatorik in der
Zahlentheorie. Hier wird die exakte Teilbarkeit von Binomialkoef-
fizienten durch Potenzen von Primzahlen untersucht.

Die in dieser Dissertation vorgestellten Resultate sind zum Teil
schon in wissenschaftlichen Artikeln des Autors publiziert worden.
Eine Auflistung der dieser Dissertation zu Grunde liegenden Arbei-
ten findet sich auf Seite xi.
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Part I

I N T R O D U C T I O N

This part is split into two chapters. Chapter 1 is designed
as a crash course in analytic combinatorics and lattice
path counting. The basic definitions and concepts such
as generating functions, the symbolic method, and the
method of singularity analysis are introduced. Then these
concepts are applied to the most simple yet interesting
class of lattice paths: Łukasiewicz paths. At the end the
general results for directed lattice paths are stated and a
short introduction into the combinatorics of trees is given.
In Chapter 2 deeper concepts such as later encountered
probability distributions, schemes for generating functions
and symmetric polynomials are introduced.





1
A N I N V I TAT I O N T O A N A LY T I C C O M B I N AT O R I C S
A N D L AT T I C E PAT H C O U N T I N G

The aim of this chapter is to give an introduction to lattice path combi-
natorics. All necessary derivations are made explicit and connections
to other parts in the literature are added. This chapter is based on a
mini course with the same title “An invitation to analytic combina-
torics and lattice path counting” held at the ALEA in Europe Young
Researchers’ Workshop in Bath, UK, together with Marie-Louise Lack-
ner.

For a more detailed introduction, we refer to the master’s thesis
of the author [180]. It gives an introduction into three well studied
families of lattice paths (directed paths, walks confined to the quarter
plane, and self avoiding walks) as well as recent developments in the
field.

The theory of lattice paths is ubiquitous in the technical sciences.
They appear in physics as models in statistical mechanics [116, 118],
in computer science where they are used as models in the analysis
of algorithms [11, 126], as well as in chemistry where they are the
up-to-date model of certain polymers [51, 75, 88, 117]. This broad ap-
plicability, and their interesting properties underline their importance
(not only) in combinatorics.

(a) 26 steps (b) 5000 steps

Figure 1: Two random walks in the Euclidean plane, see [180, Figure 1].

As already stated in [180], another, more fundamental, fascination
for this topic is founded on the fact that despite the easily understood
construction of lattice paths, many questions remain open. This state-
ment is supported by Figure 1. In the small scale, lattice paths look
like mathematical doodles, but when taking a few steps further away,
they exhibit a completely different behavior. A fractal structure be-
comes visible, giving a glimpse of the difficulties encountered in lat-
tice path combinatorics.

3



4 an invitation to analytic combinatorics and lp counting

A historical introduction: the ballot problem

The so-called ballot problem is formulated as follows:

We suppose that two candidates have been submitted to
a vote in which the number of voters is µ. Candidate A
obtains n votes and is elected; candidate B obtains m =

µ − n votes. We ask for the probability that during the
counting of the votes, the number of votes for A is at all
times greater than the number of votes for B.

In 1887, Joseph Louis François Bertrand published an answer to this
question in the Comptes Rendus de l’Academie des Sciences [39]: The
probability is simply (2n − µ)/µ = (n − m)/(n + m). This result is
now known as the first ballot theorem.

His “proof” was a rather non-rigorous argument based on a recur-
rence relation that is fulfilled by the counting sequences of votes hav-
ing the desired property. The first formal proof was given by Désiré
André in [9].

In this context, it is very helpful to represent sequences of votes
with the help of paths in the Euclidean plane. Therefore, the ballot
problem can be seen as the birth hour of lattice path theory. We start
at the origin (0, 0) and move one step for every vote: If the vote is
for candidate A we move one unit to the right and one unit up, if the
vote is for candidate B we move one unit to the right and one unit
down. If there are n votes for A and m = µ− n votes for B this means
that we end in the point (µ, 2n− µ) (which lies in the first quadrant
since A wins the election). Then, the property that the number of
votes for A is at all times greater than the number of votes for B is
simply translated into the fact that the lattice path may never touch
the x-axis (except at the beginning).

In Figure 2, the black lattice path corresponds to the sequence
of votes AABAABABBAAB and the red one to the sequence AB-
BAABAAABBA. In both cases A wins the election but only the black
path has the property that A is always ahead of B.

For more details on the history of the ballot problem and also on
lattice paths in general we refer to Humphreys’ survey [111].

Figure 2: Lattice paths used to represent sequences of votes.
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Variants and special cases

In the original problem one has to find the probability that candidate
A is always strictly ahead of B in the vote count. If one is interested
in sequences of votes where B is never ahead of A, this means that
the corresponding lattice paths may never go below the x-axis but are
allowed to touch it. In this case, the probability is (n−m+ 1)/(n+ 1).

If we consider the special case that ties are allowed and that A and
B both obtain the exact same number of votes we obtain an important
class of lattice paths called Dyck paths1. The five Dyck paths of length
six are represented in Figure 3. These paths will occur at various
places throughout this thesis.

Figure 3: The five Dyck paths consisting of six steps.

One can also consider variants of the ballot problem where the
two options have different weights. For instance, consider the follow-
ing scenario known as Duchon’s club model [73]: A club opens in the
evening and closes in the morning. People arrive by pairs and leave
in threesomes. What is the possible number of scenarios from dusk
to dawn as seen from the club’s entry? This problem translates into
lattice paths starting at the origin and never going below the x-axis
with (1, 2) and (1,−3) as possible steps.

Another related problem is the so-called gambler’s ruin problem: Two
players, Alice and Bob, play a coin tossing game. Alice starts the game
with a pennies and Bob with b pennies; the game ends as soon as one
of the players has gone broke. The rules are as follows: The players
take turns tossing a coin and each player has a 50% chance of winning
with each flip of the coin. At each round, the winner gets one penny
from the loser. Such a game can be described as a random lattice path
starting at (0, a), never going above the horizontal line y = a + b and
never going below the x-axis. At each stage, the probability of a step
up and of a step down is the same. Now the question is, when does
the path reach the line y = a + b (Alice wins) or the x-axis (Bob wins)
for the first time. The answer is simple: The probability that Alice
loses is b/(a + b) and the probability that Bob loses is a/(a + b). One
can of course also consider variants of this game where player one
wins each toss with probability p, and player two wins with prob-
ability q = 1− p, where p 6= q. In this case a step up occurs with
probability p and a step down with probability q.

1 named after Walther von Dyck, 6.12.1856–5.11.1934
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Other objects counted by the same numbers as Dyck paths

Dyck paths are probably the most famous example of lattice paths
and will occur at several occasions throughout this thesis. As we will
see later on, Dyck paths are counted by the Catalan numbers. In his
newly published book Catalan numbers [173], Richard Stanley presents
214 different kinds of objects counted by them. Here is a short list of
some famous objects counted by the Catalan numbers:

• Expressions containing n pairs of parentheses which are cor-
rectly matched.

• Different ways a convex polygon with n + 2 sides can be cut
into triangles by connecting vertices with straight lines.

• Rooted binary trees with n internal nodes (n + 1 leaves).

• Permutations of the set {1, 2, . . . , n} that avoid the pattern 321.
A permutation π avoids the pattern 321 if we cannot find a
subsequence xyz of π such that x > y > z.

1.1 what is a lattice path?

One central topic of investigation of this thesis are lattice paths. As
the name suggests, they depend on a lattice, which can be described
informally as a regular arrangement of points in the Euclidean space
Rn. Lattice paths can be used to encode various combinatorial objects
such as trees, maps, permutations, lattice polygons, Young tableaux,
queues, etc.

We start with a general and for our purpose suitable definition of
the term lattice. Note that there are various ways of defining this term.

Definition 1.1.1. A lattice Λ = (V, E) is a mathematical model of a dis-
crete space. It consists of a set V ⊂ Rd of vertices, and a set E ⊂ {{v1, v2} :
v1, v2 ∈ V} of edges. If two vectors are connected via an edge, we call them
nearest neighbors.

A lattice is called periodic, if there exist vectors v1, . . . , vk, such that
the lattice is mapped to itself under any arbitrary translation ∑j αjvj where
αj ∈ Z for j = 1, . . . , k.

The importance of periodic lattices lies in the fact that they have a
form of translation invariance.

Some examples of periodic lattices are shown in Figure 4. The ex-
pression “lattice” actually stems from physics. In mathematics and
computer science lattices are also called graphs or networks.

On a lattice we want to look at walks that connect the vertices of
the lattice. The basic component of a walk is a step, which essentially
is nothing else than an edge.
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(a) Square lattice (b) Triangular lattice

(c) Hexagonal lattice (d) Kagomé lattice

Figure 4: Examples of lattices.

Definition 1.1.2. Let Λ = (V, E). An n-step lattice path or lattice walk
or walk from s ∈ V to x ∈ V is a sequence ω = (ω0, ω1, . . . , ωn) of
elements in V, such that

1. ω0 = s, ωn = x,
2. (ωi, ωi+1) ∈ E.

The length |ω| of a lattice path is the number n of steps (edges) in the
sequence ω.

During this thesis we are going to work on the Euclidean lattice,
which consists of the vertices Zd. On this lattice an alternative defini-
tion of the edges via the so-called step set can be used. The step set S
is a subset of Zd and defines how one can move from one vertex to
another.

Consider the following example of a popular 2-dimensional model.

Example 1.1.3. If the step set S is a subset of {−1, 0, 1}2 \ {(0, 0)},
then we say S is a set of small steps.

In order to simplify notation, it is sometimes more convenient to
use a more intuitive terminology by representing a step set by the
corresponding points on a compass or by a picture. Figure 5 shows
the full set of small steps. In this special case moving from (1, 0) coun-
terclockwise corresponds to E, NE, N, NW, W, SW, S and SE.

Figure 5: The full set of small steps.

We can now give an alternative definition of lattice paths on the
Euclidean lattice:
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Definition 1.1.4. An n-step lattice path or lattice walk or walk from
s ∈ Zd to x ∈ Zd relative to S is a sequence ω = (ω0, ω1, . . . , ωn) of
elements in Zd, such that

1. ω0 = s, ωn = x,
2. ωi+1 −ωi ∈ S .

The length |ω| of a lattice path is the number n of steps in the sequence ω.

Comparing Definitions 1.1.2 and 1.1.4 we see that in the second
case V = Zd and the set of possible edges E is implicitly defined
by the set of allowed steps. The edge (x, y) ∈ E exists if and only if
(y− x) ∈ S . Note that the step set is defined globally for all vertices,
i.e., the lattice has the same structure at every vertex. Thus, the lattice
paths on the lattices (a) and (b) in Figure 4 can be defined with the
help of a step set: The square lattice corresponds to the step set S =

{(1, 0), (0, 1), (−1, 0), (0,−1)} and the triangular lattice to the step set
S = {(1, 0), (0, 1), (−1, 1), (−1, 0), (0,−1), (1,−1)}. However, lattice
paths on the lattices (c) and (d) cannot be defined with the help of a
step set as can be seen easily. The advantage of the second definition
is its compact form, which is why we are going to choose this one
from now on.

Remark 1. In the remainder of this thesis, we are going to work in the
Euclidean plane only. Moreover, we will restrict Definition 1.1.4 and
impose that lattice paths always start at the origin s = (0, 0). But this
fact will not represent a restriction to our discussion, as we are going
to consider homogeneous lattices. These are lattices for which the num-
ber of n-step walks starting at s is independent of the starting point s
for all values of n. This is a general property of periodic lattices.

For more details on the basic properties of lattices we refer to [110].

In the Euclidean plane, we can also describe a lattice path by a
polygonal line. An example is shown in Figure 6, where an unre-
stricted walk on the lattice Z2 and the set of small steps from which
it was constructed, is shown. In this context unrestricted means that
there are no boundaries on the domain (lattice) that we allow self-
intersections, and that the walk ends at an arbitrary point.

(a) S = {NE, SE, NW, SW} (b) An unrestricted walk with
loops and 11 steps

Figure 6: Unrestricted path with loops in Z2.
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Obviously, another equivalent way of representing a walk with a
fixed start point is by providing the sequence of performed steps. For
example, the walk in Figure 6b is given by the sequence

(NW, SW, SE, SE, NE, NE, NE, NW, SW, SE, SE)

or

(↖,↙,↘,↘,↗,↗,↗,↖,↙,↘,↘).

In many situations it is useful to associate weights to single steps:

Definition 1.1.5 (Weights). For a given step set S , we define the respective
system of weights as {ps : s ∈ S} where ps > 0 is the weight associated
to step s ∈ S . The weight of a path is defined as the product of the weights
of its individual steps.

Some useful choices are:
• ps = 1: Combinatorial paths in the standard sense;
• ps ∈ N: Paths with colored steps, i.e. ps = 2 means that the

associated step has two possible colors;
• ∑s ps = 1: Probabilistic model of paths, i.e. step s is chosen with

probability ps.

Example 1.1.6. The gambler’s ruin problem where Alice starts with a
pennies and Bob with b pennies and where Alice has the probability
p of winning a round and Bob has the probability q = 1− p can be
modelled with the help of weighted lattice paths. If the lattice path
represents the number of pennies that Alice has, it starts at (0, a) and
the possible steps are s1 = (1, 1) with ps1 = p and s2 = (1,−1) with
ps2 = q.

1.2 analytic combinatorics

“Combinatorics, the branch of mathematics concerned with the theory of
enumeration, or combinations and permutations, in order to solve problems
about the possibility of constructing arrangements of objects which satisfy

specified conditions.”2

The focus of this thesis with respect to the preceding definition lies
on the enumeration of objects which are mostly described by recur-
sions and boundary conditions, namely lattice paths. A standard tool
in this context are generating functions which were introduced as for-
mal power series whose coefficients give the sizes of a sought family
of objects with respect to a parameter encoded in the exponent. A
very colorful description from Wilf3 [187] says

2 CollinsDictionary.com, http://www.collinsdictionary.com/dictionary/english/

combinatorics, accessed 26/10/2016.
3 Herbert Wilf, 13.6.1931-7.1.2012
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“A generating function is a clothesline on which we hang up
a sequence of numbers for display.”4

It describes quite vividly the idea of generating functions. This tool
has led to many new insights in the field of combinatorics, by intro-
ducing new possible solution strategies. Their importance can be seen
in the vast amount of available literature, like Stanley’s5 books Enu-
merative combinatorics, I and II [174, 175] which, among other things,
introduce a classification of generating functions, which has proved
to be useful and applicable for lattice path combinatorics as well.

Furthermore, generating functions serve as a link for interdisci-
plinary applications of techniques from different branches of math-
ematics. One very important field, which found entrance to combi-
natorics, is complex analysis. This revolutionized the field and led to
the new branch of Analytic Combinatorics. The fathers of this devel-
opment are Flajolet6 and Sedgewick7. In their highly recommendable
book Analytic Combinatorics [85] they summarize hundreds of papers
of this development and unify the notation and presentation. The key
idea is the interpretation of formerly only algebraically investigated
formal power series as complex analytic functions on their radii of
convergence. This allows the extraction of the asymptotic behavior
and much more.

The structure of the subsequent chapter was inspired by [121, Chap-
ter 4] and gives an introduction to symbolic methods, using [85, 174,
175, 187].

Formal Power Series

Formal power series are a central object of investigation. For a ring R
we denote by R[z] the ring of polynomials in z with coefficients in R.

Definition 1.2.1. Let R be a ring with unity. The ring of formal power
series R[[z]] consists of all formal sums of the form

∑
n≥0

anzn = a0 + a1z + a2z2 + . . . ,

with coefficients an ∈ R.
The sum of two formal power series ∑n≥0 anzn, ∑n≥0 bnzn is defined by

∑
n≥0

anzn + ∑
n≥0

bnzn = ∑
n≥0

(an + bn)zn

and their product by

∑
n≥0

anzn · ∑
n≥0

bnzn = ∑
n≥0

(
n

∑
k=0

akbn−k

)
zn.

4 Wilf, generatingfunctionology, p. 1
5 Richard Peter Stanley, 23.6.1944-
6 Philippe Flajolet, 1.12.1948-22.3.2011
7 Robert Sedgewick, 20.12.1946-
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Definition 1.2.2. Let A(z) = ∑n≥0 anzn be a formal power series. We
define the linear operator [zn]A(z) as

[zn]A(z) = an,

called the coefficient extraction operator.

The coefficient extraction operator satisfies the following identity
for all suitable k, i.e. all expressions have to be well-defined:

[zn−k]A(z) = [zn]zk A(z). (1)

Let us recall some important power series expansions:

1
1− x

= ∑
n≥0

xn, ex = ∑
n≥0

1
n!

xn,

log(1 + x) = ∑
n≥1

(−1)n+1

n
xn, (1 + x)α = ∑

n≥0

(
α

n

)
xn,

where (α
n) = α(α− 1) · · · (α− n + 1)/n!.

Combinatorial Classes and Ordinary Generating Functions

Following [85, pp. 16] we give a short introduction to the symbolic
method. In particular, we emphasize on the topics important for lat-
tice path combinatorics.

Definition 1.2.3. A combinatorial class, or simply a class, is a finite or
denumerable set on which a size function is defined, satisfying the following
conditions:

1. the size of an element is a non-negative integer;
2. the number of elements of any given size is finite.

If A is a class, the size of an element α ∈ A is denoted by |α|, or
|α|A in the few cases where the underlying class is not clear from the
context. Using this size function, we decompose A into disjoint sub-
classes An, which contain all elements of A of size n and we denote
the cardinality of these subsets by an = card(An).

In accordance with this definition we define the class W = WS ,Λ

to be the set of all walks on a lattice Λ with respect to the step set
S = SΛ. Here, |ω| is the length of a walk ω ∈ W .

Definition 1.2.4. The counting sequence of a combinatorial class A is
defined as the sequence of integers (an)n≥0.

Definition 1.2.5. Two combinatorial classes A and B are said to be (com-
binatorially) isomorphic, which is written A ∼= B, if and only if their
counting sequences are identical. This condition is equivalent to the exis-
tence of a bijection from A to B that preserves size. One also says A and B
are bijectively equivalent.
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Note that such a bijection, despite it needs to exist, is not always
easy to find. Also, such bijections do not necessarily have to behave
in a nice or natural manner. For example, it is straightforward to give
a bijection between Dyck paths and the number of ways to correctly
match n pairs of brackets. But it is less obvious to provide such a
correspondence between Dyck paths and 321-avoiding permutations,
see e.g. [173].

The enumerative information of a class is stored in the formal
power series A(z).

Definition 1.2.6. The ordinary generating function (OGF) of a sequence
(an)n≥0 is the formal power series

A(z) = ∑
n≥0

anzn.

The OGF of a combinatorial class A is the generating function for the count-
ing sequence an = card(An), n ≥ 0. Equivalently, the combinatorial form

A(z) = ∑
α∈A

z|α|,

is employed. We say the variable z marks the size in the generating function.

Note that there are two special classes:

Class Nr. of elements Weights OGF

Neutral class E 1 0 E(z) = 1

Atomic class Z 1 1 Z(z) = z

Here is a brief summary of the introduced naming convention:

Class Subclass of el. of size n Cardinality of subclass OGF

A An an A(z)

Generating functions are elements of the ring of formal power se-
ries C[[z]], thus they can be manipulated algebraically. Two basic op-
erations are the sum and the Cauchy product.

Firstly, let A and B be two disjoint classes. Their union C = A∪· B
represents a new class with size defined consistently as

|γ|C =




|γ|A, if γ ∈ A,

|γ|B , if γ ∈ B.

This translates naturally into cn = an + bn which leads to the follow-
ing generating function for C:

C(z) = A(z) + B(z) = ∑
n≥0

(an + bn)zn.
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Secondly, their Cartesian product C = A× B = {γ = (α, β) | α ∈
A, β ∈ B} represents a new class with size defined consistently as

|γ|C = |α|A + |β|B .

In this case we have to consider all possibilities in the manner of a
Cauchy product, hence cn = ∑n

k=0 akbn−k, and we conclude as antici-
pated

C(z) = A(z) · B(z) = ∑
n≥0

(
n

∑
k=0

akbn−k

)
zn.

These two constructions are enough to derive many fundamental
constructions that build upon the set-theoretic union and product.
For instance, we can use sum and product in order to define the
sequence class. If B is a class then the sequence class SEQ(B) is defined
as the infinite sum

SEQ(B) = E + B + (B × B) + (B × B × B) + . . . . (2)

Note that this construction makes only sense if B contains no ele-
ment of size 0. Otherwise the union would contain an infinite num-
ber of elements of size 0. Using the sum and product as introduced
before, we obtain the following relation for the generating function
A = SEQ(B):

A(z) =
1

1− B(z)
.

More constructions can be derived with the same ideas, see e.g. [85,
Theorem I.1].

The true power resulting from the symbolic method is best under-
stood by examples. Let us consider two cases in which we apply the
above definitions and operations.

Example 1.2.7 (Unrestricted paths). Consider the class W of unre-
stricted lattice paths employing the step set S = {NE, SE} as illus-
trated in Figure 7a. There are many ways to describe the construction
of lattice paths. The most natural way is a step-by-step construction,
from which one can deduce a recursive definition for the number of
sought paths. Let wn denote the number of paths of length n. Then,
wn+1 = wn · 2 since there are two ways of extending a path of length
n to a path of length n + 1: we can either take a step up or a step
down. Since w0 = 1, it follows that wn = 2n.

Alternatively, one can describe the construction of the combinato-
rial class and translate this into the language of generating functions,
which we want to demonstrate here. In this case, the direct approach
is much simpler but the combinatorial construction-approach serves
as a simple first example and should help to get accustomed to the
symbolic method.
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(a) S = {NE, SE} (b) Two possible extensions of an unrestricted path with
a NE- or SE-step

Figure 7: Unrestricted NE-/SE-path.

A member of the class W is either the empty path or a path of
non-zero length n. In the latter case we can construct a path of length
n + 1 by extending the path by one step out of the step set S . The
resulting path is again a member of W . This informal description is
visualized in Figure 7b and translates into

W = E︸︷︷︸
empty path

∪· W ×ZNE︸ ︷︷ ︸
append NE-step

∪· W ×ZSE︸ ︷︷ ︸
append SE-step

.

As we do not distinguish between NE- and SE-steps we have ZNE ∼=
ZSE
∼= Z . Hence, we are able to apply the symbolic method by trans-

lating this equation into an equation on the corresponding generating
functions:

W(z) = 1 + zW(z) + zW(z) = 1 + 2zW(z). (3)

This equation can be solved algebraically and we get the solution

W(z) =
1

1− 2z
. (4)

In this case we extract the coefficients easily and get that the number
of n-step unrestricted lattice paths with the step set S starting from
the origin is

wn = [zn]W(z) = [zn]
1

1− 2z
= [zn] ∑

k≥0
2kzk = 2n.

Note that in this case it was quite easy to solve the functional equa-
tion (3). But in most general cases we are not able to deduce such a
simple form for the solution and all we get is a relation on the gen-
erating functions. One main objective of analytic combinatorics is to
develop different techniques how to deal with these cases and how
to extract enough information from this equation, in order to decide
on certain properties of the solution.

Remark 2. From algebra we know that solutions of algebraic equations
are unique up to multiplicity of roots. Recalling the definition of com-
binatorial isomorphic classes this gives us an easy way to check such
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isomorphisms: If the generating functions of two classes satisfy the
same functional equation, then the coefficient sequences satisfy the
same recursion.

In order to prove isomorphism, all that is left is to check the ini-
tial values. This can also be achieved by comparison of the first “few”
(depending on the order of the recursion/equation) terms of the se-
quence. Note that it is important to perform this check. A straight-
forward example of two classes whose generating functions fulfil
the same functional equation are the neutral class E and the empty
class N , which has no elements at all. Both generating functions sat-
isfy the equation A(z)2 = A(z), but they are not the same, as E(z) = 1
and N(z) = 0, respectively.

Figure 8: A Dyck path of length 18.

Example 1.2.8 (Dyck paths, [85, pp. 319]). Dyck paths were already
discussed as a motivation at the beginning of this chapter. Let us
recall their definition: They are paths on the same step set S =

{NE, SE} but with the restriction that they never leave the first quad-
rant and end on the x-axis. An example is shown in Figure 8.

As before, we are able to construct a functional equation for the
OGF D(z) of Dyck paths using the introduced operations: The tech-
nique we will apply is known as First passage decomposition. Basically
it decomposes an arbitrary path ω ∈ D into two (possibly empty)
paths also belonging to D.

A member of the class D is either the empty path or a path of
non-zero length. If it is of non-zero length, after the initial point of
contact with the x-axis at the origin, there will be another point of
contact. Denote the first such second point by x0. Next, consider the
path from the origin to x0 without the initial NE- and the final SE-
step. This (possible empty) sub-path is also a legitimate Dyck path
that belongs to D. (Recall that the empty path is also a member of D.)
After the “first passage”, which ends at x0, there will be another path
starting at x0 and ending on the x-axis. This path could be empty as
well, but it is, as before, again a Dyck path. The described procedure
is depicted in Figure 9.
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First Passage
x0

Figure 9: First passage decomposition of Dyck path.

This informal description translates into

D = E︸︷︷︸
empty path

∪· ZNE ×D ×ZSE︸ ︷︷ ︸
first passage

×D.

Let dn be the number of Dyck paths with 2n steps (one can e.g. map
every up step to a down step and count them as one). With the same
reasoning as before the symbolic method gives

D(z) = 1 + z (D(z))2 . (5)

Here we obtained a quadratic functional equation, which has the two
possible solutions

D±(z) =
1±
√

1− 4z
2z

.

Taking a closer look at D+(z), we see that it possesses a singularity
at 0, which corresponds to the constant term of the formal power
series, and ought to be 1. Hence, we can dismiss this branch and
arrive at the final solution

D(z) =
1−
√

1− 4z
2z

. (6)

After using Newton’s expansion theorem for general exponents and
some elementary manipulations of binomial coefficients we get

dn = [zn]D(z) =
1

n + 1

(
2n
n

)
= Cn,

the n-th Catalan number (OEIS A0001088), as the number of n-step
Dyck paths.

In the last two examples we have seen that the sought-after OGFs
may be the solutions of algebraic equations, compare (3) and (5). But
in the case of our first example, the OGF is even a rational function,

8 Axxxxxx refers to the corresponding sequence in the On-Line Encyclopedia of Inte-
ger Sequences, available electronically at https://oeis.org.
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see (4). Naturally the question for a general classification of all pos-
sible generating functions arises. Stanley introduces a suitable hierar-
chy in [174, Chapter 6].

Recently, a lot of research was conducted on such classifications
for “big” classes of lattice paths, see e.g. for walks in the quarter
plane [48, 133]. Especially in computer algebra such a classification
is of interest, as there exist efficient algorithms for problems in these
specific classes. However, we will not pursue this direction here.

Classification of Ordinary Generating Functions

Throughout this whole chapter let K be a field with characteristic
char K = 0, and F be an arbitrary formal power series with coeffi-
cients in K, hence an element from the ring K[[z]]. The goal of this
section is to introduce the three concepts of rational, algebraic and
D-finite or holonomic functions. As seen before, algebraic functions
are a natural generalization of rational functions. Analogously, D-
finite functions are a natural generalization of algebraic functions.
Thus, we get the hierarchy

D-finite/holonomic

↑
algebraic (7)

↑
rational

Stanley remarks that this hierarchy is by far not exhaustive, as various
classes could be added, but these three seem to be the most useful
ones for enumerative combinatorics.

Definition 1.2.9. A formal power series F(z) ∈ K[[z]] is rational if there
exist polynomials P(z), Q(z) ∈ K[z], with Q(z) 6= 0, such that

F(z) =
P(z)
Q(z)

.

As mentioned before we have already seen a rational OGF in (4).
Note that rationality corresponds to a linear recurrence relation. This
follows directly from rearranging the above definition to F(z)Q(z) =
P(z) in the language of OGFs. The concept of algebraic functions is a
natural generalization to higher degrees.

Definition 1.2.10. A formal power series F(z) ∈ K[[z]] is algebraic if
there exist polynomials P0(z), P1(z), . . . , Pd(z) ∈ K[z], not all 0, such that

Pd(z)F(z)d + Pd−1(z)F(z)d−1 + . . . + P1(z)F(z) + P0(z) = 0.

The smallest positive integer d for which this equation holds is called the
degree of F.
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Example 1.2.11. As seen in Example 1.2.8 the OGF D(z) = 1−
√

1−4z
2z

of Dyck paths satisfies

zD(z)2 − D(z) + 1 = 0.

Thus, D is algebraic and of degree 2.

But there exists a larger class of functions, which encloses all alge-
braic functions: the D-finite (short for differentiably finite) or holonomic
functions.

Definition 1.2.12. A formal power series F(z) ∈ K[[z]] is D-finite or
holonomic, if there exist polynomials P0(z), P1(z), . . . , Pd(z) ∈ K[z], with
the property Pd(z) 6= 0, such that

Pd(z)F(d) + Pd−1(z)F(d−1) + . . . + P1(z)F′ + P0(z)F = 0, (8)

where F(j) = djF/dzj and d ∈N is the order of the differential equation.

Remark 3. The historical source of holonomic functions is found in the
theory of linear recursions. A sequence ( fn)n∈N of complex numbers
is holonomic or P-recursive (short for polynomially recursive) if it satis-
fies a homogeneous linear recurrence relation of finite degree with
polynomial coefficients, i.e.

pd(n) fn+d + pd−1(n) fn+d−1 + · · ·+ p0(n) fn = 0, n ≥ 0,

for some polynomials pi(x) ∈ C[x]. Let F(z) = ∑n≥0 fnzn be the for-
mal power series formed by the sequence ( fn)n∈N. As anticipated by
the naming convention, a sequence is holonomic if and only if its
generating function is holonomic, see [174, Proposition 6.4.3].

Proposition 1.2.13 ([174, Proposition 6.4.1]). Let U ∈ K[[z]]. The follow-
ing three conditions are equivalent:

(i) U is holonomic.
(ii) There exist polynomials Q0(z), . . . , Qm(z), Q(z) ∈ K[z], with the con-

dition Qm(z) 6= 0, such that

Qm(z)U(m) + . . . + Q1(z)U′ + Q0(z)U = Q(z). (9)

(iii) The vector space over the field K(z) spanned by U and all its deriva-
tives U′, U′′, . . . is finite-dimensional, i.e.

dimK(z)
[
K(z)U + K(z)U′ + K(z)U′′ + . . .

]
< ∞.

Proof. (i)⇒ (ii): Trivial.
(ii) ⇒ (iii): Suppose (9) holds and t is the degree of Q(z). After

differentiating (9) t + 1 times we get an equation in the form of (8),
with d = m + t + 1 and Pd(z) = Qm(z) 6= 0. Solving for U(d) yields

U(d) = h0(z)U + h1(z)U′ + . . . + hd−1(z)U(d−1), (10)
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with polynomials h0(z), . . . , hd−1 ∈ K[z] ⊂ K(z). Differentiating this
expression with respect to z we get

U(d+1) = h̃0(z)U + h̃1(z)U′ + . . . + h̃d−1(z)U(d−1) + h̃d(z)U(d)

∈ K(z)U + K(z)U′ + . . . + K(z)U(d−1),

with polynomials h̃0(z), . . . , h̃d(z) ∈ K[z] and the last member relation
holds due to (10). By induction it holds for all k ≥ 0 that

U(d+k) ∈ K(z)U + K(z)U′ + . . . + K(z)U(d−1).

(iii)⇒ (i): Suppose

dimK(z)
[
K(z)U + K(z)U′ + K(z)U′′ + . . .

]
= d.

Thus u, u′, . . . , u(d) are linearly dependent over K(z). This dependence
relation, after clearing the denominators so that the coefficients are
polynomials in K[z], results in an equation of the form (8).

Example 1.2.14. The following functions are holonomic:

1. U1 = z−2
3z+4 , as (z− 2)(3z + 4)U′1 − 10U1 = 0.

2. U2 = ez, as U′2 = U2, and V2 = log(z), as zV ′2 = 1 or alternatively
in the form of (8): zV ′′2 + V ′2 = 0.

3. U3 = zmeaz, as U′3 = (m
z + a)U3.

4. U4 = cos(z), as U′′4 = −U4. The same holds for sin(z).

5. U5 = ∑n≥0 n!zn, since (zU5)′ = ∑n≥0(n+ 1)!zn This implies that
z(zU5)′ + 1 = U5 or reordered in the form of (9): z2U′5 + (z −
1)U5 = −1.

We end this section with the proof of the missing link between
holonomic and algebraic functions.

Theorem 1.2.15 ([174, Proposition 6.4.6]). Let U ∈ K[[z]] be algebraic of
degree d, then U is holonomic.

Proof. If U(z) is algebraic, there is some polynomial 0 6= P(z, y) ∈
K(z, y) of minimal degree such that P(z, U) = 0. We have

0 =
d
dz

P(z, U) =
∂P(z, y)

∂z

∣∣∣∣
y=U

+ U′
∂P(z, y)

∂y

∣∣∣∣
y=U

.

Since P(z, y) is of minimal degree, and therefore irreducible over
K(x), it follows that ∂P(z, y)/∂y is non-zero (remember char K = 0)
and a polynomial in y of smaller degree than P, so ∂P(z,y)

∂y

∣∣∣
y=U
6= 0.

Hence, we get

U′ = −
∂P(z,y)

∂z

∣∣∣
y=U

∂P(z,y)
∂y

∣∣∣
y=U

∈ K(z, U).
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In other words, U′ is a rational function in z and U. By induction
we get that U(k) ∈ K(z, U) for all k ≥ 0. But due to the fact that
U is algebraic, we get dimK(z) K(z, U) = d and so it follows that
U, U′, . . . , U(d) are linearly dependent over K(z). This yields an equa-
tion of the form (8), which proves that U is holonomic.

Example 1.2.16 ([174, Example 6.1]). Not all holonomic functions are
algebraic. Consider U(z) = ez: If it would be algebraic of degree d it
would satisfy an equation of the form

Pd(z)edz + Pd−1(z)e(d−1)z + . . . + P1(z)ez + P0(z) = 0,

where P0(z), . . . , Pd(z) ∈ C[z] and Pd(z) is of minimal degree. Differ-
entiating this equation and subtracting the initial one multiplied by
d, gives

P′dedz +
(

P′d−1 − Pd−1
)

e(d−1)z + . . .

+
(

P′1 − (d− 1)P1
)

ez +
(

P′0 − dP0
)
= 0,

which either has degree less than d, and contradicts the fact that U(z)
is algebraic of degree d, or the degree is the same, which contradicts
the choice of Pd(z) to be of minimal degree.

The class of holonomic function enjoys rich closure properties. Note
that the following theorem mentions only the operations we are going
to encounter in this thesis. For more details see [85, Theorem B.2].

Theorem 1.2.17. The class of univariate holonomic functions is closed un-
der the following operations: sum (+), product (×), differentiation (∂z), in-
definite integration (

∫ z) and algebraic substitution (z 7→ y(z) for some
algebraic function y(z)).

Proof. The proof is omitted here. A sketch of a proof can be found in
[85, Theorem B.2], full details are discussed in [174, Chapter 6].

The discussion so far only considered univariate or ordinary gen-
erating functions, i.e. functions in one variable. In order to encode
more information, it is sometimes necessary to introduce more than
one variable. This fact has already been used in the proof of Theo-
rem 1.2.15. The necessary theory is presented in the next section.

Multivariate Generating Functions

So far we have only considered univariate formal power series, but
this concept can easily be generalized to multivariate formal power
series. In the same manner OGFs generalize to multivariate generating
functions (MGFs). As Flajolet and Sedgewick put it [85, Chapter III],
the main advantage of several variables is the possibility to keep track
of a collection of parameters defined for combinatorial objects. Mul-
tivariate generating functions are applicable to many combinatorial
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settings since the powerful symbolic method can be transferred to
several variables in a straightforward way. Indeed, we can use the
symbolic method not only to count combinatorial objects but also to
quantify their properties.

In the case of lattice path combinatorics we will need the notion of
a bivariate generating function (BGF), with the first parameter encoding
the length of a lattice path, and the second parameter keeping track
of the final height. This translates into

B(z, u) = ∑
n,k≥0

bn,kznuk,

where bn,k is the number of lattice paths of length n and where the
final height is equal to k. Note that it can also be interpreted as a
formal power series in z with coefficients in Q[u], where for all n,
almost all coefficients bn,k are zero. This interpretation closes the circle
and links MGFs with OGFs.

We just want to remark that yet another generalization is the usage
of formal Laurent9 series instead of formal power series. All defini-
tions and observations stay the same and can be adapted to this new
case in a straightforward way.

Example 1.2.18. We will continue the analysis from Example 1.2.7 of
unrestricted paths W starting from the origin and using the step set
S = {NE, SE}. We derived the following construction of the combi-
natorial classW

W = E ∪· W ×ZNE ∪· W ×ZSE.

The difference now, is that we want to distinguish between NE- and
SE-steps. A NE-step increases the height by one and hence corre-
sponds to the generating function u and a SE-step decreases the
height by one and hence corresponds to 1

u . Additionally, both steps
increase the length by 1. Note that we will work in the Z[u, 1/u]-
module Z[[u, 1

u ]] . Let us define the BGF associated withW as

W2(z, u) = ∑
n≥0
k∈Z

wn,kznuk.

This gives

W2(z, u) = 1 + uzW2(z, u) +
z
u

W2(z, u).

Solving this equation for W2(z, u) results in

W2(z, u) =
1

1− z
(
u + 1

u

) .

9 A Laurent series H(z) is a function such that there exists an integer k such that
zk H(z) is a power series.
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Next we will perform a coefficient extraction in order to get wn,k, the
number of walks of length n stopping at height k:

[zn]W2(z, u) =
(

u +
1
u

)n

.

This is a Laurent polynomial in u. Now we apply the shift identity of
the coefficient extraction (1) to get

wn,k = [uk]

(
u +

1
u

)n

= [un+k]
(
u2 + 1

)n

=





0, for n + k ≡ 1 mod 2, or k > n,(
n

n+k
2

)
, for n + k ≡ 0 mod 2.

Note that the BGF can be easily transformed into the OGF we found
in Example 1.2.7, by substituting u = 1. This action sums over all
possible heights at fixed length n:

W2(z, 1) =
1

1− 2z
= W(z),

∑
k∈Z

wn,k = ∑
k=−n,−n+2,...n

(
n

n+k
2

)
=

n

∑
k=0

(
n
k

)
= 2n.

In general, we have to be careful here. We are only dealing with for-
mal power series, which is the reason why insertion of special values
for variables is in general not well-defined. So, we have to ensure that
all operations are legitimate, e.g.: there are no singularities and all
sums are finite, etc.

The classification of multivariate formal power series can be di-
rectly generalized from the univariate case. We will not go into more
detail here. The interested reader is referred to [85, Theorem B.3].

Asymptotic Notation

These definitions are taken from [85, Chapter A.2], where more exam-
ples can be found.

Let S be a set and s0 ∈ S. We assume a notion of neighborhood to
exist in S, e.g. S = C and s0 = 0. Two functions f , g : S \ {s0} → R(C)

are given.

• O-notation: Denote

f (s) =
s→s0
O(g(s)),

if the ratio f (s)/g(s) stays bounded as s → s0 in S. In other
words, there exists a neighborhood V of s0 and a constant C > 0,
such that

| f (s)| ≤ C|g(s)|, s ∈ V, s 6= s0.

This is also known as “Big-O-notation”.
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• ∼-notation: Denote

f (s) ∼
s→s0

g(s),

if the ratio f (s)/g(s) tends to 1 as s → s0 in S. One also says
f and g are asymptotically equivalent (as s tends to s0). We will
mostly use this notation for s0 = ∞.

• o-notation: Denote

f (s) =
s→s0

o(g(s)),

if the ratio f (s)/g(s) tends to 0 as s → s0 in S. In other words,
for any ε > 0, there exists a neighborhood V of s0, such that

| f (s)| ≤ ε|g(s)|, s ∈ V, s 6= s0.

This is also known, as “little-o-notation”.

Coefficient Asymptotics

The Gamma function extends the factorial function to non-integral ar-
guments. It was introduced by Euler as

Γ(s) =
∫ ∞

0
e−tts−1 dt.

The integral converges provided <(s) > 0. Using integration by parts
one immediately derives the basic functional equation of the Gamma
function,

Γ(s + 1) = sΓ(s).

Since Γ(1) = 1 one directly gets Γ(n + 1) = n!. The special value
Γ(1/2) =

√
π proves to be very important. Also its asymptotic prop-

erties will be needed:

Proposition 1.2.19 (Stirling’s formula, [85, p. 747]). The factorial func-
tion admits for x→ +∞ the asymptotic expansion:

x! ≡ Γ(x + 1) ∼
( x

e

)x√
2πx

(
1 +

1
12x

+
1

288x2 −
139

51840x3 − · · ·
)

.

Example 1.2.20. A direct consequence of Stirling’s formula is the
asymptotic expansion

Cn =
1

n + 1

(
2n
n

)
∼ 4n
√

πn3

(
1− 9

8n
+

145
128n2 −

1155
1024n3 + · · ·

)
, (11)

of the Catalan numbers Cn.
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At the heart of the asymptotic enumeration lie the following funda-
mental theorems. The main idea is to treat generating functions not
only as formal power series, but as converging power series in a cer-
tain domain of convergence. By doing so, one may utilize the wealth
of results from complex analysis to derive formulae on the asymp-
totics of the coefficients. For the proofs and more details, the inter-
ested reader is referred to [85] and the literature mentioned therein.

Theorem 1.2.21 ([85, Theorem VI.1], Standard function scale). Let α

be an arbitrary complex number in C \Z≤0. The coefficient of zn in

f (z) = (1− z)−α

admits for large n a complete asymptotic expansion in descending powers
of n,

[zn] f (z) ∼ nα−1

Γ(α)

(
1 +

∞

∑
k=1

ek

nk

)
,

where ek is an explicitly known polynomial in α of degree 2k. In particular:

[zn] f (z) ∼ nα−1

Γ(α)

(
1 +

α(α− 1)
2n

+O
(

1
n2

))
.

Proof (Sketch). This result can be obtained directly from the closed-
form expression of the coefficients (n+α−1

n ) by means of Stirling’s for-
mula.

An alternative approach is given in [85, Theorem VI.1] by using
Cauchy’s coefficient formula and a properly chosen contour, a so
called Hankel contour. Then, asymptotic estimates lead to the re-
sult.

Theorem 1.2.22 ([85, Theorem VI.2], Standard function scale, loga-
rithms). Let α be an arbitrary complex number in C \Z≤0, and β be an
arbitrary complex number C \Z≥0. The coefficient of zn in

f (z) = (1− z)−α

(
1
z

log
1

1− z

)β

admits for large n a complete asymptotic expansion in descending powers
of n,

[zn] f (z) ∼ nα−1

Γ(α)
(log n)β

(
1 +

∞

∑
k=1

Ck

(log n)k

)
,

where Ck = (β
k)Γ(α)

dk

dsk
1

Γ(s)

∣∣∣
s=α

.

The asymptotic results of the previous theorem for some standard
functions are summarized in Figure 60 on page 323. These results will
mostly suffice in the subsequent examples.

In order to also transfer the error terms of the coefficient asymp-
totics we need the next (technical) definition.
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Figure 10: Sketch of a ∆-domain.

Definition 1.2.23 (∆-analytic). Given two numbers φ, R with R > 1 and
0 < φ < π

2 , the open domain ∆(φ, R) is defined as

∆(φ, R) = {z | |z| < R, z 6= 1, | arg(z− 1)| > φ}.

A domain is a ∆-domain at 1 if it is a ∆(φ, R) for some R and φ. For
a complex number ζ 6= 0, a ∆-domain at ζ is the image by the mapping
z 7→ ζz of a ∆-domain at 1. A function is ∆-analytic if it is analytic in some
∆-domain.

For an illustration of a ∆-domain, see Figure 10.

Theorem 1.2.24 ([85, Theorem VI.3], Transfer, Big-O and little-o). Let
α, β be arbitrary real numbers, α, β ∈ R and let f (z) be a function that is
∆-analytic.

1. Assume that f (z) satisfies in the intersection of a neighborhood of 1
with its ∆-domain the condition

f (z) = O
(
(1− z)−α(log

1
1− z

)β

)
.

Then one has: [zn] f (z) = O(nα−1(log n)β).

2. Assume that f (z) satisfies in the intersection of a neighborhood of 1
with its ∆-domain the condition

f (z) = o
(
(1− z)−α(log

1
1− z

)β

)
.

Then one has: [zn] f (z) = o(nα−1(log n)β).

The last three theorems lie at the heart of coefficient asymptotics
and define the so-called singularity analysis. The next proposition sum-
marizes this process and presents an “algorithm” to deal with such
functions. We want to emphasize the fact that the structure of the
generating function is used to derive results on its coefficients.

Proposition 1.2.25 ([85, Chapter VI.4], Process of singularity analysis).
Let f (z) be a function analytic at 0 whose coefficients are to be asymptoti-
cally analyzed.
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1. Preparation: Locate dominant singularities and check analytic con-
tinuation.

a) Locate singularities: Determine the dominant singularities of
f (z) and check that f (z) has a single singularity ρ on its circle
of convergence.

b) Check continuation: Establish that f (z) is analytic in some
∆-domain around ρ.

2. Singular expansion: Analyze the function f (z) as z → ρ in the
∆-domain and determine an expansion of the form

f (z) = σ(z/ρ) +O(τ(z/ρ)), with τ(z) = o(σ(z)),

for z → ρ. The functions σ and τ should belong to the standard scale
of functions given by the set S = {(1− z)−αλ(z)β}, with λ(z) :=
z−1 log(1− z)−1.

3. Transfer: Translate the main term of σ(z) using the catalogs provided
by Theorems 1.2.21 and 1.2.22. Transfer the error term using Theo-
rem 1.2.24 and conclude that

[zn] f (z) = ρ−nσn +O(ρ−nτn),

for n → ∞, where σn = [zn]σ(z) and τn = [zn]τ(z) provided the
corresponding exponent α /∈ Z≤0 (otherwise the factor 1/Γ(α) = 0
should be omitted).

Example 1.2.26. Using Theorem 1.2.21 there is another possibility to
derive the asymptotic expansion of Catalan numbers. From (6) we
know the generating function of Catalan numbers. Its dominant sin-
gularity is at ρ = 1

4 . Thus, we get the asymptotic expansion

D(z) = 2− 2
√

1− 4z + 2(1− 4z) +O
(
(1− 4z)3/2

)
.

Thus, applying Theorems 1.2.21 and 1.2.24 we recover the first term
of (11):

[zn]D(z) =
4n
√

πn3

(
1 +O

(
1
n

))
.

Note that the full asymptotic expansion can also be derived from this
expression.

1.3 łukasiewicz paths

As an introduction to lattice path theory, we are going to consider
directed paths. These are paths with a fixed direction of increase which
we choose to be the positive horizontal axis. This is described by the
allowed steps: if (i, j) ∈ S then i > 0. One first important observation
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is that the geometric realization of the path always lives in the right
half-plane Z+×Z. This essentially means that directed paths are one-
dimensional objects.

The following chapter mainly focuses on the expositions of Ban-
derier10 and Flajolet given in [19].

Definition 1.3.1. In accordance with these restrictions, we introduce the
following classes (see Table 1):

• A bridge is a path whose end-point ωn lies on the x-axis;
• A meander is a path that lies in the quarter plane Z2

+;
• An excursion is a path that is at the same time a meander and a

bridge, i.e. it connects the origin with a point lying on the x-axis and
involves no point with negative y-coordinate.

Additionally, we call a family of paths or steps to be simple if each allowed
step in S is of the form (1, b) with b ∈ Z. In other words, these walks
constantly move one step to the right. We introduce the abbreviation S =

{b1, . . . , bm} in this case.
A Łukasiewicz path is a simple path, its associated step set S is a subset

of {−1, 0, 1, . . .}, and −1 ∈ S .

ending anywhere ending at 0

unconstrained

(on Z)

walk/path (W) bridge (B)

W(z) = 1
1−zP(1) B(z) = z u′1(z)

u1(z)

constrained

(on Z+)

meander (M) excursion (E )

M(z) = 1−u1(z)
1−zP(1) E(z) = u1(z)

p−1z

Table 1: The four types of paths: walks, bridges, meanders and excursions,
and the corresponding generating functions for Łukasiewicz paths
[19, Fig. 1]. P(u) is the jump polynomial of Definition 1.3.3, and
u1(z) is the unique solution of 1− zP(u) = 0 with limz→0 u1(z) = 0.

In the remainder of this section, we will focus on Łukasiewicz paths.
These are well-studied objects and possess a lot of applications. Their
importance stems from the famous Łukasiewicz correspondence between

10 Cyril Banderier, 19.5.1975-
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trees and lattice paths, see Figure 11. This shows the huge variety of
this class. In this sense, we encounter here the first instance of “tree-
like” objects.

Two famous members of this class are the already introduced Dyck
paths, and Motzkin paths.

Definition 1.3.2. A Motzkin path is a path that starts at the origin and is
given by the step set S = {−1, 0,+1}.

We will refer to Motzkin walks/meanders/bridges/excursions de-
pending on the different restrictions. In common literature Motzkin
paths are often defined as Motzkin excursions, e.g. in [63].

Figure 11: The Łukasiewicz bijection between trees and lattice paths: A little
fly is traveling along the full contour of the tree starting from
the root. Whenever it meets a new node, one draws a new jump
of size “arity of the node −1” in the lattice path. Without loss
of generality, one can always remove the very last jump (as it
will always be a “−1”) and thus we get an excursion which is in
bijection with the initial tree. It is straightforward to reverse this
bijection. Additionally, note that any deterministic traversal of the
tree offers such a bijection, so it could be a depth-first traversal,
but also e.g. a breadth-first traversal.

Walks and Bridges

The first cases we are going to consider are the unconstrained walks
and bridges. First we introduce the algebraic structures associated
with the previous definitions. The following definition is the algebraic
link between weights and steps.

Definition 1.3.3. The jump polynomial of S is defined as the polynomial
in u, u−1 (a Laurent polynomial)

P(u) :=
m

∑
j=1

pjusj .

Let c = −minj sj and d = maxj sj be the two extreme jump sizes, and
assume throughout c, d > 0 to avoid trivial cases. The kernel equation is
defined by

1− zP(u) = 0, or equivalently uc − z(ucP(u)) = 0.

The quantity K(z, u) := uc − zucP(u) is called kernel.



1.3 łukasiewicz paths 29

Note that for Łukasiewicz paths we have c = 1. In order to count
the number of walks, one sets all weights equal to 1. Thereby every
walk has weight 1.

Let wn,k be the number of paths ending after n steps at altitude k.
We define the associated generating function as

W(z, u) := ∑
n≥0,k∈Z

wn,kznuk.

Note that we are mainly interested in solving the counting problem,
i.e. determining the numbers wn,k for certain families of paths (com-
pare e.g. Figure 1). The generating function encodes all information
we are interested in. The following variant of [19, Theorem 1] makes
this explicit.

Theorem 1.3.4. The bivariate generating function of paths (z marking size
and u marking final altitude) relative to a simple step set S with character-
istic polynomial P(u) is a rational function. It is given by

W(z, u) =
1

1− zP(u)
.

The generating function of bridges is an algebraic function given by

B(z) = z
u′1(z)
u1(z)

, (12)

where u1(z) is the unique solution of the kernel equation 1− zP(u) = 0
with lim

z→0
u1(z) = 0.

Example 1.3.5 (Dyck Bridges). The step set S = {NE, SE}, or equiv-
alently S = {+1,−1}, corresponds to the walks of Dyck bridges. The
characteristic polynomial is P(u) = u−1 + u, and hence the kernel
equation reads

1− z
(

1
u
+ u

)
= 0.

We see immediately from the step set that c = 1 and d = 1. Therefore,
the kernel equation is of degree 2:

u− z(1 + u2) = 0.

There exists one small branch (limz→0 u1(z) = 0) and one large branch
(limz→0 |v1(z)| = +∞). In this case, they can be easily computed, by
solving the equation of degree 2:

u1(z) =
1−
√

1− 4z2

2z
∼

z→0
z, v1(z) =

1 +
√

1− 4z2

2z
∼

z→0

1
z

. (13)



30 an invitation to analytic combinatorics and lp counting

We used the fact that
√

1− 4z2 = ∑n≥0 (
1/2

n )(−4)nz2n in a small neigh-
borhood of 0. Now we apply Theorem 1.3.4 which gives the generat-
ing function for bridges:

B(z) = z
u′1(z)
u1(z)

=
1√

1− 4z2
= 1 + 2z2 + 6z4 + 70z8 + 252z10 + . . . .

The coefficients are known as OEIS A000984

[zn]B(z) =
(

2n
n

)
= [tn](1 + t2)n, (14)

and called central binomial numbers. They are closely related to the
Catalan numbers. This result can be explained very easily: In order
to uniquely characterize a Dyck bridge consisting of n NE-steps and
n SE-steps, we simply need to choose the positions of the NE-steps
(or equivalently of the SE-steps). For this, there are (2n

n ) possibilities.

Meanders and excursions

Let fn,k be the number of meanders ending after n steps at altitude k.
We define the associated generating function as

F(z, u) := ∑
n,k

fn,kznuk = ∑
k≥0

Fk(z)uk = ∑
n≥0

fn(u)zn.

Firstly, the generating functions Fk(z) represent meanders ending
at altitude k, i.e. Fk(z) = ∑n≥0 fn,kzn. Thus, the generating function
of excursions is equal to F0(z). Secondly, the polynomials fn(u) rep-
resent meanders of length n. The powers of u encode their possible
final altitudes.

Theorem 1.3.6. Let S be the step set of a Łukasiewicz path, and P(u) be the
associated step polynomial. The bivariate generating function of meanders
(where z marks length, and u marks final altitude) and excursions, respec-
tively, are

F(z, u) =
1− u1(z)/u
1− zP(u)

and E(z) =
u1(z)
p−1z

, (15)

where u1(z) is the unique solution of the implicit equation

1− zP(u) = 0,

which fulfills limz→0 u1(z) = 0.

Proof. A meander or excursion of length n is either empty, or it is
constructed from a walk of length n− 1 by appending a possible step
from S . However, a walk is not allowed to go below the x-axis, thus
at altitude u = 0 it is not allowed to use the step −1. This translates
into

f0(u) = 1, fn+1(u) = {u≥0} (P(u) fn(u)) ,
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where {u≥0} is the linear operator extracting all terms in the power
series representation containing non-negative powers of u. Multiply-
ing by zn+1 and summing over all n ≥ 0 we derive the following
functional equation where F0(z) = E(z)

F(z, u) = 1 + zP(u)F(z, u)− p−1z
u

F0(z),

and we get

(1− zP(u)) F(z, u) = 1− p−1z
u

F0(z), (16)

where K(z, u) := 1− zP(u) is called the kernel. This functional equa-
tion is under-determined as there are two unknown functions, namely
F(z, u) and F0(z). However, the special structure on the left-hand side
will resolve this problem and leads us to the kernel method.

From the theory of Newton–Puiseux expansions, the fundamental
result in the theory of algebraic curves [1, 143], we know that the
kernel equation

1− zP(u) = 0,

has d + 1 (c = 1) distinct solutions in u, with 1 of them being called
“small branch”, as it maps 0 to 0 and is in modulus smaller than the
other d “large branches” which grow in modulus to infinity while
approaching 0. We call the small branch u1(z) and the large ones
v1(z), . . . , vd(z). For these functions to be well-defined we restrict our
attention to the complex plane slit along the negative real axis. Insert-
ing the small branch into (16) we get

F0(z) =
u1(z)
p−1z

.

Using this result we can solve (16) for F(z, u).

Remark 4 (Brief history of the kernel method). The main idea of the
proof of Theorem 1.3.6 was to solve the functional equation (16) by
the kernel method, which consists of binding z and u in such a way
that the left-hand side vanishes. Compare with [126, Exercise 2.2.1.1-
4] as the first source, or with [50] for a combinatorial and analytic
treatment, or with [19, p. 56] for the strongly related Wiener-Hopf
approach from probability theory. For more details we refer to the
summary of historical notes at the end of [19, Section 2.3].

Let us briefly show in the next two subsections how this result can
be used to derive classical results for Dyck paths and Motzkin paths.

A key tool giving a formula for the coefficients of power series
satisfying this type of equation is the Lagrange inversion formula
(1768), extended by Bürmann in 1798:
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Theorem 1.3.7 (Lagrange–Bürmann inversion). Let us consider a power
series F(z) which satisfies F(z) = zφ(F(z)) with φ(z) a power series such
that φ(0) 6= 0. (We will call such an equation a Lagrangean equation.)
Then, for any Laurent power series H, one has for all n ∈ Z, n 6= 0:

[zn]H(F(z)) =
1
n
[zn−1]H′(z)φ(z)n .

Proof. See [85, chapter A.6] or [174, Theorem 5.4.2].

Example 1.3.8 (Dyck paths and the ballot problem). Continuing Ex-
ample 1.3.5, Dyck paths are excursions with the step set S = {−1, 1}.
The associated step polynomial is

P(u) =
1
u
+ u.

We may directly apply Theorem 1.3.6 as we have already computed
the small and the large branches in (13) and recover the generating
function of Dyck paths from (6):

E(z) =
1−
√

1− 4z2

2z2 = ∑
n≥0

1
n + 1

(
2n
n

)
z2n = ∑

n≥0
Cnz2n,

where the coefficients Cn are the Catalan numbers.
Recall from the introduction that the ballot problem asks for the prob-

ability in a two candidate election between A and B that eventually
ends in a tie, while A is dominating B throughout the poll. This prob-
lem can be modeled as a lattice path starting from the origin, with
the steps NE representing a vote for candidate A and SE being a vote
for candidate B. The fact that it ends in a tie, translates into a walk
that ends on the x-axis, and the condition of A dominating B is mod-
eled by the restriction that the walk must not leave the first quadrant.
Hence, we are dealing with a Dyck path.

The total number of possible walks from (0, 0) to (2n, 0) is (2n
n ),

which are the number of bridges with respect to this step set, com-
pare (14). Thus,

P[tie, A dominates B throughout] =





1
n+1 , 2n votes,

0, 2n + 1 votes,

is the asked probability.

Example 1.3.9. Consider the step set S = {−1, 0, 1, 2}. There will be
one small branch of order 1 and two large branches of order −1/2.
The entire version of the characteristic equation is

u− z
(
1 + u + u2 + u3) = 0.

The one small branch is given by

u1(z) = z + z2 + 2z3 + 5z4 + 13z5 + 36z6 + 104z7 + 309z8 + . . . ,
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and the two large branches are conjugate

v1(z) = z1/2 − 1
2 − 3

8 z1/2 − 1
2 z− 41

128 z3/2 − 1
2 z2 − 763

1024 z3/2 − z3 + . . . ,

v2(z) = −z1/2 − 1
2 +

3
8 z1/2 − 1

2 z + 41
128 z3/2 − 1

2 z2 + 763
1024 z3/2 − z3 + . . . .

The first few terms of the generating function for excursions are easily
computed by (15):

E(z) =
u1(z)

z
= 1 + z + 2z2 + 5z3 + 13z4 + 36z5 + 104z6 + . . . ,

and similarly for meanders:

M(z) =
1− u1(z)

1− 4z
= 1 + 3z + 11z2 + 42z3 + 163z4 + 639z5 + . . . .

Let us end this section with a summary of some well-known lattice
path enumeration problems. We state the specific step set, the kernel,
and the generating function of excursions.

• Dyck paths: Step set S = {(1,−1), (1, 1)} associated with the
kernel K(z, u) = u− zu2 − z,

E(z) =
1−
√

1− 4z2

2z2 .

• Motzkin paths: Step set S = {(1,−1), (1, 1), (1, 0)} associated
with the kernel K(z, u) = u− zu2 − z− zu,

E(z) =
1− z−

√
1− 2z− 3z2

2z2 .

• Schröder paths: Step set S = {(1,−1), (1, 1), (2, 0)} associated
with the kernel K(z, u) = u− zu2 − z− z2u,

E(z) =
1− z2 −

√
1− 6z2 + z4

2z2 .

• Delannoy paths: Step set S = {(1, 0), (0, 1), (1, 1)} associated
with the kernel K(z, u) = 1− z− zu− u,

E(z) =
1

1− z
,

(
F(z, u) =

z + zu + u
1− z− zu− u

)
.

We want to emphasize that not all problems need to have ratio-
nal or algebraic solutions. There are also problems which have an
irrational and maybe even non-holonomic solution. One example is
the Knight’s Walk studied in detail in [50]. Hereby we understand a
walk that starts anywhere on the lines x = 0, 1 or y = 0, 1, takes
only two kinds of steps (−1, 2) and (2,−1) and remains in the region
x ≥ 2, y ≥ 2 once it leaves the starting point.
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1.4 marking in combinatorial constructions

Let A be a combinatorial class. Recall that An consists of all elements
of A of size n, and its cardinality |An| is given by an. In the context of
this thesis we call an object random if it is drawn uniformly at random
among all elements of An. In other words, every element α ∈ An is
assigned the probability (i.e. weight) 1/an. We will use the symbol P

to denote probability.
In Section 1.2 we introduced bivariate generating functions. They

are especially useful if a certain parameter χ is of interest. For exam-
ple this could be the number of returns to zero, or the final altitude
in the case of lattice paths. A d-dimensional parameter χ on a combi-
natorial class A is a function that maps an element α ∈ A to a d-tuple
χ(α) ∈Nd.

In the context of multivariate generating functions this translates
into

A(z, u) = ∑
α∈A

uχ(α)z|α|,

where u := (u1, . . . , ud) and uk1,...,kd := uk1
1 · · · u

kd
k .

For multivariate generating functions there exists an extension of
the symbolic method. We will introduce some tools in Chapter 2. For
more details we refer to [85, 153].

We will mostly encounter 1-dimensional parameters. Then the bi-
variate generating function reads

A(z, u) = ∑
n≥0

∑
k≥0

an,kukzn,

where an,k is the number of combinatorial objects of size n with χ = k.
We say the variable z marks the size, and the variable u marks χ. For
every n ∈N this parameter defines a discrete random variable Xn by
setting

P[Xn = k] =
an,k

an
=

an,k

∑k≥0 an,k
.

Before we continue, we will briefly recall two important definitions.

Definition 1.4.1 (Expected value). The expected value or mean of a
discrete random variable X is defined as

E(X) := µ := ∑
k

P[X = k] · k.

An important feature of the mean is its linearity.

Definition 1.4.2 (Variance). The variance of a discrete random variable X
is defined as

V(X) := E
(
(X− µ)2) = E(X2)− µ2.

The standard deviation σ is defined by
√

V(X).
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Probability generating functions

Generating functions also prove very useful in the analysis of a ran-
dom variable Xn. This class is called probability generating functions. It
is the ordinary generating function of the sequence of probabilities
(P[Xn = k])k≥0 given by

pn(u) := ∑
k≥0

P[Xn = k]uk.

The bivariate generating function A(z, u) where z marks the size and
u marks the parameter χ is closely related to pn(u). In particular, we
have

pn(u) =
[zn]A(z, u)
[zn]A(z, 1)

.

Thus, understanding the bivariate generating function A(z, u) gives
access to the random variable Xn.

If pn(u) exists in a neighborhood of u = 1, it can be used to com-
pute the factorial moments

E(Xr
n) := E (Xn(Xn − 1) · · · (Xn − r + 1)) .

It is given by the r-th differentiation at u = 1:

E(Xr
n) =

dr

dur pn(u)
∣∣∣∣
u=1

.

In particular the variance of Xn is given by

V(Xn) = p′′n(1) + p′n(1)−
(

p′n(1)
)2 .

1.5 basic parameters of dyck paths

In this section we want to show how one can apply the concept of
marking in order to get a deeper insight on certain parameters. In or-
der to present the concept as clearly as possible we restrict ourselves
to Dyck paths and consider the number of contacts of excursions and
the expected final altitude of meanders.

Arches and contacts

Define an arch as an excursion of size > 0 whose only contact with
the x-axis is at its end points and let A be the set of arches. The set D
of excursions satisfies the combinatorial equation

D = SEQ(A),
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where SEQ denotes the operator for the combinatorial construction
that forms sequences, compare (2). By the symbolic method this trans-
lates directly into the generating function equation

E(z) =
1

1− A(z)
, or equivalently A(z) = 1− 1

E(z)
. (17)

Define a vertex of an excursion not equal to one of the end points to
be a contact if its altitude is 0. Then, A(z)k+1 is the generating function
of excursions having k contacts.

The next theorem gives the result for the number of contacts. We
will encounter a negative binomial distribution, where we say that a
random variable X is distributed according to NB(r, p) if

P[X = k] =
(

k + r− 1
k

)
pk(1− p)r.

It represents the number of unsuccessful trials k until the rth success
in independent Bernoulli experiments with probability p.

Theorem 1.5.1. The probability that a random Dyck path of size n has k
contacts is for any fixed k of the form

1
4
(k + 1)

(
1
2

)k

+O
(

1
n

)
.

The number of contacts is thus asymptotically distributed like a negative
binomial distribution with parameters 2 and 1/2, i.e. NB(2, 1/2).

Proof. The probability that a Dyck path of length n chosen uniformly
at random has k contacts is

1
Cn

[zn]A(z)k+1.

As we are interested in the probability for large n, we want to derive
the asymptotics of these numbers for fixed k. The asymptotics of the
Catalan numbers Cn has been well studied before in e.g. (11). Thus,
what remains is to apply singularity analysis to A(z)k+1. From (17)
and the result for Dyck paths from Example 1.3.8 we get that

A(z)k+1 =

(
1
2
− 1

2

√
1− 4z

)k+1

=
1

2k+1 − (k + 1)
1

2k+1

√
1− 4z +O(1− 4z).

Its dominant singularity is at 1/4, with the above singular expansion
at that point. Thus, Theorems 1.2.21 and 1.2.24 combined with Fig-
ure 60 directly yield the result.
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Expected final altitude

Let us consider Dyck meanders. Thereby we understand paths con-
structed from the step set S = {−1, 1} constrained to stay above or
on the x-axis. In other words we drop the condition of Dyck paths to
end on the x-axis, and consider meanders instead of excursions.

Theorem 1.5.2. The generating function G(z, u) (U(z, u)) of Dyck mean-
ders of even (odd) length, with z marking twice the steps (twice minus 1 the
steps), and u marking the final altitude is

G(z, u) =
D(z)

1− z(uD(z))2 , U(z, u) = uD(z)G(z, u),

where D(z) = 1−
√

1−4z
2z is the generating function of Dyck paths.

Proof. Let us start with even length. First, note that paths of even
length must end at an even altitude.

We uniquely decompose the path by the last times it leaves a given
altitude. This is a so-called last passage decomposition (compare first
passage decomposition in Example 1.2.8). Note that in D(z) the power
of z counts the number of pairs of up and down steps. In order to
reach an even altitude a walk must have an even number more up
than down steps. Thus, we may group 2 consecutive of these last
up steps and count them by z. Going from altitude k to altitude k + 2,
where the first jump leaves altitude k for the last time, can be modeled
by z(uD(z))2.

The last passage decomposition shows that a meander is thus given
by a Dyck path followed by a sequence of the previous objects. This
yields the formula for G(z, u).

Moreover, a path ending at an odd altitude can be uniquely decom-
posed into a Dyck path followed by an up jump followed by a Dyck
meander ending at an even altitude. Thus, we get the formula for
U(z, u).

Let us now consider a probability distribution on the set of me-
anders of length n. The combinatorial probability model (or uniform
distribution among elements of size n) is given by drawing uniformly
at random an element of the given class.

Let Xn be the random variable of paths of length n ending at alti-
tude k. Then we have

P[X2n = k] =
[znuk]G(z, u)
[zn]G(z, 1)

, P[X2n+1 = k] =
[znuk]U(z, u)
[zn]U(z, 1)

.

The expected value and variance are equal to

E(X2n) =
[zn]Gu(z, 1)
[zn]G(z, 1)

,

V(X2n) =
[zn]Guu(z, 1)
[zn]G(z, 1)

+
[zn]Gu(z, 1)
[zn]G(z, 1)

−
(
[zn]Guu(z, 1)
[zn]G(z, 1)

)2

,
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where Gu(z, 1) := ∂
∂u G(z, u)

∣∣∣
u=1

, and Guu(z, 1) := ∂2

∂u2 G(z, u)
∣∣∣
u=1

. Ob-

viously, the same holds for X2n+1 with G(z, u) replaced by U(z, u).
Then, singularity analysis directly gives

Theorem 1.5.3. The number of Dyck meanders of length n is equal to

mn =




(2n

n ), for n = 2k,

(2n+1
n ), for n = 2k + 1.

The expected value and the variance for the final altitude of meanders of
length n are asymptotically equal to

E(Xn) =
√

πn +O(1), V(Xn) = (4− π)n +O(1).

Proof. Let us start with the asymptotic number of meanders. A direct
computation gives

G(z, 1) =
1√

1− 4z
, U(z, 1) =

1
2z

(
1√

1− 4z
− 1
)

.

Extracting the coefficient of zn gives the result.
We perform the computations for G(z, u), the ones for U(z, u) are

analogous. We get

Gu(z, 1) =
1

1− 4z
− 1√

1− 4z
,

Guu(z, 1) =
2

(1− 4z)3/2 −
3

1− 4z
+

1√
1− 4z

.

Applying singularity analysis to each of these terms directly gives the
result.

It is noteworthy that the leading terms for n → ∞ of the expected
value and the variance do not depend on the parity of n. One can
show that the limit distribution of the rescaled random variable Xn√

n is

a Rayleigh distribution with parameter σ =
√

2, see [19, Theorem 6].

1.6 properties of general directed lattice paths

In this section we present known results on directed lattice paths
which generalize the previous results and which we build upon later
in this thesis. Readers familiar with the exposition of Banderier and
Flajolet [19] or related results may skip this section.

Their generating functions have been fully characterized in [19] by
means of analytic combinatorics. The main results are summarized
in the following Table 2 which generalizes Table 1 to arbitrary simple
step sets.



1.6 properties of general directed lattice paths 39

ending anywhere ending at 0

unconstrained

(on Z)

walk/path (W) bridge (B)

W(z) = 1
1−zP(1) B(z) = z

c
∑

i=1

u′i(z)
ui(z)

constrained

(on Z+)

meander (M) excursion (E )

M(z) = ∏c
i=1(1−ui(z))
1−zP(1) E(z) = (−1)c−1

p−1z

c
∏
i=1

ui(z)

Table 2: The four types of paths: walks, bridges, meanders and excursions,
and the corresponding generating functions for directed lattice
paths [19, Fig. 1].

Definition 1.6.1 (p-periodic). A walk is called p-periodic or short peri-
odic with period p if there exists a polynomial H(u) and integers b ∈ Z

and p ∈ N, p > 1 such that P(u) = ubH(up). Otherwise it is called
aperiodic.

Note that generating functions of aperiodic walks possess a unique
singularity on the positive real axis [19].

Example 1.6.2 (Periodic lattice paths). The easiest example of pe-
riodic lattice paths is the one of Dyck paths. They are defined by
the jump set S = {−1, 1} where each step has weight 1. The jump
polynomial is P(u) = u−1 + u and can therefore be rewritten into
P(u) = u−1H(u2) with H(u) = 1 + u. Thus, the period is 2.

A more interesting example is given by the step set S = {−2, 5}
which was introduced by Knuth11 at the conference “Analysis of Al-
gorithms 2014” (AofA 2014). In his “Flajolet lecture” he presented 5
problems with a strong flavor of analytic combinatorics (his slides
are available online12). His problem #4 treated the mentioned lattice
paths. Because of P(u) = u−2H(u7) these are lattice paths of period
p = 7. The problem is solved in Chapter 5, where the problems of
periodic lattice paths are discussed and explained in more detail as
well.

11 Donald E. Knuth, 10.1.1938-
12 http://www-cs-faculty.stanford.edu/~uno/flaj2014.pdf
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The kernel plays a crucial role and is name-giving for the kernel
method, which we have already encountered in the proof of Theo-
rem 1.3.6. It is the key tool for characterizing this family of lattice
paths. The interested reader is referred to [19, Chapter 2]. In the heart
of this method lies the observation that the kernel equation is of de-
gree c + d in u, and therefore possesses generically c + d roots. These
correspond to branches of an algebraic curve given by the kernel
equation. From the theory of algebraic curves and Newton-Puiseux
series, for z near 0 one obtains c “small branches” u1(z), . . . , uc(z) and
d “large branches” v1(z), . . . , vd(z). For being well-defined, we restrict
ourselves to the complex plane slit along the negative real axis.

They are called “small branches” as they satisfy limz→0 ui(z) = 0,
whereas the “large branches” satisfy limz→0 |vi(z)| = ∞. Banderier
and Flajolet showed that the generating functions of bridges, excur-
sions and meanders can be expressed in terms of the small branches
and the jump polynomial, see Table 2.

The branch u1(z) is real and positive near 0 and called the principal
small branch. It proves to be responsible for the asymptotic behavior
of bridges, excursions, and meanders, compare [19, Theorems 3 and
4]. The branch v1(z) is conjugated to u1(z) and called the principal
large branch.

Lemma 1.6.3 ([19, Lemma 1]). Let P(u) be the jump polynomial associated
with the steps of a simple walk. Then, there exists a unique number τ, called
the structural constant, such that P′(τ) = 0, τ > 0. The structural radius
is defined by the quantity

ρ :=
1

P(τ)
.

Under the aperiodicity condition, the principal small branch domi-
nates the other branches:

|uj(z)| < u1(|z|), for z ≤ ρ, j > 1, and

|u1(z)| < |v1(z)|, for z < ρ.

Furthermore, we know that the principal branches u1(z) and v1(z)
are analytic in the open interval (0, ρ) for an aperiodic step set, and
they satisfy the singular expansions

u1(z) = τ − C
√

1− z
ρ
+O

(
1− z

ρ

)
,

v1(z) = τ + C
√

1− z
ρ
+O

(
1− z

ρ

)
,

(18)

for z → ρ−, where C :=
√

2 P(τ)
P′′(τ) . The previous result is a direct

consequence of the implicit function theorem, see [19]. But one can
get even more information with the help of its singular version [85,
Lemma VII.3].
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Theorem 1.6.4 (Singular Implicit Functions [85, Lemma VII.3]). Let
F(z, w) be a bivariate function analytic at (z, w) = (z0, w0). Assume the
following conditions: F(z0, w0) = 0, Fz(z0, w0) 6= 0, Fw(z0, w0) = 0, and
Fww(z0, w0) 6= 0. Choose an arbitrary ray of angle θ emanating from z0.
Then, there exists a neighborhood Ω of z0 such that at every point z of Ω
with z 6= z0 and z not on the ray, the equation F(z, y) = 0 admits two
analytic solutions y1(z) and y2(z) that satisfy for z→ z0:

y1(z) = w0 − γ
√

1− z/z0 +O(1− z/z0), γ =

√
2z0Fz(z0, w0)

Fww(z0, w0)
,

and similarly for y2 whose expansion is obtained by changing
√· to −√·.

Proposition 1.6.5. Let u1(z) and v1(z) be the principal small and large
branches of the kernel equation 1− zP(u) = 0. Then, there exists a neigh-
borhood Ω such that for z→ ρ in Ω \ (ρ, ∞) they have a local representation
of the kind

a(z) + b(z)
√

1− z/ρ,

where a(z), b(z) are analytic functions for every point z ∈ Ω \ (ρ, ∞), z 6=
z0. We have that a(ρ) = τ, and b(ρ) = −C for u1(z) or b(ρ) = C for v1(z),
respectively. The other branches u2(z), . . . , uc(z) and v2(z), . . . , vd(z) are
analytic in a neighborhood of ρ.

Proof. The branches u(z), which we use as a shorthand for ui(z) and
vi(z), are implicitly defined by Φ(z, u(z)) = 0, where Φ(z, u) =

1− zP(u). We will apply the singular implicit function theorem, The-
orem 1.6.4. Firstly, it is easy to check that Φ(ρ, τ) = 0, Φz(ρ, τ) =

−ρ−1 6= 0, Φu(ρ, τ) = 0, and Φuu(ρ, τ) = −ρP′′(τ) 6= 0. Note that the
last equation is not equal to 0 because P(u) is a convex function for
real values of u.

The two possible solutions y1(z) and y2(z) correspond to the prin-
cipal small branch u1(z) and the principal large branch v1(z), respec-
tively. Thus, we recovered the asymptotic expansion (18).

Finally, the analytic nature of a(z) and b(z) follows from the Weier-
strass preparation theorem, see Theorem 2.5.3.

The analytic character of the other small branches, follows from
the analytic version of the implicit function theorem, Theorem 2.5.2:
consider Φ̃(z, u) := Φ(z,u)

(u−u1(z))(u−v1(z))
. Solving this function for u gives

the solutions of Φ(z, u) = 0 not equal to u1(z) or v1(z). But Φ̃u(ρ, τ) 6=
0 and therefore these are analytic in a neighborhood of z0.

The Banderier-Flajolet model [19] consists of only one step set S
and the corresponding jump polynomial P(u) = p−cu−c + . . . + pdud.
Here p−c is the weight of the biggest jump of size −c down and pd is
the weight for the biggest jump of size d up.
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In [19, Theorem 1] they show that the bivariate generating function
of paths with z marking size and u marking final altitude relative to
a simple set of steps S is given by

W(z, u) =
1

1− zP(u)
, (19)

and that the generating function of bridges is algebraic and given by

B(z) = z
c

∑
j=1

u′j(z)

uj(z)
= −z

d

∑
`=1

v′`(z)
v`(z)

. (20)

Additionally, the generating function Wk(z) for paths terminating at
altitude k is, for −∞ < k < c,

Wk(z) = z
c

∑
j=1

u′j(z)

uk+1
j (z)

, (21)

and for −d < k < ∞,

Wk(z) = −z
d

∑
`=1

v′`(z)
vk+1
` (z)

. (22)

Note that we see in these results that the small and large branches are
in some sense conjugate to each other. This is due to their defining
equation 1− zP(ui(z)) = 1− zP(v`(z)) = 0.

In [19, Theorem 2] Banderier and Flajolet treat meanders and ex-
cursions. Their generating functions satisfy

E(z) =
(−1)c−1

p−cz

c

∏
j=1

uj(z) =
(−1)d−1

pdz

d

∏
`=1

1
v`(z)

, (23)

F(z, u) =
∏c

j=1(u− uj(z))
uc(1− zP(u))

= − 1
pdz

d

∏
`=1

1
(u− v`(z))

. (24)

The results are summarized in Table 2.

1.7 introduction to the combinatorics of trees

At the end of this chapter we want to introduce the second family of
combinatorial objects which are the focus of this thesis: trees. They
have already been mentioned in Figure 11 where we have seen a nat-
ural link between Łukasiewicz paths and trees. Let us now give a
rigorous definition.

Definition 1.7.1 (Graph). A graph G consists of a set of vertices or nodes
V(G) and a set of edges E(G) ⊆ {{v1, v2} : v1, v2 ∈ V(G)}, which are 2-
element subsets of V(G). If the pairs are ordered we call the graph directed,
otherwise it is called undirected.
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The degree of a vertex v ∈ V(G) is the number of edges in E(G) con-
taining v. In directed graphs we call the out-degree the number of edges of
the kind (v, w), and the in-degree the number of edges of the kind (w, v),
for w ∈ E(G).

A path on a graph of length n is a sequence of vertices (v0, v1, . . . , vn)

where subsequent vertices vi and vi+1 are connected by a common edge
(vi, vi+1) ∈ E(G).

A cycle is a path starting and ending at the same vertex and without
repetitions of any vertex.

A graph is called acyclic if it does not contain any cycles.
A graph is connected if for any pair of nodes there exists a path connect-

ing the two nodes.
A graph is rooted if one of its vertices is distinguished. This vertex is

called the root.

Furthermore, we need to answer the question whether two given
graphs are the same.

Definition 1.7.2. Two graphs G1 and G2 are isomorphic if there exists a
bijection between the vertex sets of G1 and G2, f : V(G1) → V(G2), such
that two vertices v and w of G1 are adjacent if and only if f (v) and f (w)

are adjacent in G2. If G1 = G2 we call the bijection f an automorphism.
The automorphism group of the graph G1 is denoted by Aut(G1).

Definition 1.7.3 (Tree). A tree is a connected undirected acyclic graph.
Vertices of degree 1 are called leaves or external nodes. All other vertices
are called internal nodes.

Note that rooted trees can be interpreted as directed graphs. Every
edge is directed away from the root, thus there is a path from the root
to any leaf.

One of the focuses of this thesis are trees. Therefore, all following
concepts and definitions are adapted to their nature.

Labeled and unlabeled trees

A tree can either be labeled or unlabeled. A labeled tree of size n consists
of the set of vertices V, the set of edges E, and a permutation σ ∈
Sn of size n, which we call a labeling. The permutation assigns to
every vertex a label, which is a distinct number from {1, 2, . . . , n}.
Two labeled graphs are considered to be equal if they have the same
set of vertices, edges, and the same labeling.

On the contrary, in an unlabeled tree the vertices are not distin-
guishable. One obviously obtains an unlabeled tree from a labeled
tree by removing all the labels. But this mapping is not bijective. Two
labeled trees T1, T2 will give the same unlabeled tree if there exists
a permutations τ ∈ Sn on the set of labels, such that applying this
permutation on the labels of T1 gives T2. In other words, unlabeled
trees are labeled trees up to this isomorphism.
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Plane and non-plane trees

Yet another isomorphism appears when one considers trees embed-
ded in the plane. Informally, an embedding into the plane of a tree is a
drawing where no two edges intersect, except at vertices. In particu-
lar, the order of the children is important.

Rooted trees are then called plane if every embedding is considered
as a different tree. Otherwise they are called non-plane.

Let us state now some famous examples of trees.

• Binary trees are rooted plane trees with out-degrees 0 or 2. They
are counted by the Catalan numbers 1

n+1 (
2n
n ).

• A Cayley tree is a rooted labeled non-plane tree. It is a famous
result that there are exactly nn−1 Cayley trees of size n.

• A Pólya tree is a rooted unlabeled non-plane tree. They are more
complicated to count, and we will introduce the counting theory
after the next subsection.

Counting labeled classes

In order to count labeled combinatorial classes we introduce a new
class of generating functions. Ordinary generating functions from
Definition 1.2.6 are the concept of choice for unlabeled classes, yet
for labeled classes we use exponential generating functions.

Definition 1.7.4. The exponential generating function (EGF) of a se-
quence (an)n≥0 is the formal power series

A(z) = ∑
n≥0

an
zn

n!
.

Similar to ordinary generating functions, the disjoint union and the
Cartesian product (with correct relabeling!) translate into the addition
and product of exponential generating functions. For the purpose of
this thesis we will not need these concepts. The interested reader is
referred to the thorough introduction by Flajolet and Sedgewick [85].

Counting unlabeled classes with symmetries - Pólya theory

We have already seen how to count unlabeled objects with ordinary
generating functions if they do not possess too many symmetries.
However, in the case of symmetries, like in the case of Pólya trees we
need to understand the defining isomorphisms. These are in general
the reason why unlabeled counting is more involved than labeled
counting. This theory was founded by Pólya in [157]. Next, we want
to give a brief introduction into this subject. This notion will be picked
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up again in Chapter 7. In this subsection we follow mostly the lines
of the thesis [130] by Kraus, which treats a large class of unlabeled
combinatorial objects.

The theory relies on the concept of cycle index sums. One can think
of them as refined versions of generating functions with an infinite
set of random variables (s1, s2, . . .).

Definition 1.7.5. Let M be a finite set of n elements and σ ∈ SM a permu-
tation of the elements of M. The cycle type ZT(σ) of σ is defined by

ZT(σ) = sλ1(σ)
1 sλ2(σ)

2 · · · sλn(σ)
n ,

where λi(σ) is the number of cycles of length i in σ. As a shorthand we
define σi = λi(σ), and call the sequence (σ1, σ2, . . . , σn) the type of σ.

Let G be a subgroup of the symmetric group Sn. Then, the cycle index is

Z(G; s1, s2, . . . , sk) =
1
|G| ∑

σ∈G
ZT(σ) =

1
|G| ∑

σ∈G
sσ1

1 sσ2
2 · · · s

σk
k .

Example 1.7.6. Let |M| = n, then we have

• for G = {id}:
Z(G) = sn

1 ;

• for G = {Sn}:

Z(G) =
1
n! ∑

i1+2i2+···+nin=n

n!
i1!i2! · · · in! · 1i12i2 · · · nin si1

1 si2
2 · · · sin

n .

Cycle indices help us to count unlabeled objects from a family A.
For every structure α ∈ A we define the permutation group Sα as
the subgroup of permutations on the set of atoms of α which do not
change the object. This is the set of permutations representing the
symmetries of α, which we call allowed permutations on α.

Definition 1.7.7. Let A be a combinatorial class. The cycle index sum
ZA(s1) of the class A is defined by

ZA(s1) = ∑
α∈A

Z(Sα; s1, . . . , s|α|),

where Sα is the set of allowed permutations of α and s1 denotes the infinite
set of variables (s1, s2, . . .).

This series keeps track of all symmetries of the objects of A. Note
that if we substitute si = zi we obtain the ordinary generating func-
tion of the class A. This new machinery is also amenable to the sym-
bolic language, however one needs to deal with this cycle index sum
in all constructions.
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A good example for this phenomenon is the substitution B ◦ A.
This construction does not translate into B(A(z)) on the level of gen-
erating functions, as by replacing every atom of a structure from B
with a new structure A, we add and destroy symmetries.

Let us look in more detail into this problem: Consider the k ele-
ments v1, . . . , vk of a cycle of a permutation of the atoms of an object
β ∈ B. We want to substitute each of the elements vi by an element
αi ∈ A. If any of these substituted structures were different from each
other, the symmetry would be destroyed. Thus, we need to substitute
k identical copies of α ∈ A into the elements v1, . . . , vk to maintain
the symmetry. This results in a cycle of length k with identical copies
of α for every α ∈ A.

In general, this problem is solved by the Pólya-Redfield Theorem.
Let D and R be finite sets and M = RD. Furthermore, let G be a

subgroup of SD. A permutation σ ∈ G induces a permutation

(σ̃( f )) (x) := f (σ(x)), f ∈ M, x ∈ D,

on SM. The thereby constructed set G̃ is obviously a subgroup of SM

and isomorphic to G.
Two functions f , g ∈ M are called equivalent ( f ∼ g) if there exists

a permutation σ ∈ G such that σ̃( f ) = g.
Furthermore, every element r ∈ R is assigned a weight w(r). This

gives a mapping w : R → W from R into a set of weights W. Then,
we define the weight of a function f ∈ M by

w( f ) := ∏
x∈D

w( f (x)).

We have w( f ) = w(g) for f ∼ g. Therefore, the weight w(c) is defined
for every equivalence class c ∈ M/ ∼.

Theorem 1.7.8 (Pólya-Redfield, [37]). Let R, D be finite sets, G be a sub-
group of SD and M = RD. Then,

∑
c∈M/∼

w(c) = Z

(
G; ∑

r∈R
w(r), ∑

r∈R
w(r)2, . . . , ∑

r∈R
w(r)|D|

)
.

This theorem can be extended formally to the case of countable sets
D, R. We do not go into the details at this point. Let us just sketch the
idea: Consider a k-tuple (α1, . . . , αk) of elements αi ∈ A. Its size is
given by |(α1, . . . , αk)| = ∑k

i=1 |αi|. Then, set D = {1, . . . , k}, R = A
and w(α) = z|α| to apply the previous theorem. This gives for the
substitution

ZB◦A(s1) = ZB (ZA(s1), ZA(s2), . . .) ,

where ZB is the cycle index sum of the class B, ZA the cycle index
sum of the class A, and sk denotes the vector (sk, s2k, s3k, . . .) for k ≥ 1.
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Finally, we get that the ordinary generating function C(z) of the
class B ◦ A is given by

C(z) = ZB
(

A(z), A(z2), . . .
)

.

Additionally, with a little bit more work (see e.g. [130]) one gets
for cycle index sum ZB(s1) of a multiset of objects of A, i.e. B =

MSET(A)

ZB(s1) = exp

(
∑
i≥1

ZA(si)

i

)
,

and for the generating function

B(z) = exp

(
∑
i≥1

A(zi)

i

)
.

Finally, this gives us the tool to model the generating function
T(z) = ∑n≥0 tnzn of Pólya trees. Such a tree consists of a root and
a multiset of Pólya trees. Hence,

T(z) = z exp

(
∑
i≥1

T(zi)

i

)
. (25)

By differentiating both sides with respect to z, one can derive a re-
currence relation of tn (see [149, Chapter 29] and [150]). The first few
terms of T(z) are then

T(z) = z + z2 + 2z3 + 4z4 + 9z5 + 20z6 + 48z7 + 115z8 + . . . , (26)

compare OEIS A000081. By differentiating both sides of (25) with re-
spect to z, one can derive a recurrence relation of tn (see [149, Chap-
ter 29] and [150]), which is

tn =
1

n− 1

n−1

∑
i=1

tn−i ∑
m|i

mtm, for n > 1, and t1 = 1.

Pólya [157] showed that the radius of convergence ρ of T(z) satisfies
0 < ρ < 1 and that ρ is the only singularity on the circle of conver-
gence |z| = ρ. Subsequently, Otter [150] proved that T(ρ) = 1 as well
as the asymptotic expansion

T(z) = 1− b (ρ− z)1/2 + c(ρ− z) +O
(
(ρ− z)3/2

)
, (27)

locally around z = ρ. By transfer theorems he derived

tn =
b
√

ρ

2
√

π

ρ−n
√

n3

(
1 +O

(
1
n

))
,

where ρ ≈ 0.3383219, b ≈ 2.68112 and c = b2/3 ≈ 2.39614.
This ends our discussion on unlabeled trees. More details will be

given in Chapter 7.





2
M E T H O D S

In this chapter, we introduce methods that will be used throughout
this thesis.

We start with some results on probability distributions and con-
tinue with their appearances in the context of limit laws. These results
are strongly connected with bivariate generating functions and the
concept of marking in combinatorial constructions, see Section 1.4.

2.1 probability distributions

Probability distributions can be decomposed into two big classes: dis-
crete and continuous ones. Discrete probability distributions are char-
acterized by a probability mass function (PMF) of at most countable
support. This gives a non-continuous cumulative distribution func-
tion (CDF). Yet, continuous probability distributions are character-
ized by a continuous cumulative distribution function. If their mass
function exists we call it a probability density function (PDF).

In this thesis a priori all arising probability distributions are dis-
crete, as they are defined on finite sets. However, as the size n of the
objects grows, these finite distributions usually approach a continu-
ous limit.

We just briefly sketch the most important ones which will appear
in this thesis. For more details we refer to [85, 179].

Discrete probability distributions

In our case the support of discrete probability distributions will (in
most cases) be N = {0, 1, 2, . . .}. The results of this subsection are
summarized in Table 3.

Probably the most fundamental discrete probability distribution is
the Bernoulli distribution of parameter p with 0 ≤ p ≤ 1. It is the
distribution of a random variable X which takes the value 1 with
probability p, and the value 0 with probability 1− p. We denote this
case by X ∼ B(p). One directly gets E(X) = p and V(X) = p(1− p).

From the Bernoulli distribution one directly derives the binomial
distribution of parameters n, p. It represents the number of successes
in n independent Bernoulli trials. A random variable X obeying this
distribution is denoted by X ∼ B(n, p). Its PMF is given by

P[X = k] =
(

n
k

)
pk(1− p)n−k,

49
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Bernoulli Binomial Geometric Neg. binomial

B(p) B(n, p) Geom(p) NB(m, p)

Support k ∈ {0, 1} k ∈ {0, 1, . . . , n} k ∈ {0, 1, . . .} k ∈ {0, 1, . . .}

PMF





p, k = 1

1− p, k = 0
(n

k)pk(1− p)n−k (1− p)k p (m+k−1
k )(1− p)k pm

Mean p np 1−p
p

m(1−p)
p

Variance p(1− p) np(1− p) 1−p
p2

m(1−p)
p2

Table 3: A comparison of the encountered discrete distributions: Bernoulli,
binomial, geometric and negative binomial distribution.

and we have E(X) = np and V(X) = np(1− p).
Another distribution that is derived from the Bernoulli distribution

is the geometric distribution of parameter p. It records the number of
failures till the first success in a potentially arbitrarily long sequence
of Bernoulli trials. We write X ∼ Geom(p). The PMF is equal to

P[X = k] = (1− p)k p,

and we have E(X) = 1−p
p and V(X) = 1−p

p2 .
The last discrete probability distribution we want to mention is the

negative binomial distribution of parameters m, p, which is also related
to the Bernoulli distribution. It corresponds to the number of failures
before m successes are encountered. We write X ∼ NB(m, p), and the
PMF is equal to

P[X = k] =
(

m + k− 1
k

)
(1− p)k pm.

In this case, we have E(X) = m(1−p)
p and V(X) = m(1−p)

p2 .

Continuous probability distributions

The results of this subsection are summarized in Table 4.
The probably most famous and most often appearing continuous

probability distribution is the normal distribution or Gaussian distribu-
tion. It is characterized by its mean µ and its standard deviation σ,
and we write X ∼ N (µ, σ). Its density function is equal to

fN (x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

We call it the standard normal distribution if µ = 0 and σ = 1.
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Normal Half-normal Rayleigh

N (µ, σ) H(σ) R(σ)

Support x ∈ R x ∈ R≥0 x ∈ R≥0

PDF 1√
2πσ2 e−

(x−µ)2

2σ2

√
2

πσ2 e−
x2

2σ2 x
σ2 e−

x2

2σ2

Mean µ σ
√

2
π σ

√
π
2

Variance σ2 σ2 (1− 2
π

)
σ2 (2− π

2

)

Table 4: A comparison of the encountered continuous distributions: normal,
half-normal, and Rayleigh distribution.

As in the discrete case we are able to derive several distributions
from this fundamental one. Firstly, the half-normal distribution of pa-
rameter σ is generated by the absolute value |X| of a normally dis-
tributed random variable X with mean µ = 0. We denote it by X ∼
H(σ), and its density function is equal to

fH(x) =

√
2

πσ2 e−
x2

2σ2 .

One directly gets that E(X) = σ
√

2
π and V(X) = σ2 (1− 2

π

)
.

Secondly, the Rayleigh distribution of parameter σ is generated by
the Euclidean norm of two independent normally distributed random
variables with means µ = 0. We write X ∼ R(σ). In formulae we

have X =
√

Y2
1 + Y2

2 with Y1, Y2 ∼ N (0, σ2) independent. Its density
function is the rescaled derivative of the one of a normal distribution
and is given by

fR(x) =
x
σ2 e−

x2

2σ2 .

Then, we have E(X) = σ
√

π
2 and V(X) = σ2 (2− π

2

)
.

2.2 limit laws

The theory of limit laws connects the combinatorial and the proba-
bilistic point of view. A comprehensive introduction is found in [85,
Chapter IX]. We want to give here a brief introduction into this subject
drawing mostly from this source.

In the theory of analytic and enumerative combinatorics we always
start with a combinatorial class A. We are also often interested in an
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integer valued combinatorial parameter χ. First of all we naturally get
a family of probabilistic models: for each n the uniform distribution
over An assigns to any α ∈ An the probability

P[α] =
1
an

, with an = |An|.

This model induces a probability distribution on the parameter χ. In
particular we obtain a family of random variables Xn by restricting χ

to An. Under the uniform distribution over An we get

P[Xn = k] =
|{α ∈ An | χ(α) = k}|

an
.

The notion of a limit law is motivated by the observation that an in-
creasing n often leads to a common profile in the distribution of Xn.

For our purposes the notion of convergence in distribution or weak
convergence is important. Let us briefly recall it now.

Definition 2.2.1 (Weak convergence, [85, Chapter C.5]). Let Fn be a
family of distribution functions. The Fn are said to converge weakly to a
distribution function F if

lim
n→∞

Fn(x) = F(x),

holds pointwise at every continuity point x of F. Let Xn and X be the ran-
dom variables associated to Fn and F, respectively. Then, we say that Xn

converges in distribution or converges in law to X.

Most importantly for our work is the connection of characteristic
functions and random variables.

Theorem 2.2.2 (Continuity theorem for characteristic functions, [40]).
Let Y and Yn be random variables with characteristic functions φ and φn,
respectively. A necessary and sufficient condition for weak convergence of Yn

to Y is that φn(t)→ φ(t) for each t ∈ R.

Returning to our initial motivation, we shall say that a limit law
exists for a parameter if there is convergence of the corresponding
family of cumulative distribution functions. We distinguish between
two types of convergence of the a priori discrete distribution of a
combinatorial parameter:

• discrete→ discrete

• discrete→ continuous

At this point we need to remark that the limit might only exist after
suitable standardization. In the discrete-to-discrete case this is in gen-
eral not necessary (though cases are known, but not encountered in
this thesis). However, in the discrete-to-continuous case the random
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variable needs to be centered at its mean and scaled by its standard
deviation such as

Xn − µn

σn
, with µn = E(Xn), σ2

n = V(Xn),

in order to allow existence of a (weak) limit. Note that also different
rescalings are possible. Yet, in many cases this is the most useful one.

Such results (whether centered or not) are also often called central
limit laws or global limit laws. They give a qualitative feeling for their
behavior. One often wishes to get a deeper understanding. This is an-
swered by a local limit law. This, when available, quantifies individual
probabilities (rather than the cumulative distribution functions). In
the discrete-to-discrete case these two notions are equivalent. In the
discrete-to-continuous setting, the local limits are expressed in terms
of fixed probability densities. These results are in general technically
more demanding, as stronger analytic properties are necessary.

Let us make this informal statement explicit in the case of a Gaus-
sian law. Its generalization to different distributions is straightfor-
ward by replacing the density function e−x2/2 with the respective one.
One of the first sources of this notion is found in Bender’s ground-
breaking work [36].

Definition 2.2.3 (Local limit law). A sequence of discrete probability dis-
tributions pn,k = P[Xn = k], with mean µn and standard deviation σn is
said to obey a local limit law of Gaussian type if, for a sequence εn → 0,

sup
x∈R

∣∣∣∣σn pn,bµn+xσnc −
1√
2π

e−x2/2
∣∣∣∣ ≤ εn.

The local limit law is said to hold with speed εn.

In the next section we will see how generating functions and limit
laws are connected, and we will present several deep results linking
analytic and algebraic properties with underlying probability distri-
butions.

2.3 schemes for generating functions

Generating functions have proved very useful in the analysis of com-
binatorial questions. The approach builds on general principles of the
correspondence between combinatorial constructions and functional
operations. The symbolic method [85] provides a direct translation
of the structural description of a class into an equation of generating
functions.

Especially bivariate generating functions like F(z, u) = ∑ fnkznuk

have been extensively investigated. Combining them with the idea of
marking, which was introduced in Section 1.4, they provide access to



54 methods

the underlying probability distributions of certain parameters. Recall
that the definition of a family of random variables (Xn)n≥0 by

P[Xn = k] :=
[znuk]F(z, u)
[zn]F(z, 1)

,

links the symbolic world with the probabilistic one. The obvious ques-
tion in this context concerns the nature of the random variables Xn

and the one of their (if existent) limit. A scheme answers this question
for certain classes. However, the answer is given without computing
the actual random variable, but by analyzing certain properties of the
bivariate generating function. These could be algebraic (decomposi-
tion, positivity of coefficients, . . .), analytic (radius of convergence,
distribution of singularities, . . .), or probabilistic (existence of certain
moments, variability conditions, . . .) properties.

Especially for the case of a Gaussian limit distribution there are
many different schemes known: Bender’s central limit theorems [36],
Hwang’s quasi-powers theorem [113], the supercritical composition
scheme [85, Proposition IX.6], the algebraic singularity scheme [85,
Theorem IX.12], an implicit function scheme for algebraic singulari-
ties [66, Theorem 2.23], or the limit law version of the Drmota-Lalley-
Woods theorem [17, Theorem 8]. But such schemes also exist for other
distributions, like e.g., the Airy distribution [20]. In general, it was
shown in [15] and [17, Theorem 10] that even in simple examples
“any limit law”, in the sense that the limit curve can be arbitrarily
close to any càdlàg multi-valued curve in [0, 1]2, is possible.

In this section we introduce the most important schemes for our
purposes. There are many ways to group different schemes. One of
the most obvious one is the distinction between discrete and contin-
uous schemes. Discrete schemes are schemes leading to a discrete
limit distribution, whereas continuous ones give a continuous limit
distribution.

A finer distinction can be made with respect to their resulting limit
laws, as e.g. geometric schemes, normal schemes, Rayleigh schemes,
half-normal schemes, etc.

Yet the most practical way for our purposes is to distinguish them
by their nature. In the next subsections we introduce a pointwise
convergence scheme, a large powers scheme, compositions schemes,
square-root schemes, and a moment scheme.

Pointwise convergence scheme

The following scheme is tuned to probability generating functions,
i.e. P(1) = 1. It gives sufficient conditions for a sequence of probabil-
ity generating functions to possess a discrete limit distribution.

Theorem 2.3.1 (Continuity Theorem, [85, Theorem IX.1]). Let Ω be an
arbitrary set contained in the unit disc and having at least one accumula-
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tion point in the interior of the disc. Assume that the probability generating
functions pn(u) = ∑k≥0 pn,kuk and q(u) = ∑k≥0 qkuk are such that there
is convergence,

lim
n→∞

pn(u) = q(u),

pointwise for each u ∈ Ω. Then a discrete limit law holds in the sense that
for each k

lim
n→∞

pn,k = qk, and lim
n→∞ ∑

j≤k
pn,j = ∑

j≤k
qj.

Large powers scheme

The following scheme is probably the most applied one. Many of
the subsequent schemes are generalizations of it. Essentially, it is an
application of the Central Limit Theorem from probability theory.

Theorem 2.3.2 (Quasi-powers Theorem, [85, Theorem IX.8] and [113]).
Let the Xn be non-negative discrete random variables (supported by Z≥0),
with probability generating functions pn(u). Assume that, uniformly in a
fixed complex neighborhood of u = 1, for sequences βn, κn → ∞, there holds

pn(u) = A(u) · B(u)βn

(
1 +O

(
1
κn

))
, (28)

where A(u), B(u) are analytic at u = 1 and A(1) = B(1) = 1. Assume
finally that B(u) satisfies the so called “variability condition”,

B′′(1) + B′(1)− B′(1)2 6= 0. (29)

Under these conditions, the mean and the variance of Xn satisfy

E(Xn) = βnB′(1) + A′(1) +O
(

κ−1
n

)
,

V(Xn) = βn
(

B′′(1) + B′(1)− B′(1)2)

+
(

A′′(1) + A′(1)− A′(1)2)+O
(

κ−1
n

)
.

The distribution of Xn is, after standardization, asymptotically Gaussian,
and the speed of convergence to the Gaussian limit is O(κ−1

n + β−1/2
n ):

P

[
Xn −E(Xn)√

V(Xn)
≤ x

]
=

1√
2π

∫ x

−∞
e−w2/2 dw +O

(
1
κn

+
1√
βn

)
.

Composition schemes

For composition schemes we follow the terminology of [85, Chap-
ter VI.9]. A composition scheme is of the kind

g(uh(z)),
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where g(z) and h(z) are functions analytic at the origin that have non-
negative coefficients and g(0) = 0. Let ρg be the radius of convergence
of g(z), and ρh be the one of h(z). We also assume that they are ∆-
continuable and that they are admissible to singularity analysis. Then
we distinguish between

• supercritical composition schemes, if h(ρh) > ρg,

• critical composition schemes, if h(ρh) = ρg,

• subcritical composition schemes, if h(ρh) < ρg.

In the supercritical cases we will need the following two theorems.
For a function f (z) we denote its radius of convergence by ρ f .

Theorem 2.3.3 (Supercritical compositions, [85, Proposition IX.6]).
Consider the bivariate composition scheme F(z, u) = g(uh(z)). Assume
that g(z) and h(z) satisfy the supercriticality condition h(ρh) > ρg, that
g is analytic in |z| < R for some R > ρg, with a unique dominant sin-
gularity at ρg, which is a simple pole, that the same holds for h with ρh,
and that h is aperiodic. Then the number χ of H-components in a random
Fn-structure, corresponding to the probability distribution Pn[χ = k] =
[ukzn]F(z, u)/[zn]F(z, 1), has a mean and variance that are asymptotically
proportional to n; after standardization, the parameter χ tends to a limiting
Gaussian distribution, with speed of convergence O(1/

√
n).

More details are found in the following proposition, which is a
direct consequence of the previous theorem.

Proposition 2.3.4 (Supercritical sequences, [85, Proposition IX.7]).
Consider a sequence scheme F = SEQ(uH) that is supercritical, i.e., the
value of h at its dominant positive singularity satisfies h(ρh) > 1. Assum-
ing h to be aperiodic and h(0) = 0, the number Xn of H-components in a
random Fn-structure of large size n is, after standardization, asymptotically
Gaussian with1

E(Xn) ∼
n

ρh′(ρ)
, V(Xn) ∼ n

ρh′′(ρ) + h′(ρ)− ρh′(ρ)2

ρ2h′(ρ)3 ,

where ρ is the positive root of h(ρ) = 1. The number X(m)
n of components

of some fixed size m is asymptotically Gaussian with mean ∼ θmn, where
θm = hmρm/(ρh′(ρ)).

But these last results also hold if one allows a small perturbation.
They will prove useful in the Chapters 3 and 6. The following Theo-
rem is a variant of Theorem 2.3.3.

1 The formula for the asymptotics of V(Xn) in [85, Proposition IX.7] contains some
typos and misses the ρ-factors in the numerator and one in the denominator.
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Proposition 2.3.5 (Perturbed supercritical composition). Consider the
bivariate composition scheme F(z, u) = q(z)g(uh(z)). Assume that g(z)
and h(z) satisfy the supercriticality condition h(ρh) > ρg, that g is analytic
in |z| < R for some R > ρg, with a unique dominant singularity at ρg,
which is a simple pole, and that h is aperiodic. Furthermore, let q(z) be
analytic for |z| < ρh. Then the number χ of H-components in a random
Fn-structure, corresponding to the probability distribution Pn[χ = k] =
[ukzn]F(z, u)/[zn]F(z, 1), has a mean and variance that are asymptotically
proportional to n; after standardization, the parameter χ satisfies a limiting
Gaussian distribution, with speed of convergence O(1/

√
n).

Proof (Sketch). The proof of [85, Proposition IX.6] needs to be changed
only slightly. As q(z) is analytic at the dominant singularity, it con-
tributes only a constant factor. Applying Hwang’s Quasi-powers theo-
rem [85, Theorem IX.8] it contributes only to the function C(u) which
is used to define A(u) = C(u)/C(1). Thus, it does not influence the
result and yields the same as if F(z, u) = g(uh(z)) would have been
analyzed.

A simple (and useful) application of this result is in the context of
sequences. The following result is a variant of Proposition 2.3.4.

Proposition 2.3.6 (Perturbed supercritical sequences). Consider a se-
quence scheme F = Q× SEQ(uH) that is supercritical, i.e., the value of
h at its dominant positive singularity satisfies h(ρh) > 1. Furthermore, as-
sume q(z) to be analytic for |z| < R for some R > 1. Assuming h to be
aperiodic and h(0) = 0, the number Xn of H-components in a random Fn-
structure of large size n is, after standardization, asymptotically Gaussian
with

E(Xn) ∼
n

ρh′(ρ)
, V(Xn) ∼ n

ρh′′(ρ) + h′(ρ)− ρh′(ρ)2

ρ2h′(ρ)3 ,

where ρ is the positive root of h(ρ) = 1. The number X(m)
n of components

of some fixed size m is asymptotically Gaussian with mean ∼ θmn, where
θm = hmρm/(ρh′(ρ)).

Proof. The proof follows exactly the same lines as [85, Proposition
IX.7]. We state it for completeness.

The first part is a direct consequence of Proposition 2.3.5 with
g(z) = (1− z)−1 and ρg replaced by 1. The second part results from
the bivariate generating function

F(z, u) =
q(z)

1− (u− 1)hmzm − h(z)
,

and from the fact that u close to 1 induces a smooth perturbation of
the pole of F(z, 1) at ρ, corresponding to u = 1.
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The following analytic scheme in general does not belong to the
case of a composition scheme, but it vastly generalizes the supercriti-
cal compositions scheme.

Theorem 2.3.7 (Meromorphic scheme, [85, Theorem IX.9]). Let F(z, u)
be a function that is bivariate analytic at (z, u) = (0, 0) and has non-
negative coefficients. Assume that F(z, 1) is meromorphic in |z| ≤ r with
only a simple pole at z = ρ for some positive ρ < r. Assume the following
conditions:

1. Meromorphic perturbation: there exists ε > 0 and r > ρ such that
in the domain D = {|z| ≤ r} × {|u− 1| < ε}, the function F(z, u)
admits the representation

F(z, u) =
B(z, u)
C(z, u)

,

where B(z, u) and C(z, u) are analytic for (z, u) ∈ D with B(ρ, 1) 6=
0. (Thus ρ is a simple zero of C(z, 1).)

2. Non-degeneracy: one has ∂zC(ρ, 1) · ∂uC(ρ, 1) 6= 0 ensuring ex-
istence of a non-constant ρ(u) analytic at u = 1, and such that
C(ρ(u), u) = 0 and ρ(1) = ρ.

3. Variability: one has

r′′(1) + r′(1)− r′(1)2 6= 0, with r(u) =
ρ(1)
ρ(u)

.

Then, the random variable Xn with probability generating function

pn(u) =
[zn]F(z, u)
[zn]F(z, 1)

,

after standardization, converges in distribution to a Gaussian variable, with
speed of convergenceO(n−1/2). The mean and the variance of Xn are asymp-
totically given by

µn = r′(1)n +O(1),
σ2

n =
(
r′′(1) + r′(1)− r′(1)2) n +O(1).

Square-root schemes

In the critical cases we will need two theorems of a different type.
They are described by a square root singularity. In particular, they are
of the kind

g(z, u) + h(z, u)
√

1− z
ρ(u)

,

where g(z, u), h(z, u), and ρ(u) are analytic functions in a certain do-
main. More details are given below.
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The first one is the Rayleigh distribution scheme of Drmota and
Soria [70, Theorem 1]. The second one is the half-normal distribution
scheme which is presented in Chapter 3.

Both of them require some technical conditions, which are summa-
rized in the following hypothesis [H’].

Hypothesis [H’]. Let c(z, u) = ∑n,k cnkznuk be a power series in two
variables with non-negative coefficients cnk ≥ 0 such that c(z, 1) has
a radius of convergence of ρ > 0.

We suppose that 1/c(z, u) has the local representation

1
c(z, u)

= g(z, u) + h(z, u)
√

1− z
ρ

, (30)

for |u − 1| < ε and |z − ρ| < ε, arg(z − ρ) 6= 0, where ε > 0 is
some fixed real number, and g(z, u) and h(z, u) are analytic functions.
Furthermore, we have g(ρ, 1) = 0.

In addition, z = ρ is the only singularity on the circle of conver-
gence |z| = ρ, and 1/c(z, u), respectively c(z, u), can be analytically
continued to a region |z| < ρ + δ, |u| < 1 + δ, |u − 1| > ε

2 for some
δ > 0. ♦

In contrast to the original hypothesis [H] in [70] we define hypoth-
esis [H’] because we drop the condition h(ρ, 1) > 0 and we require it
only for ρ(u) = ρ = const for |u− 1| < ε. Note that this is necessary
for Theorem 2.3.9.

Theorem 2.3.8 (Rayleigh limit theorem [70, Theorem 1]). Let c(z, u)
be a bivariate generating function satisfying [H’], and additionally assume
h(ρ, 1) > 0. If gu(ρ, 1) < 0, then the sequence of random variables Xn

defined by

P[Xn = k] =
[znuk]c(z, u)
[zn]c(z, 1)

has a Rayleigh limit distribution, i.e.,

Xn√
n

d→ R(ϑ),

where ϑ = h(ρ,1)2

2gu(ρ,1)2 and R(ϑ) has density ϑx exp
(
− ϑ

2 x2) for x ≥ 0. Ex-
pected value and variance are given by

E(Xn) =

√
π

2ϑ

√
n +O(1) and V(Xn) =

(
2− π

2

) n
ϑ
+O(

√
n).

Moreover, we have the local law

P[Xn = k] =
ϑk
n

exp
(
−ϑk2

2n

)
+O((k + 1)n−3/2) +O(n−1)

uniformly for all k ≥ 0.
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Theorem 2.3.9 (Half-normal limit theorem, Chapter 3). Let c(z, u) be a
bivariate generating function satisfying [H’]. If gz(ρ, 1) 6= 0, hu(ρ, 1) 6= 0,
and h(ρ, 1) = gu(ρ, 1) = guu(ρ, 1) = 0, then the sequence of random
variables Xn defined by

P[Xn = k] =
[znuk]c(z, u)
[zn]c(z, 1)

,

has a half-normal limiting distribution, i.e.,

Xn√
n

d→ H(σ),

where σ =
√

2 hu(ρ,1)
ρgz(ρ,1) , and H(σ) has density

√
2√

πσ2 exp
(
− z2

2σ2

)
for z ≥ 0.

Expected value and variance are given by

E(Xn) = σ

√
2
π

√
n +O(1) and

V(Xn) = σ2
(

1− 2
π

)
n +O(

√
n).

Moreover, we have the local law

P[Xn = k] =
1
σ

√
2

πn
exp

(
− k2/n

2σ2

)
+O

(
kn−3/2

)
+O

(
n−1

)
,

uniformly for all k ≥ 0.

Moment scheme

The following scheme is an instance of the well-known method of
moments. It represents a statement on the existence of the limit dis-
tribution of a sequence of random variables, when only the moments
of the random variables in the sequence are known.

Theorem 2.3.10 (Fréchet and Shohat, [90]). Let the Xn, n ∈ N be non-
negative discrete random variables, satisfying the following properties

1. there exists an n0 ∈ N, such that the moments E(Xr
n) exist for all

r ∈N and all n ≥ n0;

2. for any r ∈ N there exist two constants ar, br ∈ R independent on n
(but they might depend on r), for which ar ≤ E(Xr

n) ≤ br holds for
all n ∈N.

Then, there exists a subsequence Yi = Xni , i ∈N with ni < ni+1, such that

1. lim
i→∞

E(Yr
i ) = mr exists for all r ∈N;

2. the subsequence (Yi)i∈N converges in distribution to one fixed random
variable Y;

3. the moments of Y exist and satisfy

E(Yr) = mr.
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2.4 symmetric polynomials

One of our key tools will be the kernel method introduced in Sec-
tion 1.3. As a result, especially in Chapter 4, we will encounter many
determinant manipulations. These naturally lead to symmetric func-
tions, which are the subject of this short section. This section mostly
draws from Stanley’s very good introduction [174, Chapter 7].

Definition 2.4.1. The complete homogeneous symmetric polynomi-
als hk of degree k in the n variables x1, . . . , xn are defined as

hk(x1, . . . , xn) = ∑
1≤i1≤i2≤···≤ik≤n

xi1 xi2 · · · xik = ∑
`1+`2+···+`n=k

`i≥0

x`1
1 x`2

2 · · · x`n
n .

Example 2.4.2. It always holds that h0(x1, . . . , xn) = 1. For n = 2 we
get

h1(x1, x2) = x1 + x2,

h2(x1, x2) = x2
1 + x1x2 + x2

2,

h3(x1, x2) = x3
1 + x2

1x2 + x1x2
2 + x3

2,

as the polynomials of degree 1, 2 and 3, respectively.

The second class of polynomials are Schur polynomials. First, let us
state their classical definition by determinants, see [174, Chapter 7.15].

Definition 2.4.3 (Schur polynomials – classical). Let λ = (λ1, . . . , λn)

be an integer partition, given as λ1 ≥ λ2 ≥ . . . ≥ λn > 0 and δ :=
(n− 1, n− 2, . . . , 0). Then define the polynomials

aλ+δ(x1, x2, . . . , xn) = a(λ1+n−1,λ2+n−2,...,λn)(x1, x2, . . . , xn)

=

∣∣∣∣∣∣∣∣∣∣∣

xλ1+n−1
1 xλ2+n−2

1 . . . xλn
1

xλ1+n−1
2 xλ2+n−2

2 . . . xλn
2

...
...

...

xλ1+n−1
n xλ2+n−2

n . . . xλn
n ,

∣∣∣∣∣∣∣∣∣∣∣

,

where | · | denotes the determinant. The Schur polynomials are defined as
the ratio

sλ(x1, x2, . . . , xn) =
aλ+δ(x1, x2, . . . , xn)

aδ(x1, x2, . . . , xn)

=
a(λ1+n−1,λ2+n−2,...,λn)(x1, x2, . . . , xn)

a(n−1,n−2,...,0)(x1, x2, . . . , xn)
.

Note that due to the construction via determinants the aλ+δ are
alternating polynomials, i.e. the sign changes if any two variables
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are swapped. Since they are alternating they are all divisible by the
Vandermonde determinant, given by the special case

aδ(x1, x2, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣

xn−1
1 xn−2

1 . . . 1

xn−1
2 xn−2

2 . . . 1
...

...
...

xn−1
n xn−2

n . . . 1,

∣∣∣∣∣∣∣∣∣∣∣

= ∏
1≤i<j≤n

(xi − xj).

Thus, the Schur polynomials are symmetric functions because the
numerator and denominator are both alternating.

Example 2.4.4. These are the first Schur polynomials in 2 variables:

s(0,0)(x1, x2) = 1,

s(1,0)(x1, x2) =
1

x1 − x2

∣∣∣∣∣∣
x2

1 1

x2
2 1

∣∣∣∣∣∣
= x1 + x2 = h1(x1, x2),

s(2,0)(x1, x2) =
1

x1 − x2

∣∣∣∣∣∣
x3

1 1

x3
2 1

∣∣∣∣∣∣
= x2

1 + x1x2 + x2
2 = h2(x1, x2),

s(2,1)(x1, x2) =
1

x1 − x2

∣∣∣∣∣∣
x3

1 x1

x3
2 x2

∣∣∣∣∣∣
= x1x2(x1 + x2).

The examples suggest a relation between certain Schur polynomials
and complete homogeneous symmetric polynomials. The general re-
sult is given in the following Lemma 2.4.5.

Remark 5 (Schur polynomials – combinatorial). Alternatively, Schur
polynomials can also be described combinatorially over semistandard
Young tableaux:

sλ(x1, . . . , xn) = ∑
T

uT = ∑
T

xt1
1 · · · xtc

n ,

where the summation is over all semistandard Young tableaux T of
shape λ. The exponents ti for i = 1, . . . , n count the occurrences of the
number i in T. For more details we refer to [174, Chapter 7.10].

Lemma 2.4.5. Let k ∈N, then s(k,0,...,0)(x1, . . . , xn) = hk(x1, . . . , xn).

Proof. We use the combinatorial representation of Schur functions
from Remark 5. The semistandard Young tableaux of shape λ =

(k, 0, . . . , 0) has one row with k cells, where the numbers 1, . . . , n are
added in a non-decreasing order. In other words,

s(k,0,...,0)(x1, x2, . . . , xn) = ∑
t1+t2+···+tn=k

ti≥0

xt1
1 xt2

2 · · · xtn
n = hk(x1, x2, . . . , xn),

which are the complete homogeneous symmetric polynomials from
Definition 2.4.1.
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2.5 tools from analytic combinatorics

An important concept is the coefficient extraction from generating
functions as introduced in Definition 1.2.2. We have already seen in
several examples in Chapter 1 that if the generating function takes
a simple form, one can use Taylor expansions of known functions to
extract the coefficients. However, in general this will not be possible.
In such cases Cauchy’s integral formula proves to be useful.

Assume that the radius of convergence of A(z) = ∑n≥0 anzn is pos-
itive. Then, we have

[zn]A(z) =
1

2πi

∫

γ

A(z)
zn+1 dz,

where γ is a simple closed curve around the origin that lies com-
pletely inside the circle of convergence of A(z), and the integral is
taken in counter-clockwise direction.

The following theorem will prove useful several times in the subse-
quent discussion.

Theorem 2.5.1 ([85, Theorem VI.12]). Let A(z) = ∑ anzn and B(z) =

∑ bnzn be two power series with radii of convergence α > β ≥ 0, respec-
tively. Assume that B(z) satisfies the ratio test

bn−1

bn
→ β as n→ ∞.

Then the coefficients of the product F(z) = A(z) · B(z) satisfy, provided
A(β) 6= 0:

[zn]F(z) ∼ A(β)bn as n→ ∞.

Especially for the study of recursive structures we will need the
complex version of the implicit function theorem. Without loss of
generality we assume (z0, w0) = (0, 0), and we consider here a func-
tion F(z, w) that is analytic in the sense that it admits a convergent
representation of the kind

F(z, w) = ∑
n,k≥0

fn,kznwk, |z| < R, |w| < S,

for some R, S > 0.

Theorem 2.5.2 (Implicit function theorem, [85, Theorem B.4]). Let F
be bivariate analytic near (0, 0). Assume that F(0, 0) = 0 and Fw(0, 0) 6= 0.
Then, there exists a unique function f (z) analytic in a neighborhood |z| < ρ

of 0 such that f (0) = 0 and

F(z, f (z)) = 0, |z| < ρ.

A useful complement to the implicit function theorem is the Weier-
strass preparation theorem.
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Theorem 2.5.3 (Weierstrass preparation theorem, [85, Theorem B.5]).
Let F=F(z1, . . . , zm) be an analytic function in a neighborhood of (0, . . . , 0),
such that F(0, . . . , 0) = 0 and F(0, z2, . . . , zm) 6= 0. Define a Weierstrass
polynomial to be a polynomial of the form

W(z) = zd + g1zd−1 + · · ·+ gd,

where gj = gj(z2, . . . , zm) is analytic near (0, . . . , 0) with gj(0, . . . , 0) = 0.
Then, F admits a unique factorization

F(z1, z2, . . . , zm) = W(z1)X(z1, . . . , zm),

where W(z) is a Weierstrass polynomial and X is analytic near (0, . . . , 0)
satisfying X(0, . . . , 0) 6= 0.

Proof. We refer to [64, 65] for an analytic presentation [85, Theorem
B.5], or to [1, Chapter 16] for an algebraic presentation.

Basically, the Weierstrass preparation theorem states that implicitly
defined functions (by the equation F = 0) are locally of the same
nature as algebraic functions (corresponding to the equation W =

0). For our case, the case m = 2 is the most interesting one. In this
case singularities of the solution can only be branch points. Hence,
they possess Puiseux expansions at the singularities. This is of great
importance with respect to the method of singularity analysis.

The next theorem can be thought of as a corollary of the previous
two results. Especially in tree enumeration problems a certain form
of a functional equation occurs, namely, y = F(z, y). The structure
somehow reflects the recursive decomposition of a tree into a root
and several subtrees.

Theorem 2.5.4 ([66, Theorem 2.19]). Suppose that F(z, y) is an analytic
function in z, y around z = y = 0 such that F(0, y) = 0 and that all Taylor
coefficients of F around 0 are real and non-negative. Then, there exists a
unique analytic solution y = y(z) of the functional equation

y = F(z, y),

with y(0) = 0 that has non-negative Taylor coefficients around 0.
If the region of convergence of F(z, y) is large enough such that there exist

positive solutions z = z0 and y = y0 of the system of equations

y = F(z, y),

1 = Fy(z, y),

with Fz(z0, y0) 6= 0 and Fyy(z0, y0) 6= 0, then y(z) is analytic for |z| < z0

and there exist functions g(z), h(z) that are analytic around z = z0 such
that y(z) has a representation of the form

y(z) = g(z)− h(z)
√

1− z
z0

, (31)
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locally around z = z0. We have g(z0) = y(z0) and

h(z0) =

√
2z0Fz(z0, y0)

Fyy(z0, y0)
.

Moreover, (31) provides a local analytic continuation of y(z) (for arg(z−
z0) 6= 0).

If we assume that [zn]y(z) > 0 for n ≥ n0, then z = z0 is the only
singularity of y(z) on the circle |z| = z0 and we obtain an asymptotic
expansion for [zn]y(z) of the form

[zn]y(z) =

√
z0Fz(z0, y0)

2πFyy(z0, y0)
z−n

0 n−3/2
(

1 +O(n−1)
)

.





Part II

L AT T I C E PAT H S

This part is devoted to the theory of directed lattice paths.
Its key tools will be the kernel method and schemes for
generating functions. Chapter 3 presents a new scheme for
generating functions implying a half-normal limiting dis-
tribution. Additionally, it states three natural appearances
of such a limiting distribution where this scheme can be
used. Chapter 4 deals with directed lattice paths, when
a boundary reflecting or absorbing condition is added to
the classical models. Depending on the spatial coordinate,
one of two sets of rules is applied, namely one for altitude
zero and one for non-zero altitudes. In Chapter 5 some
enumerative and asymptotic properties of lattice paths be-
low a line of rational slope are analyzed. It also answers an
open problem stated by Knuth. The main result is a new
method to deal with periodic combinatorial problems. In
Chapter 6 a new model for directed lattice paths is in-
troduced. It allows catastrophes, which are jumps from
any altitude to zero. A bijection with other lattice paths
is given and limit laws for certain parameters such as,
among others, the number of catastrophes, and the aver-
age size of a catastrophe are given.





3
A H A L F - N O R M A L D I S T R I B U T I O N S C H E M E A N D
A P P L I C AT I O N S T O L AT T I C E PAT H S

This chapter is based on the article A half-normal distribution scheme
for generating functions [181] that has recently been submitted to a
journal. A preliminary version of this paper appeared in the Proceed-
ings of the 27th International Conference on Probabilistic, Combina-
torial and Asymptotic Methods for the Analysis of Algorithms (AofA
2016) [182].

In [69], Drmota and Soria provided general methods for the analy-
sis of bivariate generating functions F(z, u) = ∑ fnkznuk. In general, n
is the length or size, and k is the value of a “marked” parameter.
They continued their work in [70], where they derived three general
theorems which identify the limiting distribution for a class of combi-
natorial schemes from certain properties of their associated bivariate
generating function. These lead to a Rayleigh, a Gaussian, or a convo-
lution of both distributions, see Section 2.1. We introduced the most
important schemes for our purposes in Section 2.3.

In this chapter we extend the work of [70], by providing an ad-
ditional limit theorem, Theorem 2.3.9, which reveals a half-normal
distribution. This distribution is generated by the absolute value |X|
of a normally distributed random variable X with mean 0.

We also present three natural appearances of this distribution in
lattice path theory. These results were discussed in the context of
Motzkin walks in [182] and are now extended to the case of arbitrary
aperiodic lattice paths. Despite them being well-studied objects [38,
63, 146], they still hide some mysterious properties. Our applications
extend some examples of random walks presented by Feller in [80,
Chapter III]. We show that the same phenomena appear which, to
quote Feller, “not only are unexpected but actually come as a shock
to intuition and common sense”.

Plan of this chapter. In Section 3.1, we present our main contri-
bution: a scheme for bivariate generating functions leading to a half-
normal distribution. In Section 1.6, we introduce lattice paths and es-
tablish the analytic framework which will be used in the subsequent
sections. In Section 3.2, we apply our result to three parameters of
walks: the number of returns to zero, the height, and the number
of sign changes, where sign changes are only treated in the case of
Motzkin walks. In the case of a zero drift a half-normal distribution
appears in all cases. In Section 3.3, we give the proof of our main re-
sult: Theorem 2.3.9. In Section 3.4, we state a summary of our results
and compare its different parameters in the case of Motzkin walks.

69



70 a half-normal distribution scheme

3.1 the half-normal theorem

An important concept in order to analyze more involved parameters
of paths, is the one of marking. Let us briefly recall the concepts from
Section 1.4.

Let c(z) = ∑n cnzn be the generating function of a combinatorial
structure and c(z, u) = ∑ cnkznuk be the bivariate generating function
where a parameter of interest has been marked, i.e., c(z, 1) = c(z). We
introduce a sequence of random variables Xn, n ≥ 1, defined by

P[Xn = k] =
cnk

cn
=

[znuk]c(z, u)
[zn]c(z, 1)

,

where P denotes the probability of the given event. As we are inter-
ested in the asymptotic distribution of the marked parameter among
objects of size n where n tends to infinity, the probabilistic point of
view is given by finding the limiting distribution of Xn.

Important combinatorial constructions are “sequences” or “sets of
cycles” (in the case of exponential generating functions) which imply
the following decomposition

c(z, u) =
1

1− a(z, u)
,

with a generating function a(z, u) corresponding to the elements of
the sequence, or the cycles, respectively. Another important and re-
curring phenomenon is the one of an algebraic singularity ρ(u) of the
square-root type such that a(ρ(1), 1) = 1. According to further ana-
lytic properties of a(z, u) the limiting distribution of Xn is shown to be
either Gaussian, Rayleigh, the convolution of Gaussian and Rayleigh
(see [70, Theorems 1-3]), or half-normal (see Theorem 2.3.9).

We start with the general form of the analytic scheme. Let us recall
the statement of hypothesis [H’] and Theorem 2.3.9 from Chapter 2.

Hypothesis [H’]. Let c(z, u) = ∑n,k cnkznuk be a power series in two
variables with non-negative coefficients cnk ≥ 0 such that c(z, 1) has
a radius of convergence of ρ > 0.

We suppose that 1/c(z, u) has the local representation

1
c(z, u)

= g(z, u) + h(z, u)
√

1− z
ρ

,

for |u − 1| < ε and |z − ρ| < ε, arg(z − ρ) 6= 0, where ε > 0 is
some fixed real number, and g(z, u), and h(z, u) are analytic functions.
Furthermore, we have g(ρ, 1) = 0.

In addition, z = ρ is the only singularity on the circle of conver-
gence |z| = |ρ|, and 1/c(z, u), respectively c(z, u), can be analytically
continued to a region |z| < ρ + δ, |u| < 1 + δ, |u − 1| > ε

2 for some
δ > 0. ♦
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Theorem (Half-normal limit theorem, Theorem 2.3.9). Let c(z, u) be a
bivariate generating function satisfying [H’]. If gz(ρ, 1) 6= 0, hu(ρ, 1) 6= 0,
and h(ρ, 1) = gu(ρ, 1) = guu(ρ, 1) = 0, then the sequence of random
variables Xn defined by

P[Xn = k] =
[znuk]c(z, u)
[zn]c(z, 1)

,

has a half-normal limiting distribution, i.e.,

Xn√
n

d→ H(σ),

where σ =
√

2 hu(ρ,1)
ρgz(ρ,1) , and H(σ) has density

√
2√

πσ2 exp
(
− z2

2σ2

)
for z ≥ 0.

Expected value and variance are given by

E(Xn) = σ

√
2
π

√
n +O(1) and

V(Xn) = σ2
(

1− 2
π

)
n +O(

√
n).

Moreover, we have the local law

P[Xn = k] =
1
σ

√
2

πn
exp

(
− k2/n

2σ2

)
+O

(
kn−3/2

)
+O

(
n−1

)
,

uniformly for all k ≥ 0.

Remark 6. The assumption of a constant singularity in z given by ρ can
be weakened to a singularity ρ(u) = ρ(1) +O((u− 1)3), i.e., ρ′(1) =
ρ′′(1) = 0. However, no example is known where ρ(u) is not constant
in a neighborhood of u ∼ 1.

3.2 applications to lattice path counting

The following examples are motivated by the nice presentation of
Feller [80, Chapter III] about one-dimensional symmetric, simple ran-
dom walks. Therein, the discrete time stochastic process (Sn)n≥0 is
defined by S0 = 0 and Sn = ∑n

j=1 Xj, n ≥ 1, where the (Xi)i≥1 are iid
Bernoulli random variables with P[Xi = 1] = P[Xi = −1] = 1

2 . These
results are generalized to the case of aperiodic directed lattice paths.
In particular compare [80, Problems 9-10] and [169, Remark of Bar-
ton] for returns to zero of symmetric and asymmetric random walks,
respectively. Furthermore, see [80, Chapter III.5] for sign changes, and
[80, Chapter III.7] for the height. See also the recent paper of Döbler
[62] on Stein’s method for these questions in which he derives bounds
for the convergence rate in the Kolmogorov and the Wasserstein met-
ric.

For the sake of brevity we will only mention the weak convergence
law. However, in all cases the local law and the asymptotic expansions
for mean and variance hold as well.
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Returns to zero

A return to zero is a point of a walk of altitude 0 except for the starting
point, in other words a return to the x-axis, see Figure 15. In order
to count them we consider “minimal” bridges, in the sense that the
bridges touch the x-axis only at the beginning and at the end. We call
them arches. As a bridge is a sequence of such arches, we get their
generating function in the form of A(z) = 1− 1

B(z) .

Lemma 3.2.1. The generating function of arches A(z) is for z → ρ of the
kind

A(z) = a(z) + b(z)
√

1− z/ρ,

where a(z) and b(z) are analytic functions in a neighborhood Ω \ (ρ, ∞) of
ρ.

Proof. We know that B(z) = z ∑j=1
u′j(z)
uj(z)

is analytic for |z| < ρ, see [19,
Theorem 3]. Due to the aperiodicity ρ is the only singular point on
the circle of convergence. Furthermore, u1(z) is the only small branch
which is singular there, hence

B(z) =
C1√

1− z/ρ
+O(1), C1 :=

C
2τ

, (32)

for z → ρ. Then, Proposition 1.6.5 and (32) imply the desired decom-
position.

The number of returns to zero of a bridge is the same as the number
of arches it is constructed from. These numbers were analyzed in the
more general model of the reflection-absorption model in [32]. The
governing limit law behaves like a negative binomial distribution.

Here, we are interested in the number of returns to zero of walks
which are unconstrained by definition. Every walk can be decom-
posed into a maximal initial bridge, and a walk that never returns
to the x-axis, see Figure 12. Let us denote the generating function of
this tail by T(z).

bridge tail

Figure 12: A walk with 9 returns to zero decomposed into a bridge and a
tail.
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As we want to count the number of returns to zero, we mark each
arch by an additional parameter u and reconstruct the generating
function of walks. This gives

W(z, u) =
T(z)

1− uA(z)
=

W(z)
u + (1− u)B(z)

, with T(z) =
W(z)
B(z)

.

Let us define the random variable Xn to stand for the number of
returns to zero of a random walk of length n. Thus, P[Xn = k] =
[ukzn]W(z,u)
[zn]W(z,1) .

Theorem 3.2.2 (Limit law for returns to zero). Let Xn denote the number
of returns to zero of an aperiodic walk of length n. Let δ = P′(1) be the drift.

1. For δ 6= 0 we get convergence to a geometric distribution:

Xn
d→ Geom

(
1

B(1/P(1))

)
;

2. For δ = 0 we get convergence to a half-normal distribution:

Xn√
n

d→ H
(√

P(1)
P′′(1)

)
.

Proof. We see that [zn]W(z, 1) = [zn]W(z) = P(1)n. Due to the aperi-
odicity constraint B(z) is only singular at ρ. Obviously, W(z) is singu-
lar at ρ1 := 1

P(1) .
On the positive real axis the convex nature of P(u) implies that P(τ)

is its unique minimum. Hence, only two cases are possible: ρ1 < ρ,
if τ 6= 1; or ρ1 = ρ, if τ = 1. These cases are also characterized by
δ 6= 0 or δ = 0, respectively. In the first case W(z) is responsible for
the dominant singularity. Then we get (as B(z) is analytic for |z| < ρ)

[zn]W(z, u) =
1

B (ρ1)

P(1)n

1− u
(

1− 1
B(ρ1)

) + o(P(1)n).

Hence, the probability that a walk of length n has k returns to zero is
for any fixed k

P[Xn = k] =
1

B (ρ1)

(
1− 1

B (ρ1)

)k

+ o(1).

Thus, the limit distribution is a geometric distribution with parameter
λ = 1

B(ρ1)
.

In the second case τ = 1 or δ = 0, we apply Theorem 2.3.9. By
Lemma 3.2.1 we get that 1/W(z, u) has a decomposition of the kind
(30). In particular, from (32) we get that

1
W(z, u)

=

(
1− z

ρ

)
u +

C
2
(1− u)

√
1− z

ρ
+O

((
1− z

ρ

)
(1− u)

)
,

for z→ ρ and u→ 1, with g(ρ, 1) = h(ρ, 1) = gu(ρ, 1) = guu(ρ, 1) = 0;

and gz(ρ, 1) = −P(1) and hu(ρ, 1) = −
√

P(1)
2P′′(1) . Hence, Theorem 2.3.9

yields the result.
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Height

For a path of length n we define the height as its maximally attained y-
coordinate, see Figure 13. Formally, let ω = (ωk)

n
k=0 be a walk. Then

its height is given by maxk∈{0,...,n} ωk.

1

0 0

1

2 2

1

0 0

−1

−2

−3

−2

−3

−4

−3

−2

−1

0

1

0

−1

−2

−1

0

1

0

Figure 13: A Motzkin walk of height 2. The relative heights are given at
every node.

In order to analyze the distribution of heights, we define the bivari-
ate generating function F(z, u) = ∑n,h≥0 fn,hznuh. The coefficient fn,h
represents the number of walks of height h among walks of length n.

Let M(z, u) = ∑n,h≥0 mn,hznuh be the generating function of mean-
ders, where mn,h is the number of meanders of length n ending at
final altitude h. Banderier and Flajolet derived in [19, Theorem 2] its
closed-form as

M(z, u) =
∏c

j=1(u− uj(z))
uc(1− zP(u))

= − 1
pdz

d

∏
`=1

1
u− v`(z)

. (33)

Theorem 3.2.3. The bivariate generating function of walks (where z marks
the length, and u marks the height of the walk) is given by

F(z, u) =
W(z)M(z, u)

M(z)

= − 1
pdz

(
c

∏
j=1

1
1− uj(z)

)(
d

∏
`=1

1
u− v`(z)

)
.

(34)

Proof. Banderier and Nicodème derived in [24, Theorem 2] the gener-
ating function F[−∞,h](z) for walks staying always below a wall y = h:

F[−∞,h](z) =
1−∑d

i=1

(
1
vi

)h+1
∏1≤j≤d,j 6=i

1−vj
vi−vj

1− zP(1)
.

From this we directly get the generating function F[h](z) for walks
that have height exactly h. For h ≥ 1 it equals

F[h](z) = F[−∞,h](z)− F[−∞,h−1](z)

=
d

∑
i=1

vi − 1
1− zP(1)

(
1
vi

)h+1

∏
1≤j≤d,j 6=i

1− vj

vi − vj
.
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The last formula also holds for h = 0. Finally, marking the heights by
u and summing over all possibilities gives

F(z, u) = ∑
h≥0

uhF[h](z) =
∏d

j=1(1− vj)

1− zP(1)

d

∑
i=1

1
u− vi

∏
1≤j≤d,j 6=i

1
vi − vj

.

Note that M(z) = − 1
pdz

1
∏d

j=1 1−vj
, see [19, Corollary 1]. Hence, the first

factor gives W(z)
M(z) .

What remains is to analyze the sum. Putting everything on a com-
mon denominator, we get that ∑d

i=1
1

u−vi
∏1≤j≤d,j 6=i

1
vi−vj

is equal to

(
d

∏
i=1

1
u− vi

)
∑d

i=1(−1)i+1
(

∏j 6=i vj

)
∏k<`,k,` 6=i(vk − v`)

∏k<`(vk − v`)︸ ︷︷ ︸
=1

.

The last fraction is equal to 1, because the numerator is equal to
the Vandermonde determinant of the denominator that has been ex-
panded with respect to the first column of all 1s.

This identity is obviously directly related to the kernel equation.
Its simple structure suggests a combinatorial interpretation, or even
a direct combinatorial proof. In order to answer this question, we
will analyze it in more detail now. Let us start with its factor W(z)

M(z) =

∏c
j=1

1
1−uj(z)

.
As in the previous section we introduce the notion of negative me-

anders staying always below the x-axis and denote their generating
function by M−(z). Furthermore, let strictly negative meanders be neg-
ative meanders that never return to the x-axis (but start at 0), and
denote their generating function by M<0(z).

Proposition 3.2.4. The generating functions of strictly negative meanders
and negative meanders are given by

M<0(z) =
c

∏
j=1

1
1− uj(z)

,

M−(z) = E(z)M<0(z) =
(−1)c−1

p−cz

c

∏
j=1

uj(z)
1− uj(z)

.

Proof. The key idea is that negative meanders are meanders after mir-
roring the coordinate system along the x-axis. By doing so, the step
polynomial P(u) = ∑d

i=−c piui changes to the mirrored step polynomial

P̃(u) =
c

∑
i=−d

p−iui.
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The small branches ũi(z), which satisfy 1− zP̃(ũi(z)) = 0 are given
by

ũi(z) =
1

vi(z)
,

where vi(z) are the large branches of the original kernel equation
1− zP(u) = 0. Finally, by (33) and because of P(1) = P̃(1) we get

M−(z) =
∏c

j=1(1− ũj(z))
1− zP(1)

=
(−1)d−1

pdz

(
d

∏
j=1

1
vj(z)

)
c

∏
j=1

1
1− uj(z)

,

due to the factorization of the kernel equation. Then, the first factor
(−1)d−1

pdz

(
∏d

j=1
1

vj(z)

)
is equal to the generating function of excursions

E(z) which can also be expressed in terms of the small branches.
For the second result note that any meander can be uniquely de-

composed into an initial negative excursion and a strictly negative
meander.

Before we proceed, let us illustrate the previous results for the case
of Motzkin walks with step polynomial P(u) = p−1

u + p0 + p1u.

Corollary 3.2.5. The bivariate generating function of Motzkin walks with
marked height is given by

FM(z, u) = − 1
p1z

1
1− u1(z)

1
u− v1(z)

This representation possesses a simple combinatorial interpretation.
Recall that the generating function of excursions is given by E(z) =

1
zp1v1(z)

, see [19]. Thus,

FM(z, u) =
1

1− p1zuE(z)
M−(z).

E +1

E +1

E +1

M−

Figure 14: The first passage decomposition of a Motzkin walks into (nega-
tive) excursions and a trailing negative meander.

The above generating function just represents the decomposition
of a walk into a sequence of marked blocks, which are (negative)
excursions (cf. Lemma 3.2.7) followed by an up step, and a negative
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meander at the end, see Figure 14. Note that a similar interpretation
exists for other step sets.

We now turn our attention back to the limit laws for the height of
walks. Let Xn be the random variable for the height of a random walk

of length n. Thus, P[Xn = k] = [ukzn]F(z,u)
[zn]F(z,1) = [ukzn]F(z,u)

P(1)n . In contrary to
the previous examples the behavior will not be the same for δ < 0
and δ > 0. This confirms the intuition, since the drift strongly affects
the height of a random walk.

The following theorem concludes this section with the governing
limit laws for the height of walks. Note in particular the different
rescaling factors in each case.

Theorem 3.2.6 (Limit law for the height). Let Xn denote the height of a
walk of length n. Let δ = P′(1) be the drift, and ρ1 = 1

P(1) .

1. For δ < 0 the limit distribution is discrete and characterized in terms
of the large branches:

lim
n→∞

P[Xn = k] = [uk]ω(u), where ω(u) =
d

∏
j=1

1− vj(ρ1)

u− vj(ρ1)
.

2. For δ = 0 the standardized random variable converges to a half-
normal distribution:

Xn√
n

d→ H
(√

P′′(1)
P(1)

)
.

3. For δ > 0 the standardized random variable converges to a normal
distribution:

Xn − µn
σ
√

n
d→ N (0, 1) ,

with

µ =
P′(1)
P(1)

, σ2 =
P′′(1)
P(1)

+
P′(1)
P(1)

−
(

P′(1)
P(1)

)2

.

Proof. From the structure of the generating function in (34) it is ob-
vious that the result strongly depends on the limit law of the final
altitude of meanders. This was analyzed in [19, Theorem 6]. In sev-
eral cases we will apply the domination property of the small branches
[19]:

|uj(z)| < |u1(z)| ≤ τ ≤ |v1(z)| < |v`(z)|, for |z| < ρ,

and j = 2, . . . , c as well as ` = 2, . . . , d.
Let us start with δ < 0. In this case it proves convenient to consider

the equivalent representation of (34) given by

F(z, u) =
1

1− zP(1)

d

∏
`=1

1− v`(z)
u− v`(z)

.
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In this case we know that τ > 1, implying ρ > ρ1 and that the domi-
nant singularity arises at z = ρ1. The product of the large branches is
analytic for |z| < ρ as was already noted in [19]. Hence, by standard
methods [85, Theorem VI.12 (Real analysis asymptotics)] we get the
asymptotic expansion:

[zn]F(z, u) = P(1)n
d

∏
`=1

1− v`(ρ1)

u− v`(ρ1)
+ o(P(1)n).

The dominant term is the product of d geometric distributions with
parameters v`(ρ1).

In the case of a zero drift, δ = 0, we have τ = 1. Thus, P(τ) =

P(1) and the singularities arises at ρ = ρ1 = 1/P(1). This means
that the singularities of the two factors coincide, and we can apply
Theorem 2.3.9.

Let ε > 0. Then, for |z− ρ| < ε, |u− 1| < ε, and arg(z− ρ) 6= 0 we
consider

1
F(z, u)

=−pdz(1−u1(z))(1−v1(z))

(
c

∏
j=2

(1−uj(z))

)

︸ ︷︷ ︸
=:Ū1(z)

(
d

∏
`=2

(u−v`(z))

)

︸ ︷︷ ︸
=:V̄1(z,u)

.

The products Ū1(z) and V̄1(z, u) are analytic for |z| ≤ ρ. However,
the branches u1(z) and v1(z) both possess a square root singularity,
compare (18). By Proposition 1.6.5 we have the desired decomposition

1
F(z, u)

= g(z, u) + h(z, u)
√

1− z/ρ,

where g(z, u) and h(z, u) are analytic functions. In particular, the
asymptotic expansion reads as follows

1
F(z, u)

= κ
(

C(1− z/ρ)− (u− 1)
√

1− z/ρ
)
+O

(
(1− z/ρ)3/2

)

+O
(
(u− 1)(1− z/ρ)1/2

)
,

where κ is a non-zero constant. We immediately see that g(ρ, 1) =

h(ρ, 1) = gu(ρ, 1) = guu(ρ, 1) = 0, and that gz(ρ, 1) = −κC/ρ, and
hu(ρ, 1) = −κ.

Hence, Theorem 2.3.9 yields the result with the constant

σ =
√

2
hu(ρ, 1)
ρgz(ρ, 1)

=

√
P′′(1)
P(1)

.

Finally, in the case δ > 0 the same reasoning as in [19] gives the
result, as the perturbation by M<0(z) does not pose any problems.

Yet, an alternative proof can be given via the perturbed supercrit-
ical sequence scheme, Proposition 2.3.5. In particular, we recognize
the following structure in (34):

F(z, u) = q(z, u)
1

1− uh(z)
,
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where q(z, u) = M<0(z)
v1(z)pdz ∏d

`=2
1

u−v`(z)
, and h(u) = 1

v1(z)
. This scheme is

supercritical because h(z) is singular at ρ, and we get h(ρ) = 1/τ > 0
due to (18) and the crucial fact that δ > 0 ⇔ τ < 1. Note that in
this case we have τ < 1 and u1(ρ) < 1. Therefore, by the domination
property q(z, u) is analytic for |z| < ρ, where ρ > 1.

Finally, note that h(0) = 0 because limz→0 v1(z) = ∞. This implies
that after standardization the height satisfies a Gaussian distribution.
The asymptotic expected value and variance are then computed with
a variant of Lemma 3.2.13 for general step set. As u1(z) and v1(z) are
conjugated, the results for negative drift for u1(z) are the ones for
positive drift for v1(z).

Remark 7 (Variant of Lemma 3.2.13). At the end of the last proof we
used a generalization of Lemma 3.2.13. We want to remark that for
general step set only the case of a negative drift for u1(z) is still
valid. The case of a positive drift has a different value. In the case
of Motzkin paths it holds because u1(z)v1(z) = p−1

p1
= τ2 and 1

v1(z)
is the small branch of the mirrored step set, see the proof of Proposi-
tion 3.2.4 for details. In general we get from the kernel equation that(

∏c
j=1 uj(z)

) (
∏d

`=1 v`(z)
)
= p−c

pd
. Thus, the constant which appears

for positive drift is

− p−c

pd

1(
∏j 6=1 uj(ρ1)

) (
∏` 6=1 v`(ρ1)

) .

However, the values still only differ by this constant.

Sign changes of Motzkin walks

We say that nodes which are strictly above the x-axis have a positive
sign denoted by “+”, whereas nodes which are strictly below the x-
axis have a negative sign denoted by “−”, and nodes on the x-axis
are neutral denoted by “0”. This notion easily transforms a walk ω =

(ωn)n≥0 into a sequence of signs. In such a sequence a sign change is
defined by either the pattern +(0)− or −(0)+, where (0) denotes a
non-empty sequence of zeros, see Figure 15.

The main observation in this context is the non-emptiness of the
sequence of zeros. Geometrically this means that a walk has to touch
the x-axis when passing through it. This means that we can count the
number of sign changes by counting the number of maximal parts
above and below the x-axis. The idea is to decompose a walk into
an alternating sequence of positive (above the x-axis) and negative
(below) excursions terminated by a positive or negative meander.

We introduce two new terms: positive excursions are “traditional”
excursions, i.e., they are required to stay above the x-axis, whereas
negative excursions are walks which start at zero, end on the x-axis,
but are required to stay below the x-axis.
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Figure 15: A Motzkin walk with 7 returns to zero and 4 sign changes. The
positive, neutral or negative signs of the walks are indicated by
+, 0, or −, respectively.

Lemma 3.2.7. Among all walks of length n, the number of positive excur-
sions is equal to the number of negative excursions.

Proof. Traversing the steps in reversed order, bijectively maps positive
excursions to negative ones.

We define the bivariate generating function B(z, u) := bn,kznuk,
where bn,k denotes the number of bridges of size n having k sign
changes. Furthermore, we define

C(z) :=
1

1− p0z
,

as the generating function of chains, which are walks constructed
solely from the jumps of height 0. Then, the generating function of
excursions starting with a +1 jump is

E1(z) =
E(z)
C(z)

− 1,

since we need to exclude all excursions which start with a chain or
are a chain. Due to Lemma 3.2.7 this is also the generating function
for excursions starting with a −1 jump.

Theorem 3.2.8. The bivariate generating function of bridges (where z marks
the length, and u marks the number of sign changes of the walk) is given by

B(z, u) = C(z)
(

1 +
2E1(z)

1− uE1(z)

)
. (35)

Proof. A bridge is either a chain, which has zero sign changes, or
it is not a chain. In the latter it is an alternating sequence of posi-
tive and negative excursions, starting with either of them. We decom-
pose it uniquely into such excursions, by requiring that all except the
first one start with a non-zero jump. Therefore the first excursion is
counted by E(z)−C(z), whereas all others are counted by E1(z). The
decomposition is shown in Figure 16.

We start our analysis by locating the dominant singularities of
B(z, u). Therefore we first state some inherent structural results of
the model which follow from direct computations.
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E(z)− C(Z)

E1(z)

E1(z)

E1(z)

Figure 16: A bridge is an alternating sequence of positive and negative ex-
cursions. Here, it starts with a positive excursion, followed by
excursions starting with a non-zero jump.

Lemma 3.2.9. The structural constant τ which is the unique positive root
of P′(u) = 0 is τ =

√
p−1
p1

. The structural radius results in ρ = 1
P(τ) =

1
p0+2

√
p−1 p1

.

Let Xn be the random variable for the number of sign changes of a

random bridge of length n. Thus, P[Xn = k] = [ukzn]B(z,u)
[zn]B(z,1) .

Theorem 3.2.10 (Limit law for sign changes of bridges). Let Xn denote
the number of sign changes of a Motzkin bridge of length n. Then for n→ ∞
the normalized random variable has a Rayleigh limit distribution

Xn√
n

d→ R (σ) and σ =
τ

2

√
P′′(τ)
P(τ)

,

where τ =
√

p−1
p1

and R(σ) has the density x
σ2 exp

(
− x2

2σ2

)
for x ≥ 0.

Proof (Sketch). We will apply the first limit theorem of Drmota and
Soria, [70, Theorem 1]. (The conditions of Hypothesis [H] are the
same as for Hypothesis [H’] with the additional requirement that
h(ρ, 1) > 0.)

Let us first analyze B(z, 1). Its dominant singularity is at ρ, as
1/p0 > ρ = 1/(p0 + 2

√
p−1 p1). Next we determine the decomposi-

tion at z = ρ and u = 1. From Proposition 1.6.5 it follows that E1(z)
has a local representation of the kind

E1(z) = aE(z) + bE(z)
√

1− z/ρ,

where aE(z) and bE(z) are analytic functions around z = ρ with
aE(ρ) = 1 and bE(ρ) = −2C/τ. From (35) we see that

B(z, u) = C(z)F(E1(z), u), where F(y, u) =
1− uy

1− y(u− 2)
.

We can use the Taylor series expansion of

1
F(y, u)

= ∑
n,k≥0

fnk(y− 1)n(u− 1)k,

with f00 = 0 and f10 = −1/2 to show the desired decomposition:

1
B(z, u)

= C(z)−1F(E1(z), u)−1 = g(z, u) + h(z, u)
√

1− z/ρ.
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We have g(ρ, 1) = f00 = 0, h(ρ, 1) = (1− ρp0) f10bE(ρ) = 2Cρp1 > 0
and gu(ρ, 1) = (1 − ρp0) f01 = −τρp1 < 0. Applying Lemma 3.2.9
gives the result.

Finally, we consider sign changes of walks. Since we want to count
the number of sign changes we need to know whether a bridge ended
with a positive or negative sign. Let positive bridges be bridges whose
last non-zero signed node was positive, and negative bridges be bridges
whose last non-zero signed node was negative. Their generating func-
tions are denoted by B+(z, u) and B−(z, u), respectively. Figure 16
shows a negative bridge.

Lemma 3.2.11. The number of positive and negative bridges is the same
and given by

B+(z, u) =
B(z, u)− C(z)

2
=

E(z)− C(z)
1− uE1(z)

.

Proof. The result is a direct consequence of Lemma 3.2.7. We have
seen that a bridge is a sequence of excursions, see Figure 16. Map-
ping all positive excursions to negative ones, and vice versa, gives a
bijection between positive and negative bridges.

Proposition 3.2.12. The bivariate generating function of walks W(z, u) =
∑n,k≥0 wnkznuk where wnk is the number of all walks of length n with k sign
changes, is given by

W(z, u) = B(z, u)
W(z)
B(z)

+ B+(z, u)
(

W(z)
B(z)

− 1
)
(u− 1),

where W(z) = 1
1−zP(1) is the generating function of walks.

Proof. Combinatorially, a walk is either a bridge or a bridge concate-
nated with a meander that does not return to the x-axis again. In
the second case an additional sign change appears if the bridge ends
with a negative sign and continues with a meander always staying
strictly above the x-axis, or vice versa. By Lemma 3.2.11 the desired
form follows.

For the main result, we need the following (technical) lemma about
the small branch u1(z). Recall from Lemma 3.2.9 that τ2 = p−1/p1.
It can also be used to simplify the results on the height from Theo-
rem 3.2.6 in the case of Motzkin walks because u1(z)v1(z) =

p−1
p1

, see
Table 5.

Lemma 3.2.13. Let P(u) = p−1u−1 + p0 + p1u. Let u1(z) be the small
branch of the kernel equation 1− zP(u) = 0 with limz→0 u1(z) = 0, and
define ρ1 := 1/P(1). Then

u1 (ρ1) =





1, for δ < 0,

τ2, for δ > 0,
u′1 (ρ1) =




− P(1)2

P′(1) , for δ < 0,

τ2 P(1)2

P′(1) , for δ > 0,
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u′′1 (ρ1) =




−
(

P(1)
P′(1)

)3 (
P(1)P′′(1)− 2P′(1)2) , for δ < 0,

τ2
(

P(1)
P′(1)

)3 (
P(1)P′′(1)− 2P′(1)2) , for δ > 0.

Proof. In both cases, δ < 0 and δ > 0, u1(z) is regular at ρ1. As u1(z)
is monotonically increasing we must have u1(ρ1) < u1(ρ) = τ =√

p−1/p1. Then, from the kernel equation 1− zP(u1(z)) = 0 for all
|z| < ρ, we get the desired result. For the second and third claim one
uses the implicit derivative of the kernel equation and the previous
results.

The next theorem concludes this discussion. Its proof is similar to
the one of Theorem 3.2.2.

Theorem 3.2.14 (Limit law for sign changes). Let Xn denote the number
of sign changes of Motzkin walks of length n. Let δ = P′(1) be the drift.

1. For δ 6= 0 we get convergence to a geometric distribution:

Xn
d→ Geom (λ) , with λ =





p1
p−1

, for δ < 0,
p−1
p1

, for δ > 0.

2. For δ = 0 we get convergence to a half-normal distribution:

Xn√
n

d→ H
(

1
2

√
P′′(1)
P(1)

)
.

Proof. Let us start with an analysis of the dominant singularity. The
most important term decomposes into

W(z)
B(z)

=
1

1− zP(1)
u1(z)
zu′1(z)

.

The first factor is singular at ρ1 = 1/P(1) but the second one is sin-
gular at ρ = 1/P(τ). As we know, P(τ) ≤ P(1). Thus, either both
are singular at the same time, or only W(z) is responsible for the
singularity.

In the first case, again the key idea is to use the coefficient asymp-
totics for the product of a singular and an analytic function [85, The-
orem VI.12]. In particular for δ 6= 0 only W(z) is singular at the dom-
inant singularity. Hence, the coefficient asymptotics is given by its
asymptotic expansion times the other functions evaluated at z = ρ1.

The results from Lemma 3.2.13 directly give

B (ρ1) =




− P(1)

δ , for δ < 0,
P(1)

δ , for δ > 0.
(36)
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Then some tedious calculations show for δ < 0 that

P [Xn = k] =
[znuk]W(z, u)
[zn]W(z)

= [uk]

(
− δ

p−1

)
1

1− u p1
p−1

+ o(1).

This is a geometric distribution with parameter λ = p1
p−1

. For δ > 0
the analogous result holds.

In the second case of δ = 0 we also have τ = 1 and ρ = ρ1. Then,
we can apply Theorem 2.3.9. A reasoning along the lines of Theo-
rem 3.2.10 shows that

1
W(z, u)

= g(z, u) + h(z, u)
√

1− z/ρ,

where g(z, u) and h(z, u) are analytic functions. We omit the tedious
calculations and directly derive the asymptotic form for z → ρ. For
the tail we get by (32) the expansion

W(z)
B(z)

=
2

C
√

1− z/ρ
+O(1),

for z→ ρ, where C =
√

2 P(1)
P′′(1) . Thus, we get

1
W(z, u)

=
2Cρp−1

τ2(u− 3)(u + 1)

(
4C

τ(u− 3)

(
1− z

ρ

)
+ (u− 1)

√
1− z

ρ

)

+O
((

1− z
ρ

)2
)
+O

((
1− z

ρ

)
(1− u)

)
,

for |u− 1| < ε, |z− ρ| < ε and arg(z− ρ) 6= 0, with g(ρ, 1) = h(ρ, 1) =
gu(ρ, 1) = guu(ρ, 1) = 0; and gz(ρ, 1) = −C2 p−1

τ3 and hu(ρ, 1) = −Cρp−1
2τ2 .

Hence, Theorem 2.3.9 yields the final result with the constant σ =√
2 hu(ρ,1)

ρgz(ρ,1) =
1
2

√
P′′(1)
P(1) .

Using (36) the results of Theorem 3.2.2 can be simplified, and we
get a geometric law with parameter λ = |δ|

P(1) =
|p1−p−1|

P(1) for δ 6= 0. In
Table 5 we will see a comparison of the parameters.

3.3 proof of theorem 2 .3 .9

We first list some useful formulae related to the half-normal distribu-
tion. Technical results have been derived in [178], like the representa-
tion of the characteristic function [178, Equation (15)].

Lemma 3.3.1. Let γ be the Hankel contour starting from “+e2πi∞”, pass-
ing around 0 and tending to +∞. Then

1
2πi

∫

γ

e−z

z + is
√−z

dz = ϕH
(√

2s
)

,
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where

ϕH(t) =

√
2
π

∫ ∞

0
eitze−z2/2 dz,

denotes the characteristic function of the half-normal distribution.

Proof. It is sufficient to compare the Taylor expansion around s = 0.
On the one hand we get by the Hankel integral representation of
Γ(t)−1 = 1

2πi

∫
γ(−z)−te−z dz that

1
2πi

∫

γ

e−z

z + is
√−z

dz =
1

2πi

∫

γ

e−z

z ∑
k≥0

(is)k(−z)−
k
2 dz

= ∑
k≥0

(is)k 1
2πi

∫

γ
(−z)−(

k
2+1)e−z dz

= ∑
k≥0

(is)k

Γ
(

k
2 + 1

) .

On the other hand we have

ϕH(t) =

√
2
π

∫ ∞

0
∑
n≥0

(it)n

n!
xne−x2/2 dx

=

√
2
π ∑

n≥0

(it)n

n!
2

n−1
2

∫ ∞

0
y

n−1
2 e−y dy

=
1√
π

∑
n≥0

(it)n2
n
2

Γ
( n+1

2

)

Γ (n + 1)
= ∑

n≥0

1
Γ
( n

2 + 1
)
(

it√
2

)n

,

where we used the duplication formula Γ(z)Γ(z+ 1
2 ) = 21−2z√πΓ(2z)

in the last equality.

Lemma 3.3.2. Let γ be as in Lemma 3.3.1. Then

1
2πi

∫

γ

e−s
√−z−z
√−z

dz =
1√
π

e−s2/4.

Proof. The result follows from the substitution z = w2, followed by
completing the square in the exponent, which results in a Gaussian
integral.

Remark 8. Alternatively the result follows directly from [70, Lemma 7],
by an indefinite integration with respect to s.

Proof of Theorem 2.3.9. We follow the same ideas as in the proof of [70,
Theorem 1]. Let us first derive asymptotic expansions for mean and
variance. This will bring us on track of the half-normal distribution.
Since ρ(u) = ρ we have

c(z, u) =
1

g(z, u) + h(z, u)
√

1− z/ρ
, (37)
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and due to g(ρ, 1) = h(ρ, 1) = 0, and gz(ρ, 1) 6= 0 we get

[zn]c(z, 1) = −[zn]
1

ρgz(ρ, 1)
1

1− z/ρ
+O(

√
1− z/ρ)

= − ρ−n

ρgz(ρ, 1)

(
1 +O(n−1/2)

)
. (38)

Because of hu(ρ, 1) 6= 0, and h(ρ, 1) = gu(ρ, 1) = guu(ρ, 1) = 0 we get

[zn]cu(z, 1) = [zn]

(
− hu(ρ, 1)
(ρgz(ρ))2

1
(1− z/ρ)3/2 +O((1− z/ρ)−1)

)

= −2hu(ρ, 1)ρ−n

(ρgz(ρ))2

√
n
π

(
1 +O(n−1/2)

)
.

Hence,

E(Xn) =
[zn]cu(z, 1)
[zn]c(z, 1)

=
2hu(ρ, 1)
ρgz(ρ)

√
n
π

(
1 +O(n−1/2)

)
.

Alike, due to guu(ρ, 1) = 0 we derive

[zn]cuu = −[zn]
2hu(ρ, 1)2

(ρgz(ρ, 1))3
1

(1− z/ρ)2 +O
(
(1− z/ρ)−3/2

)

= − 2hu(ρ, 1)2

(ρgz(ρ, 1))3 ρ−nn
(

1 +O(n−1/2)
)

,

and

V(Xn) =
[zn]cuu(z, 1)
[zn]c(z, 1)

= 2
(

hu(ρ, 1)
ρgz(ρ, 1)

)2

n +O(n1/2).

These results strongly suspect that the underlying limit distribution
is a half-normal one. We will show that this is indeed the case by
deriving the asymptotic form of the characteristic function of Xn/

√
n.

Since

E(eitXn/
√

n) =
[zn]c(z, e

it√
n )

[zn]c(z, 1)
, (39)

we need to expand [zn]c(z, u) for u = eit/
√

n = 1 + it√
n +O(n−1). To

achieve this, we will apply Cauchy’s formula

[zn]c(z, u) =
1

2πi

∫

Γ
c(z, u)

dz
zn+1 (40)

for the following path of integration Γ = Γ1 ∪ Γ2:

Γ1 =
{

z = ρ
(

1 +
s
n

)
: s ∈ γ′

}
,

Γ2 =

{
z = Reiϑ : R = ρ

∣∣∣∣∣1 +
log2 n + i

n

∣∣∣∣∣ ,

arg

(
1 +

log2 n + i
n

)
≤ |ϑ| ≤ π

}
,
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ρ
n

ρ

Γ1

ρ
(
1 + log2 n

n

)

R

Γ2

1
n

1

log2 n

Figure 17: Hankel contour decomposition of Γ (left), and contour of γ′

(right).

where γ′ = {s : |s| = 1, <s ≤ 0} ∪ {s : 0 < <s < log2 n, =s = ±1} is
the major part of a Hankel contour γ, see Figure 17.

Firstly, we investigate the path Γ1. The substitution z = ρ
(
1 + s

n

)

transforms Γ1 into γ′. Let us now look at its effect on g(z, u) and
h(z, u):

g(z, eit/
√

n) = gz(ρ, 1)ρ
s
n
+O

( s
n3/2

)
,

h(z, eit/
√

n) = hu(ρ, 1)
it√
n
+O

( s
n

)
,

(41)

as gu(ρ, 1) = 0 and h(ρ, 1) = 0. Note that this behavior is different
from the one in [70, Theorem 1], where the differences are gu(ρ, 1) = 1
and h(ρ, 1) = 0. Thus, we get

1
2πi

∫

Γ1

c(z, u)
dz

zn+1 =

=
ρ−n

2πi

∫

γ′

e−s (1 +O
( s

n

))

gz(ρ, 1)ρ s
n + hu(ρ, 1)it

√−s
n +O

(
s

n3/2

) ds
n

=
ρ−n

ρgz(ρ, 1)
1

2πi

∫

γ′

e−s

s +
√−si hu(ρ,1)t

ρgz(ρ,1)

ds +O
(

ρ−nn−1/2
)

. (42)

In the first equality we used
(
1 + s

n

)−n−1
= e−s (1 +O( s

n )
)
. For the

second equality, note that gz(ρ, 1), hu(ρ, 1), t ∈ R. Thus, the integrand
of the generic integral

I(γ′) :=
∫

γ′

e−s
√−s− iCt

ds,

with C ∈ R is only singular for s = (Ct)2 > 0. Hence, for large
enough n we get that log2 n > (Ct)2. Thus, closing the curve γ′ by
adding the segment from log2 n + i to log2 n− i we get by the residue
theorem that

I(γ′) =
∫ log2 n+i

log2 n−i

e−s
√−s− iCt

du
︸ ︷︷ ︸

=O
(

e− log2 n
log n

)

−2πi Res
s=(Ct)2

(
e−s

√−s− iCt

)

︸ ︷︷ ︸
=−i2Cte−(Ct)2

= O(1).
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Next, we extend the integral γ′ to γ. By elementary bounds the miss-
ing parts are negligible. In particular the curve γ \ γ′ consists of two
segments:

I(γ \ γ′) =
∫ log2 n

∞

e−(u−i) du√
−(u− i)− iCt

+
∫ ∞

log2 n

e−(u+i) du√
−(u + i)− iCt

= O
(

e− log2 n
)

.

We get by (42) and Lemma 3.3.1

1
2πi

∫

Γ1

c(z, u)
dz

zn+1 =
ρ−n

ρgz(ρ, 1)
ϕH

(√
2hu(ρ, 1)

ρgz(ρ, 1)
t

)
+O

(
ρ−nn−1/2

)
. (43)

What remains is to bound the remaining part of the integral associ-
ated with the contour Γ2. There are ε1 > 0 and δ1 > 0 such that

max
|z|=z1,| arg z|≥ϑ1

|c(z, u)| = |c(z1eiϑ1 , u)|,

for 1 ≤ z1 ≤ 1 + δ1 and |u− 1| < ε1. This follows from the facts that
cnk ≥ 0, that z = ρ is the only singularity on the circle of convergence,
and that c(z, u) has the local representation (37). Using the expansions
from (41) we directly get
∣∣∣∣∣c
(

ρ

(
1 +

log2 n + i
n

)
, e

it√
n

)∣∣∣∣∣ = O
(

n
log2 n

)
,

and therefore by using again
(
1 + s

n

)−n−1
= e−s (1 +O( s

n )
)

we obtain

1
2πi

∫

Γ2

c(z, u)
dz

zn+1 = O
(

ρ−nn
log2 n

e− log2 n

)
. (44)

Note that it is crucial at this point that γ′ continues on the real axis
until log2 n and not just until log n. Otherwise we would get O( ρ−n

log n )

at this stage, which would contradict the desired final error term.
Putting everything from (38), (39), (40), (43), and (44) together, we

get

E(eitXn/
√

n) = ϕH

(√
2hu(ρ, 1)

ρgz(ρ, 1)
t

)
+O

(
n−1/2

)
.

This proves the weak limit theorem.
In order to prove the local limit theorem we again use Cauchy’s

formula

[znuk]c(z, u) =
1

(2πi)2

∫

Γ

∫

∆
c(z, u)

du
uk+1

dz
zn+1 ,

where Γ = Γ1 ∪ Γ2 is as above, and ∆ chosen properly.
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For z = ρ
(
1 + s

n

)
∈ Γ1 the mapping u 7→ c(z, u) has a polar singu-

larity at u0 = 1 + t0√
n , where

t0 =
ρgz(ρ, 1)
hu(ρ, 1)

√
−s +O

(√
s

n

)
,

with residue

1
hu(ρ, 1)

√
n
−s

(
1 +O

(√
s

n

))
.

Hence, we apply the residue theorem and transform ∆ in such a way
that

1
2πi

∫

∆
c(z, u)

du
uk+1

= − u−(k+1)
0

hu(ρ, 1)

√
n
−s

(
1 +O

(√
s

n

))
+

1
2πi

∫

|u|=1+ε2

c(z, u)
du

uk+1

= − 1
hu(ρ, 1)

√
n
−s

exp
(
− k√

n
ρgz(ρ, 1)
hu(ρ, 1)

√
−s
)(

1+O
(√

s
n

)

+O
(

ks
n

))
+O

(
(1 + ε2)

−k
)

.

The expansion
(

1 + t0√
n

)−k−1
= e−kt0/

√
n
(

1 +O
(√ s

n

)
+O

(
ks
n

))
was

used in the last equality.
Therefore, by Lemma 3.3.2 we get

1
(2πi)2

∫

Γ

∫

∆
c(z, u)

du
uk+1

dz
zn+1

=− ρ−n

hu(ρ, 1)

∫

γ′

exp
(
−s− k√

n
ρgz(ρ,1)
hu(ρ,1)

√−s
)

2πi
√−s

(
1+O

(√
s
n

)

+ O
(

ks
n

))
ds√

n
+O

(
ρ−n (1 + ε2)−k

√
n

)

=− ρ−n

hu(ρ, 1)
1√
πn

exp

(
− k2

4n

(
ρgz(ρ, 1)
hu(ρ, 1)

)2
)
+O

(
ρ−n

n

)

+O
(

ρ−n k
n3/2

)
+O

(
ρ−n (1 + ε2)−k

√
n

)
.

By similar elementary considerations as before we obtain

max
z∈Γ2,|u|=1

c(z, u) = O
(

n
log2 n

)
.

Hence, by choosing ∆ = {u : |u| = 1} for z ∈ Γ2 we can estimate the
remaining integral by

1
(2πi)2

∫

Γ

∫

∆
c(z, u)

du
uk+1

dz
zn+1 = O

(
n

log2 n
e− log2 n

)
,

which concludes the proof of the local limit theorem.
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3.4 conclusion

Drmota and Soria [70] presented three schemes leading to three dif-
ferent limiting distributions: Rayleigh, normal, and a convolution of
both. This chapter can be seen as an extension, by adding Theo-
rem 2.3.9 yielding a half-normal distribution to this family.

The question may arise, how Theorem 2.3.9 behaves in the situation
of a singularity ρ(u) with ρ′(1) 6= 0 or ρ′′(1) 6= 0, compare Remark 6.
This remains an object for future research.

However, the more interesting question is if more “natural” appear-
ances of such situations exist. Another known example is the limit
law of the final altitude of meanders with zero drift in the reflection-
absorption model in [26]. Chronologically, this was the starting point
for the research of the results of this chapter. But this distribution also
appears in number theory, see [93].

Let us recall the results in the case of Motzkin walks. In Table 5
we see a comparison of the parameters. Obviously, the situation de-
pends strongly on the drift. In particular it is interesting to observe
the duality between the cases δ < 0 and δ > 0 for returns to zero
and sign changes. Intuitively this is expected due to the symmetry of
these problems on walks. We see that returns to zero are dictated by
the absolute difference, whereas sign changes depend on the ratio of
weights of up- and down-jumps.

The critical case of a zero drift is to be the most delicate one, as
it changes the nature of the law. In this case the limiting probability
functions are concentrated around zero. In particular the expected
value for Θ(n) trials grows like Θ(

√
n) and not linearly. Equipped

with the presented tools they might still be a “shock to intuition and
common sense” but should not come “unexpected” anymore.

drift returns to zero sign changes height

δ < 0 Geom
(

p−1−p1
P(1)

)
Geom

(
p1

p−1

)
Geom

(
p1

p−1

)

δ = 0 H
(√

P(1)
P′′(1)

)
H
(

1
2

√
P′′(1)
P(1)

)
H
(√

P′′(1)
P(1)

)

δ > 0 Geom
(

p1−p−1
P(1)

)
Geom

(
p−1
p1

)
Normal distribution

Table 5: Summary of the limit laws for Motzkin walks.



4
T H E R E F L E C T I O N - A B S O R P T I O N M O D E L F O R
D I R E C T E D L AT T I C E PAT H S

This chapter is based on joint work with Cyril Banderier. A prelimi-
nary version of the presented results has been published in the Pro-
ceedings of the 25th International Conference on Probabilistic, Com-
binatorial and Asymptotic Methods for the Analysis of Algorithms
(AofA 2014) [26].

In Brownian motion theory, many possible boundary conditions for
a Brownian-like process have been considered (e.g. absorption, killed
Brownian motion, reflected Brownian motion, . . . see [79]). Solving
a stochastic differential equation with a reflecting boundary condi-
tion is known as the Skorokhod problem (see [170]). Such models
appear e.g. in queuing theory (see [125]). In this chapter, we want to
investigate properties of a discrete equivalent of such models, namely
directed lattice paths in Z2, having a reflecting boundary at y = 0.

If one considers lattice paths which are “killed” or “absorbed” at
y = 0, then this is equivalent to the model analyzed in [19]. In what
follows, we want to compare the basic properties (exact enumera-
tion, asymptotics, limit laws) of these two discrete models (absorption
versus reflection). In particular, we will consider Łukasiewicz paths,
which are present in numerous fields like algebra, analysis of algo-
rithms, combinatorics, language theory, probability theory and biol-
ogy. This broad applicability is due to a bijection with simple families
of trees, see e.g. [141]. The enumerative and analytic properties of
such lattice paths were considered in [21] where limit laws for the
area beneath Łukasiewicz paths are derived, and also in [51] where
they are used to model polymers in chemistry, or e.g. in [24], which
tackles the problem of enumeration and asymptotics of such walks of
bounded height.

Our key tools will be the kernel method and analytic combina-
torics [85]. However, as we will see, the situation is more complicated
in the case of a reflecting boundary: first, bad luck, one does not have
a nice product formula for the generating function anymore (unlike
the Banderier-Flajolet model [19]), second, the drift still plays a key
role, but also does a “second” drift at 0, and last but not least, several
simultaneous singular behaviors can happen.

Furthermore, we will mainly apply singularity analysis in order to
extract asymptotic expansions of several parameters. The phenomena
we will mostly encounter are due to a so-called square root singularity.
This arises from a natural factorization of the kernel (coming from
the kernel method) into several branches. Such phenomena appear
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repeatedly when dealing with combinatorial structures, see e.g. [69,
70, 85].

This chapter builds mainly on the work done in [19]. Therein the
class of directed lattice paths in Z2 (under the absorption model) was
investigated thoroughly by means of analytic combinatorics (see [85]).

Plan of this chapter. First, in Section 4.1, the reflection-absorption
model and the general framework are introduced. The needed bivari-
ate generating function is defined and the governing functional equa-
tion is derived and solved: Here the “kernel method” plays the most
significant role in order to obtain the generating function (as typical
for many combinatorial objects which are recursively defined with a
“catalytic parameter”, see [46]).

In Section 4.2, we turn our attention to Łukasiewicz paths, and the
asymptotic number of excursions is given. As a part of this we de-
rive the limit laws for the number of returns to zero of excursions.
We encounter three different behaviors which result in a Gaussian,
a Rayleigh and a discrete limit distribution. In Section 4.3 we inves-
tigate bridges in the reflection-absorption model and state the limit
laws for the number of returns to zero of bridges. The behavior is
similar to the one in the case of excursions, and the same limit distri-
butions appear.

Section 4.4 is dedicated to meanders. We establish the asymptotic
number of meanders, and the expected length of randomly generated
meanders for the absorption model. Note that these are trivial in the
reflection model. Furthermore, we restrict the probability space to
the absorption model and reformulate the previous results in this
restricted setting. This gives the last results a more intuitive meaning.
Then we derive the expected final altitude for meanders of size n,
which gives us access to the underlying limit laws for the expected
final altitude of meanders. On the one hand we encounter again a
Gaussian, a Rayleigh, and a discrete limit law, but on the other hand
one case leads to a half normal limit distribution.

The technical proofs of the main theorems are found in Section 4.6.
At the end we present recurrence relations on the moments for

the final altitude in Appendix 4.5. In Appendix 3 a summary of all
introduced constants is given.

Notation for this chapter. In order to distinguish the generating
functions of excursions and bridges in the two models, we denote the
excursions and meanders of the Banderier-Flajolet model introduced
in Section 1.6 by Ẽ(z) and B̃(z), whereas the ones from the reflection-
absorption model are denoted by E(z) and B(z), respectively.

4.1 the reflection-absorption model

Let us consider directed walks on N2, with a weighted step set S ,
starting at the origin, confined to the upper half plane, and which
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have another weighted step set S0 on the boundary y = 0. This con-
struction is motivated by the idea of modeling a reflecting or absorb-
ing “wall” on the boundary. All such walks are called meanders, and
the meanders ending on the abscissa are called excursions (see Ta-
ble 1).

This walk model is thus encoded by two jump polynomials: P(u) and
P0(u) are Laurent polynomials describing the allowed jumps when
the walk is at altitude k > 0 or k = 0, respectively. We fix c, d, c0, d0 ∈
N and introduce the following notation:

P(u) =
d

∑
i=−c

piui, P0(u) =
d

∑
i=−c

p0,iui, P≥0 (u) =
d

∑
i=0

p0,iui.

In order to exclude trivial cases we require p−c, pd, p0,−c, p0,d 6= 0. The
weights are probabilities, which means that pi, p0,i ≥ 0 and P(1) =

P0(1) = 1. Then, these jump polynomials characterize the reflection-
absorption model: depending on the chosen weights, the boundary be-
haves like a reflecting or an absorbing wall. We talk about the reflec-
tion model if P≥0 (u) = P0(u), while we talk about the absorption model
if P≥0 (u) 6= P0(u).

Example 4.1.1. Let us compare the reflection-absorption model with
some well-known models. For this purpose we choose bridges of
Dyck-paths, i.e. paths with step set S = {−1, 1}, of length 4. There are
in total 6 of them, shown in the first column of Table 6. If we choose
one of these uniformly at random, each of these cases is chosen with
probability 1/6.

In the absolute value model [119] every path is transformed into a
meander, by the following procedure. We go through the path from
left to right and construct a new path, by assigning every point the
absolute value of its y-coordinate. In other words (x, y) is mapped to
(x, |y|). For the case of bridges, this can also be seen, as flipping every
arch which is below the x-axis up. Thereby we get 2 possible paths:
the first row in Table 6 which consist of one single arch and the second
one which consists of 2 arches. The first case can be constructed from
2 bridges, whereas the second one can be obtained out of 4 cases.
Hence, this results in the respective probabilities 1/3 and 2/3.

As the last two cases we consider these excursions in the reflection
and the absorption model, where we choose the probabilities to be
1/2 for all weights. This results in the last two columns. Note that the
absolute value model and the excursions model are in general not
equivalent (see Footnote 1).

From this table, one can already see one paradox associated to the
reflection model: one may think that the “reflection” will make the
walk go far away from the x-axis. However, this is in part counter-
balanced by the fact that 0 has a “heavier” weight in this model (no
loss of mass here, contrary to the absorption model). Accordingly,
there will be some interplay between the boundary, the drift of the
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walk and the drift at 0, see Section 4.4. We quantify this in our next
sections.

bridges, absolute value excursions, excursions,

Dyck
path

uniform model of bridges ref. model abs. model

1
6

1
3

1
3

1 1
2

1
6

2
3

2
3

1
2

1
6 0 0 0

1
6 0 0 0

1
6 0 0 0

1
6 0 0 0

Table 6: Different constraints on the boundary y = 0 lead to different proba-
bilistic models. We give the probabilities of Dyck bridges of length 4
in the uniform, absolute value, reflection, and absorption model.

Bivariate generating function of walks

A bridge is a simple path that starts in the origin and ends on the
x-axis. Examples of bridges are shown in the above Tables 2 and 6.

Definition 4.1.2. We define the generating function of walks as

W(z, u) := ∑
n,k≥0

Wn,kukzn = ∑
n≥0

wn(u)zn = ∑
k≥0

Wk(z)uk,

where the polynomials wn(u) describe the possible positions after n steps
and where Wk(z) are the generating functions of walks starting at 0 and
ending at altitude k. The number Wn,k represents the ratio of walks of length
n which end at altitude k among all walks of length n. In particular, W0(z)
is the generating function of bridges.

Theorem 4.1.3 (Generating function for walks). The bivariate generat-
ing function of paths in the reflection-absorption model (with z marking size
and u marking final altitude) relative to a simple set of steps S for altitudes

1 The absolute value and the reflection model are in general not equivalent if the
jumps (with their weights) are not symmetric: For P(u) = pu + qu−1 the probability
of the first path in the reflection model is p/(1 + p).
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k 6= 0 and a simple set of steps S0 for altitude k = 0 is a rational func-
tion. The associated jump polynomials are P(u) and P0(u), respectively. It
is given by

W(z, u) =
1− z (P(u)− P0(u))W0(z)

1− zP(u)
, (45)

with W0(z) as the generating function of bridges in the reflection-absorption
model.

Proof. The polynomials wn(u) fulfill the following recurrence relation

w0(u) = 1, wn+1(u) = P(u){u 6=0}wn(u) + P0(u){u0}wn(u),

where {u 6=0} is the linear operator extracting all terms in the power
series except the constant one. The other operators are defined anal-
ogously. Multiplying by zn+1 and summing over all n ≥ 0 we derive
the following functional equation

W(z, u) = 1 +
(
zP(u)W(z, u)− zP(u)W0(z)

)
+ zP0(u)W0(z). (46)

Solving for W(z, u) gives the result.

Remark 9. Formula (45) is only useful if one also has the generating
function of bridges W0(z). One could think of different techniques
to extract W0(z). Unfortunately, all of the ones we tried failed. First,
rearranging the equation to get the kernel 1− zP(u) on one side and
a perturbation on the other side gives the structure needed for the
kernel method. But it is not allowed to insert the small branches, as
W(z, u) is a Laurent-series in u. Second, using Cauchy’s coefficient
formula to extract the coefficient of u0 only gives a tautology.

However, in Section 4.3 we will see how to compute W0(z) in the
simpler case of Łukasiewicz walks. We will see two different proofs.
The first one is a combinatorial one. It uses a recursive construction
from known building blocks of the Banderier-Flajolet model. This
however only works because of the easier structure of Łukasiewicz
walks. The second one is an analytic proof. It extracts the [u0] coef-
ficient but on the level of formal power series. This also works in
general, but then complications arise from the necessary simplifica-
tions which are needed to get the final structure. Again, in the case of
Łukasiewicz walks this is doable. It is possible that this last approach
can be extended to general walks. Yet we were not able to find it so
far.

Bivariate generating function of meanders and excursions

A meander is a simple path that starts in the origin and is constrained
to stay above the x-axis. An excursion is a meander that ends on the
x-axis. Examples are shown in the above Tables 2 and 6.
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Definition 4.1.4. We define the generating function of meanders to be

F(z, u) := ∑
n,k≥0

Fn,kukzn = ∑
n≥0

fn(u)zn = ∑
k≥0

Fk(z)uk,

where the polynomials fn(u) describe the possible positions after n steps and
where Fk(z) are the generating functions of walks starting at 0 and ending
at altitude k. The number Fn,k represents the ratio of meanders of length n
which end at altitude k among all possible walks of length n.

The next theorem lays the foundation for the ongoing analysis.
Readers who are familiar with the kernel method and its applications
may skip its proof. We must apply a small variation of the kernel
method due to the perturbation introduced by P≥0 (u), compare the
functional equation (50). The most important formula in this section
is Formula (48).

Theorem 4.1.5 (Generating function for meanders and excursions).
The bivariate generating function of meanders (where z marks size and u
marks final altitude) in the reflection-absorption model is algebraic:

F(z, u) =
1− z ∑c−1

k=0 rk(u)Fk(z)
1− zP(u)

, (47)

where rk is a Laurent polynomial given by rk(u) = ∑−k−1
j=−c pjuj+k for k > 0

and r0(u) = P(u)− P≥0 (u). Furthermore, the Fk’s are algebraic functions
belonging to Q(u1, . . . , uc, p−c, . . . , pd, p0,0, . . . , p0,d, z), where the ui’s are
the roots of the kernel equation 1− zP(u) = 0, such that limz→0 ui(z) = 0.
The Fk’s can be made explicit, e.g. the generating function of excursions is

F0(z) =
1

1− z
(

∑c
`=1 uc−1

` P≥0 (u`)/V(`)
) , (48)

where V(`) =
c

∏
i=1
i 6=`

(u` − ui) is a Vandermonde-like product.

Proof. We are going to give the subsequent proof in several steps.

• Functional equation:

It is straightforward to derive a recurrence relation, by a step-
by-step approach:

f0(u) = 1,

fn+1(u) = {u≥0}
[
P(u){u>0} fn(u) + P0(u){u0} fn(u)

]
,

where {u≥0} is the linear operator extracting all terms in the
power series representation containing non-negative powers of
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u. Multiplying by zn+1 and summing over all n ≥ 0 we derive
the following functional equation

F(z, u)− 1 = zP(u)F(z, u)− zP(u)F0(z) + zP≥0 (u)F0(z),

− z{u<0}
[
P(u){u>0}F(z, u)

]

= zP(u)F(z, u)− z
(

P(u)− P≥0 (u)
)

F0(z)

− z ∑
k≥1

Fk(z){u<0}(P(u)uk), (49)

and we get

F(z, u)K(z, u) = 1− z
(

P(u)− P≥0 (u)
)

F0(z)

− z
c−1

∑
k=1

rk(u)Fk(z),
(50)

K(z, u) = 1− zP(u), (51)

where K(z, u) is called the kernel of the equation and the rk(u),
k = 1, . . . , c − 1, are some Laurent polynomials that are com-
putable from (49) (see also [19, p. 49]):

rk(u) := {u<0}(P(u)uk) =
−k−1

∑
j=−c

pjuj+k.

This shows the algebraic character of F(z, u) and gives (47).

• Kernel method:

From the theory of Newton–Puiseux expansions, the fundamen-
tal result in the theory of algebraic curves [1, 143], we know that
the kernel equation from Definition 1.3.3

1− zP(u) = 0, (52)

has c + d distinct solutions in u, with c of them being called
“small branches”, as they map 0 to 0 and are in modulus smaller
than the other d “large branches” which grow in modulus to in-
finity while approaching 0. We call the small branches u1, . . . , uc

and the large ones v1, . . . , vd. We sometimes also denote the
large ones as uc+1, . . . , uc+d as they result from an equation of
degree c + d. Inserting the c small branches into (50) we get a
linear system of c equations in the c unknowns F0, . . . , Fc−1:




uc
1 − z ∑c−1

k=0 uc
1rk(u1)Fk(z) = 0,
...

uc
c − z ∑c−1

k=0 uc
crk(uc)Fk(z) = 0.

(53)

In order to unify the notation we define r0(u) := P(u)− P≥0 (u).
We will see in the subsequent discussion that this system is
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non-singular as it is a variant of the Vandermonde determinant,
and as the small branches are clearly all distinct. Note that this
system is closely related to the one solved in the proof of [19,
Theorem 2]. The difference is the perturbation introduced by
r0(ui) in the first column.

• Solution of the linear system:

The general strategy is to apply Cramer’s rule to make the Fk’s
explicit. The corresponding matrix equation reads



zuc
1r0(u1) zuc

1r1(u1) . . . zuc
1rc−1(u1)

...
...

. . .
...

zuc
cr0(uc) zuc

cr1(uc) . . . zuc
crc−1(uc)




︸ ︷︷ ︸
=:M




F0

...

Fc−1




=




uc
1
...

uc
c




.

(54)

By Cramer’s rule [91] the solution is given by

Fi =
det(Mi)

det(M)
, i = 0, . . . , c− 1, (55)

where Mi is formed from M by replacing the (i + 1)-th column
by the column vector (uc

i )
c
i=1. The key to solve these determi-

nants is to notice the Vandermonde-like character when consid-
ering all but the first column. We compute these “nice” matrices
by Laplace expansion (also known as cofactor expansion [91])
with respect to the first column.

• Vandermonde-like structures and det(M):

Let us start with the denominator

det(M) =
c

∑
`=1

(−1)`+1zuc
`r0(u`) · µ`,1, (56)

where µi,j is called a minor and defined to be the determinant
of the (c− 1)× (c− 1)-matrix that results from M by removing
the i-th row and j-th column. The ones associated with the first
column possess the following structure (in the sequel we denote
the determinant by | · |-brackets):

µ`,1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zuc
1r1(u1) . . . zuc

1rc−1(u1)

...
...

zuc
`−1r1(u`−1) . . . zuc

`−1rc−1(u`−1)

zuc
`+1r1(u`+1) . . . zuc

`+1rc−1(u`+1)

...
...

zuc
cr1(uc) . . . zuc

crc−1(uc)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Next we investigate the repeatedly occurring term zuc
i rk(ui). For

k = 0 it can be simplified by the kernel equation (52):

zuc
i r0(ui) = uc

i

(
1− zP≥0 (ui)

)
. (57)

For k = 1, . . . , c− 1 the term uc
i rk(ui) can be written as:

uc
i rk(ui) =

−k−1

∑
j=−c

pju
j+k+c
i =

c−k−1

∑
j=0

p−c+ju
j+k
i =

c−1

∑
j=k

p−c−k+ju
j
i . (58)

The last expressions shows that this polynomial is always of
degree c− 1 and we see that the k-th such expression consists ex-
actly of c− k terms. Note in particular that uc

i rc−1(ui) = p−cuc−1
i .

All following determinant computations are performed for z ∈
(0, ρ). In order to ease notation we restrict ourselves to µ1,1, all
other minors are dealt with in the same manner. We start by the
extraction of z from every column and ui from every row to get

µ1,1 = zc−1

(
c

∏
j=2

uj

)
∣∣∣∣∣∣∣∣∣∣

uc−1
2 r1(u2) . . . uc−1

2 rc−2(u2) p−cuc−2
2

...
...

...

uc−1
c r1(uc) . . . uc−1

c rc−2(uc) p−cuc−2
c

∣∣∣∣∣∣∣∣∣∣

.

Extracting p−c from the last column a Vandermonde-like struc-
ture starts to appear. For the next to last column we have from
(58) the explicit form uc−1

i rc−2(ui) = p−cuc−3
i + p−c+1uc−2

i . Hence
subtracting the last column multiplied by p−c+1 yields

µ1,1 = p2
−czc−1

(
c

∏
j=2

uj

)
×

∣∣∣∣∣∣∣∣∣∣

uc−1
2 r1(u2) . . . p−cuc−4

2 + p−c+1uc−3
2 + p−c+2uc−2

2 uc−3
2 uc−2

2
...

...
...

...

uc−1
c r1(uc) . . . p−cuc−4

c + p−c+1uc−3
c + p−c+2uc−2

c uc−3
c uc−2

2

∣∣∣∣∣∣∣∣∣∣

.

We used (58) again, to get the explicit structure of uc−1
i rc−3(ui).

Now we proceed in the same way for every column from right
to left and reveal the Vandermonde shape:

µ1,1 = (zp−c)
c−1

(
c

∏
j=2

uj

)
∣∣∣∣∣∣∣∣∣∣

1 u2 . . . uc−2
2

...
...

...

1 uc . . . uc−2
c

∣∣∣∣∣∣∣∣∣∣

= (zp−c)
c−1

(
c

∏
j=2

uj

)
∏

2≤m<n≤c
(un − um) .
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As a shorthand we define the partial Vandermonde products

V̂(`) := ∏
1≤m<n≤c
m 6=`, n 6=`

(un − um) , V(`) :=
c

∏
i=1
i 6=`

(u` − ui). (59)

Note that these factors are part of a Vandermonde determinant
Vc := ∏m<n(un − um). In particular, we have

V̂(`)V(`) = (−1)`+cVc. (60)

Mimicking the above process for a general minor µ`,1 yields

µ`,1 = (zp−c)
c−1V̂(`)

c

∏
j=1
j 6=`

uj, (61)

and we get for (56) combined with (57)

det(M) = (zp−c)
c−1

c

∑
`=1

(−1)`+1uc
`

(
1− zP≥0 (u`)

)
· V̂(`)

c

∏
j=1
j 6=`

uj

= (zp−c)
c−1

(
c

∏
j=1

uj

)
c

∑
`=1

(−1)`+1uc−1
`

(
1− zP≥0 (u`)

)
V̂(`). (62)

• Generating function for excursions:

As a second step we investigate det(M0) in order to derive an
explicit formula for F0. In this determinant the perturbation
caused by r0 in the first column is replaced by a new one, cre-
ated from the right-hand side of the linear system (54):

det(M0) =

∣∣∣∣∣∣∣∣∣∣

uc
1 zuc

1r1(u1) . . . zuc
1rc−1(u1)

...
...

. . .
...

uc
c zuc

cr1(uc) . . . zuc
crc−1(uc)

∣∣∣∣∣∣∣∣∣∣

.

From (58) we know that all polynomials uc
i rj(ui) are of order

c− 1. The idea to evaluate this determinant is now the same as
above for det(M). Firstly, expand the determinant with respect
to the first column:

det(M0) =
c

∑
`=1

(−1)`+1uc
` · µ`,1.

Secondly, use (61) to get an explicit formula that closely resem-
bles (62):

det(M0) = (zp−c)
c−1

(
c

∏
j=1

uj

)
c

∑
`=1

(−1)`+1uc−1
` V̂(`)

︸ ︷︷ ︸
=(−1)c+1Vc

.
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The simplification of the last sum is possible due to (59), as we
recognize the Laplace expansion of a Vandermonde determi-
nant with respect to the last column (uc−1

` )`=1...c. Note that we
can use the same simplification in det(M). Thus, the probability
generating function of excursions is given by

F0(z) =
det(M0)

det(M)
=

(−1)c+1Vc

∑c
`=1(−1)`+1uc−1

`

(
1− zP≥0 (u`)

)
· V̂(`)

=
1

1− z
(

∑c
`=1 uc−1

` P≥0 (u`)/V(`)
) . (63)

For the last representation we used (60).

• Algebraicity of GFs for meanders ending at altitude k < c:

The generating function for meanders of height k < c is given
by Fk(z). The same techniques as used for computing F0(z) lead
to explicit representation in terms of Vandermonde-like deter-
minants in the small branches ui(z). These computations are
more involved, because two perturbations are present in the de-
terminants. However, all these functions are constructed from
the algebraic functions ui(z) by standard algebraic operations,
like multiplication, division and addition. Therefore, they are
algebraic, as algebraic functions are closed under these opera-
tions.

This proves the claim.

The following section treats the case of meanders ending at altitude
k and derives their general structure.

Generating functions for meanders ending at altitude k

In the following we will encounter two famous families of symmetric
polynomials: complete homogeneous symmetric polynomials hk and
Schur polynomials sλ. They were introduced in Section 2.4.

Lemma 2.4.5 will help us to show how the general Formula (48) for
excursions simplifies in the case of the Banderier-Flajolet model and
yields the known representation Ẽ(z) = (−1)c+1(∏ ui(z))/(zp−c).
(Recall that for the generating function of excursions in the Banderier-
Flajolet model we use the notation Ẽ(z).) For more details see [19,
Equation (20)] and Section 1.6. Note that this model is a special case
of the absorption model with P0(u) = P(u). In this special case we
get from the kernel equation (52)

zP≥(u`) = 1−
c

∑
i=1

zp−i

ui
`

.
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Next, we change the order of summation in the denominator of (48)
to get

F0(z) =
1

1−∑c
`=1 uc−1

` /V(`) + z ∑c
i=1 zp−i ∑c

`=1 uc−i−1
` /V(`)

.

The sums in the denominator possess a neat simplification given by
the following

Lemma 4.1.6. Let ui(z) for i = 1, . . . , c be the small branches of the kernel

equation 1− zP(u) = 0, and let V(`) =
c

∏
i=1
i 6=`

(u` − ui) be a partial Vander-

monde product. Then

c

∑
`=1

uk
`

V(`)
=





(−1)c+1/ ∏c
i=1 ui, for k = −1,

0, for 0 ≤ k ≤ c− 2,

hk−c+1(u1, . . . , uc), for k ≥ c− 1.

Proof. From (59) we know for the partial Vandermonde products that
V(`)V̂(`) = (−1)`+cVc. These sums arise from (singular) matrices
which were expanded using Laplace expansion. In the case k = −1
we get (−1)c+1/Vc ∑c

`=1(−1)`+1u−1
` V̂(`) where the sum can be inter-

preted as
∣∣∣∣∣∣∣∣∣∣

u−1
1 1 u1 . . . uc−2

1
...

...
...

...

u−1
c 1 uc . . . uc−2

c

∣∣∣∣∣∣∣∣∣∣

=
1

∏ ui

∣∣∣∣∣∣∣∣∣∣

1 u1 u2
1 . . . uc−1

1
...

...
...

...

1 uc u2
c . . . uc−1

c

∣∣∣∣∣∣∣∣∣∣

=
Vc

∏ ui
. (64)

In the cases 0 ≤ k ≤ c− 2 and k ≥ c− 1 we interpret them as determi-
nants of matrices which where expanded with respect to the last col-
umn. Then for 0 ≤ k ≤ c− 2 they are singular because two columns
are the same. However, for k ≥ c − 1 the following determinant is
defining a certain class of Schur polynomials s(k,0,...,0)(u1, . . . , uc). In
particular we get for k ≥ 0

1
Vc

∣∣∣∣∣∣∣∣∣∣

1 u1 . . . uc−2
1 uk

1
...

...
...

1 uc . . . uc−2
c uk

c

∣∣∣∣∣∣∣∣∣∣

=





0, k ≤ c− 2,

s(k−c+1,0,...,0)(u1, . . . , uc), k ≥ c− 1.
(65)

For more details on the determinant compare with µ1,1 from the pre-
vious proof. Finally, Lemma 2.4.5 yields the result.

Remark 10. Lemma 4.1.6 is a generalization of the well-known factor-
ization formula

uk+1
1 − uk+1

2
u1 − u2

= uk
1 + uk−1

1 u2 + . . . + u1uk−1
2 + uk

2.



4.1 the reflection-absorption model 103

This formula arises for c = 2. For arbitrary c it could also be stated as

hk(u1, . . . , uc) =
c

∑
i=0

uk+c−1
i

∏j 6=i(ui − uj)
,

which closer resembles the known expression.

Thus, applying the cases k = −1, . . . , c− 1 of the previous lemma
we derive the known representation of the Banderier-Flajolet-model

F0(z) =
(−1)c+1 ∏c

i=1 ui

zp−c
= Ẽ(z). (66)

Lemma 4.1.6 can also be used to get a different representation of
F0(z) in the general case:

Corollary 4.1.7. The generating function of excursions is given by

E(z) := F0(z) =
1

1− z ∑d0
i=0 p0,ihi(u1, . . . , uc)

, (67)

where the hi(x1, . . . , xc) are the complete homogeneous symmetric polyno-
mials of degree i in c unknowns.

Proof. Rewriting the sum in the denominator of (48) gives

c

∑
`=1

uc−1
` P≥0 (u`)

V(`)
=

d0

∑
i=0

p0,i

c

∑
`=1

uc+i−1
`

V(`)
=

d0

∑
i=0

p0,ihi(u1, . . . , uc),

where we applied the results for k ≥ c− 1 of Lemma 4.1.6 in the last
equality.

Using this result we are able to derive the general formula for Fk(z).
We start with a combinatorial interpretation of (67) using the follow-
ing subclass of excursions.

An arch is defined as an excursion of size > 0 whose only contact
with the x-axis is at its end points. We denote this set by A. Every
excursion, denoted by the set E , consists of a sequence of arches, i.e.
E = SEQ(A). The symbolic method (see e.g. [85]) directly provides
the functional equation

E(z) =
1

1− A(z)
, (68)

which is easily solved to give the generating function of arches

A(z) = 1− 1
E(z)

= z
d0

∑
i=0

p0,ihi(u1, . . . , uc). (69)

Each summand in (69) can be interpreted independently. We define
arches with excess i ≥ 0 as simple paths starting at altitude i and end-
ing on the x-axis while staying always strictly above the x-axis, except
for their endpoint. We denote their generating function by Ai(z). Ob-
viously, A0(z) = 1 holds, as all arches of positive length touch the
x-axis twice.
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Corollary 4.1.8. The generating function of arches with excess i is equal to

Ai(z) = hi(u1, . . . , uc).

Proof. Formula (69) implies that an arch starts with a jump +i and
is followed by a path counted by hi(u1, . . . , uc). So the path starts at
altitude i ≥ 0, ends at altitude 0 and is always strictly above the x-axis;
thus an arch with excess i.

Let us denote the generating functions of meanders terminating at
altitude k from the Banderier-Flajolet-model by F̃k(z). We arrive at the
final

E ϕm Fk−m
n0 nm

Figure 18: Decomposition of a meander terminating at altitude k from The-
orem 4.1.9.

Theorem 4.1.9. The generating function of meanders terminating at alti-
tude k > 0 is

Fk(z) = zE(z)
min(k,d0)

∑
m=1

(
d0

∑
`=m

p0,`h`−m(u1, . . . , uc)

)
F̃k−m(z). (70)

Proof. A meander of length n ending at altitude k > 0 decomposes
uniquely into three parts, see Figure 18. Firstly, observe that after n0

steps it touches the x-axis for the last time. The part from 0 to n0 is
a meander E counted by E(z). Secondly, consider the walk starting
from n0 and let 0 < m ≤ k be the unique minimal altitude of any
vertex after n0 steps. Thus, there exists a unique point nm > n0 where
the walk reaches the altitude m for the first time. Let ϕm be the walk
from n0 to nm. Thirdly, the walk from nm to n is a meander Fk−m of
the Banderier-Flajolet-model terminating at altitude k − m and thus
counted by F̃k−m(z).

The walk ϕm starts with a jump from the x-axis to altitude ` ≥ m, as
m is the minimal altitude for all later points. This part is represented
by p0,`z. Then, nm is the first point where altitude m is reached and
therefore the path from n0 + 1 to nm is an arch with excess ` − m
counted by A`−m(z).

Example 4.1.10 (Generating function for meanders terminating at al-
titude 1). The techniques used in the proof of Theorem 4.1.5 can also
be used to directly derive the formulae for Fk(z). However, they are
much more complicated and hide a lot of structure compared to the
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approach over the complete symmetric homogeneous polynomials
hk(u1, . . . , uc).

The techniques which have been used applied determinant manip-
ulations in order to reveal Vandermonde matrices. Continuing the
process of the proof we need to deal with a second perturbation in
order to compute det(M1). This can be done by a second application
of Lagrange inversion, and after tedious calculations one gets

det(M1) = (zp−c)
c−2

(
c

∏
j=1

u2
j

)
c

∑
j=1

(−1)j+1uc−2
j zr0(uj)V̂(j).

By (55) and (57) we get

F1(z) =
(−1)c(∏c

j=1 uj)∑c
j=1(−1)j+1uc−2

j

(
1− zP≥0 (uj)

)
V̂(j)

zp−c ∑c
j=1(−1)j+1uc−1

j

(
1− zP≥0 (uj)

)
V̂(j)

= zE(z)Ẽ(z)

(
c

∑
j=1

uc−2
j P≥1

0 (uj)/V(j)

)
. (71)

For the first equality we used (−1)b c−2
2 c/(−1)b c−1

2 c = (−1)c. For
the second equality we used the fact that the sum in the numera-
tor vanishes if k ≤ c− 2 in the coefficient uk

j , compare (65), and the

same ideas as in (63) coming from (59). Here we introduce P≥1
0 (u) :=

∑d0
i=1 p0,iui.
An application of Lemma 4.1.6 gives the known representation (70)

in terms of complete homogeneous symmetric polynomials:

F1(z) = zE(z)Ẽ(z)
d0

∑
i=1

p0,ihi−1(u1, . . . , uc).

This formula also holds for c = 1, as this case can be interpreted
as a special instance of c = 2, with p−2 = 0. All computations are
legitimate as there is no division by p−2.

Finally, note that for c = 1 we know that Ẽ(z) = u1(z)/(zp−1) and
(71) simplifies to

F1(z) = E(z)
P≥1

0 (u1(z))
p−1

= E(z)
zP≥1

0 (Ẽ(z)zp−1)

zp−1
.

The last expression admits a combinatorial interpretation: A mean-
der of altitude 1 starts with an excursion which is followed by an
arbitrary jump of positive altitude k > 0. This jump is compensated
by k excursions in the Banderier-Flajolet-model which are themselves
followed by k− 1 jumps of size −1 in order to reach altitude 1. In the
following sections we will focus on this case of c = 1 and analyze
it in full detail from a probabilistic, a combinatorial and an analytic
point of view.
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4.2 łukasiewicz walks and excursions

From now on, we are going to work with aperiodic Łukasiewicz paths.
By these we understand paths with one jump of size −1 and finitely
but arbitrarily many positive jumps. Hence, the jump polynomial of
Łukasiewicz paths is given by

P(u) = p−1u−1 + p0 + p1u + . . . + pdud,

with p−1 + . . . + pd = 1, pi ∈ [0, 1], and p−1 6= 0, pd 6= 0.

Generating function of excursions

Since c = 1 the linear system in (53) consists of only one equation, to
wit

u1 + zu1

(
P≥0 (u1)− P(u1)

)
F0(z) = 0.

We use the kernel equation 1− zP(u) = 0, which holds for the small
branch u1 to derive the generating function of excursions

E(z) := ∑
n≥0

enzn := F0(z) =
1

1− zP≥0 (u1(z))
. (72)

If you pick a random walk of fixed length n, the coefficient en repre-
sents the probability that this walk is an excursion. In this spirit E(z)
is the generating function for the ratio of excursions among all walks.

This nice formula has a natural combinatorial interpretation as
SEQ

(
zP≥0

(
Ẽ(z)p−1z

))
, i.e. an excursion (in the reflection-absorption

model) is a sequence of arches (i.e. an excursion touching 0 just at its
two ends), and each arch begins with a positive jump +k, which has
to be compensated by k excursions (strictly speaking, shifted excur-
sions: from altitude j to altitude j, for j from 1 to k, thus not touching
0, and thus in bijection with excursions, counted by Ẽ(z) and defined
in (66)) followed each by a negative jump −1.

Asymptotics

In [19, Equation (42)] it was shown that the principal branch u1(z)
possesses the following asymptotic expansion for z → ρ−, where ρ

is the structural radius defined as ρ = 1
P(τ) and τ > 0 is called the

structural constant defined as the unique positive root of P′(τ) = 0
(note that P is a convex function): For z→ ρ− we have

u1(z) = τ −
√

2
P(τ)

P′′(τ)

√
1− z/ρ +O(1− z/ρ). (73)
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As this expansion will appear repeatedly in the sequel we define

C :=
√

2 P(τ)
P′′(τ) . The singularities of (72) depend on the roots of the

denominator and on the singular behavior of u1(z) which are treated
in the following

Lemma 4.2.1 (Singularity of the denominator). Let u1(z) be the unique
small branch of the kernel equation 1− zP(u) = 0. Then the equation 1−
zP≥0 (u1(z)) = 0 has at most one solution in z ∈ (0, ρ], which we denote by
ρ1.

Proof. In [19] the authors show that u1(z) is monotonically increasing
on [0, ρ) and gets singular at ρ as its first derivative does not exist.
Furthermore, it is shown that at the singularity z = ρ the function
attains the finite value u1(ρ) = τ. The polynomial P≥0 (u) has only
positive coefficients, which directly implies that it is also monoton-
ically increasing on [0, ρ]. Note that z = 0 cannot be a solution as
P≥0 (u) is bounded. Rearranging the equation gives

P≥0 (u1(z)) =
1
z

, for z ∈ (0, ρ]. (74)

As the right-hand side is monotonically increasing but the left-hand
side is monotonically decreasing on (0, ρ], the claim follows.

Figure 19 shows the three possible configurations. The naming con-
vention is adopted from its use in functional composition schemes
in [85, Chapter VI.9]. On [0, ρ] the maximum of the left-hand side in
(74) is P≥0 (τ) which is attained at ρ whereas the minimum of the right-
hand side is 1/ρ = P(τ). If P(τ) ≤ P≥0 (τ) it follows from Lemma 4.2.1
that there exists a unique value ρ1 where they intersect, whereas for
P(τ) > P≥0 (τ) such a value cannot exist. Note that this is also a con-
sequence of the intermediate value theorem, as all involved functions
are continuous.

(a) supercritical case (b) critical case (c) subcritical case

Figure 19: Different singular behaviors of the generating function of excur-
sions. The increasing function represents P≥0 (u1(z)) where the
decreasing function is 1/z. The dominant singularity is either lo-
cated at the intersection or at ρ.
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Theorem 4.2.2 (Asymptotics of excursions). Let τ be the structural con-
stant determined by P′(τ) = 0, τ > 0, let ρ = 1/P(τ) be the struc-
tural radius and ρ1 defined as in Lemma 4.2.1. Define the constants α =

(P≥0 (u1(z)))′
∣∣∣
z=ρ1

, γ = 1
αρ2

1+1 , and κ = Cρ(P≥0 )′(τ). The excursions in

the reflection-absorption model possess the following asymptotic expansion:

E(z)=





γ(1− z/ρ1)
−1 +O(1), supercr. case: P(τ) < P≥0 (τ),

1
κ (1− z/ρ)−1/2 +O(1), critical case: P(τ) = P≥0 (τ),

E(ρ)− E(ρ)2κ(1− z/ρ)1/2
subcr. case: P(τ) > P≥0 (τ).

+O(1− z/ρ),

(75)

Remark 11. Defining ρ≥0 = 1/P≥0 (τ) as the structural reflection radius
the previous statements can also be formulated in terms of the struc-
tural radii ρ and ρ≥0 . By doing so the inequality signs which charac-
terize the critical behavior flip.

Proof. We are going to apply singularity analysis to extract the asymp-
totic behavior of E(z). The main idea is to expand E(z) in a small
vicinity of the dominant singularity into standard functions whose
asymptotic expansions are known, see e.g. [85, Figure VI.5]. From
(72) we deduce that there are three different cases which we have to
distinguish (compare Figure 19).

(a) Supercritical case: P(τ) < P≥0 (τ)

In the supercritical case the denominator gets 0 before u1(z) gets
singular which implies ρ1 < ρ. Hence, u1(z) is regular at ρ1. For
the remainder of this case we fix a small neighborhood of ρ1 de-
noted by z ∼ ρ1 where all subsequent expansions are performed
in. Then, u1(z) possesses the following Taylor expansion at ρ1:

u1(z) = u1(ρ1) + u′1(ρ1)(z− ρ1) +O((z− ρ1)
2).

Using this expansion we get

P≥0 (u1(z)) = P≥0 (u1(ρ1))︸ ︷︷ ︸
=1/ρ1

+
(

P≥0 (u1(z))
)′∣∣∣∣

z=ρ1︸ ︷︷ ︸
=:α

(z− ρ1)

+O((z− ρ1)
2).

Hence, the denominator of (72) has the following asymptotic ex-
pansion

1− zP(u1(z)) = (1 + αρ2
1)

(
1− z

ρ1

)
+O

(
(1− z/ρ1)

2) .

For brevity we introduce the constant γ := 1/(αρ2
1 + 1), which

will appear repeatedly in the subsequent discussion. Note that
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we have γ > 0 because of α ≥ 0. This yields the asymptotic
expansion

E(z) =
γ

1− z/ρ1
+O(1− z/ρ1). (76)

(b) Critical case: P(τ) = P≥0 (τ)

In the critical case both singularities coincide with each other,
i.e. ρ1 = ρ. Hence, using (73) we derive

E(z) =
1

1− zP≥0
(
τ − C

√
1− z/ρ +O(1− z/ρ)

)

=
1

1− ρ P≥0 (τ)︸ ︷︷ ︸
=1/ρ

+ ρC(P≥0 )′(τ)︸ ︷︷ ︸
=:κ

√
1− z/ρ +O(1− z/ρ)

=
1

κ
√

1− z/ρ
(
1 +O

(√
1− z/ρ

))

=
1

κ
√

1− z/ρ
+O

(√
1− z/ρ

)
, (77)

with κ := Cρ(P≥0 )′(τ). This constant will also appear repeatedly
in the ongoing discussion. For the asymptotic expansion in the
second line we used that P≥0 (u) is regular at τ as it is a polyno-
mial.

(c) Subcritical case: P(τ) > P≥0 (τ)

In the subcritical case the singularity of u1(z) is responsible for
the singularity of E(z), as by Lemma 4.2.1 the denominator of
(72) remains strictly positive on [0, ρ). Therefore the asymptotic
expansion is easily derived from (73) as:

E(z) =
1

1− zP≥0 (τ − C
√

1− z/ρ +O(1− z/ρ))

=
1

1− ρP≥0 (τ) + κ
√

1− z/ρ +O(1− z/ρ)
.

In the first line we applied a Taylor series expansion to P≥0 (u) at
u = τ. As a next step we use that E(ρ) = 1/(1− ρP≥0 (τ)) and get

=
E(ρ)

1 + κE(ρ)
√

1− z/ρ +O(1− z/ρ)

= E(ρ)− E(ρ)2κ
√

1− z/ρ +O(1− z/ρ). (78)

This proves all possible cases.

From the asymptotic expansions in Theorem 4.2.2 it is straightfor-
ward to get the following
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Corollary 4.2.3. Let ε > 0. The asymptotic expansions of the coefficients
en = [zn]E(z) are

en =





γρ−n
1 +O ((ρ1 + ε)−n) , supercr. case: P(τ) < P≥0 (τ),

1
κ

ρ−n
√

πn

(
1 +O

( 1
n

))
, critical case: P(τ) = P≥0 (τ),

E(ρ)2 κ
2

ρ−n
√

πn3

(
1 +O

( 1
n

))
, subcr. case: P(τ) > P≥0 (τ).

(79)

Remark 12. When interpreting the asymptotics of en one has to recall
that E(z) is in general no probability generating function. The weights
en are to be interpreted with respect to the probability space of all pos-
sible walks (compare Definition 4.1.4). A normalization by the ratio
of meanders, derived in Section 4.4 would give the corresponding
probability generating function.

However, in the case of the reflection model E(z) is the probability
generating function of the model, because there are no paths that
would go below the x-axis.

Remark 13. The reflection-absorption model of Banderier-Flajolet is a
special case of the subcritical case. This model is defined by P0(u) =
P(u). Hence, we get

P(u) = p−cu−c + . . . p−1u−1 + p0 + p1u + . . . pdud
︸ ︷︷ ︸

=P≥0 (u)

,

with p−c 6= 0 and pd 6= 0. Therefore, independent on the value of τ

we always have P(τ) > P≥0 (τ).

Limit laws for the number of returns to zero of excursions

Recall that an arch is defined as an excursion of size > 0 whose only
contact with the x-axis is at its end points. An excursion is naturally
decomposed into a sequence of arches, as seen in (68). As a direct
consequence we derived a representation for the generating function
of arches in (69). For Łukasiewicz walks it is then straightforward to
derive its asymptotics.

Proposition 4.2.4 (Asymptotics of arches). Let κ = Cρ(P≥0 )′(τ). For a
Łukasiewicz walk, the number of arches satisfies for n→ ∞

[zn]A(z) =
κρ−n

2
√

πn3
+O

(
1

n5/2

)
.

Proof. Define λ := P≥0 (τ)
P(τ) = ρ

ρ≥0
, then by (72) we get for z→ ρ−

A(z) = 1− 1
E(z)

= zP≥0 (u1(z)) (80)

= ρP≥0 (τ)− Cρ(P≥0 )′(τ)
√

1− z/ρ +O(1− z/ρ)

= λ− κ
√

1− z/ρ +O(1− z/ρ). (81)
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From singularity analysis (see Figure 60) we know that [zn]
√

1− z =

−1/(2
√

πn3)+O(n−5/2). The n-th coefficient of the error term in (81)
is also of the same order O(n−5/2) as due to (73) u1(z) is a Puiseux-
series in

√
1− z/ρ.

A return to zero is a vertex of a path of altitude 0 whose abscissa is
positive, i.e. the number of returns to zero is the number of times the
abscissa is touched again after leaving the origin. In order to count
the number of returns to zero of excursions of fixed size n, we can
reverse the construction above for the generating function of arches.
The generating function of excursions with exactly k returns to zero
is equal to A(z)k. As stated in [19], for any fixed k, this function
also has a singularity of the square root type and is amenable to
singularity analysis. Hence, we are able to derive the probability pn,k
that a random excursion of size n has exactly k returns to zero for any
fixed k:

pn,k := P[size = n, # returns to zero = k] =
[zn]A(z)k

[zn]E(z)
. (82)

Let Xn be the random variable for the number of arches among all
excursions of size n, which is equivalent to the number of returns to
zero of a random excursions of size n.

Theorem 4.2.5 (Limit laws for returns to zero of excursions). Consider
the model of Łukasiewicz walks. Let τ be the structural constant determined
by P′(τ) = 0, τ > 0, ρ = 1/P(τ) be the structural radius. Additionally, let
α = (P≥0 (u1(z)))′

∣∣∣
z=ρ1

, γ = 1
αρ2

1+1 , and κ = Cρ(P≥0 )′(τ). Furthermore,

we introduce α2 = (P≥0 (u1(z)))′′
∣∣∣
z=ρ1

.

The number Xn of returns to zero of a random excursion of size n admits
a limit distribution:

1. In the supercritical case, i.e. P(τ) < P≥0 (τ),

Xn − µn
σ
√

n
, µ = γ, σ = γ3(α2ρ3

1 − 2) + 3γ2 − γ,

converges in law to a standard Gaussian variable N(0, 1):

lim
n→∞

P

(
Xn − µn

σ
√

n
≤ x

)
=

1√
2π

∫ x

−∞
e−y2/2dy.

2. In the critical case, i.e. P(τ) = P≥0 (τ), the normalized random vari-
able

κ√
2n

Xn,

converges in law to a Rayleigh distributed random variable defined by
the density xe−x2/2:

lim
n→∞

P

(
κ√
2n

Xn ≤ x
)
= 1− e−x2/2.
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3. In the subcritical case, i.e. P(τ) > P≥0 (τ), the limit distribution of
Xn − 1 is a discrete limit law, namely the negative binomial distribu-
tion NB(2, 1− λ), with λ = ρ/ρ≥0 :

lim
n→∞

P[Xn − 1 = k] = (k + 1)λk(1− λ)2, ∀k ≥ 0.

Proof. The proof is given in Section 4.6 and the respective asymptotic
representations of the expected values and variances are stated in
formulae (100) to (103) therein.

Now that we got the asymptotics and limit laws for excursions, we
continue to analyze lattice paths constrained in a different way in the
next section dedicated to bridges.

4.3 bridges

Recall that a bridge is a simple path that starts in the origin and ends
on the x-axis. We define the generating function of bridges in the
reflection-absorption model as

B(z) := ∑
n≥0

bnzn := W0(z).

Generating function of bridges

In this section we derive the generating function of bridges and give a
combinatorial proof of the result. An analytic proof is given in Section
4.6. It gives an equivalent derivation of Formula (86), while the final
simplifications leading to (83) stay the same.

Theorem 4.3.1 (Generating function of bridges). The generating func-
tion of bridges B(z) in the reflection-absorption model of Łukasiewicz walks
relative to a simple set of steps S for altitudes k 6= 0 and a simple set of steps
S0 for altitude k = 0 with jump polynomials P(u) and P≥0 (u), respectively,
is given by

B(z) =
1

1− z
(

P≥0 (zp−1Ẽ(z)) + zp0,−1Ẽ(z)(P≥)′(zp−1Ẽ(z))
) , (83)

where B̃(z) and Ẽ(z) are the generating functions of bridges and excursions
in the Banderier-Flajolet model, with respect to the step set S and the jump
polynomial P(u).

This formula possesses a very nice and natural combinatorial in-
terpretation. A bridge is a sequence of general arches with generating
function Ag(z), which we define as bridges which touch the x-axis
only at its two end points. These split into the sets of arches counted
by A(z) = zP≥0 (zp−1Ẽ(z)) = zP≥0 (u1(z)), which are a subclass of
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excursions and were already analyzed in the reflection-absorption
model, and negative arches A−(z), which we define as the subclass
of bridges, whose first step is negative and which touch the x-axis
only at its two endpoints. Hence, we have

B(z) =
1

1− Ag(z)
=

1
1− (A(z) + A−(z))

, (84)

and we see that the generating function of negative arches is given by

A−(z) = z2 p0,−1Ẽ(z)(P≥)′(zp−1Ẽ(z)) = z
p0,−1

p−1
u1(z)(P≥)′(u1(z)).

Note that the structure of A−(z) has also a natural interpretation,
analogous to the one that is used in the combinatorial proof of Theo-
rem 4.3.1. We just remark that the derivative originates from a point-
ing operator used to mark the possibilities to jump through or to the
x-axis.

Corollary 4.3.2. Under the same conditions as stated in Theorem 4.3.1 the
generating function of bridges in the reflection-absorption model is also given
by

B(z) =
B̃(z)

p0,−1
p−1

+ B̃(z) (1− zP0(u1(z)))
. (85)

Proof. We start from Equation (83) and apply (87). Thereby we get

1/B(z) = 1− z
(

P≥0 (u1(z)) +
p0,−1

u1(z)︸ ︷︷ ︸
=P0(u1(z))

− p0,−1

p−1

u1(z)
z2u′1(z)︸ ︷︷ ︸
=1/(zB̃(z))

)
,

which directly implies the desired form.

This last representation (85) nicely shows the perturbation intro-
duced by the new set of rules at altitude 0. We notice that if P0(u) =
P(u) we directly get B(z) = B̃(z).

Proof of Theorem 4.3.1. We are going to give a recursive construction
of bridges. In particular, we introduce an algorithm which transforms
bridges of the Banderier-Flajolet model into bridges of the reflection-
absorption model by correcting one “wrong” step in each iteration.
For the purpose of this proof we denote the set of bridges and ex-
cursions of the Banderier-Flajolet model with step set S , by B and E ,
respectively.

Let us define the set T as the working set of the algorithm. We
start with all bridges from the Banderier-Flajolet model, i.e. T := B.
In the next step we take all elements of T and look for the first jump
starting at altitude 0 which is not part of S0. If such a jump exists we
decompose it into a bridge of the reflection-absorption model (which
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B A ˜B

−1 Ẽ
−1 Ẽ

−1 Ẽ

+k

Ẽ −1

Ẽ −1

Ẽ −1

Figure 20: Tansformation of bridges from the Banderier-Flajolet model to
bridges of the reflection-absorption model (top); decomposition
of general arches (bottom).

is the part left of the illegitimate jump), the general arch starting with
this jump and a bridge of B (which is the part right of the arch). This
decomposition is always possible as T and B contain the empty walk.
It is depicted the top of Figure 20.

For all these paths we replace the arch by an arch starting with a
step out of S0 and all other steps out of S . This is achieved by deleting
all paths of the previous decomposition and adding the ones with a
corrected version.

This so far translates into the following equation:

B(z) = B̃(z)︸︷︷︸
all BF-bridges

− [S-arch]B̃(z)︸ ︷︷ ︸
delete first S-arch

+ [S0-arch]B̃(z)︸ ︷︷ ︸
add new S0-arch

+ . . .

After transforming all bridges with at least one return to zero, we
repeat the previous step in order to correct all bridges with at least
two returns to zero and apply this step repeatedly. This leads to the
following scheme:

B(z) = B̃(z) + ([S-arch]− [S0-arch]) B̃(z)︸ ︷︷ ︸
bridges with ≥ 1 arch

+ ([S-arch]− [S0-arch])2 B̃(z)2
︸ ︷︷ ︸

bridges with ≥ 2 arches

+ . . .

=
B̃(z)

1− ([S-arch]− [S0-arch]) B̃(z)
.

Note that this scheme applies an inclusion-exclusion argument. For
example in the second step all bridges with at least two arches are
corrected under the condition that all bridges with at least one arch
have already been corrected. Hence, we subtract the previous correc-
tion and add a new one. This is the reason for the powers in the
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correction scheme. Essentially we perform an “arch decomposition”
(compare [85, pp. 320]) of each walk and correct arch by arch.

In the final step we have to analyze the arch correction process. We
distinguish two cases. Firstly, consider an arch that starts with a non-
negative jump, i.e. the first step is of height k ∈ S \ {−1}. Now, as the
jump−1 is the only possible one to return to the x-axis, this one has to
be used at least k times. Therefore we perform a unique first passage
decomposition on the jumps −1: After the initial jump to altitude k
follows a possible excursion of the Banderier-Flajolet model using the
step set S and a final jump −1 to altitude k− 1. This is repeated until
we reach altitude 0 again. Thereby we construct all possible arches
with an initial jump of height k. Finally we replace all arches with an
initial jump out of S by the arches with an initial jump out of S0.

This description translates directly into the generating function

d0

∑
i=0

zp0,−1

(
zp−1Ẽ(z)

)i
−

d

∑
i=0

zpi

(
zp−1Ẽ(z)

)i
= z

(
P≥0 −P≥

)
(zp−1Ẽ(z)).

Secondly, consider an arch with an initial jump −1. In this case
it might happen that a jump crosses the x-axis instead of hitting it.
However, the jumps of size −1 are still the only possibilities to move
downwards. Therefore after crossing the x-axis we are in the previous
case again, and the walk will definitively hit the x-axis. Let k be the
size of the jump which crosses the x-axis. Note that crossing might
also mean returning. Hence, crossing might happen at the altitudes
−k,−k + 1, . . . ,−1. Hence, the walk must reach these altitudes first.

On the part of the walk below the x-axis we perform a last passage
decomposition, i.e. we decompose the walk with respect to the last
times it moves from altitude −i to −i− 1. Before this last jump −1 it
starts on altitude −i and returns to altitude −i but never goes above
altitude −i. Hence, these pieces are in bijection to excursions which
always stay below the x-axis. These excursions are in bijection to nor-
mal excursions, which can be seen by flipping them with respect to
the x-axis and traversing them in reversed time.

Summarizing, an arch with an initial jump of size −1 possesses a
unique jump of size k which crosses the x-axis. This crossing step
might start at altitude −i for i ∈ {1, 2, . . . , k}. Then on the negative
part we have i jumps −1 followed by a possible excursion of the
Banderier-Flajolet model and on the positive part we have k− i jumps
−1 preceded by excursions of the Banderier-Flajolet model. Such a
decomposition is shown in the bottom part of Figure 20. Hence, in
total we have a unique decomposition into k jumps −1, k excursions
and one jump of size k starting at altitude −i. The dependency on
k translates into the combinatorial construction of pointing (see [85,
I.6.2]) and gives u(P≥)′(u) with u = zp−1Ẽ(z).
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Finally, we replace the initial jump −1 from S by −1 from S0. This
translates into

z
p0,−1 − p−1

p−1

[
u(P≥)′(u)

]
u=zp−1Ẽ = z2Ẽ(p0,−1 − p−1)(P≥)′(zp−1Ẽ).

Note that we have to divide by p−1 because the chosen step which
crosses the x-axis is not of size p−1. Combining the last results gives

B(z) =
B̃(z)

1−zB̃(z)
(
(P≥0 − P≥)(Ũ)+zẼ(z)(p0,−1−p−1)(P≥)′(Ũ)

) , (86)

Ũ(z) = zp−1Ẽ(z).

This expression is simplified by the kernel equation. We immediately
see that

P≥(u1) =
1
z
− p−1

u1
,

for 0 < |z| < ρ. By differentiation we get

(P≥)′(u1) =
p−1

u2
1
− 1

z2u′1
, (87)

in the same domain. As c = 1 we can use (23) to simplify zp−1Ẽ(z) =
u1(z). Dividing the numerator by B̃(z) yields

−z
(
(P≥0 )(u1(z)) + zp0,−1Ẽ(z)(P≥)′(u1(z))

)

+
1

B̃(z)
+ z

(
P≥(u1(z)) + u1(z)(P≥)′(u1(z))

)

︸ ︷︷ ︸
=:R(z)

.

Using the representations for B̃(z) = zu′1(z)/u1(z) from (20) and the
previous results we get

R(z) =
u1

zu′1
+ z

(
1
z
− p−1

u1
+ u1

(
p−1

u2
1
− 1

z2u′1

))
= 1,

which shows (83).

Asymptotics

The asymptotic behavior of the coefficients of B(z) depends on the
location of the singularity of the generating function. Therefore, the
following lemma gives the root or the singularity of the denominator
of (83).

Lemma 4.3.3 (Singularity of the denominator). Let u1(z) be the unique
small branch of the kernel equation 1− zP(u) = 0. Then the equation 1−
zQ(z) = 0 with Q(z) = Ag(z)/z = P≥0 (u1(z))+

p0,−1
p−1

u1(z)(P≥)′(u1(z))
has at most one solution in z ∈ (0, ρ], which we denote by ρB.
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Proof. The fact that Q(z) is monotonically increasing on (0, ρ] as it
is the composition of monotonically increasing functions yields the
result. For more details see the proof of Lemma 4.2.1.

Depending on the existence and the location of ρB we define three
different cases.

Lemma 4.3.4. The three possible cases are characterized by

Supercritical case: ρ > ρB ⇔ P(τ) < P0(τ),

Critical case: ρ = ρB ⇔ P(τ) = P0(τ),

Subcritical case: ρB undef ⇔ P(τ) > P0(τ).

Proof. We use the shorthand u1 ≡ u1(z). The kernel equation implies
that 1/z = P(u1) for z ∈ [0, ρ]. Hence we get,

P(u1)−
(

P≥0 (u1) +
p0,−1

p−1
u1(P≥)′(u1)

)
= 0.

As this equation only depends on u1 which is monotonically increas-
ing, it can equivalently be solved for u := u1 ∈ [0, τ]. Additionally,
due to cancellations for the terms of p−1 and p0,−1 in P(u) and P0(u)
we get

P(u)−
(

P0(u) +
p0,−1

p−1
uP′(u)

)
= 0.

Note that the term in brackets is monotonically increasing on [0, τ],
because it is nothing else than Q(u−1

1 (u)), whereas P(u) is monoton-
ically decreasing with a unique positive minimum at τ. Thus, evalu-
ating the left-hand side at u = τ and considering its parity tells us if
ρB exists and in which case we are in:

P(τ)− P0(τ)





< 0, supercritical case,

= 0, critical case,

> 0, subcritical case.

This shows the claim.

An analogous version of the previous lemma with P≥0 instead of P0

is obvious in the case of excursions. The naming convention is again
motivated by the fact that B(z) is a composition of two generating
functions. Then the location of their singularities defines the name
giving composition scheme (cf. [85, Chapter VI.9]). For more details
see Figure 19.

For the asymptotic expansions around z = ρ the following lemma
will be useful:
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Lemma 4.3.5. Let τ be the structural constant determined by P′(τ) = 0,
τ > 0. Then for c = 1

(P≥)′(τ) =
p−1

τ2 ,

(P≥)′′(τ) = P′′(τ)− 2p−1

τ3 .

Proof. Let us consider the complete Laurent polynomial P(u), then
we get for the derivatives

(P≥)′(u) = P′(u) +
p−1

u2 ,

(P≥)′′(u) = P′′(u)− 2p−1

u3 .

Evaluating these equations at u = τ yields the results.

Theorem 4.3.6 (Asymptotics of bridges). Let τ be the structural constant
determined by P′(τ) = 0, τ > 0, let ρ = 1/P(τ) be the structural radius
and ρB defined as in Lemma 4.3.3. Then the constants γB = 1

1+ρ2
BQ′(ρB)

,

and κB = CρP′0(τ) +
p0,−1
p−1

2τ
C are positive and the bridges in the reflection-

absorption model possess the following asymptotic expansion:

B(z) =





γB(1− z/ρB)
−1 +O(1), supercritical case: ρ > ρB,

1
κB
(1− z/ρ)−1/2 +O(1), critical case: ρ = ρB,

B(ρ)− B(ρ)2κB(1− z/ρ)1/2
subcritical case: ρ < ρB.

+O(1− z/ρ),

(88)

Proof (Sketch). The same techniques as used in the proof of Theo-
rem 4.2.2 combined with Lemma 4.3.5 lead to the result. To avoid
repetition we omit the details.

We immediately recognize the same patterns as in the asymptotic
expansions of the generating function of excursions E(z). This is no
surprise as excursions are a subclass of bridges. The above constants
directly transform to the constants given in the excursions case.

Limit laws for the number of returns to zero of bridges

Let us come back to equation (84) and derive the asymptotic number
of general arches. We will state this proof in detail, as it shows in
a few lines how easily the proofs from Section 4.2 generalize from
excursions to bridges.

Proposition 4.3.7 (Asymptotics of general arches). Let κB = CρP′0(τ)+
p0,−1
p−1

2τ
C . For a Łukasiewicz walk, the number of general arches satisfies for

n→ ∞

[zn]Ag(z) =
κB

2
ρ−n
√

πn3
+O

(
1

n5/2

)
.
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Proof. Define λB := P0(τ)
P(τ) , then by (83) and (84) we get for z→ ρ−

Ag(z) = 1− 1
B(z)

= zQ(u1(z))

= ρP0(τ)− Cρ

(
P′0(τ) +

p0,−1

p−1
τP′′(τ)

)√
1− z/ρ +O(1− z/ρ)

= λB − κB
√

1− z/ρ +O(1− z/ρ).

Finally, singularity analysis (see [85, Fig. VI.5]) yields the result.

Theorem 4.3.8 (Limit laws for returns to zero of bridges). Let τ be
the structural constant determined by P′(τ) = 0, τ > 0, ρ = 1/P(τ) be
the structural radius. Additionally, let γB = 1

1+ρ2
BQ′(ρB)

, κB = CρP′0(τ) +
p0,−1
p−1

2τ
C , and ρB and Q(u) are defined in Lemma 4.3.3.

The number Xn of returns to zero of a random bridge of size n admits a
limit distribution:

1. In the supercritical case, i.e. ρ > ρB,

Xn − µn
σ
√

n
, µ = γB, σ = γ3

B
(
Q′′(ρB)ρ

3
B − 2

)
+ γ2

B(ρB + 2)− γB,

converges in law to a Gaussian variable N(0, 1):

lim
n→∞

P

(
Xn − µn

σ
√

n
≤ x

)
=

1√
2π

∫ x

−∞
e−y2/2dy.

2. In the critical case, i.e. ρ = ρB, the normalized random variable
κB√
2n

Xn,

converges in law to a Rayleigh distributed random variable defined by
the density xe−x2/2:

lim
n→∞

P

(
κB√
2n

Xn ≤ x
)
= 1− e−x2/2.

3. In the subcritical case, i.e. ρ < ρB, the limit distribution of Xn −
1 is a discrete limit law, namely the negative binomial distribution
NB(2, 1− λB), with λB = P0(τ)/P(τ):

lim
n→∞

P[Xn − 1 = k] = (k + 1)λk
B(1− λB)

2, ∀k ≥ 0.

Proof (Sketch). In order to analyze the number of returns to zero we
introduce a bivariate generating function B(z, u) where z marks the
length of the walks and u marks the number of general arches given
by Ag(z). Using (84) we define

B(z, u) =
1

1− uAg(z)
=

1
1− uzQ(z)

=
1

1− uz
(

P≥0 (u1) +
p0,−1
p−1

u1(P≥)′(u1)
) .
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From now on the analysis is analogous to the one in the case of re-
turns to zero of excursions. The only difference is that instead of
P≥0 (u1(z)) the function Q(z) is used. Essentially, this is a more general
form of the case of excursions, see Theorem 4.2.5. Thus, the structure
of the result is the same, only the constants are different. However,
restricting this result to excursions yields the same constants.

In order to continue our analysis with meanders, we need to in-
troduce a new parameter: the drift. The next section will introduce
and investigate its influence on our model. As in the previous sec-
tions we first derive their asymptotic number. Using this knowledge
we compute their asymptotic length, interpret the absorption model
restricted to meanders, and derive the limit law of their final altitude.
Here we will again encounter a Gaussian, a Rayleigh and a discrete
limit distribution, but also one of the half-normal type.

4.4 meanders

A meander is the natural generalization of an excursion, as it is de-
fined as a directed walk confined to the upper half plane. Hence, the
restriction to end on the x-axis is dropped. We want to investigate the
number of meanders or equivalently the ratio of meanders among all
walks, as we are working with probability generating functions.

From (50) we get the bivariate generating function of meanders as

F(z, u) =
1− z

(
P(u)− P≥0 (u)

)
E(z)

1− zP(u)
, (89)

E(z) =
1

1− zP≥0 (u1(z))
.

Remark 14. Firstly, let us compare this formula with the one for mean-
ders in the Banderier-Flajolet model. By (24) it is given by F̃(z, u) =

∏c
j=1(u− uj(z))/(uc(1− zP(u))), and by (23) the generating function

of excursions is given by Ẽ(z) = (−1)c+1(∏c
j=1 uj(z))/(zp−1). Hence,

for Łukasiewicz walks Formula (89) transforms into

F(z, u) =
u
(

1− z
(

P(u)− P≥0 (u)
)

E(z)
)

u− u1
F̃(z, u)

=
1− z

(
P(u)− P≥0 (u)

)
E(z)

1− z (P(u)− P≥(u)) Ẽ(z)
F̃(z, u).

This representation nicely illustrates the perturbation generated at
altitude k = 0. If we set P0(u) = P(u) we obviously also get E(z) =
Ẽ(z) and the fraction in front of F̃(z, u) is equal to 1.

Secondly, we want to give a direct combinatorial interpretation of
Formula (89). Note that W(z, u) = 1/(1− zP(u)) is the generating
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function of unconstrained walks generated by the jump polynomial
P(u). Hence, we can rewrite the equation into

F(z, u) = W(z, u)− E(z)z
(

P(u)− P≥0 (u)
)

W(z, u).

Behind this formula lies an iterative algorithm which constructs me-
anders step-by-step. In particular it corrects wrong steps at altitude
0: We start with all unconstrained walks represented by W(z, u). So
far only the walk of length 0 is correct. Now assume that walks up
to length n are correct. An incorrect walk of length n + 1 consists of
an excursion of the reflection absorption model, a jump P(u) and
any walk represented by W(z, u), where this decomposition is in
this order. Hence, replacing P(u) by P≥0 (u) gives a correct walk of
length n + 1. This inductive argument resembles the construction in
the proof of Theorem 4.1.5 and gave the motivation for the proof of
Theorem 4.3.1.

The generating function of meanders is given by the substitution
u = 1 in (89):

M(z) = ∑
n≥0

mnzn := F(z, 1) =
1

1− z
−
(

1− P≥0 (1)
) zE(z)

1− z
. (90)

In the reflection model we have P≥0 (1) = 1, which confirms that
F(z, u) is already the probability generating function of all walks in
this case, because our probability space consists only of meanders.
However, the absorption model is characterized by P≥0 (1) < 1. This
means that some paths may turn below the abscissa and are excluded
by the upper half plane restriction, but they still belong to the proba-
bility space.
Remark 15. Formula (90) possesses a straightforward combinatorial
interpretation, which can also be used to derive it in the first case.
A walk can only be killed (or absorbed) after hitting the x-boundary,
hence the absorption process only happens for excursions. In this
context let en be the probability that a random walk of length n is
an excursion. A walk survives with probability P≥0 (1) and is killed
with probability 1− P≥0 (1). The probability mn+1 which describes the
number of meanders of length n + 1 among all walks of length n + 1,
is given by all surviving walks of smaller length. Thus, we get the
recurrence

mn+1 = 1−
(

1− P≥0 (1)
) n

∑
k=0

ek, for all n ≥ 0.

Multiplying by zn+1 and summing over all n ≥ 0 yields Formula (90).
Before we continue, we need to perform a more thorough investi-

gation of some basic properties concerning the reflection-absorption
model. We will see that some configurations can only appear in the
reflection model whereas others only exist in the absorption model.
Most importantly, the behavior of meanders is strongly connected
with a new parameter called the drift.
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Drift

Additionally to the structural constant ρ the drift defined as

δ = P′(1),

and its related value δ≥0 , the drift at 0

δ≥0 =
(

P≥0
)′

(1),

will play a major role. They can be interpreted probabilistically as
the expected jump sizes of a single step. We start to investigate the
structural radius ρ.

Lemma 4.4.1 (Structural radius). Let P(u) be the jump polynomial with
probabilistic weights. Then ρ ≥ 1, where ρ = 1 if and only if τ = 1.

Proof. As P′′(z) > 0 for all z > 0, it follows that P(u) is a convex
function and has a unique minimum at τ > 0. As P(1) = 1 it follows
that P(τ) ≤ 1. This implies ρ = 1/P(τ) ≥ 1.

If ρ = 1 it obviously holds that P(τ) = 1. The fact that τ is the
unique positive minimum of P(u) and that P(1) = 1 implies that
τ = 1. The converse is trivially true.

In the following lemma we see that the drift δ and the structural
constant τ are strongly related.

Lemma 4.4.2 (Drift and structural constant). Let δ = P′(1) be the drift
and τ > 0 be the unique root of P′(τ) = 0, then

δ > 0⇔ τ < 1,

δ < 0⇔ τ > 1,

δ = 0⇔ τ = 1.

For δ > 0 we have u1(1) < 1 and for δ ≤ 0 we have u1(1) = 1, where
u1(z) is the principal small branch of the kernel equation.

Proof. P(u) is a convex function and due to P′(τ) = 0 its unique
positive minimum is attained at τ > 0. Hence, it is monotonically
decreasing on [0, τ] and monotonically increasing on [τ, ∞). Further-
more, we know that P(1) = 1 and the first three claims follow from
the monotonicity (compare Figure 21).

Note that from the kernel equation (52) it follows that P(u1(1)) = 1.
If δ > 0 we have τ < 1 and ρ > 1 and because u1(z) is monotonically
increasing we get

u1(1) < u1(ρ) = τ < 1.

For δ ≤ 0 we have 1 ∈ (0, τ]. As P(u) is one-to-one on (0, τ] and
P(1) = 1 we directly get u1(1) = 1.
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(a) δ < 0 (b) δ = 0 (c) δ > 0

Figure 21: The effects of δ = P′(1) on τ.

Furthermore, there is also a relation between δ and ρ1, the singular-
ity of the E(z) in the supercritical case (see Lemma 4.2.1).

Lemma 4.4.3 (Drift and supercritical singularity). We have ρ1 ≥ 1,
where ρ1 > 1 for either δ > 0 or in the absorption model. In the other two
cases of the reflection model, namely for δ < 0 or δ = 0, we have ρ1 = 1.

Proof. The following inequality chain holds due to monotonicity

P≥0 (u1(z)) ≤ P≥0 (u1(1))
(a)
≤ P≥0 (1)

(b)
≤ 1 ≤ 1

z
for all z ∈ [0, 1].

Observe that (a) is strict if δ < 0 and that (b) is strict in the absorption
model. In the last two cases we know therefore that P≥0 (u1(z)) 6= 1/z
for all z ∈ [0, 1] and therefore ρ1 > 1.

If δ ≤ 0 we know from Lemma 4.4.2 that u1(1) = 1 and therefore
P≥0 (u1(1)) = 1 since we are dealing with the reflection model. This
finally implies ρ1 = 1.

The results of Lemma 4.4.3 are summarized in Table 7.

δ < 0 δ = 0 δ > 0

reflection model ρ1 = 1 ρ1 = 1 ρ1 > 1

absorption model ρ1 > 1 ρ1 > 1 ρ1 > 1

Table 7: Values of ρ1 in the supercritical case

Finally, note that the zero and negative drift cases need a more
careful treatment.

Lemma 4.4.4 (Zero drift). The case δ = 0 can only appear in the critical
case of the reflection model or the subcritical case of the absorption model.

Proof: If δ = 0 we know that τ = 1. As P≥0 (u) is the extraction of
P0(u), which has probabilistic weights, we must have P≥0 (1) ≤ 1. If
we look at the different cases we get the desired results:
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• Supercritical case: 1 = P(τ) < P≥0 (τ) = P≥0 (1) ≤ 1, contradic-
tion;

• Critical case: 1 = P(τ) = P≥0 (τ) = P≥0 (1), ref. model;

• Subcritical case: 1 = P(τ) > P≥0 (τ) = P≥0 (1), abs. model. �
The results of Lemma 4.4.4 are summarized in Table 8.

δ = 0 supercritical critical subcritical

reflection model no yes no

absorption model no no yes

Table 8: Possible cases for δ = 0 in both models

Lemma 4.4.5 (Negative drift). If δ < 0 in the reflection model only the
supercritical case is possible.

Proof. We know that P≥0 is monotonically increasing, but as δ < 0
the function P is monotonically decreasing on [0, τ] with the unique
minimum P(τ). The critical condition P(τ) = P≥0 (τ) as well as the
subcritical condition P(τ) > P≥0 (τ) imply that P≥0 (u) < P(u) for all
u ∈ [0, τ]. But in the reflection model we have P≥0 (1) = 1 = P(1)
which yields a contradiction as τ > 1 for δ < 0 (see Figure 22).

Figure 22: Example of a supercritical case with drift δ < 0 in the ref. model
showing the jump polynomials P(u) and P≥0 (u) = P0(u). This is
the only possible configuration.

Again, the results of Lemma 4.4.5 are summarized in Table 9.

δ < 0 supercritical critical subcritical

reflection model yes no no

Table 9: Possible cases for δ < 0 in the reflection model

With these results we continue our analysis of meanders.
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Asymptotics

According to the last section the asymptotics of meanders in the ab-
sorption model consist of 7 different cases depending on the critical
behavior and the drift.

Theorem 4.4.6 (Asymptotics of meanders). Consider Łukasiewicz walks.
Let τ be the structural constant determined by P′(τ) = 0, τ > 0, ρ =

1/P(τ) be the structural radius, δ = P′(1) be the drift and δ≥0 = (P≥0 )′(1)

be the drift at 0. Additionally, let α = (P≥0 (u1(z)))′
∣∣∣
z=ρ1

, γ = 1
αρ2

1+1 , and

κ = Cρ(P≥0 )′(τ). The ratio of meanders of size n is asymptotically given in
Table 10.

[zn]M(z) ∼ δ < 0 δ = 0 δ > 0

Supercritical ρ1γ
E(1)(ρ1−1)ρ−n

1 —

Critical ρ
E(1)κ(ρ−1)

ρ−n
√

πn — 1− (1− P≥0 (1))E(1)

Subcritical E(ρ)2

E(1)
κρ

2(ρ−1)
ρ−n
√

πn3
E(1)κ√

πn

Table 10: Asymptotic ratio of meanders with respect to unconstrained walks
in the absorption model (P≥0 (1) < 1) with δ = P′(1) as the drift.

Proof. The proof is given in Section 4.6. It applies Theorem 4.2.2 and
the preceding results on the drift in order to distinguish different
cases.

Expected positive prefix length of unconstrained walks in the absorption
model

Let us reconsider the difference between the reflection and the absorp-
tion model. The crucial point is the x-axis. In the reflection model all
paths always remain in the first quadrant, however, in the absorption
model some want to leave the first quadrant through the x-axis but
are absorbed instead. Thus, the main difference is that in the reflec-
tion model the probability space is formed by meanders, whereas, in
the absorption model the probability space is formed by walks.

Now let us think of a different point of view. Instead of restricting
to meanders let us consider unconstrained walks and decide whether
it is a meander by traversing the paths and checking the positivity
condition. In other words we start at the origin, and follow the tra-
jectory of the path through our grid. In every step the probability
encoded by either P(u) or P0(u) determines the next step.

In the reflection model we know that this path will go on forever.
But in the absorption model it might happen that it is absorbed at
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one point. In this chapter we want to answer the question of which
parameters are responsible for this absorption process. In particular
we consider unconstrained walks of fixed length N. Under a positive
prefix we understand the part of a walk starting from the origin, which
stays above the x-axis and is maximal in size, see Figure 23. Then
we are interested in the expected length of the positive prefix for a
random walk of length N. Therefore, from now on, we consider only
the absorption model.

positive prefix

Figure 23: A random walk of length 24 with a positive prefix length 13.

Note that this parameter can also be interpreted as the waiting time
(i.e. the length) for the first jump below the x-axis when traversing
the path starting from the origin. We want to compute the expected
waiting time of such an event.

Intuition tells us that the drift will play the most important role on
the behavior of the length. On the one hand, by Theorem 4.4.6 we
know that for non-positive drift, δ ≤ 0, a walk will be absorbed with
probability 1. Yet, for zero drift, δ = 0, the decay is much slower
than for negative drift. On the other hand, for positive drift, δ > 0, a
walk moves away from the x-boundary, which means that it is very
unlikely that it is absorbed. Therefore, we might expect a constant
length for negative drift, and a linear length for positive drift. The
case of a zero drift is harder to answer. The following theorem gives
the result.

Let N ∈N, and let YN denote the random variable of the length of
the positive prefix of a randomly chosen walk of fixed length N.

Theorem 4.4.7 (Expected positive prefix length). Consider the model of
Łukasiewicz walks. Let τ be the structural constant determined by P′(τ) =
0, τ > 0, ρ = 1/P(τ) be the structural radius, δ = P′(1) be the drift and
δ≥0 = (P≥0 )′(1) be the drift at 0. The asymptotics of the waiting time for the
first negative ordinate for walks of length N ∈ N in the absorption model
are determined by the drift δ.

For negative drift δ < 0 we get, where in the supercritical case ρ is re-
placed by ρ1

E(YN) = E(1)

(
1− δ≥0

δ

)
+O

(
ρ−N

)
.
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For zero drift δ = 0 we get

E(YN) = 2δ≥0 E(1)

√
2N

P′′(1)π
+O(1).

For positive drift δ > 0 we get

E(YN) =
(

1− (1− P≥0 (1))E(1)
)

N +O(1).

Proof. The proof is given in Section 4.6.

Asymptotic number of excursions and arches in the absorption model

In order to get a better understanding of the absorption model let
us consider the previous results in the restricted probability space.
Therefore, all we need to do is to normalize the ratio of excursions
of length n by the ratio of meanders of length n. We define the ratio
of excursions among meanders as em

n and the ratio of arches among
meanders as am

n . Additionally, we will also look on the ratio of arches
among excursions, which we denote by ae

n. Essentially, these proba-
bilities are nothing else than conditional probabilities:

em
n := P (ω being an excursion | ω is a meander of length n) =

en

mn
,

am
n := P (ω being an arch | ω is a meander of length n) =

an

mn
,

ae
n := P (ω being an arch | ω is an excursion of length n) =

an

en
.

In other words, em
n is the probability that a randomly chosen meander

of length n is an excursion, whereas am
n is the probability that it is an

arch. In the same way, we get by ae
n the probability that a randomly

chosen excursion of length n is an arch.
The asymptotic values of these probabilities are easily computed

by a combination of the results from Theorem 4.2.2, Proposition 4.2.4
and Theorem 4.4.6.

em
n ∼ δ < 0 δ = 0 δ > 0

Supercritical
(

1− 1
ρ1

)
E(1) — γ

1−(1−P≥0 (1))E(1)
ρ−n

1

Critical
(

1− 1
ρ

)
E(1) — 1

κ(1−(1−P≥0 (1))E(1))
ρ−n
√

πn

Subcritical
(

1− 1
ρ

)
E(1) E(1) ρ−n

2n
E(ρ)2κ

2(1−(1−P≥0 (1))E(1))
ρ−n
√

πn3

Table 11: Asymptotic probability that a randomly chosen meander in the
absorption model is an excursion.
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am
n ∼ δ < 0 δ = 0 δ > 0

Supercritical
(

1− 1
ρ1

)
E(1)κ

2γ
√

πn3

(
ρ1
ρ

)n
—

Critical
(

1− 1
ρ

)
E(1)κ2

2n — κ
2(1−(1−P≥0 (1))E(1))

ρ−n
√

πn3

Subcritical
(

1− 1
ρ

)
E(1)
E(ρ)2

1
E(1)

ρ−n

2n

Table 12: Asymptotic probability that a randomly chosen meander in the
absorption model is an arch.

From the previous results we know that meanders depend on the
critical behavior and the drift, whereas excursions depend only on the
critical behavior, and arches are independent of these two parameters.
Thus, the asymptotics of meanders is responsible for the 7 different
cases in the Tables 11 and 12.

ae
n ∼ δ arbitrary

Supercritical κ

2γ
√

πn3

(
ρ1
ρ

)n

Critical κ2

2n

Subcritical 1
E(ρ)2

Table 13: Asymptotic probability that a randomly chosen excursion in the
absorption model is an arch.

In Table 13 we notice that in the supercritical and critical case ae
n

goes to zero for increasing n. But it is interesting to see that this pro-
portion is constant in the subcritical case. In terms of the used con-
stant λ = P≥0 (τ)/P(τ) of Proposition 4.2.4, we can express 1/E(ρ)2

as (1− λ)2. Remark that in the subcritical case we have 0 < λ < 1.
When comparing the three tables, we clearly see their relationship

ae
n · em

n = am
n ,

which naturally results from their definition.

Expected final altitude of meanders

The final altitude of a path is defined as the ordinate of its endpoint.
Recall that the bivariate generating function of meanders is given in
(89) as

F(z, u) =
1− z

(
P(u)− P≥0 (u)

)
E(z)

1− zP(u)
, E(z) =

1
1− zP≥0 (u1(z))

.
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Let Xn be the random variable associated to the final altitude of all
meanders of length n. It satisfies

P[Xn = k] =
[znuk]F(z, u)
[zn]F(z, 1)

.

As mentioned before, in the reflection model F(z, u) is already the
probability generating function of meanders. This follows from the
constructions of our probability space consisting only of meanders.
Whereas in the absorption model we have P≥0 (1) < 1, i.e. some
paths may turn below the abscissa and are excluded by the meander-
restriction. Thus, in order to get the probability in the absorption
model, [znuk]F(z, u) has to be normalized by [zn]F(z, 1).

As a first step we compute the expected value for large n. From
basic principles we know:

E[Xn] =
[zn] ∂

∂u F(z, u)
∣∣∣
u=1

[zn]F(z, 1)
. (91)

Theorem 4.4.8 (Expected final altitude of meanders). Let us consider
the model of Łukasiewicz walks. Let τ be the structural constant determined
by P′(τ) = 0, τ > 0, ρ = 1/P(τ) be the structural radius, δ = P′(1)
be the drift and δ≥0 = (P≥0 )′(1) be the drift at 0. The asymptotics of the
expected final altitude of meanders for the reflection model are given in Table
14 and for the absorption model are given in Table 15.

E(Xn) ∼ δ < 0 δ = 0 δ > 0

Supercritical δ≥0 P′′(1)−δ(P≥0 )′′(1)
2δ(δ−δ≥0 )

—

Critical —
√

2
π

√
P′′(1)n δn

Subcritical — —

Table 14: Asymptotics of E(Xn) in the reflection model (P≥0 (1) = 1) with
drift δ = P′(1) and drift at 0 δ≥0 = (P≥0 )′(1).

Proof. The full proof is given in Section 4.6. It is omitted as it does
not shed any new insight, and is mostly technical. In short, here we
combine the previous results on meanders and excursions, and apply
singularity analysis.

Remark 16. The results of the Tables 14 and 15 mostly fit the intuitive
interpretation of the problems. On the one hand, for a negative drift,
we get a bounded expected final altitude, as the walks tend to return
to the x-axis. On the other hand, for a positive drift the walks tend
to move away from the x-axis. Hence, their expected final altitude is



130 the reflection-absorption model for directed lattice paths

E(Xn) ∼ δ < 0 δ = 0 δ > 0

Supercritical
(

1− 1
ρ1

)
E(1)G(ρ1) —

Critical
(

1− 1
ρ

)
E(1)G(ρ) — δn

Subcritical
(

1− 1
ρ

)
E(1)

(
G(ρ)− δρ(1−λ)

(1−ρ)2

) √
π
2

√
P′′(1)n

Table 15: Asymptotics of E(Xn) in the absorption model (P≥0 (1) < 1) with

drift δ = P′(1), drift at 0 δ≥0 = (P≥0 )′(1), and λ =
P≥0 (τ)

P(τ) . The
function G(z) is defined in Equation (117).

linear in n. Additionally, it makes sense that as they move away from
the different rule set at altitude k = 0 it does not influence their final
altitude anymore. Intuitively, we would expect the altitude of a walk
of length n to be n times the expected height of a single jump (i.e. δ).

But in the case of zero drift, it is not completely clear what is
happening. Some walks might move away, and reach an arbitrarily
high altitude, but definitively slower, than in the case of positive drift.
Thus, the speed O(√n) compared to O(n) and O(1) makes sense,
but the constants are not clear. We see that P′′(1), which can be in-
terpreted as variance, plays a major role, but additionally

√
2/π and√

π/2 appear. These constants are very similar, but there origin is
not obvious. In Theorem 4.4.10 we will see that the limit distribu-
tions are either a half-normal distribution in the reflection model, or
a Rayleigh distribution in the absorption model. Interestingly, this is
the only case, where for the same behavior of the drift, two differ-
ent probability distributions appear in the different models. However,
this interesting property can already be suspected by the glimpse of
their explicit first moments.

Limit laws for the final altitude of meanders

This section is dedicated to the derivation of the limit laws for the
final altitude of meanders. Let u be a fixed positive real number in
(0, 1). Then the dominant singularity of F(z, u) from (89) is either
z = ρ, the singularity of E(z), or z = 1/P(u) =: ρ(u), the singularity
of the denominator. Which one is the dominant one? This depends
on the value of the drift δ, but first the following lemma will partly
answer this question.

Lemma 4.4.9. Let F(z, u) be the probability generating function of mean-
ders from (89), with z marking length and u marking final altitude. For
z ∈ (0, ρ) and u ∈ (0, τ) this function is analytic at z = 1/P(u).
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Proof. As mentioned before F(z, u) is either singular at the singularity
z = 1/P(u) of the denominator or at the singularity z = ρ of E(z).
First, note that 1/P(u) < ρ for u ∈ (0, τ) as P(u) is monotonically
decreasing on (0, τ] with the minimum ρ = 1/P(τ). Therefore, E(z)
is regular at z = 1/P(u) for u ∈ (0, τ) and so this value is a likely
candidate for the dominant singularity of F(z, u).

Next, we investigate the denominator at z = 1/P(u). The kernel
equation tells us that u1(z) satisfies

1
P(u1(z))

= z, for z ∈ (0, ρ). (92)

On the one hand u1(z) is monotonically increasing for z ∈ (0, ρ) from
0 to τ, yet on the other hand P(u) is monotonically decreasing for
u ∈ (0, τ) from +∞ to ρ. Therefore, we have 1/P(u) ∈ (0, ρ) for
u ∈ (0, τ). Inserting z = 1/P(u) into (92) and using that P(u) is
one-to-one on (0, τ) yields

u1

(
1

P(u)

)
= u, for u ∈ (0, τ).

Hence, u1(z) and 1/P(u) are inverse on z ∈ (0, ρ) or u ∈ (0, τ), re-
spectively.

Now we get for E(z) at z = 1/P(u), u ∈ (0, τ):

E
(

1
P(u)

)
=

1

1− P≥0 (u1(1/P(u)))
P(u)

=
P(u)

P(u)− P≥0 (u)
.

But this implies that the numerator is zero for z → 1/P(u). As E(z)
is regular at z = 1/P(u) a Taylor expansion of the numerator gives
a convergent series starting without constant term in (z − 1/P(u)).
Hence, the singularity of the denominator is canceled, and we retrieve
a convergent series, i.e. an analytic function at z = 1/P(u) for u ∈
(0, τ).

Theorem 4.4.10 (Limit laws for the final altitude of meanders). Con-
sider the model of Łukasiewicz walks. Let τ be the structural constant de-
termined by P′(τ) = 0, τ > 0, ρ = 1/P(τ) be the structural radius,
δ = P′(1) be the drift and δ≥0 = (P≥0 )′(1) be the drift at 0.

Let Xn be the random variable associated with the final altitude of a ran-
dom meander of size n. It admits a limit distribution, with the limit law
being dictated by the value of the drift δ.

1. For a negative drift, δ < 0, the limit distribution is discrete. In the
supercritical case ρ is replaced by ρ1 in the following results. The limit
distribution is characterized by

g(u) = ρ
P≥0 (u)− P(u)

1− ρP(u)
.
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a) In the reflection model it is given as

lim
n→∞

P[Xn = k] = [uk]γg(u),

where γ = 1
αρ2

1+1 and α = (P≥0 (u1(z)))′
∣∣∣
z=ρ1

.

b) In the absorption model we have

lim
n→∞

P[Xn = k] = [uk]E(1)
(

1− 1
ρ

)
g(u).

2. In the case of zero drift, δ = 0, the normalized random variable

Xn√
P′′(1)n

,

a) converges in the reflection model in law to a half-normally

distributed random variable defined by the density
√

2
π e−x2/2:

lim
n→∞

P

(
Xn√

P′′(1)n
≤ x

)
=

√
2
π

∫ x

0
e−t2/2 dt.

b) converges in the absorption model in law to a Rayleigh dis-
tributed random variable defined by the density xe−x2/2:

lim
n→∞

P

(
Xn√

P′′(1)n
≤ x

)
= 1− e−x2/2.

3. In the case of a positive drift, δ > 0, the standardized version of Xn,

Xn − µn
σ
√

n
, µ = δ, σ2 = P′′(1) + δ− δ2,

converges in the reflection model and the absorption model in law
to a standard Gaussian variable N(0, 1):

lim
n→∞

P

(
Xn − µn

σ
√

n
≤ x

)
=

1√
2π

∫ x

−∞
e−y2/2dy.

Proof. The proof is given in Section 4.6. We apply singularity analysis
combined with several limit laws, like the Continuity Theorem [85,
Theorem IX.1], the Rayleigh scheme by Drmota-Soria [70, Theorem 1],
the method of moment convergence by Fréchet and Shohat [90], and
the Quasi-Power’s Theorem by H.K. Wang [85, Theorem IX.8].
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4.5 moments of the distribution for the final altitude
of meanders

Following the ideas of the proof of Theorem 4.4.10 for the case of
the reflection model for drift δ = 0 we want to investigate the final
altitude of meanders under the angle of moments. Of course these
results follow immediately from previous result. Hence, this should
be considered, as an alternative way to derive them.

Let X be a random variable, then the k-th moment of X (k ∈ N) is
defined as

mk := E(Xk).

For example, E(X) = m1 is the mean of the distribution and V(X) =

m2−m2
1 gives the variance. The knowledge of the moments is a good

starting point, in order to identify the distribution. This is the strategy
we want to follow within this section.

As we are working with generating functions, we are going to en-
counter factorial moments. The k-th factorial moment of X is defined as

mk := E((X)k) = E(X(X− 1) · · · (X− k + 1)),

where (x)k := x(x − 1) · · · (x − k + 1) is the falling factorial. Clearly
mk is given via terms involving m1, . . . , mk and vice versa, i.e. m1 =

m1, m2 = m2 −m1 and so on. Therefore the knowledge of the first k
moments and the first k factorial moments is equivalent.

Let F(z) = ∑n≥0 fnzn be a probability generating function. The k-th
factorial moment is

mk =
dk

dzk F(z)
∣∣∣∣
z=1

,

which can be seen via the representation F(z) = E(zX). Hence, we
need to investigate the derivatives of our bivariate generating func-
tion F(z, u) in u to derive the factorial moments.

We start with determining the structure of the factorial moments.
Therefore we take a closer look on the structure of F(z, u) with re-
gards to u and interpret z as a parameter. In (89) and (112) we see
that the governing structure is

S(u) =
Q(u)

1− zP(u)
, (93)

where we could have Q(u) = 1 or Q(u) = P(u)− P≥0 (u). Next, we
investigate the derivatives at u = 1 of S(u).

Lemma 4.5.1. For the function S(u) defined in (93) we have

S(k)(u) =
k

∑
i=0

Sk,i(u)
zi

(1− zP(u))i+1 ,

S(k)(1) =
k

∑
i=0

sk,i
zi

(1− z)i+1 ,
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where S(k)(u) stands for the k-th derivative of S(u) and sk,i = Sk,i(1) ∈
R for all i, k ∈ N. The functions Sk,i(u) satisfy the following recurrence
relations

Sk+1,0(u) = (Sk,0)
′(u),

Sk+1,i(u) = iSk,i−1(u)P′(u) + (Sk,i)
′(u), i = 1, . . . , k, (94)

Sk+1,k+1(u) = (k + 1)Sk,k(u)P′(u),

where S0,0(u) = Q(u).

Proof. The proof is given by induction on k. For k = 0 we have

S(u) = S0,0(u)
1

1− zP(u)
= Q(u)

1
1− zP(u)

.

Hence, it holds S0,0(1) = Q(1). We assume the statement holds for
k ≥ 0 and show its validity for k + 1:

S(k+1)(u) =
d

du

k

∑
i=0

Sk,i(u)
zi

(1− zP(u))i+1

=
k

∑
i=0

(
(Sk,i)

′(u)
zi

(1− zP(u))i+1 + Sk,i(u)
(i + 1)P′(u)zi+1

(1− zP(u))i+2

)

=
(Sk,0)

′(u)zi

1− zP(u)
+

k

∑
i=1

(iSk,i−1(u)P′(u) + (Sk,i)
′(u)) zi

(1− zP(u))i+1

+
(k + 1)Sk,k(u)P′(u)zk+1

(1− zP(u))k+2 .

Thus, we see that (94) holds and the lemma is proven.

Let us solve this equation for some specific values

Lemma 4.5.2. For the functions from Lemma 4.5.1 we get the following
results

Sk,0(u) = Q(k)(u), Sk,k(u) = k!Q(u)(P′(u))k;

and the following special values: sk,0 = Q(k)(1), sk,k = k!Q(1)δk and

sk,k−1 = k!δk−2
(

k− 1
2

P′′(1)Q(1) + δQ′(1)
)

, for k ≥ 1.

Proof. For fixed k the first and the last function Sk,0(u) and Sk,k(u) are
easily computed by successive iteration. For the last result one first
shows that

(Sn,n)
′(1) = nδn−1 (nP′′(1)Q(1) + δQ′(1)

)
.

Then one takes the derivative in the recurrence relation of Sk,k−1(u)
from (94) and solves this one also iteratively, and with the help of the
previous result.
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The k-th factorial moment for Xn is given as

mn
k :=





[zn] ∂k

∂uk F(z, u)
∣∣∣
u=1

, in the reflection model,

[zn] ∂k

∂uk F(z,u)
∣∣∣
u=1

[zn]F(z,1) , in the absorption model.

Hence, we need the n-th coefficients of the functions of Lemma 4.5.1.
These are easily extracted, as we are dealing with standard functions.

[zn]
zi

(1− z)i+1 =





0, for n < i,

1, for n = i,
(n+1)(n+2)···(n+i)

i! , for n > i.

(95)

That is why for large n the n-th coefficient behaves asymptotically like
ni

i! . Using (89) we derive the structure of the k-th derivative of F(z, u):

∂k

∂uk F(z, u) =
∂k

∂uk
1

1− zP(u)
− zE(z)

∂k

∂uk

P(u)− P≥0 (u)
1− zP(u)

(96)

=
k

∑
i=0

Sk,i(u)zi

(1− zP(u))i+1 − zE(z)
k

∑
i=0

Tk,i(u)zi

(1− zP(u))i+1 .

We set

S0,0(u) = 1 and T0,0(u) = P(u)− P≥0 (u). (97)

Defining sk,i := Sk,i(1) and tk,i := Tk,i(1) and substituting u = 1 yields

∂k

∂uk F(z, u)
∣∣∣∣
u=1

=
k

∑
i=0

(
sk,i

zi

(1− z)i+1 − tk,izi+1 E(z)
(1− z)i+1

)
. (98)

The n-th coefficient of the above equation is the k-th factorial moment
mn

k . The first term is easy to deal with applying (95), yet for the second
one we use (115).

Let us now consider the two models individually. The general strat-
egy will be to analyze (98) with the help of (115) and the results from
Lemma 4.5.1. When looking for the dominant contribution, remember
that [zn] zi

(1−z)i+1 = O(ni).

We start with the reflection model. It is characterized by P≥0 (1) = 1,
but this implies that T(1) = 0 which is the reason why tk,k = 0 for all
k ∈N.

R1. The case δ < 0 is only possible in the supercritical case. Then,
Lemma 4.4.3 implies that ρ1 = 1 which gives by (115) that
[zn] E(z)

(1−z)i+1 = O(ni+1). Therefore the leading terms of (98) are
coming from sk,k and tk,k−1. We get

mn
k =

nk

k!

(
sk,k −

tk,k−1

α + 1

)
+O

(
nk−1

)
.
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Due to Lemma 4.6.3 we have 1 + α = 1− δ≥0
δ =

T′0,0(1)
δ . Thus, the

expressions for sk,k and tk,k−1 defined in Lemma 4.5.2 with the
respective start values from (97) give that sk,k − tk,k−1

α+1 is equal to

k! S0,0(1)︸ ︷︷ ︸
=1

δk − k!δk−1

(T0,0)′(1)


 k− 1

2
P′′(1) T0,0(1)︸ ︷︷ ︸

=0

+δ(T0,0)
′(1)


 = 0.

R2. The case δ = 0 was already treated in detail in the proof of
Theorem 4.4.10. There a less general approach was employed,
as the sk,i’s and tk,i’s could be computed directly. This is due to a
lot of cancellations and simplifications due to δ = 0, T0,0(1) = 0
and (S0,0)′(1) = 0. For completeness we show the first steps of
this approach.

As ρ = 1 we get from (115) that [zn] E(z)
(1−z)i+1 = O(ni+1/2). Be-

cause tk,k = 0, the dominant part would come from sk,k, but this
factor is also zero, as δ = 0. Thus, we need to consider tk,k−1.
Again, by Lemma 4.5.2 we get in this special case that

tk,k−1 =




−δ≥0 , for k = 1,

0, else,

because T0,0(1) = 0 in the reflection model. For k ≥ 2 we need
to consider sk,k−1:

sk,k−1 =





P′′(1), for k = 2,

0, else,

because (S0,0)′(u) = 0. Analogously, such expressions can be
derived for higher moments. Finally, with the help of (98) these
results yield the asymptotic moments.

R3. Finally, let us deal with δ > 0. Here, [zn] E(z)
(1−z)i+1 = O(ni) and

therefore only sk,k is responsible for the dominant term. Hence,
we get

mn
k =

nk

k!
sk,k +O

(
nk−1

)
= (δn)k +O

(
nk−1

)
.

In the absorption model P≥0 (1) < 1 and therefore T(1) 6= 0, but re-
member that in this model we still have to divide by the total number
of meanders of length n given by [zn]F(z, 1), compare Section 4.4 (see
Table 10). Furthermore, by Lemma 4.4.3 we have ρ1 > 1 in all cases.

A1. We start again with δ < 0. We know from Lemma 4.4.9 that
F(z, u) is analytic at z = 1

P(u) for u ∈ (0, τ). From Lemma 4.4.2
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we deduce that τ > 1. Thus, F(z, u) is analytic at z = 1
P(1) and

therefore (98) is singular at ρ > 1 or ρ1 > 1, respectively.

Considering the structure of the k-th derivative at u = 1 in (96)
we see, that the general structure is A(z) + B(z)E(z), A(z) with

A(z) =
∂k

∂uk
1

1− zP(u)

∣∣∣∣
u=1

and

B(z) = −z
∂k

∂uk

P(u)− P≥0 (u)
1− zP(u)

∣∣∣∣∣
u=1

.

Both of these functions are singular at z = 1. However, the sum
is analytic there, and the singularity is at z = ρ coming from
E(z). There, B(z) is regular and thus from Theorem 2.5.1 we
deduce that

[zn]
∂

∂u
F(z, u)

∣∣∣∣
u=1

= B(ρ)[zn]E(z).

Without loss of generality we state only the case for ρ. Finally,
normalizing by the total number of meanders we get

mn
k = (1− ρ)E(1)B(ρ) + o(1).

A2. For δ = 0 only the subcritical case exists in the absorption
model. The same techniques as applied in the proof of Theo-
rem 4.4.10 give the result:

mn
k =




(P′′(1)n)` 2``! +O

(
n`−1/2) , for k = 2`,

√
π
2
(2`+1)!

2``!

√
(P′′(1)n)2`+1 +O

(
n`−1/2) , for k = 2`+1.

A3. The case δ > 0 is analogous to the reflection model. By (115) we
get that [zn] E(z)

(1−z)i+1 = O(ni). Thus, sk,k = k!δk and tk,k = k!δk(1−
P≥0 (1)) are needed and easily computed from Lemma 4.5.2. This
gives

[zn]
∂

∂u
F(z, u)

∣∣∣∣
u=1

=
nk

k!
(sk,k − E(1)tk,k) +O

(
nk−1

)

= (δn)k
(

1− (1− P≥0 (1))E(1)
)
+O

(
nk−1

)
.

Normalizing yields the result:

mn
k = (δn)k +O

(
nk−1

)
.

So we have just proved the following theorem.
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mn
k = δ < 0 δ = 0 δ > 0

Supercritical O(nk−1) —

Critical — Ck(P′′(1)n)k/2 (δn)k

+O(n(k−1)/2) +O(nk−1)

Subcritical — —

Table 16: Asymptotics of the factorial moments mn
k for the final altitude in

the reflection model (P≥0 (1) = 1) with δ = P′(1). For even k = 2`

we have Ck = (2`)!
2``!

, whereas for odd k = 2` + 1 we have Ck =

2``!
√

2
π .

mn
k δ < 0 δ = 0 δ > 0

Supercritical —

Critical (1− ρ)E(1)B(ρ) + o(1) — (δn)k

Subcritical Dk (P′′(1)n)k/2 +O(nk−1)

+O(n(k−1)/2)

Table 17: Asymptotics of the factorial moments mn
k for the final altitude in

the absorption model (P≥0 (1) < 1) with δ = P′(1), and B(z) =

−z ∂k

∂uk
P(u)−P≥0 (u)

1−zP(u)

∣∣∣∣
u=1

. For even k = 2` we have Dk = 2``!, whereas

for odd k = 2`+ 1 we have Dk =
√

π
2
(2`+1)!

2``!
.

Theorem 4.5.3 (Asymptotic moments of the final altitude of mean-
ders). Consider the model of Łukasiewicz walks. Let τ be the structural
constant determined by P′(τ) = 0, τ > 0, ρ = 1/P(τ) be the structural
radius, and δ = P′(1) be the drift. The asymptotic moments of the final
altitude of meanders for the reflection model are given in Table 16 and for
the absorption model are given in Table 17.

Note that these tables are a generalization of Tables 14 and 15
which compute the concrete values for k = 1.

Example 4.5.4. Let us compare the results from Table 16 to the ones
computed in Table 14. They should be the same if we set k = 1. We
will need the following values

s1,1 = S1,1(1) = 1 · S0,0(1)P′(1) = δ,

t1,0 = T1,0(1) = (T0,0)
′ (1) =

(
P− P≥0

)′
(1) = δ− δ≥0 .

Consider the following three relevant cases:
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1. δ < 0 and supercritical case:

m1 = n
(

s1,1 −
t1,0

α + 1

)
+ o(n) = n

αδ + δ≥0
α + 1

+ o(n) = o(n).

From Lemma 4.6.3 it follows that αδ = −δ≥0 . This corresponds to
the calculations in the previous chapter that the expected value
is constant. In order to get the proper value, we would need to
consider the next terms in the asymptotic expansion which are,
as expected, of order O(1).

2. δ = 0 and critical case:

m1 = − t1,0

κ

√
n

Γ(3/2)
+ o(
√

n) =
2δ≥0

κ

√
n
π
+ o(
√

n).

3. δ > 0 and all cases:

m1 = ns1,1 + o(n) = δn + o(n).

This confirms the preceding results.

4.6 proofs

The subsequent proofs will mostly use the methods from Section 2.3.
They involve many tedious computations, which is why they are
stated at the end of the chapter.

The usage of many theorems can be described by the drift δ. Its
sign often gives an indication of which limit law one could expect
and which theorems are applicable. In the case of a negative drift
we will use the Continuity Theorem, Theorem 2.3.1. For zero drift
we will use the Rayleigh distribution scheme, Theorem 2.3.8, and the
method of moments given in Theorem 2.3.10. For a positive drift the
Quasi-powers Theorem, Theorem 2.3.2, will play a key role.

Proof of Theorem 4.2.5

Let us start with the numerator of (82). From (81) we know that

A(z) ∼ λ− κ
√

1− z/ρ, where λ =
P≥0 (τ)
P(τ) and κ = Cρ(P≥0 )′(ρ). Hence,

the singular expansion of Ak(z) is given by

A(z)k ∼ λk − kλk−1κ
√

1− z/ρ,

and we get for the asymptotic number of excursions of size n with k
returns to zero

[zn]A(z)k ∼ kλk−1κ
ρ−n

2
√

πn3
.

Next we consider the denominator and compute the fraction in (82).
The asymptotic number of excursions is given in Theorem 4.2.2. For
this purpose we need to consider three different cases:
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1. Supercritical case: P(τ) < P≥0 (τ)

In this case λ > 1 and ρ1 < ρ imply that

pn,k ∼
κ

γ
kλk−1 1

2
√

πn3

(
ρ1

ρ

)n

.

For fixed k and n → ∞ these probabilities tend to 0. Hence,
this cannot be a discrete limit law and we suspect a continu-
ous limit law. The key idea is to use the bivariate generating
function E(z, u) where u marks the number of arches and z the
length of excursions. As every excursion is a sequence of arches,
the scheme for the class of excursions F where the number of
arches are marked by u is F = SEQ(uA). With the generating
function for the class of arches A from (80) we get

E(z, u) =
1

1− uzP≥0 (u1(z))
. (99)

This structure is already sufficient to deduce the Gaussian limit
law from Theorem 2.3.3. In our case g(y) = 1/(1 − y) and
h(z) = zP≥0 (u1(z)). The values ρg and ρh are the radii of con-
vergence of g and h, respectively, and τh = h(ρh). Hence, ρg = 1,
ρh = ρ and τh = ρP≥0 (τ). The supercriticality condition is ex-
actly the condition P(τ) < P≥0 (τ) for the supercritical case. All
the other conditions are also met, which implies that the num-
ber of arches admits a Gaussian limit law.

More details of the distribution are given by Proposition 2.3.4.
In a similar manner to α = (P≥0 ◦ u1)

′(ρ1) we also define α2 =

(P≥0 ◦ u1)
′′(ρ1). Computing the first and second derivatives and

substituting z = ρ1 gives

h′(z) = P≥0 (u1(z)) + z(P≥0 ◦ u1)
′(z),

h′(ρ1) =
αρ2

1 + 1
ρ1

=
1

ρ1γ
,

h′′(z) = 2(P≥0 ◦ u1)
′(z) + z(P≥0 ◦ u1)

′′(z),

h′′(ρ1) = 2α + ρ1α2.

From the definition of γ we get that α = 1−γ
γρ2

1
. Hence, the ex-

pected value and variance are asymptotically equal to

E(Xn) ∼ nγ, (100)

V(Xn) ∼ nγ
(
γ2(α2ρ3

1 − 2) + 3γ− 1
)

.

2. Critical Case: P(τ) = P≥0 (τ)

In this case λ =
P≥0 (τ)
P(τ) = 1 gives that

pn,k ∼
κ2k
2n

.
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Analogously, for fixed k and n → ∞ these probabilities tend to
0. Hence, this cannot be a discrete limit law either.

To get an idea of the underlying distribution it proves useful to
estimate the mean first. We have

E(Xn) =
[zn] ∂

∂u E(z, u)
∣∣∣
u=1

[zn]E(z)
.

Using the definition of E(z) in (72) and (99) we get

∂
∂u E(z, u)

∣∣∣
u=1

= E(z)2 − E(z).

Now it is easy to use the asymptotic expansion of E(z) to derive
the expected value by (77). Precisely, we find

E(Xn) ∼
√

2
κ

√
πn
2

, κ = ρC(P≥0 )′(τ). (101)

Note that a standard Rayleigh distribution has mean
√

π/2, and
we are going to show that this is indeed the underlying distri-
bution by applying Theorem 2.3.8.

Firstly, we investigate the structure of E(z, u). In a neighborhood
of z = ρ and u = 1 we deduce the following decomposition
needed in Hypothesis [H]:

E(z, u)−1 = 1− uzP≥0 (u1(z))

= g(z, u) + h(z, u)
√

1− z/ρ.

The functions g(z, u) and h(z, u) are analytic in the specified
domain. This follows from (73) and the local representation in
a neighborhood of z = ρ of the kind

P≥0 (u1(z)) = P≥0 (τ)− (P≥0 )′(τ)C
√

1− z/ρ +O(1− z/ρ).

Secondly, as ρ = ρ1 (compare Lemma 4.2.1) from the last repre-
sentation it is easy to deduce that g(ρ, 1) = 1− ρP≥0 (u1(ρ)) = 0,
and that h(ρ, 1) = ρC(P≥0 )′(τ) = κ > 0. Hence, we can ap-
ply Theorem 2.3.8. Therefore, we compute the parameter ϑ. We
need gu(ρ, 1) = −ρP≥0 (u1(ρ)) = −1, which implies that ϑ =

κ2/2. Thus, we get the same asymptotic result for the expected
value as in (101) and the following result on the variance:

V(Xn) ∼ (4− π)
n
κ2 .

3. Subcritical Case: P(τ) > P≥0 (τ)

In this case λ < 1 gives that

pn,k ∼
1

E(ρ)2 kλk−1.
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Above equation can be simplified via the identity

E(ρ) =
1

1− ρP≥0 (τ)
=

1
1− λ

.

This gives a discrete limit law, as the above probability is inde-
pendent of the length n. With p = 1 − λ and r = 2 we have
Xn − 1 ∼ NB(2, 1− λ), which is the negative binomial distribu-
tion from Section 2.1. This distribution describes the probability
for k fails before the r-th success when the probability for suc-
cess in each trial is p. Finally, we state the expected value and
variance:

E(Xn − 1) =
2λ

1− λ
, E(Xn) =

1 + λ

1− λ
, (102)

V(Xn − 1) =
2λ

(1− λ)2 , V(Xn) = V(Xn − 1). (103)

Analytic Proof of Theorem 4.3.1

In the following we give an analytic proof of Formula (86).
We will need the following technical lemma:

Lemma 4.6.1. Let v1(z), . . . , vd(z) be the large branches and u1(z) be the
small branch of the kernel equation 1− zP(u) = 0 with P(u) = ∑d

i=−1 piui.
Let m ∈ {0, 1, . . . , d− 1}. Then the functions

Sm(z) := (−1)m pd ∑
1≤i1<i2<...<im≤d

m

∏
j=1

vij ,

admit the following recurrence relation

Sm(z) = pd−m + u1(z)Sm−1(z),

S0(z) = pd,

and its solution is given by

Sm(z) = pd−m + pd−m+1u1 + . . . + pdud
1.

Proof. The most important observation is that for small z the kernel
equation possesses d + 1 distinct roots. Therefore we obtain the fac-
torization

u− zuP(u) = −zpd(u− u1(z))(u− v1(z)) · · · (u− vd(z)). (104)

Let n ∈ {2, 3, . . . , d}. Extracting the n-th coefficient in u from (104)
yields

pn−1 = (−1)d−n+1 pd ∑
0≤i1<i2<...<id−n+1≤d

d−n+1

∏
j=1

vij ,
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where we define v0 := u1. Rewriting this expression in terms of Sm(z)
we get

pn−1 = (−1)d−n+1 pd ∑
1≤i1<i2<...<id−n+1≤d

d−n+1

∏
j=1

vij

︸ ︷︷ ︸
=Sd−n+1(z)

− u1(z) · (−1)d−n pd ∑
1≤i2<...<id−n+1≤d

d−n

∏
j=1

vij

︸ ︷︷ ︸
Sd−n(z)

.

Setting m = d− n we get the desired recurrence relation. The initial
condition follows from extracting the d-th coefficient in u, as we get

−pd (v1 + v2 + . . . + vd)︸ ︷︷ ︸
=S1(z)

= pd−1 + pdu1.

The solution is easily obtained by successive iteration.

Let us start with the bivariate generating function of walks (45).
The u0-coefficient is equal to

B(z) = [u0]
1

1− zP(u)
− zB(z)[u0]

P(u)− P≥0 (u)
1− zP(u)

, (105)

where B(z) = F0(z). From (19) we deduce that the first term is B̃(z),
the generating function of bridges in the Banderier-Flajolet model.
W.l.o.g. we assume d = d0 as all surplus pi and p0,j coefficients may
be set to 0. For the second term we get

[u0]
P(u)− P≥0 (u)

1− zP(u)
=

d

∑
i=−1

(pi − p0,−1)[u−i]W(z, u)

=
d

∑
i=−1

(pi − p0,−1)W−i(z).

For the elements in the sum starting from i = 0 we apply (21) and
afterwards (20) to get explicit expressions in the small branch u1(z).

d

∑
i=0

(pi − p0,−1)W−i(z) = z
d

∑
i=0

(pi − p0,−1)
u′1(z)

u1−i
1 (z)

= z
u′1(z)
u1(z)

d

∑
i=0

(pi − p0,i)ui
1(z)

= B̃(z)
(

P≥ − P≥0
)
(u1(z))

Then (23) gives that in the case of Łukasiewicz walks we have u1(z) =
zp−1Ẽ(z). Therefore (105) yields

B(z) =
B̃(z)

1− zB̃(z)
(

P≥0 − P≥
)
(zp−1Ẽ(z))− z(p0,−1 − p−1)W1(z)

,
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which already resembles most parts of (83). All that is left, is to show
that W1(z) = zB̃(z)Ẽ(z)(P≥)′(u1(z)), which is also the hardest part
of the proof.

As a first step we represent W1(z) with the help of (22) as

W1(z) = −z
d

∑
j=1

v′j(z)

vj(z)2 .

Extracting the u0-th coefficient of (104) gives

p−1 = (−1)d+1 pdu1(z)
d

∏
j=1

vj(z).

With the help of this formula and u1(z) = zp−1Ẽ(z) we rewrite W1(z)
as

W1(z) = −z2Ẽ(z)(−1)d+1 pd

d

∑
j=1

v′j(z)

vj(z)
∏
i 6=j

vi(z)

︸ ︷︷ ︸
=:S(z)

,

where the product has the range i = {1, . . . , d} \ {j}. As a next step
we use (20) in the representation with large branches and rewrite the
sum into

S =
d

∑
j=1




(
v′1
v1

+ . . . +
v′d
vd

)

︸ ︷︷ ︸
=−B̃(z)/z

∏
i 6=j

vi

−
(

v′1
v1

+ . . . +
v′j−1

vj−1
+

v′j+1

vj+1
+ . . . +

v′d
vd

)
∏
i 6=j

vi

)
.

Now we see that the second term is actually the derivative of the first
one without B̃(z), i.e.

S = − B̃(z)
z

d

∑
j=1

(
∏
i 6=j

vi

)
− d

dz

(
d

∑
j=1

∏
i 6=j

vi

)
.

These terms arise from the kernel as coefficients of u in (104) and
have been treated in detail in Lemma 4.6.1. Now we can rewrite W1

in terms of Sd−1(z) and get

W1(z) = zB̃(z)Ẽ(z)

(
Sd−1(z) +

z
B̃(z)

d
dz

Sd−1(z)

)
.

Finally, we can use Lemma 4.6.1 and again (20) to get

W1(z) = zB̃(z)Ẽ(z)
(

Sd−1(z) +
u1(z)
u′1(z)

d
dz

Sd−1(z)
)

= zB̃(z)Ẽ(z)
(

p1 + 2p2u1(z) + 3p3u1(z)2+. . .+dpdu1(z)d−1
)

= zB̃(z)Ẽ(z)(P≥)′(u1(z)),

which proves the claim (86).
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Proof of Theorem 4.4.6

As a first step we derive the following lemma.

Lemma 4.6.2. Let E(z) be the probability generating function of excursions.
Then

[zn]
E(z)
1− z

=





E(1) + [zn]E(z)
1−ρ + o(ρ−n),

for ρ > 1 or the supercritical

case with ρ1 > 1 instead of ρ,
1

α+1 n +O(1), for ρ1 = 1 in the supercr. case,
2
κ

√ n
π +O( 1√

n ), for ρ = 1 in the critical case,

E(1)− E(1)2κ 1√
πn for ρ = 1 in the subcr. case.

+O( 1√
n3 ),

Proof. The strategy consists of using (75) and elementary singularity
analysis, like [85, Fig. VI.5] in order to derive the error terms.

For ρ > 1 or ρ1 > 1 we know that E(z) is regular at z = 1 and more-
over an analytic function on |z| < ρ. Thus, the considered function
has a simple pole at z = 1 with residue E(1):

E(z)
1− z

=
E(1)
1− z

+
E(z)− E(1)

1− z
.

The second term is analytic at z = 1 and has radius of convergence ρ.
Therefore, in order to derive the error term we perform the following
manipulation:

E(z)− E(1)
1− z

=
E(z)− E(1)

1− ρ
+

z− ρ

1− ρ

E(z)− E(1)
1− z

.

Now we apply the [zn]-operator to extract the error term. The first
term gives [zn]E(z)

1−ρ . For the second term, which is responsible for the
error term, we use Theorem 4.2.2.

• In the supercritical case we replace ρ by ρ1. Then the multiplica-
tion of (z− ρ1) kills the simple pole at z = ρ1 and we obtain a
convergent power series at z = ρ1. Therefore, its radius of con-
vergence is strictly larger than ρ1 and we get the its coefficients
behave like o(ρ−n

1 ).

• In the critical case the type of the dominant singularity becomes
of the kind (1− z/ρ)1/2 which implies that its coefficients be-
have like O(n−3/2ρ−n) and are therefore also o(ρ−n).

• In the subcritial case it is similar, as the coefficients of (z −
ρ)E(z) behave like (1− z/ρ)3/2 and are therefore asymptotically
O(n−5/2ρ−n). Hence, they are also of order o(ρ−n).
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The cases ρ1 = 1 and ρ = 1 directly follow from Theorem 4.2.2.

Note that for ρ > 1 or ρ1 > 1 we will see that cancellations will
kill the leading (constant) term, which is why the next term will be
of significance.

The strategy is to investigate (90) part by part. As mentioned earlier,
the ratio is trivially 1 in the reflection case. So, henceforth we are
going to concentrate on the absorption model only. As a first step we
simplify this equation by

zE(z)
1− z

=
E(z)
1− z

− E(z).

Hence, we need to compute

[zn]M(z) = 1−
(

1− P≥0 (1)
)(

[zn]
E(z)
1− z

− [zn]E(z)
)

.

In the case of ρ > 1 or ρ1 > 1 this lemma implies that (w.l.o.g we
state it only for ρ):

[zn]M(z) ∼ 1−
(

1− P≥0 (1)
)(

E(1)− ρ

ρ− 1
[zn]E(z)

)
. (106)

Combining all these results we need to consider three different
cases. In the sequel we are going to refer to the components of equa-
tion (90) as first, second and third term, respectively.

• supercritical case:
Lemma 4.4.3 implies that ρ1 > 1 in the absorption model, how-
ever note that ρ1 < ρ. In this way, we get from (106) and (79)
that

[zn]M(z) ∼ 1− (1− P≥0 (1))
(

E(1)− ρ1γ

ρ1 − 1
ρ−n

1

)
.

Let us investigate

E(1) =
1

1− P≥0 (u1(1))
. (107)

Some cases have to be treated separately. By Lemma 4.4.2 we
get u1(1) = 1 for δ ≤ 0 and that u1(1) < 1 for δ > 0. Due to
Lemma 4.4.4 there cannot be a supercritical case for δ = 0 in
the absorption model. In the case of δ < 0 the asymptotic above
simplifies to

[zn]M(z) ∼ (1− P≥0 (1))
ρ1γ

ρ1 − 1
ρ−n

1 ,

where for δ > 0 it is given by

[zn]M(z) ∼ 1− (1− P≥0 (1))E(1) =
(

P≥0 (1)− P≥0 (u1(1))
)

E(1).

(108)
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• critical case:
Due to Lemma 4.4.4 is δ 6= 0 and therefore ρ > 1. Next we
combine (106) and (79) to get

[zn]M(z) ∼ 1− (1− P≥0 (1))
(

E(1)− ρ

κ(ρ− 1)
P(τ)n
√

πn

)
.

Due to the same reasons as in the supercritical case we get be-
cause of Lemma 4.4.2 and (107) that

[zn]M(z) ∼




(1− P≥0 (1)) ρ

κ(ρ−1)
P(τ)n
√

πn , for δ < 0,

1− (1− P≥0 (1))E(1), for δ > 0.

• subcritical case:
Again, we have to distinguish between δ ≤ 0 which implies
u1(1) = 1 and δ > 0 which results in u1(1) < 1. As before we
use (79) to derive the asymptotic results. First we look at δ = 0
which implies ρ = 1. Then we get by Lemma 4.6.2

[zn]M(z) = 1− (1− P≥0 (1))
(

E(1)− E(1)2κ
1√
πn

)
+O

(
1√
n3

)

=
E(1)κ√

πn
+O

(
1√
n3

)
.

In the case δ > 0 we have ρ > 1. Then there are no cancellation
and the leading term of (106) is obtained from the first and the
second term by applying Theorem 2.5.1 as

[zn]M(z) ∼ 1− (1− P≥0 (1))E(1).

For δ < 0 the first two terms cancel and the asymptotics are
derived from the third term given in (79) as

[zn]M(z) ∼ (1− P≥0 (1))
κρE(ρ)2

2(ρ− 1)
P(τ)n
√

πn3
.

This ends the proof of Theorem 4.4.6.

Proof of Theorem 4.4.7

Consider all walks of length N. We directly get that

E(YN) =
N

∑
n=0

nP[YN = n] =
N

∑
n=0

P[YN ≥ n].

The probability P[YN ≥ n] describes all walks of length N that haven’t
been absorbed in the first n steps, i.e. none of their first n steps is



148 the reflection-absorption model for directed lattice paths

below the x-axis. This probability is given by the ratio of meanders of
length n, i.e.

P[YN ≥ n] = mn,

This observation implies the following formula in terms of generating
functions

E(YN) = [zN ]
M(z)
1− z

. (109)

In the absorption model we have

M(z) =
1−

(
1− P≥0 (1)

)
zE(z)

1− z
. (110)

Substituting z = 1 into E(z) is well-defined, as u1(1) ≤ 1 and P≥0 (1) <
1, compare (107). From Lemma 4.4.2 we know that u1(1) = 1 if and
only if δ ≤ 0. In these cases the numerator in (110) and the denomi-
nator evaluate to 0.

The following technical result will be useful in this and the next
proof.

Lemma 4.6.3. Let P≥0 (u) be the non-negative part of P0(u) and u1(z) the
small branch of the kernel equation (51) in the Łukasiewicz case. Then the
following expansion holds for z→ 1:

P≥0 (u1(z)) =





P≥0 (u1(1))− a1(1− z)
for ρ > 1,

+ a2
2 (1− z)2 + o((1− z)2),

P≥0 (1)− κ
√

1− z +O(1− z), for ρ = 1,

with a1 =
(

P≥0 ◦ u1

)′
(1), a2 =

(
P≥0 ◦ u1

)′′
(1), κ = Cρ(P≥0 )′(ρ) and

C =
√

2 P(τ)
P′′(τ) . For ρ1 = 1 we have a1 = α =

(
P≥0 ◦ u1

)′
(ρ1). Further-

more, for ρ > 1 and δ < 0 we have

a1 = −δ≥0
δ

, a2 =
2δ2δ≥0 − δ≥0 P′′(1) + δ(P≥0 )′′(1)

δ3 . (111)

Proof. By Lemma 4.4.2 ρ > 1 implies δ 6= 0 and ρ = 1 is equivalent to
δ = 0. In the first case u1(z) is regular at 1, which is why a truncated
Taylor expansion gives

P≥0 (u1(z)) = P≥0 (u1(1))−
(

P≥0 ◦ u1

)′
(1)

︸ ︷︷ ︸
=(P≥0 )′(u1(1))u′1(1)

(1− z)

+

(
P≥0 ◦ u1

)′′
(1)

2
(1− z)2 + o((1− z)2).
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The derivative u′1(1) can be found by differentiating the kernel equa-
tion (51) and substituting z = 1:

u′1(1) = −
P(u1(1))
P′(u1(1))

= − 1
P′(u1(1))

.

Thus, for u1(1) = 1 (which holds for δ < 0) we get u′1(1) = − 1
δ and

this gives a1 = − δ≥0
δ .

Next, we simplify a2 = (P≥0 ◦ u1)
′′(1) in the same manner. The

second derivative is

(P≥0 ◦ u1)
′′(z) = (P≥0 )′′(u1(z))(u′1(z))

2 + (P≥0 )′(u1(z))u′′1 (z).

Firstly, we twice implicitly differentiate the kernel equation and get

2P′(u1(z))u′1(z) + zP′′(u1(z))(u′1(z))
2 + zP′(u1(z))u′′1 (z) = 0.

Secondly, as ρ > 1 this differentiation is legitimate at z = 1 and yields
for δ < 0 that

u′′1 (1) =
2δ2 − P′′(1)

δ3 .

Finally, we get under the conditions that u1(z) is defined at z = 1 and
that u1(1) = 1 that

a2 =
2δ2δ≥0 − δ≥0 P′′(1) + δ(P≥0 )′′(1)

δ3 .

In the second case, ρ = 1, the asymptotic given in (73) yields

P≥0 (u1(z)) = P≥0 (1)− C(P≥0 )′(1)
√

1− z +O(1− z),

and as ρ = 1, we have κ = C(P≥0 )′(1).

With this lemma in mind we proceed in the derivation of E(YN):

• δ < 0:

We start with the case of negative drift, δ < 0. The branch u1(z)
is well-defined in a neighborhood of 1 as ρ > 1 or ρ1 > 1,
respectively. The next computations are performed for ρ but are
analogous for ρ1. A Taylor expansion at z = 1 gives

M(z) = 1−
(

1− P≥0 (1)
)

E′(1) +O(1− z).

As a next step we compute E′(z):

E′(z) = − 1
(1− zP≥0 (u1(z)))2

(
P≥0 (u1(z)) + z(P≥0 ◦ u1)

′(z)
)

.

The first factor is equal to E(z)2. Substituting z = 1 gives

E′(1) = −E(1)2
(

P≥0 (1) + a1

)
,
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where a1 := (P≥0 ◦ u1)
′(1) from Lemma 4.6.3, and by (111) we

know that a1 = −δ≥0 /δ for δ < 0. Hence, we get the final result

E(YN) = 1 + E(1)

(
P≥0 (1)− δ≥0

δ

)
+O

(
ρ−N

)

= E(1)

(
1− δ≥0

δ

)
+O

(
ρ−N

)
.

The error term is computed from the fact that E(z) has radius
of convergence ρ.

• δ = 0:

In the case of drift δ = 0, we know from Lemma 4.4.4 that in
the absorption model only the subcritical case exists. In this case
the asymptotic expansion for E(z) is given in Theorem 4.2.2 and
because of δ = 0 we have ρ = 1. Therefore we get for z→ 1 the
asymptotic expansion

M(z) =
1−

(
1− P≥0 (1)

) (
E(1)− E(1)2κ

√
1− z +O(1− z)

)

1− z
.

As δ = 0 Lemma 4.4.2 implies that u1(1) = 1 and we get

M(z) =
E(1)κ√

1− z
+O(1).

Inserting this result into (109) gives the final result for N → ∞:

E(YN) = [zN ]E(1)κ(1− z)−3/2 +O
(
[zN ](1− z)−1

)

= 2E(1)κ

√
N
π

+O(1).

Note that δ = 0 implies τ = 1, which gives κ =
√

2/P′′(1)δ≥0 .

• δ > 0:

For a positive drift δ > 0 Lemma 4.4.2 implies that u1(1) < 1,
which is the reason why 1− P≥0 (1) < E(1). Hence, there appear
no cancellations. By Lemma 4.4.2 we have ρ > 1, which implies
that E(z) is analytic at z = 1. Therefore a Taylor expansion
yields for z→ 1 the result

M(z) =
1−

(
1− P≥0 (1)

)
(E(1) +O(1− z))

1− z

=
1−

(
1− P≥0 (1)

)
E(1)

1− z
+O(1).
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Applying (109) gives for N → ∞:

E(YN) = [zN ]
1−

(
1− P≥0 (1)

)
E(1)

(1− z)2 +O
(
[zN ](1− z)−1

)

=
(

1−
(

1− P≥0 (1)
)

E(1)
)

N +O(1).

This proves Theorem 4.4.7.

Proof of Theorem 4.4.8

First some preliminary work and elementary results are derived. At
the end of this section they are combined into the proof of Theo-
rem 4.4.8.

It proves more convenient to use the following equivalent represen-
tation of (89)

F(z, u) = E(z) + E(z)z
P≥0 (u)− P≥0 (u1(z))

1− zP(u)
. (112)

Differentiating with respect to u yields

∂

∂u
F(z, u)

∣∣∣∣
u=1

=(P≥0 )′(1)
zE(z)
1− z

+ P′(1)
(

P≥0 (1)− P≥0 (u1(z)
) z2E(z)
(1− z)2

︸ ︷︷ ︸
H(z)

.

(113)

As a next step we apply the [zn]-operator to every term. The first
term is a combination of previous results for E(z). Its asymptotic
behavior is a direct consequence of the Theorem 2.5.1 combined with
the results from (76), (77) and (78).

Next we consider the second term H(z). Its first factor is a compo-
sition of two generating functions with the two radii of convergence
1 and ρ. By Lemma 4.6.3 for ρ = 1 the constant term of the expan-
sion of P≥0 (1)− P≥0 (u1(z)) cancels. This also happens if δ < 0 as we
know from Lemma 4.4.2 that u1(1) = 1. Remember that for δ > 0 this
cannot happen because u1(1) < 1 and P≥0 (u) is strictly monotonically
increasing unless it is constant.

Combining these results we derive for H(z) the following asymp-
totics for z→ 1 and ρ > 1:

H(z) =





δ(P≥0 (1)− P≥0 (u1(1)))
z2E(z)
(1−z)2 +O((1− z)−1), for δ > 0,

0, for δ = 0,

−δ≥0
z2E(z)

1−z − δa2
2 E(z) + o(E(z)), for δ < 0.

(114)

Note that for ρ = 1 we also have δ = 0 which means that H(z) = 0.
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The last missing parts are the asymptotics of the quotient E(z)
(1−z)2 .

We get the following generalization of Lemma 4.6.2, which gives the
asymptotics of the terms zE(z)

(1−z)β .

Lemma 4.6.4. Let E(z) be the generating function of excursions and β ≥ 0
be a real number. Then, with the constants α = (P≥0 (u1(z)))′

∣∣∣
z=ρ1

and

κ = Cρ(P≥0 )′(τ) the following asymptotics hold:

[zn]
E(z)

(1− z)β
=





E(1) nβ−1

Γ(β)
+O(nβ−2),

for ρ > 1 or the supercr.

case with ρ1 > 1,
1

α+1
nβ

Γ(β+1) +O(nβ−1), for ρ1 = 1 and supercr.,

1
κ

nβ−1/2

Γ(β+1/2) +O(nβ−3/2), for ρ = 1 and critical,

E(1) nβ−1

Γ(β)
−

for ρ = 1 and subcritical.
E(1)2κnβ−3/2

Γ(β−1/2) +O(nβ−2),

(115)

Proof. The results are computed in a straightforward way using the
results on excursions from (75). The proof follows similar lines to the
one of Lemma 4.6.2 and is omitted.

Here Γ represents the Gamma-function. Important values for the
final analysis are Γ(n + 1) = n! for n ∈ N, Γ(1/2) =

√
π, Γ(3/2) =√

π/2 and Γ(5/2) = 3
√

π/4.
Finally we can combine all previous results in order to prove Theo-

rem 4.4.8. We start the discussion with the reflection model.

R1. For δ < 0 only the supercritical case appears. Combining (113)
and (114) we get

∂

∂u
F(z, u)

∣∣∣∣
u=1

= δ≥0
zE(z)
1− z

− δ≥0
z2E(z)
1− z

− δa2

2
z2E(z) + o(E(z)).

Collecting the first two terms and expanding z and z2 into poly-
nomials in (1− z) yields

∂

∂u
F(z, u)

∣∣∣∣
u=1

= δ≥0 E(z) (1− (1− z))

− δa2

2
E(z)(1− 2(1− z) + (1− z)2) + o(E(z)).

Hence, it simplifies into

∂

∂u
F(z, u)

∣∣∣∣
u=1

=

(
δ≥0 −

δa2

2

)
E(z) + o(E(z)). (116)

The last result only needs δ < 0 as prerequisite. But now we see
the surprising result that ∂

∂u F(z, u)
∣∣∣
u=1

is regular at z = 1 unless
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E(z) is singular there. (Note that this will also follow immedi-
ately from Lemma 4.4.9.) However, E(z) can only be singular at
z = 1 in the supercritical case of the reflection model, as in this
case we derived ρ1 = 1. Otherwise it always holds that ρ > 1 or
ρ1 > 1 for δ < 0. Note that all calculations above were invariant
of the used model.

Let us now focus on the reflection model. Then (76) becomes

E(z) ∼ 1
α + 1

1
1− z

.

Thus, by singularity analysis we get for large n that (116) is
equal to

E(Xn) =
δ≥0 − δa2/2

α + 1
+ o (1) ,

which means that the expected value for the final altitude con-
verges in this case to a constant value. In the case of δ < 0 we
can use the simplifications (111) for a2 and arrive at the final
result

E(Xn) =
δ≥0 P′′(1)− δ(P≥0 )′′(1)

2δ(δ− δ≥0 )
+ o (1) .

R2. Next we treat the case δ = 0 which means ρ = 1. Here H(z)
plays no role . Therefore we get directly from (115) that

E(Xn) = δ≥0 [zn]
zE(z)
1− z

= δ≥0 [zn]

(
E(z)
1− z

− E(z)
)

=
2δ≥0

κ

√
n
π
+O

(
1√
n

)

=

√
2P′′(1)n

π
+O

(
1√
n

)
.

The last equality follows from κ = δ≥0
√

2/P′′(1) for ρ = 1.

R3. Finally, let us deal with δ > 0. This case encloses all 3 other cases
concerning the critical behavior, but they all lead to the same
result. The reflection model simplifies H(z) from (114) into

δ
(

1− P≥0 (u1(1))
)

E(z)
(

1
(1− z)2 −

2
1− z

+ 1
)
+O((1− z)−1).

In a similar manner as before we expand E(z) at the regular
value z = 1 by a Taylor expansion. Inserting this result into the
above equation and using that

E(1) =
1

1− P≥0 (u1(1))
,
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we get

H(z) =
δ

(1− z)2 +O((1− z)−1).

Hence,

E(Xn) = δn +O(1),
as by (115) the first term in (113) is in all three cases of order
O(1).

Before we deal with the absorption model, remember that we need
to consider the total number of meanders which had been derived in
Section 4.4. The expected value (91) is computed by a normalization
by the the total number of meanders determined by Theorem 4.4.6.
This value is non-trivial in the absorption model and summarized in
Table 10. Furthermore, by Lemma 4.4.3 we have ρ1 > 1 in all cases.

A1. We start again with δ < 0. As E(z) is regular at z = 1, we also
see by (116) that for z→ 1 we have

∂

∂u
F(z, u)

∣∣∣∣
u=1

=

(
δ≥0 −

δa2

2

)
E(z) +O(E(z)(1− z)),

is regular at z = 1. Hence the singularity is located at z = ρ. A
rearrangement of (113) gives

∂

∂u
F(z, u)

∣∣∣∣
u=1

= E(z)G(z),

G(z) :=

(
δ≥0 z

1− z
+ δ

(
P≥0 (1)− P≥0 (u1(z))

) z2

(1− z)2

)
(117)

where G(z) is regular at z = 1. Observe that G(z) includes u1(z)
and is therefore singular at ρ.

a) supercritical case
In the supercritical case E(z) becomes singular at 1 < ρ1 <

ρ. Hence, G(z) is regular at ρ1 and we use G(z) = G(ρ1) +

O(1− z/ρ1). This gives

∂

∂u
F(z, u)

∣∣∣∣
u=1

=
γG(ρ1)

1− z/ρ1
+O(1).

Combining this result with the total number of meanders
from Table 10 implies

E(Xn) =
[zn] ∂

∂u F(z, u)
∣∣∣
u=1

[zn]F(z, 1)

∼ G(ρ1)γρ−n
1

γρ−n+1
1 /(E(1)(ρ1 − 1))

=

(
1− 1

ρ1

)
E(1)G(ρ1).
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b) critical case
Let us first consider G(z) at z = ρ by combining it with the
singular expansion of u1(z) from (73) we get for z→ ρ

P≥0 (u1(z)) = P≥0 (τ)− (P≥0 )′(τ)C
√

1− z/ρ +O(1− z/ρ).

Next, we insert this expansion into G(z) and apply Theo-
rem 2.5.1 to get the asymptotics of the second term. The
first term is regular at z = ρ. We get for z→ ρ

G(z) =
δ≥0 ρ

1− ρ
+

δρ2
(

P≥0 (1)− P≥0 (τ) + C(P≥0 )′(τ)
√

1− z/ρ
)

(1− ρ)2

+O(1− z/ρ)

= G(ρ) +
δκρ

(1− ρ)2

√
1− z/ρ +O(1− z/ρ) (118)

Hence, we get by (77) that

∂

∂u
F(z, u)

∣∣∣∣
u=1

=

(
1

κ
√

1− z/ρ
+O

(√
1− z/ρ

))
×

(
G(ρ) +O

(√
1− z/ρ

))

=
G(ρ)

κ
√

1− z/ρ
+O(1).

Using again Table 10 we get the final result

E(Xn) ∼
G(ρ)ρ−n/(κ

√
πn)

ρ−n+1/(κE(1)(ρ− 1)
√

πn)
=

(
1− 1

ρ

)
E(1)G(ρ).

c) subcritical case
Here, again E(z) and u1(z) are singular at z = ρ. Hence,
we use the expansion (118) again, but now with one more
term. Combining it with (78) we derive

∂

∂u
F(z, u)

∣∣∣∣
u=1

=
(

E(ρ)− E(ρ)2κ
√

1− z/ρ
)
×

(
G(ρ) +

δκρ

(1− ρ)2

√
1− z/ρ

)
+O(1− z/ρ)

= E(ρ)G(ρ)− E(ρ)2κ

(
G(ρ)− δρ(1− λ)

(1− ρ)2

)
×

√
1− z/ρ +O(1− z/ρ),

where we used that E(ρ) = 1
1−λ with λ =

P≥0 (τ)
P(τ) . This gives

for the expected value

E(Xn) ∼
E(ρ)2κ

(
G(ρ)− δρ(1−λ)

(1−ρ)2

)
ρ−n/(2

√
πn3)

E(ρ)2κρ−n+1/(2E(1)(ρ− 1)
√

πn3)

=

(
1− 1

ρ

)
E(1)

(
G(ρ)− δρ(1− λ)

(1− ρ)2

)
.
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A2. For δ = 0 only the subcritical case exists in the absorption
model. Additionally we know that the singularity appears at
ρ = 1 and as in the reflection model, H(z) plays no role in
E(Xn). We get from (115) or (78) applied to (113) that

[zn]
∂

∂u
F(z, u)

∣∣∣∣
u=1

= δ≥0 [zn]

(
E(z)
1− z

− E(z)
)

= δ≥0 E(1)− δ≥0 E(1)2 κ√
πn

+O
(

1
n

)
.

Therefore, by Table 10 we arrive at

E(Xn) =
δ≥0
κ

√
πn− δ≥0 E(1) +O

(
1√
n

)

=

√
P′′(1)πn

2
− δ≥0 E(1) +O

(
1√
n

)
,

where the simplification κ = δ≥0
√

2/P′′(1) for ρ = 1 was used.

A3. The case δ > 0 is analogous to the reflection model, as it gives
the same result for all three critical arrangements and we can
mimic its derivation. By (114) H(z) for z→ 1 given by

H(z) = δ(P≥0 (1)− P≥0 (u1(1)))
z2E(z)
(1− z)2 +O((1− z)−1).

As δ > 0 we also know that ρ > 1, which is why 1 is the
dominant singularity of H(z). By Theorem 2.5.1 we get

H(z) = δ(P≥0 (1)− P≥0 (u1(1)))
E(1)

(1− z)2 +O((1− z)−1).

Hence, with Table 10 or more precisely with expression (108)
we get

E(Xn) =
δ(P≥0 (1)− P≥0 (u1(1)))E(1)n

P≥0 (1)− P≥0 (u1(1))E(1)
+O(1) = δn +O(1).

This proves Theorem 4.4.8.

Proof of Theorem 4.4.10

1. Let us start with a negative drift δ < 0. In this case the Conti-
nuity Theorem 2.3.1 will yield a discrete law in all cases. The
functions pn(u) are given by fn(u) in the reflection model and
by fn(u)/[zn]M(z) in the absorption model (compare Defini-
tion 4.1.4). As a first step we have to make these explicit. For
this purpose we fix u ∈ (0, τ) and treat it as a parameter of
F(z, u). From Lemma 4.4.9 we know that it is singular at z = ρ
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or z = ρ1. Without loss of generality we assume the singularity
at z = ρ. With that in mind we want to use singularity analysis
to derive the asymptotic expansion of fn(u) = [zn]F(z, u). First,
we expand the denominator at z = ρ and assume z ∈ Uε(ρ) for
suitable ε < 1, such that 1

1−zP(u) is a convergent power series in
z:

1
1− zP(u)

=
1

(1− ρP(u)) + P(u)(ρ− z)

=
1

1− ρP(u)
1

1− P(u)
1−ρP(u) (z− ρ)

=
1

1− ρP(u)

(
1 +

ρP(u)
1− ρP(u)

(1− z/ρ) +O
(
(1− z/ρ)2)

)
.

Combining this with the numerator gives

F(z, u) =
1

1− ρP(u)

[
1 +

ρP(u)
1− ρP(u)

(1− z/ρ) +O
(
(1− z/ρ)2)

]

×
[
1 +

(
P≥0 (u)− P(u)

)
ρ(1− (1− z/ρ))E(z)

]
. (119)

In anticipation of the limit function we define the following
function, which will play a role in the next formulae and can
be easily recognized in (119):

g(u) := ρ
P≥0 (u)− P(u)

1− ρP(u)
.

The asymptotics of E(z) have been derived in Theorem 4.2.2.
Thus, the leading terms with respect to z in the three cases are
given by

F(z, u) =





γg(u) 1
1−z/ρ1

+O(1), supercr.: P(τ) < P≥0 (τ),

1
κ g(u) 1√

1−z/ρ
+O(1), critical: P(τ) = P≥0 (τ),

c0 − κE(ρ)2g(u)
√

1− z/ρ
subcr.: P(τ) > P≥0 (τ).

+O(1− z/ρ),

The constant c0 ∈ R can be directly computed by (119). Before
we extract fn(u) we take a closer look on the error encoded
by the O(·)-term. Therefore, we return to the proof of Theo-
rem 4.2.2.

• In the supercritical case z = ρ1 is a simple pole of E(z).
Thus, (1− z/ρ1)E(z) is analytic at ρ1 and the next singu-
larity is found at ρ where u1(z) becomes singular. Hence,
the remaining part is regular inside a disc with radius ρ

around the origin.
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• In the critical case the O(1)-term encodes a Puiseux-series
in
√

1− z/ρ with non-negative exponents.

• In the subcritical case the O(1 − z/ρ)-term represents a
Puiseux-series also in

√
1− z/ρ where all exponents are

greater or equal 1.

This discussion enables us to extract the asymptotic form of
the coefficients with respect to z in order to gain fn(u). A table
of such standard functions is for example given in [85, Figure
VI.5].

fn(u) =





γg(u)ρ−n
1 +O (ρ−n) , supercr. case: P(τ) < P≥0 (τ),

1
κ g(u) ρ−n

√
πn +O

(
ρ−n
√

n3

)
, critical case: P(τ) = P≥0 (τ),

κE(ρ)2g(u) ρ−n

2
√

πn3 subcr. case: P(τ) > P≥0 (τ).
+O

(
ρ−n
√

n5

)
,

(120)

In the reflection model the fn(u) functions are the pn(u) func-
tions of Theorem 2.3.1. Due to Lemma 4.4.5 the only possible
case for δ < 0 is the supercritical one. Furthermore, because
of Lemma 4.4.3 the singularity is explicitly known as ρ1 = 1.
Therefore, we get from (120) the following convergence:

lim
n→∞

fn(u) = γg(u), pointwise for each u ∈ (0, 1).

The limit is indeed a probability generating function. We show
that γg(1) = 1. By L’Hospital’s rule one gets limu→1 g(u) =

1− δ≥0 /δ. By (111) we see that γ = 1/(αρ2
1 + 1) = 1/(1− δ≥0 /δ)

and the claim holds.

In the absorption model we need to normalize the functions
fn(u) by [zn]M(z) from Theorem 4.4.6. It is interesting that this
leads to the same leading term in all cases for the asymptotic
expansion, yet only the error terms are different:

fn(u)
[zn]M(z)

=





E(1)
(

1− 1
ρ1

)
g(u) +O

((
ρ
ρ1

)−n
)

, supercr.,

E(1)
(

1− 1
ρ

)
g(u) +O

( 1
n

)
, critical,

E(1)
(

1− 1
ρ

)
g(u) +O

( 1
n

)
, subcr.

These correspond to the pn(u) functions of Theorem 2.3.1. Note
that these asymptotic expansions are valid for u ∈ (0, τ), hence
(0, τ)∩ (0, 1) represents the accumulations points inside the unit
disc wherein the following pointwise convergence holds:

lim
n→∞

fn(u)
[zn]M(z)

= E(1)
(

1− 1
ρ1

)
g(u), for each u ∈ (0, τ).
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Here again, the limit is a probability generating function. By
Lemma 4.4.2 it holds for δ < 0 that u1(1) = 1, and therefore
E(1) = 1/(1− P≥0 (1)). But this is exactly the numerator of g(u)

for u = 1, as g(1) =
1−P≥0 (1)
1−1/ρ1

. Obviously, the denominator is
canceled by the other factor and we get

E(1)
(

1− 1
ρ1

)
g(1) = 1.

Thus, by the Continuity Theorem 2.3.1 we conclude the exis-
tence of a discrete limit law with the above limit distributions.

2. Next, assume a positive drift δ > 0. For this case the Quasi-
powers Theorem 2.3.2 will give the answer, to wit after stan-
dardization a Gaussian limit law will emerge. The key is to
isolate the asymptotic structure (28) for large powers of z in
a neighborhood of u = 1. We start with the extraction of the
n-th coefficient in z of F(z, u). First, note that by Lemma 4.4.1
and Lemma 4.4.3 we have ρ > 1 or ρ1 > 1, respectively, as δ > 0.
Therefore, without loss of generality all following computations
are performed for ρ only. We will see that the critical behavior
plays no role in this case.

As a first step we rewrite (89) as

F(z, u) =
1

1− zP(u)
− P(u)− P≥0 (u)

P(u)

(
E(z)

1− zP(u)
− E(z)

)
.

Next, we want to apply the [zn]-operator. For the second term
E(z)

1−zP(u) we need a similar result as the one of Lemma 4.6.2 where
the singularity of the denominator is not at 1 but at 1/P(u).
However, it does not need to be as accurate.

Note that 1/P(u) is strictly smaller than ρ for u 6= τ. The struc-
ture of equation (28) must hold in a neighborhood of u = 1.
By Lemma 4.4.2 we know that τ < 1 for δ > 0. Hence, we
can choose a neighborhood of u = 1 which does not include
τ in which 1/P(u) is strictly smaller than ρ. If we are dealing
with the supercritical case, we also know that 1 < ρ1 < ρ. As
P(1) = 1 and P is continuous we can also choose a suitable
neighborhood of u = 1 on which 1/P(u) < ρ1. Due to that rea-
soning E(z) is always regular at 1/P(u) for a suitable domain
around u = 1. Hence, an application of Theorem 2.5.1 gives the
asymptotics.

The error term is of order O(ρ−n) because the singularity of
the term at 1/P(u) is a simple pole which does not exist in the
error any more. Therefore the next singularity is the significant
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one, which is the one of E(z) at ρ or ρ1, respectively (compare
Theorem 4.2.2). Then we get

[zn]
E(z)

1− zP(u)
= E

(
1

P(u)

)
P(u)n +O(ρ−n).

Due to the same reasoning as above [zn]E(z) is by Theorem 4.2.2
of the order O(ρ−n). We derive for u in a suitable neighborhood
of u = 1

fn(u) = P(u)n − P(u)− P≥0 (u)
P(u)

(
E
(

1
P(u)

)
P(u)n +O

(
ρ−n)

)

=

(
1−

(
1− P≥0 (u)

P(u)

)
E
(

1
P(u)

))
P(u)n (1 +O

(
ρ−n)) . (121)

Let us continue in the reflection model. There equation (121) re-
sembles the desired form of equation (28). We have

A(u) =

(
1−

(
1− P≥0 (u)

P(u)

)
E
(

1
P(u)

))
,

B(u) = P(u),

βn = n,

κn = ρn or κn = ρn
1 .

Both are probability generating functions and therefore fulfill
A(1) = B(1) = 1. Furthermore the variability condition (29) ob-
viously holds for B(u), as it is the probability generating func-
tion (or in particular polynomial) of a single step at altitude
k > 0. To make that clear, consider S to be the random vari-
able that denotes the next jump at altitude k > 0, then we have
P(u) = E(uS). Hence, P′(1) = E(S) and P′′(1) = E(S(S− 1))
which is why the variability condition is equivalent to

V(S) = E(S(S− 1)) + E(S)−E(S)2 6= 0.

If this equation evaluated to 0, it would imply a deterministic
random variable S, i.e. the existence of only one single step with
probability 1. We exclude this trivial case.

Hence, all conditions of Theorem 2.3.2 are fulfilled and it im-
plies after standardization a Gaussian limit law. The expected
value and the variance are asymptotically given as

E(Xn) ∼ δn,

V(Xn) ∼ (P′′(1) + δ− δ2)n.

Remark that the expected value fits with the results from Table
14 for δ > 0.
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In the absorption model we have to normalize the functions fn(u)
by the total number of meanders given in Theorem 4.4.6. Then
(121) transforms into

fn(u) =
1−

(
1− P≥0 (u)

P(u)

)
E
(

1
P(u)

)

1−
(

1− P≥0 (1)
)

E(1)
· P(u)n

(
1 +O

(
1
ρn

))
.

Hence, the parameters from the reflection model stay the same,
only A(u) changes into

A(u) =
1−

(
1− P≥0 (u)

P(u)

)
E
(

1
P(u)

)

1−
(

1− P≥0 (1)
)

E(1)
.

This is also a probability generating function as A(1) = 1. There-
fore, we get the same result as above with the same asymptotics
for the expected value and the variance.

3. Finally, assume δ = 0. In this case we will show that the limit
law is in the absorption model governed by a Rayleigh distribu-
tion, but in the reflection model given by a half-normal distri-
bution, cf. [179].

In the absorption model we are going to use Theorem 2.3.8. In
order to do that we need to satisfy the conditions of Hypothe-
sis [H]. The power series c(z, u) is in our case represented by
F(z, u). The power series F(z, 1), which is the generating func-
tion of meanders, has radius of convergence ρ = 1. Furthermore,
we need a local representation of the kind

1
F(z, u)

= g(z, u) + h(z, u)
√

1− z
ρ(u)

for |u − 1| < ε and |z − ρ(u)| < ε, arg(z − ρ(u)) 6= 0, where
ε > 0 fixed. In our case we have that ρ(u) = 1/P(u), and that
the singularity in the variable z arises from the square root sin-
gularity of u1(z).

Let us derive this local representation. From (72) and the kernel
equation (52) we deduce

F(z, u)−1 =
(P(u1(z))− P(u))

(
1− P≥0 (u1(z))

P(u1(z))

)

P(u1(z))− P≥0 (u1(z))− P(u) + P≥0 (u)
.

Next, we substitute x = u1(z) and get the bivariate function

G(x, u) =
P(x)− P(u)

(P(x)− P≥0 (x))− (P(u)− P≥0 (u))︸ ︷︷ ︸
=:S(x,u)

(
1− P≥0 (x)

P(x)

)
,



162 the reflection-absorption model for directed lattice paths

such that F(z, u)−1 = G(u1(z), u). Note that the function S(x, u)
is symmetric in its arguments. We are interested in a neighbor-
hood of 1 for u and z, respectively, as u(1) = 1. Note that this is
a rational function in x and u, as P(u) and P≥0 (u) are (Laurent)
polynomials in u. Hence, its possible singularities are given by
the roots of the denominator.

There exists an ε > 0, such that x = u are the only possible
singularities of G(x, u) for |u − 1| < ε and |x − 1| < ε. This
holds, as ϕ(x) := P(x) − P≥0 (x) is a Laurent polynomial and
ϕ′(1) = −(P≥0 )′(1) < 0. Hence, ϕ is one-to-one in a small
enough neighborhood of 1 which can also be chosen such that
ϕ′(x) 6= 0. However, in the case x = u the numerator of S also
becomes 0 and this singularity is canceled:

lim
u→x

S(x, u) = lim
x→u

P(x)−P(u)
x−u

P(x)−P(u)
x−u − P≥0 (x)−P≥0 (u)

x−u

=
P′(x)

P′(x)− (P≥0 )′(x)
,

G(x, x) =
P′(x)

P′(x)− (P≥0 )′(x)

(
1− P≥0 (x)

P(x)

)
. (122)

Therefore, G(x, u) is an analytic function on the chosen neigh-
borhood, as the denominator does not vanish. Hence, we can
use the Taylor expansion of

G(x, u) = ∑
`,k≥0

glk(x− 1)`(u− 1)k,

where g00 = 0 and g10 = g01 = −P′′(1) 1−P≥0 (1)
2δ≥0

= − 1
E(1)Cκ

(for

more details see Remark 17) and the fact that u1(z) has a local
representation of the kind

u1(z) = a(z)− b(z)
√

1− z,

where a(z) and b(z) are analytic functions around z = 1 with
a(1) = 1 and b(1) = C, to see that G(u1(z), u) has a local repre-
sentation of the kind

G(u1(z), u) = g(z, u) + h(z, u)
√

1− z,

where g(1, 1) = g00 = 0 and h(1, 1) = −g10b(1) = 1
E(1)κ > 0. The

technical conditions of hypothesis [H] are also met, as we are
dealing with a rational function. Finally, due to gu(1, 1) = g01 =

− 1
E(1)Cκ

< 0 we can apply Theorem 2.3.8 and get a Rayleigh
limit law. The parameter ϑ is equal to 1/P′′(1). Hence, the ex-
pected value and the variance are asymptotically given as

E(Xn) =

√
P′′(1)πn

2
+O(1),

V(Xn) =
(

2− π

2

)
P′′(1)n +O(

√
n).
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Remark that the expected value fits with the results from Ta-
ble 15 for δ = 0.

In the reflection model we are going to use Fréchet and Shohat’s
Theorem 2.3.10 to prove convergence by moments to a half-
normal distribution. First, note that the k-th factorial moments
E((X)k) ((X)k is the falling factorial defined by (X)k := X(X −
1) · · · (X− k + 1)) and the k-th moment E(Xk) are asymptotically
equivalent. The falling factorial moments are easily computed
via the respective derivatives of the involved probability gener-
ating function, i.e. in our case we have

E(Xk
n) ∼ E((Xn)k) = [zn]

∂k

∂uk F(z, u)
∣∣∣∣
u=1

,

as F(z, u) given by (89) is already a probability generating func-
tion in the reflection model. We start by determining the struc-
ture of the factorial moments. Therefore, we take a closer look
on the structure of F(z, u) with regards to u and interpret z as a
parameter. In (89) we see that the general structure is

F(z, u) =
Q1(u)

1− zP(u)
+ E(z)z

Q2(u)
1− zP(u)

, (123)

where Q1(u) = 1 and Q2(u) = P≥0 (u)− P(u). Thus the govern-
ing structure is Q(u)/(1− zP(u)). Hence, let us investigate the
derivatives of this term. We get

∂k

∂uk
Q(u)

1− zP(u)
=

k

∑
i=0

(
k
i

)(
∂k−i

∂uk−i Q(u)
)(

∂i

∂ui
1

1− zP(u)

)
. (124)

Notice that z only occurs in the second derivative. Hence, its
asymptotic behavior will depend on this term. The i-th deriva-
tive evaluated at u = 1 has the following structure

∂i

∂ui
1

1− zP(u)

∣∣∣∣
u=1

=
i

∑
j=0

ci,j
zj

(1− z)j+1 ,

where the ci,j are constants. This reveals that the dominant con-
tribution in terms of z comes from the highest non-vanishing
derivative of this term.

Due to δ = 0 we have

1
1− zP(u)

=
1

1− z− z P′′(1)
2 (u− 1)2 +O((u− 1)3)

=
1

1− z ∑
`≥0

(
P′′(1)

2
z(u− 1)2

1− z
+O

(
(u− 1)3

1− z

))`

,
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where the sum converges absolutely for |z| < P(|u|). Next, we
distinguish between an even and an odd value of i and get

∂i

∂ui
1

1− zP(u)

∣∣∣∣
u=1

=





P′′(1)` (2`)!2`
z`

(1−z)`+1 for i = 2`,
+O((1− z)−`),

O((1− z)−(`+1)), for i = 2`+ 1.

The odd case derives from the observation that the lowest pos-
sible exponent for (1− z) is created by `− 1 factors of the ones
involving (u − 1)2 plus one from the ones involving (u − 1)3.
Note that these values can be computed, but we won’t need
them in more detail.

Finally, we are able to compute the asymptotics of the k-th mo-
ments. Due to the last result we distinguish between even and
odd moments.

Even moments (k = 2`):

From (123) we see that

E(X2`
n ) = [zn]


(Q1(1)︸ ︷︷ ︸

=1

+ Q2(1)︸ ︷︷ ︸
=0

zE(z))
(

P′′(1)`(2`)!z`

2`(1− z)`+1

+O((1− z)−`)
)
+O

(
E(z)

(1− z)`

))

=
(2`)!
2``!

(P′′(1)n)` +O(n`−1/2),

where Q2(1) = 0 because we are in the case of the reflection
model with P≥0 (1) = 1. The last error term in the first line rep-
resents all other terms of (124). For the computation of the error
term in the last line we applied (115).

Odd moments (k = 2`+ 1):

In this case we need to consider the last two summands in (123)
to get

E(X2`+1
n ) = [zn]


(Q′1(1)︸ ︷︷ ︸

=0

+ Q′2(1)︸ ︷︷ ︸
=δ≥0

zE(z))
(
(2`+ 1)

P′′(1)`(2`)!z`

2`(1− z)`+1

+O((1− z)−`)
)
+ (Q1(1)︸ ︷︷ ︸

=1

+ Q2(1)︸ ︷︷ ︸
=0

zE(z))O((1− z)−(`+1))

+ O
(

E(z)
(1− z)`

))
.

The first term is the one of index i = 2` in (123). From (115)
we deduce that only this term matters asymptotically. The dom-
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inant error term comes from the term with index i = 2`+ 1 and
is of order O(n−`). Thus, we get

E(X2`+1
n ) = δ≥0 P′′(1)`

(2`+ 1)!
2`

[zn]
z`+1E(z)
(1− z)`+1 +O(n`)

= 2``!

√
2
π

√
(P′′(1)n)2`+1 +O(n`).

In the last equality we used again (115) and the Gamma dupli-
cation formula Γ(x)Γ(x + 1

2 ) = 21−2x√πΓ(2x).

Normalized random variable:

From the last two results we see that the normalized random
variables Yn := Xn√

P′′(1)n
possess the following moments:

E(Yk
n) =





(2`)!
2``! +O(n−1/2), for k = 2`,√

2
π 2``! +O(n−1/2), for k = 2`+ 1.

Hence, by Fréchet and Shohat’s Theorem 2.3.10 we get conver-
gence to a half-normal distribution Y, which possesses exactly
the above moments, cf. [4, Chapter 2.2.2] or for explicit moments
[179, Chapter 34.2].

This ends the proof of Theorem 4.4.6.

Remark 17. We briefly sketch the computations of the first Taylor co-
efficients of G(x, u) needed in the proof of Theorem 4.4.10 in the ab-
sorption model for δ = 0. First, g00 is directly computed from (122).
Second, we show that g01 = g10. The two needed derivatives are

Gx(x, u) = Sx(x, u)

(
1− P≥0 (x)

P(x)

)
+ S(x, u)

∂

∂x

(
1− P≥0 (x)

P(x)

)
,

Gu(x, u) = Su(x, u)

(
1− P≥0 (x)

P(x)

)
.

As S(x, u) = S(u, x) we see that Sx(x, u) = Su(x, u). And due to (122)
we get S(1, 1) = 0 which implies that g10 = g01. Thus, it suffices to
compute Su(1, 1). Finally, consider the differential quotient

S(x, u)− S(1, 1)
u− 1

=
S(x, u)
u− 1

=

P(x)−P(u)
(u−1)2

P(x)−P(u)
u−1 − P≥0 (x)−P≥0 (u)

u−1

x,u→1−→ − P′′(1)
2(P≥0 )′(1)

,

where we used the fact that

lim
u→1

P(u)− 1
(u− 1)2 =

P′′(1)
2

,

which can be seen by a Taylor expansion of P(u) at 1, as P(1) = 1
and P′(1) = 0.
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Remark 18 (Alternative proof of the final altitude of meanders in the
absorption model for zero drift). Let us briefly sketch how one can
use the half-normal distribution scheme given in Theorem 2.3.9.

Notice that E(z) is singular at ρ due to its dependency on u1(z). We
know that that for δ = 0 we have τ = 1, and ρ = 1. Combining this
with Proposition 1.6.5 it yields the decomposition (30). By elementary
computations we get

F(z, u)−1 = (1− z) +

√
P′′(1)

2
(1− u)

√
1− z

+ o (1− z) + o
(
(1− u)2) ,

for z, u → 1. Hence, we have gz(ρ, 1) 6= 0, hu(ρ, 1) 6= 0, and h(ρ, 1) =
gu(ρ, 1) = guu(ρ, 1) = 0 and we can apply Theorem 2.3.9. In accor-
dance with the known result we rederived that

Xn√
n

d→ H(σ),

with the parameter σ =
√

2 hu(ρ,1)
ρgz(ρ,1) =

√
P′′(1).



5
L AT T I C E PAT H S B E L O W A L I N E O F R AT I O N A L
S L O P E

This chapter is based on joint work with Cyril Banderier which has
lead to the article The kernel method for lattice paths below a line of rational
slope which has recently been accepted for publication in the Develop-
ments in Mathematics Series (Springer), associated with the 8th Inter-
national Conference on Lattice Path Combinatorics and Applications
[28]. A preliminary version of this paper appeared in the Proceedings
of the ANALCO15 San Diego Conference, [27].

For the enumeration of simple lattice paths (allowing just the jumps
−1, 0, and +1), many methods are often used, like e.g. the Lagrange
inversion, determinant techniques, continued fractions, orthogonal
polynomials, bijective proofs, and a lot is known in such cases [83,
129, 145, 148]. These nice methods do not apply to more complex
cases of more generic jumps (or, if one adds a spacial boundary, like
a line of rational slope). It is then possible to use some ad hoc fac-
torization due to Gessel [95], or context-free grammars to enumerate
such lattice paths [73, 134, 142]. One drawback of the grammar ap-
proach is that it leads to heavy case-by-case computations (resultants
of equations of huge degree). In this chapter, we show how to pro-
ceed for the enumeration and the asymptotics in these harder cases:
our techniques are relying on the “kernel method” which (contrary to
the context-free grammar approach) offers access to the true simple
generic structure of the final generating functions and the universality
of their asymptotics via singularity analysis.

Let us start with the history of what Philippe Flajolet named the
“kernel method”: It has been part of the folklore of combinatorial-
ists for some time and its simplest application deals with functional
equations (with apparently more unknowns than equations!) of the
form

K(z, u)F(z, u) = p(z, u) + q(z, u)G(z),

where the functions p, q, and K are given and where F, G are the un-
known generating functions we want to determine. K(z, u) is a poly-
nomial in u which we call the “kernel” as we “test” this functional
equation on functions u(z) canceling this kernel1. The simplest case

1 The “kernel method” that we mention here for functional equations in combinatorics
has nothing to do with what is known as the “kernel method” or “kernel trick” in
statistics or machine learning. Also, there is no integral directly related to our kernel.
For sure, in our case the word kernel was chosen as its zeros will play a key role, and
also, in one sense, as this kernel has in its core the full description of the problem,
and its resolution.

167
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is when there is only one branch, u1(z), such that K(z, u1(z)) = 0
and u1(0) = 0; in that case, a single substitution gives a closed-form
solution for G: namely, G(z) = −p(z, u1(z))/q(z, u1(z)).

Such an approach was introduced in 1969 by Knuth to enumerate
permutations sortable by a stack, see the detailed solution to Exer-
cise 2.2.1–4 in The Art of Computer Programming ([126, pp. 536–537]
and also Exercise 2.2.1.11 therein), which presents a “new method for
solving the ballot problem”, for which the kernel K is a quadratic
polynomial (this specific case involves just one branch u1(z)).

In combinatorics exist many applications of this method for solv-
ing variants of the above functional equation: one is known as the
“quadratic method” in map enumeration, as initially developed in
1965 by Brown during his collaboration with Tutte (see Section 2.9.1
from [52], and [20] for the analysis of about a dozen families of maps).
During nearly 30 years, the kernel method was dealing only with
“quadratic cases” like the ones of Brown for maps or of Knuth for a
vast amount of examples involving trees, polyominoes, walks [158],
or more exotic applications like e.g. the one mentioned by Odlyzko
in his wonderful survey on asymptotic methods in enumeration [57].
Then, in 1998, the initial approach by Knuth was generalized by a
group of four people, all of them being in contact and benefiting
from mutual insights: Banderier in his memoir [14] solved some prob-
lems related to generating trees and walks, this later lead to the arti-
cle with Flajolet [19] and to the solution of some conjectures due to
Pinzani in the article with Bousquet-Mélou et al. [16]. At the same
time, Petkovšek analyzed linear multivariate recurrences in [155], a
work later extended in [50]. All these articles contributed to turn the
original approach by Knuth into a method working when the equa-
tion has more unknowns (and the kernel has more roots). This solves
equations of the type

K(z, u)F(z, u) =
m

∑
i=1

pi(z, u)Gi(z),

where K and the pi’s are known polynomials, and where F and the
Gi’s are unknown functions.

A few years later, Bousquet-Mélou and Jehanne [46] solved the case
of algebraic equations in F of arbitrary degree:

P(z, u, F(z, u), G1(z), . . . , Gm(z)) = 0.

The kernel method thus plays a key role in many combinatorial
problems. A few examples are directed lattice paths and their asymp-
totics [19, 44], additive parameters like the area [21, 165], generating
trees [16], pattern avoiding permutations [140], prudent walks [12,
71], urn models [164], statistics in posets [45], and many other nice
combinatorial structures...
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Independently, in probability theory, in the ’70s, Malyshev invented
an approach now sometimes called the “iterated kernel method”. It
can be used to analyze nearest neighbor random walks in queuing
theory. In this context these lead to the following type of equations:

K(t, x, y)F(t, x, y) = p0(t, x, y) + p1(t, x, y)F(x, 0) + p2(t, x, y)F(0, y),

where K and the pi’s are known polynomials, while F is the un-
known function we are looking for. This approach culminated in the
book [78], which was later revisited in the 2000s (e.g. in [133]), also
with a more combinatorial point of view in [49]. It is still the subject
of vivid activities, including the extension to higher dimensions [43].
Moreover, the kernel method also gives the transient solution of some
birth-death queuing processes [115].

Also independently, in statistical mechanics, several authors devel-
oped other incarnations of the kernel method. E.g., the WKB limit of
the Bethe Ansatz (also called thermodynamical Bethe Ansatz) often
leads to algebraic equations and to what is called the algebraic Bethe
Ansatz [94]. The kernel method is also used in the study of the Ising
model of bicoloured maps (see Theorem 8.4.5 in [77], and pushing fur-
ther this method led Eynard to his “topological recurrence”), and in
many articles on enumeration related to directed animals, polymers,
walks [116, 117, 118].

After this short history of the kernel method, we want to show
how to use it to derive explicit counting formulae and asymptotics for
directed lattice paths below a line of rational slope. In the article by
Banderier & Flajolet [19], the class of directed lattice paths in Z2 was
investigated thoroughly by means of analytic combinatorics (see [85]).
Our work is an extension of this article in mainly five ways:

1. Our work involves lattice paths having a “periodic support”.
The comment in [19, Section 3.3] was incomplete for this more
cumbersome case. Due to several dominant singularities we had
to revisit the structural properties of the roots associated to the
kernel method in order to understand each of these contribu-
tions. This new understanding gives a tool to deal with the
asymptotics of many other (lattice path) enumeration problems.

2. We get new explicit formulae for the generating functions of
walks with starting and ending at altitude other than 0, and
links with complete symmetric homogeneous polynomials.

3. We give new closed forms for the coefficients of these generat-
ing functions.

4. We have an application to some harder parameters (like the area
below a lattice path).

5. We extend the results to walks below a line of arbitrary rational
slope.
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Plan of this chapter.

• First, in Section 5.1, we recall the fundamental results for lattice
paths below a line of slope α (where α is an integer or the inverse
of an integer), and the links with trees.

• Then, in Section 5.2, we give Knuth’s open problem on lattice
paths below a line of slope 2/5.

• In Section 5.3, we give a bijection between lattice paths below
any line of rational slope, and lattice paths from the Banderier–
Flajolet model.

• In Section 5.4, the needed bivariate generating function is de-
fined, and the governing functional equation is derived and
solved: here the “kernel method” plays the most significant role
in order to obtain the generating function (as typical for many
combinatorial objects which are recursively defined with a “cat-
alytic parameter”).

• In Section 5.5, we tackle some questions on asymptotics, thus
answering the question of Knuth.

• In Section 5.6, we comment on links with previous results of
Nakamigawa and Tokushige, which motivated Knuth’s prob-
lem, and we explain why some cases lead to particularly strik-
ing new closed-form formulae.

• In Section 5.7, we analyze what happens for the Duchon’s club
model (lattice paths below a line of slope 2/3), and we extend
our formulae to general rational slopes.

5.1 trees , fractional trees , imaginary trees

Due to their fundamental role in computer science trees were the
subject of many investigations, and there exist many alternative rep-
resentations of this key data structure. One of the most useful ones
is an encoding by “traversing” the tree via a depth-first traversal (or
via a breadth-first traversal). This directly gives a lattice path associ-
ated to the original tree. In fact, what are called “simple families of
ordered trees” (rooted ordered trees in which each node has a de-
gree prescribed to be in a given set) are in bijection with lattice paths.
The reason is the famous Łukasiewicz correspondence between trees and
lattice paths, see Figure 11.

Basic manipulations on lattice paths show that Dyck paths (paths
with jumps North and East, see Figure 24) below the line y = αx
(α being here a positive integer), or below the line y = x/α, are in
bijection with trees (of arity α, i.e., every node has exactly 0 or α

children).
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The generating function F(z) = ∑ fnzn, where fn counts the num-
ber of trees with n nodes (internal and external ones) satisfies the
functional equation F(z) = zφ(F(z)) , where φ encodes the allowed
arities. Thus, we get binary trees: φ(F) = 1 + F2, unary-binary trees:
φ(F) = 1 + F + F2, t-ary trees: φ(F) = 1 + Ft, general trees: φ(F) =

1/(1− F). See [85] for more on this approach, also extendible to un-
ordered trees (i.e., the order of the children is not taken into account).

Because of the bijection with lattice paths, the enumeration of or-
dered trees solves the question of lattice paths below a line of integer
slope. In the simplest case of classical Dyck paths, many tools were
developed. In 1886, Delannoy was the first to promote a systematic
way to enumerate lattice paths, using recurrences and an array repre-
sentation (see [25] for more on this). Then, the Bertrand ballot prob-
lem [39] (already previously considered by Whitworth) and the ruin
problem (as studied along centuries by Fermat, Pascal, the Bernoullis,
Huygens, de Moivre, Lagrange, Laplace, Ampère and Rouché) were a
strong motor for the birth of the combinatorics of lattice paths, one fa-
mous solution being the one by André [9] via a bijective proof involv-
ing “good minus bad” paths. Aebly [3] and Mirimanoff [144] gave a
geometric variant of this bijective proof, which corresponds to what is
nowadays known as the reflection principle. Later, the cycle lemma by
Dvoretsky and Motzkin [76] proved useful for many similar problems.
During the last century, all these tools were extended and applied to
other cases than the classical Dyck paths, and we will use some of
them in this chapter.

With respect to the closed form for the enumeration, another pow-
erful tool is the Lagrange–Bürmann inversion formula (see e.g. [85]).

Figure 24: Examples of combinatorial structures which are in bijection:
ternary trees, excursions of directed lattice paths with jumps +2
and −1, Dyck paths of North-East steps below the line y = 2x,
Dyck paths above the line y = 1

2 x, and Dyck paths below the line
y = 1

2 x.
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Applied on T(z) = 1 + zT(z)t (the equation for the generating func-
tion of t-ary trees where z marks internal nodes), it gives

T(z)r = ∑
k≥0

(
tk + r

k

)
r

tk + r
zk = ∑

k≥0

(
tk + (r− 1)

k

)
r

(t− 1)k + r
zk .
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Figure 25: It is possible to plug any value for t in T(z), which is known to
count trees and lattice paths when t is an integer. What happens
when we consider generalized binomial series of order 3/2, or of
other fractional values? To recycle a nice pun by Don Knuth [127]:
Nature is offering nice binary trees, will imaginary trees one day
play a role in computer science?

Plugging rational values is not directly leading to a power series
with integer coefficients, but it “miraculously” becomes the case after
basic transformations. For example, as observed by Knuth [127], for
t = 3/2, one has the following neat non-trivial identity:

T(z)T(−z) =

(
∑
k≥0

(3k/2
k )

k/2 + 1
zk

)(
∑
k≥0

(3k/2
k )

k/2 + 1
(−z)k

)
= ∑

n≥0

(3n+1
n )

n + 1
z2n .

What could be the meaning of such identities on “half-trees”? The
explanation behind this formula is better seen in terms of lattice paths,
and we will shed light on it in the next sections via the kernel method.
Another set of mysterious identities is e.g. incarnated by:

ln T(z) = ln ∑
n≥0

(tn
n )

(t− 1)n + 1
zn = ∑

n≥1

(tn
n )

tn
zn .

In fact, this one is just another avatar of the cycle lemma, which is
also the reason for the link between the generating function of bridges
and the generating function of excursions (a fact also appearing in
various disguises e.g. in the Spitzer formula, in the Sparre Andersen
formula), see [19] for explanations and proofs.

As we have seen, Dyck paths below an integer slope (or structures
in bijection with them) were subject to many approaches, now con-
sidered as “folklore”. The first result for lattice paths below a rational
slope came much later, and is best summarized by the following the-
orem:
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Theorem 5.1.1 (Bizley’s formula, Grossman’s formula). The number
f (an, bn) of Dyck paths from (0, 0) to (an, bn) staying weakly above y =
a
b x is given by the following expressions, where cj := 1

aj+bj (
aj+bj

aj ):

f (an, bn) = [tn] exp
n

∑
j≥0

1
(a + b)

(
(a + b)j

a

)
tj , (125)

f (an, bn) = ∑{integer partitions of n:
∑k

j=1 j ej=n

}

k

∏
j=1

(cj)
ej

ej!
. (126)

Formula (126) was first stated without proof by Grossman in 1950.
A proof was then given by Bizley [41] in 1954. It starts with For-
mula (125), which is an avatar of the cycle lemma [76] expressed
in terms of a generating function. Then routine power series ma-
nipulation gives Formula (126). These formulae (or special cases of
them) have since been rediscovered (and published...) many times.
One nice modern formulation of the method behind is found in the ar-
ticle by Gessel [95]. There exist alternative generic formulae as given
by Banderier and Flajolet [19], Sato [162], which simplify for ad hoc
cases [22, 73].

This formula admits many extensions as one could for example add
parameters or take into account certain patterns. This would lead to
“rational” Narayana numbers, “rational” q-analogs, “rational” Maho-
nian statistics (on lattice paths!), etc.

For each n, Grossman’s formula (126) for f (an, bn) involves p(n)
summands, where p(n) is the integer partition sequence of Hardy–
Ramanujan fame:

p(n) = [tn] ∏
n≥1

1
1− tn ∼

1
4n
√

3
exp

(
π

√
2n
3

)
.

Therefore, this nice closed-form formula of Grossman has many sum-
mands if n is large (computing it will have an exponential cost); it
is thus useful to have an algorithmic alternative to it. Bizley’s for-
mula (125) allows to compute f (an, bn) in quasi-linear time by a
power series manipulation. This is also the advantage of other expres-
sions like the ones given by [19] using the kernel method, on which
we will come back in the next sections.

Formula (125) for n = 1 gives f (a, b) = 1
a+b (

a+b
a ), also known as the

rational Catalan numbers Cat(a, b). In the last years many properties
of the Dyck paths and their “Catalan combinatorics” (i.e., the enumer-
ation of the numerous combinatorial and algebraic structures related
to them) were extended to Dyck paths below a line of rational slope.
This new area of research is sometimes called “rational Catalan com-
binatorics” [10]. We expect that the recent developments of “rational
Catalan combinatorics” have a generalization to n > 1, but with less
simple formulae, as suggested by Table 18.
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# Dyck walks from (0, 0) to (an, bn) staying weakly below y = a
b x

n = 1 c1

n = 2 c2 +
c2

1
2

n = 3 c3 + c1c2 +
c3

1
3!

n = 4 c4 +
c2

2
2
+ c1c3 +

c2
1c2

2
+

c4
1

4!

n = 5 c5 + c2c3 + c1c4 +
c1c2

2
2

+
c2

1c3

2
+

c3
1

3!
c2 +

c5
1

5!

n = 6 c6 + c5c1 + c4c2 +
c2

1c4

2
+

c2
3

2
+

c3
2

3!
+

c2c4
1

4!
+

c1
3c3

3!
+

c1
2c2

2

4
+ c1c2c3 +

c6
1

6!
...

...

n ∑{integer partitions of n:
∑k

j=1 j ej=n

}

k

∏
j=1

(cj)
ej

ej!

Table 18: The number f (an, bn) of Dyck walks from (0, 0) to (an, bn) stay-
ing weakly below y = a

b x. To shorten our expressions, we use the
shorthand cj := 1

aj+bj (
aj+bj

aj ).

In the rest of the chapter, we will see further nice formulae for Dyck
paths below a rational slope.

5.2 knuth’s aofa problem #4

During the conference “Analysis of Algorithms” (AofA 2014) in Paris
in June 2014, Knuth gave the first invited talk, dedicated to the mem-
ory of Philippe Flajolet (1948-2011). The title of his lecture was “Prob-
lems that Philippe would have loved” and he was pinpointing/devel-
oping five nice open problems with a good flavor of “analytic com-
binatorics” (his slides are available online2). The fourth problem was
on “Lattice paths of slope 2/5”, in which Knuth investigated Dyck
paths under a line of slope 2/5, following the work of [147]. This is
best summarized by the two following original slides of Knuth:

2 http://www-cs-faculty.stanford.edu/~uno/flaj2014.pdf
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In the next sections we prove that Knuth was indeed right! In order
not to conflict with our notation, let us rename Knuth’s constants a
and b into κ1 and κ2.

5.3 a bijection for lattice paths below a rational slope

Consider paths in the N2 lattice3, starting in the origin, and whose
allowed steps are of the type either East or North (i.e., steps (1, 0) and
(0, 1), respectively). Let α, β be positive rational numbers. We restrict
the walks to stay strictly below the barrier L : y = αx + β. Hence, the
allowed domain of our walks forms an obtuse cone with the x-axis,
the y-axis and the barrier L as boundaries. The problem of counting
walks in such a domain is equivalent to counting directed walks in
the Banderier–Flajolet model [19], as seen via the following bijection:

Proposition 5.3.1 (Bijection: Lattice paths below a rational slope are
directed lattice paths). Let D : y < αx + β be the domain strictly be-
low the barrier L. From now on, we assume without loss of generality
that α = a/c and β = b/c where a, b, c are positive integers such that
gcd(a, b, c) = 1 (thus, it may be the case that a/c or b/c are reducible
fractions). There exists a bijection between “walks starting from the origin
with North and East steps” and “directed walks starting from (0, b) with the
step set {(1, a), (1,−c)}”. What is more, the restriction of staying below the
barrier L is mapped to the restriction of staying above the x-axis.

Proof. The following affine transformation gives the bijection (see Fig-
ure 26):

x

y


 7→


 x + y

ax− cy + b


 .

Indeed, the determinant of the involved linear mapping is −(c+ a) 6=
0. What is more, the constraint of being below the barrier (i.e., one has
y < αx + β) is thus forcing the new abscissa to be positive: ax− cy +

b > 0. The gcd conditions ensure an optimal choice (i.e., the thinnest
lattice) for the lattice on which walks will live. Note that this affine
transformation gives a bijection not only in the case of an initial step
set North and East, but for any set of jumps.

The purpose of this bijection is to map walks of length n to mean-
ders (i.e., walks that stay above the x-axis) which are constructed by
n unit steps into the positive x direction.

Note that if one does not want the walk to touch the line y =

(a/c)x + b/c, it corresponds to a model in which one allows to touch,
but with a border at y = (a/c)x + (b − 1)/c. Time reversal is also
giving a bijection between

3 We live in a world where 0 ∈N.
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(a) Rational slope model (b) Banderier–Flajolet model

Figure 26: Example showing the bijection from Proposition 5.3.1: Dyck paths
below the line y = (2/5)x + 2/5 (or touching it) are in bijection
with walks allowing jumps +2 and −5, starting at altitude 2, and
staying above the line y = 0 (or touching it).

• walks starting at altitude b with jumps +a,−c and ending at 0,

• and walks starting at 0 and ending at altitude b with jumps
−a,+c.

5.4 functional equation and closed-form expressions
for lattice paths of slope 2/5

In this section, we show how to derive closed-forms (i.e., explicit ex-
pressions) for the generating functions of lattice paths of slope 2/5
(and their coefficients). First, define the jump polynomial P(u) :=
u−2 + u5. Note that the bijection in Proposition 5.3.1 gives jump sizes
+2 and −5. However, a time reversal gives this equivalent model
(jumps −2 and +5), which has the advantage of leading to more com-
pact formulae (see below). Let fn,k be the number of walks of length
n which end at altitude k. The corresponding bivariate generating
function is given by

F(z, u) = ∑
n,k≥0

fn,kznuk = ∑
n≥0

fn(u)zn = ∑
k≥0

Fk(z)uk,

where the fn(u) encode all walks of length n, and the Fk(z) are the
generating functions of walks ending at altitude k. A step-by-step
approach yields the following linear recurrence

fn+1(u) = {u≥0} [P(u) fn(u)] for n ≥ 0,

with initial value f0(u) (i.e., the polynomial representing the walks of
length 0), and where {u≥0} is a linear operator extracting all monomi-
als in u with non-negative exponents. Summing the terms zn+1 fn+1(u)
leads to the functional equation

(1− zP(u))F(z, u) = f0(u)− zu−2F0(z)− zu−1F1(z). (127)
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We apply the kernel method in order to transform this equation into
a system of linear equations for F0 and F1. The factor K(z, u) := 1−
zP(u) is called the kernel and the kernel equation is given by K(z, u) =
0. Solving this equation for u, we obtain 7 distinct solutions. These
split into two groups, namely, we get 2 small roots u1(z) and u2(z)
(the ones going to 0 for z ∼ 0) and 5 large roots which we call vi(z)
for i = 1, . . . , 5 (the ones going to infinity for z ∼ 0). It is legitimate to
insert the 2 small branches into (127) to obtain4

zF0 + zu1F1 = u2
1 f0(u1),

zF0 + zu2F1 = u2
2 f0(u2).

This linear system is easily solved by Cramer’s rule, which yields

F0(z) = −
u1u2 (u1 f0(u1)− u2 f0(u2))

z(u1 − u2)
,

F1(z) =
u2

1 f0(u1)− u2
2 f0(u2)

z(u1 − u2)
.

Now, let the functions F(z, u) and Fk(z) denote functions associated
with f0(u) = u3 (i.e., there is one walk of length 0 at altitude 3) and
let the functions G(z, u) and Gk(z) denote functions associated with
f0(u) = u4. One thus gets the following theorem:

Theorem 5.4.1 (Closed-forms for the generating functions). Let us con-
sider walks in N2 with jumps −2 and +5. The number of such walks start-
ing at altitude 3 and ending at altitude 0 is given by F0(z), the number of
such walks starting at altitude 4 and ending at altitude 1 is given by G1(z),
and we have the following closed-forms in terms of the small roots u1(z) and
u2(z) of 1− zP(u) = 0 with P(u) = u−2 + u5:

F0(z) = −
u1u2

(
u4

1 − u4
2
)

z(u1 − u2)
, G1(z) =

u6
1 − u6

2
z(u1 − u2)

.

Thanks to the bijection given in Section 5.3 between walks in the ra-
tional slope model and directed lattice paths in the Banderier–Flajolet
model (and by additionally reversing the time5), it is now possible to
relate the quantities A and B of Knuth with F0 and G1:

An := A[5n− 1, 2n− 1] = [z7n−2]G1(z),

Bn := B[5n− 1, 2n− 1] = [z7n−2]F0(z).
(128)

Indeed, from the bijection of Proposition 5.3.1, the walks strictly
below y = a

c x + b
c (with a = 2, c = 5) and ending at (x, y) = (5n−

4 In this chapter, whenever we thought it could ease the reading, without harming the
understanding, we write u1 for u1(z), or F for F(z), etc.

5 Reversing the time allows us to express all generating functions in terms of just 2
roots. If one does not reverse time, everything works well but the expressions contain
the 5 large roots, yielding more complicated closed-forms.
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1, 2n− 1) are mapped (in the Banderier–Flajolet model, not allowing
to touch y = 0) to walks starting at (0, b) and ending at (x + y, ax−
cy + b) = (7n − 2, 3 + b). Reversing the time and allowing to touch
y = 0 (thus b becomes b− 1), gives that An counts walks starting at
4, ending at 1 (yeah, this is counted by G1!) and that Bn counts walks
starting at 3, ending at 0 (yeah, this is counted by F0!). While there is
no nice formula for An or Bn (see, however, [17] and page 180 for a
formula involving nested sums of binomials), it is striking that there
is a simple and nice formula for An + Bn:

Theorem 5.4.2 (Closed-form for the sum of coefficients). The sum of
the number of Dyck paths (in our rational slope model) touching or stay-
ing below y = (2/5)x + 1/5 and y = (2/5)x simplifies to the following
expression:

An + Bn =
2

7n− 1

(
7n− 1

2n

)
. (129)

Proof. A first proof of this was given by [147] using a variant of the
cycle lemma. (We comment more on this in Section 5.6.) We give here
another proof. Indeed, our Theorem 5.4.1 (Closed-form for the gener-
ating functions) implies that

An + Bn = [z7n−1]
(
u5

1 + u5
2
)

. (130)

This suggests using holonomy theory to prove the theorem. First, a
resultant equation gives the algebraic equation for U := u5

1 (namely,
z7 + (U − 1)5U2 = 0) and then the Abel–Tannery–Cockle–Harley–
Comtet theorem (see the comment after Proposition 4 in [17]) trans-
forms it into a differential equation for the series u5

1(z
2). It is also the

differential equation (up to distinct initial conditions) for u5
2(z

2) (as
u2 is defined by the same equation as u1), and thus of u5

1(z
2) + u5

2(z
2).

Therefore, it directly gives the differential equation for the series
C(z) = ∑n(An + Bn)zn, and it corresponds to the following recur-
rence for its coefficients:

Cn+1 =
7
10

(7n + 5)(7n + 4)(7n + 3)(7n + 2)(7n + 1)(7n− 1)
(5n + 4)(5n + 3)(5n + 2)(5n + 1)(2n + 1)(n + 1)

Cn ,

which is exactly the hypergeometric recurrence for 2
7n−1 (

7n−1
2n ) (with

the same initial condition). This computation takes 1 second on an av-
erage computer, while, if not done in this way (e.g., if instead of the
resultant shortcut above, one uses several gfun[diffeq*diffeq] or
variants of it in Maple, see [161] for a presentation of the correspond-
ing package), the computations for such a simple binomial formula
surprisingly take hours.

Some additional investigations conducted by Manuel Kauers (pri-
vate communication) show that this is the only linear combination
of An and Bn which leads to a hypergeometric solution (to prove
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this, you can compute a recurrence for a formal linear combination
rAn + sBn, and then check which conditions it implies on r and s if
one wishes the associated recurrence to be of order 1, i.e., hypergeo-
metric). It thus appears that rAn + sBn is generically of order 5, with
the exception of a sporadic 4An − Bn which is of order 4, and the
miraculous An + Bn which is of order 1 (hypergeometric).

However, there are many other hypergeometric expressions float-
ing around: expressions of the type of the right-hand side of (130)
have nice hypergeometric closed-forms. This can also be explained in
a combinatorial way. Indeed, we observe that setting k = −5 in For-
mula (10) from [19], leads to 5W−5(z) = Θ(A(z) + B(z)) (where Θ is
the pointing operator). The “Knuth pointed walks” are thus in 1-to-5
correspondence with unconstrained walks (see our Table 2, top left)
ending at altitude -5.

We want to end this section with exemplifying the miracles in-
volved in the simplifications of (129). Using the Flajolet–Soria formula
[17] for the coefficients of an algebraic function, we can extract the
coefficient of z7n−2 of G1(z) and F0(z) in terms of nested sums. Ac-
cording to (128), this corresponds to An and Bn, which are thus given
by formulae involving respectively 45 and 34 nested sums (see Fig-
ure 27).

Then, in the next section, we perform some analytic investigations
in order to prove what Knuth conjectured:

An

Bn
= κ1 −

κ2

n
+O(n−2),

with κ1 ≈ 1.63026 and κ2 ≈ 0.159.

5.5 asymptotics

As usual, we need to locate the dominant singularities, and to under-
stand the local behavior there. The fact that there are several dom-
inant singularities makes the game harder here, and this case was
only sketched in [19]. Similarly to what happens in the rational world
(Perron–Frobenius theory), or in the algebraic world (see [17]), a peri-
odic behavior of the generating function leads to some more compli-
cated proofs, because additional details have to be taken into account.
With respect to walks, it is e.g. crucial to understand how singularities
spread amongst the roots of the kernel. To this aim, some quantities
will play a key role: the structural constant τ is defined as the unique
positive root of P′(τ), where

P(u) = u−2 + u5

6 Via the kernel method, as explained in [22], it is possible to express An and Bn with
less nested sums than in Figure 27 but the corresponding formulae are however still
of the “ugly” type!
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An =
7n−2

∑
m=0

m! ∑
m1+···+m44=m+1

b1m1+···+b44m44=7n−2
c1m2+···+c44m44=m

(
20m13m2(−190)m3(−39)m41140m5239m6

4m7(−4845)m8(−915)m9(−25)m1015504m112443m1268m131m14

(−38760)m15(−4806)m16(−105)m1777520m187173m19100m20

(−125970)m21(−8238)m22(−59)m23167960m247305m2520m26

(−184756)m27(−4971)m28(−3)m29167960m302553m31(−125970)m32

(−959)m3377520m34249m35(−38760)m36(−40)m3715504m383m39

(−4845)m401140m41(−190)m4220m43(−1)m44 Π44
k=1

1
mi!

)
,

where (bn)44
n=1 = (2,5,4,7,6,9,12,8,11,14,10,13,16,19,12,15,18,14,17,20,16,19,22,

18,21,24,20,23,26,22,25,24,27,26,29,28,31,30,33,32,34,36,38,40) and (cn)44
n=1 =

(2,0,3,1,4,2,0,5,3,1,6,4,2,0,7,5,3,8,6,4,9,7,5,10,8,6,11,9,7,12,10,13,11,14,12,15,13,
16,14,17,18,19,20,21).

Bn =
7n−2

∑
m=0

m! ∑
m1+···+m33=m+1

b1m1+···+b33m33=7n−2
c1m2+···+c33m33=m

(
20m12m2(−182)m3(−18)m41006m573m6

(−1)m7(−3793)m8(−176)m910349m10279m11(−21084)m12(−294)m13

32521m14190m151m16(−37980)m17(−57)m18(−10)m1933128m2045m21

(−20928)m22(−120)m239039m24210m25(−2384)m26(−252)m27

289m28210m29(−120)m3045m31(−10)m321m33 Π33
k=1

1
mi!

)
,

where (bn)33
n=1 = (2,5,4,7,6,9,12,8,11,10,13,12,15,14,17,13,16,19,15,18,17,20,19,

22,21,24,23,26,25,27,29,31,33) and (cn)33
n=1 =(2,0,3,1,4,2,0,5,3,6,4,7,5,8,6,11,9,7,

12,10,13,11,14,12,15,13,16,14,17,18,19,20,21).

An + Bn =
2

7n− 1

(
7n− 1

2n

)
.

Figure 27: The “ugly + ugly = nice” formula. An is counting Dyck paths
touching or staying below the line y = (2/5)x + 1/5, and Bn
is counting Dyck paths touching or staying below the line y =
(2/5)x. They are given by complicated “ugly” nested sums6, so
the miracle is that the sum An + Bn is nice. We give several expla-
nations of this fact in this chapter.
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is encoding the jumps, and the structural radius ρ is given as ρ =

1/P(τ). For our problem, one thus has the explicit values:

τ =
7

√
2
5

, P(τ) =
7

10
7
√

2552, ρ =
7
√

2255

7
.

Figure 28: P(u) is the polynomial encoding the jumps, its saddle point τ
gives the singularity ρ = 1/P(τ) where the small root u1 (in
green) meets the large root v1 (in red), with a square root behavior.
(In black, we also plotted |u2|, |v2| = |v3|, and |v4| = |v5|.) This is
the key for all asymptotics of such lattice paths.

From [19], we know that the small branches u1(z) and u2(z) are
possibly singular only at the roots of P′(u). Note that the jump poly-
nomial is periodic with period p = 7 as P(u) = u−2H(u7) with H(u) =
1 + u. Due to that, there are 7 possible singularities of the small
branches

ζk = ρωk, with ω = e2πi/7.

Let us quickly recall Defintion 1.6.1: We call a function F(z) p-
periodic if there exists a function H(z) such that F(z) = H(zp).

Additionally, we have the following local behaviors:

Lemma 5.5.1 (Local behavior due to rotation law). The limits of the
small branches when z→ ζk exist and are equal to

u1(z) =
z∼ ζk





τω−3k + Ck
√

1− z/ζk +O((1− z/ζk)
3/2), k = 2, 5, 7,

τ2ω−3k + Dk(1− z/ζk) +O((1− z/ζk)
2), k = 1, 3, 4, 6,

u2(z) =
z∼ ζk





τ2ω−3k + Dk(1− z/ζk) +O((1− z/ζk)
2), k = 2, 5, 7,

τω−3k + Ck
√

1− z/ζk +O((1− z/ζk)
3/2), k = 1, 3, 4, 6,

where τ2 = u2(ρ) ≈ −0.707723271 is the unique real root of 500t35 +

3900t28 + 13540t21 + 27708t14 + 37500t7 + 3125, Ck = − τ√
5
ω−3k, and

Dk = τ2
τ7

2 +1
5τ7

2−2 ω−3k.
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Proof. We will show the following rotation law for the small branches
(for all z ∈ C, with |z| ≤ ρ and 0 < arg(z) < π − 2π/7):

u1(ωz) = ω−3u2(z),

u2(ωz) = ω−3u1(z).

Indeed, let us consider the function U(z) := ω3ui(wz) (with i = 1 or
i = 2, as you prefer!) and the quantity X, defined by X(z) := U2 −
zφ(U) (where φ(u) := u2P(u)). So we have X(z) = (ω3ui(ωz))2 −
zφ(ω3ui(ωz)) = ω6ui(ωz)2 − zφ(ui(ωz)) (because φ is 7-periodic),
and therefore ωX(z/ω) = ω(ω6ui(z)2 − z/ωφ(ui(z))) = ui(z)2 −
zφ(ui(z)), which is 0 because we recognize here the kernel equation.
This implies that X = U2− zφ(U) = 0 and thus U is a root of the ker-
nel. Which one? It is one of the small roots, because it is converging
to 0 at 0. What is more, this root U is not ui, because it has a different
Puiseux expansion (and Puiseux expansions are unique). So, by the
analytic continuation principle (therefore, here, as far as we avoid the
cut line arg(z) = −π), we just proved that ω3u1(ωz) = u2(z) and
ω3u2(ωz) = u1(z) (and this also proves a similar rotation law for
large branches, but we do not need it).

Accordingly, at every ζk, amongst the two small branches, only one
branch becomes singular: this is u1 for k = 2, 5, 7 and u2 for k =

1, 3, 4, 6. This is illustrated in Figure 29.

<

=

ζ0

ζ1
ζ2

ζ3

ζ4

ζ5
ζ6

2π
7 <

=

u1

u2
u1

u2

u2

u1
u2

2π
7

Figure 29: The locations of the 7 possible singularities of the small branches
(left); the small branch which is singular at that location (right).

Hence, we directly see how the asymptotic expansion at the dominant
singularities are correlated with the one of u1 at z = ρ = ζ7, which
we derive following the approach of [19]; this gives for z ∼ ρ:

u1(z) = τ + C7
√

1− z/ρ + C′7(1− z/ρ)3/2 + . . . ,

where C7 = −
√

2 P(τ)
P′′(τ) . Note that in our case P(3)(τ) = 0 (this funny

cancellation holds for any P(u) = p5u5 + p0 + p−2u−2 ), so even the
formula for C′7 is quite simple: C′7 = − 1

2 C7.
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In the lemma, the formula for τ2 = u2(ρ) is obtained by a resultant
computation.

For the local analysis of Knuth’s generating functions F0(z) and
G1(z) with periodic support, we introduce a shorthand notation:

Definition 5.5.2 (Local asymptotics extractor [zn]ζk ). Let F(z) be an
algebraic function with p dominant singularities ζk (for k = 1, . . . , p). Ac-
cordingly, for each ζk, F(z) can be expressed as a Puiseux series, i.e., there
exist r ∈ Q and coefficients cn (both depending on k) such that

F(z) = ∑
j≥0

cj(1− z/ζk)
rj, for z ∼ ζk.

Then we define the local asymptotic extractor [zn]ζk as

[zn]ζk F(z) := ∑
j≥0

cj[zn](1− z/ζk)
rj.

This notation can be considered as “extracting the coefficient of zn in the
Puiseux expansion7 of F(z) at z = ζk”. Then singularity analysis allows to
write [zn]F(z) ∼ ∑k[zn]ζk F(z).

Example 5.5.3. A sloppy but easy to remember formulation would be
to say

[zn]ζk F(z) := [zn](singular expansion of F(z) at z = ζk).

This is well illustrated by the generating function D(z) of Dyck paths
defined by the functional equation D(z) = 1 + z2D(z)2. In this case,
we have D(z) = 1−

√
1−4z2

2z2 with p = 2 and ζ1 = 1/2 and ζ2 = −1/2.
Therefore we get for any ε > 0

[zn]D(z) = [zn]1/2 D(z) + [zn]−1/2 D(z) + o
(
(2− ε)n)

= [zn](−2
√

2)
√

1− 2z + [zn](−2
√

2)
√

1 + 2z

+ O
(

2n

n5/2

)
+ o

(
(2− ε)n) .

Proposition 5.5.4 (Periodic rule of thumb). Let ρ be the positive real
dominant singularity in the previous definition. If additionally the generat-
ing function F(z) satisfies a rotation law F(ωz) = ωmF(z) (where ω =

exp(2iπ/p), p maximal), then one has a neat simplification:

[zn]F(z) = p[zn]ρF(z) + o(ρn),

if n−m is a multiple of p. (The other coefficients are equal to 0.)

7 In fact this notation holds for singular expansions of alg-log functions [85], exp-
log functions, and more generally for expansions in Hardy fields [103] which are
amenable to singularity analysis or saddle point methods.
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Proof. As F(z) is a generating function, it has real positive coefficients
and therefore, by Pringsheim’s theorem [85, Theorem IV.6], one of
the ζk’s has to be real positive, called ρ. We relabel the ζk’s such that
ζk := ωkρ. Then

[zn]F(z)− o(ρn) =
p

∑
k=1

[zn]ζk F(z) =
p

∑
k=1

[zn]ζk(ω
m)kF(ω−kz)

=
p

∑
k=1

(ωm)k(ω−k)n[zn]ρF(z)

=

(
p

∑
k=1

(ωk)m−n

)
[zn]ρF(z) = p[zn]ρF(z),

if n−m is a multiple of p, and 0 elsewhere.

We can apply this proposition to F0(z) and G1(z), because the ro-
tation law for the ui’s implies: F0(ωz) = ω−2F0(z) and G1(ωz) =

w−2G1(z). Thus, we just have to compute the asymptotics coming
from the Puiseux expansion of F0(z) and G1(z) at z = ρ, and multiply
it by 7 (recall that it is classical to infer the asymptotics of the coeffi-
cients from the Puiseux expansion of the functions via the so-called
“transfer” Theorem VI.3 from [85]), this gives:

Theorem 5.5.5 (Asymptotics of coefficients, answer to Knuth’s prob-
lem). The asymptotics for the number of excursions below y = (2/5)x +

2/5 and y = (2/5)x + 1/5 are given by:

An = [z7n−2]G1(z) = α1
ρ−7n

√
π(7n− 2)3

+
3α2

2
ρ−7n

√
π(7n− 2)5

+O(n−7/2),

Bn = [z7n−2]F0(z) = β1
ρ−7n

√
π(7n− 2)3

+
3β2

2
ρ−7n

√
π(7n− 2)5

+O(n−7/2),

with the following constants where we define the shorthand µ := τ2/τ:

α1 =
µ4 + 2µ3 + 3µ2 + 4µ + 5√

5
, β1 =

√
5− α1, β2 = − 9

10

√
5− α2,

α2 =
τ7

2 (13µ4 + 22µ3 + 29µ2 + 36µ + 45)
2
√

5(2− 5τ7
2 )

+
15µ4 + 20µ3 + 13µ2 − 8µ− 45

5
√

5(2− 5τ7
2 )

.

This theorem leads to the following asymptotics for An + Bn (and
this is for sure a good sanity test, coherent with a direct application
of Stirling’s formula to the closed-form formula (129) for An + Bn):

An + Bn =

√
5

73π

ρ−7n
√

n3
+O(n−5/2).
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Finally, we directly get

An

Bn
=

α1 +
3α2

2(7n−2)

β1 +
3β2

2(7n−2)

+O(n−2) =
α1

β1
+

3
14

(
α2β1−α1β2

β2
1

)
1
n
+O(n−2),

which implies that Knuth’s constants are

κ1 =
α1

β1
= − 5

µ4 + 2µ3 + 3µ2 + 4µ
− 1

≈ 1.6302576629903501404248,

κ2 = − 3
14

(
α2β1 − α1β2

β2
1

)

=
3

9800
(13− 236κ1 − 194κ2

1 − 388κ3
1 + 437κ4

1)

≈ 0.1586682269720227755147.

Now a few resultant computations give the algebraic equations
satisfied by τ2, κ1, and κ2. We will illustrate their derivation with
the required Maple commands. In what follows, these are always
set in a typewriter font. First, we compute an annihilating polyno-
mial for ρ:

> R1:=resultant(numer(1-z*P),numer(diff(P,u)),u);

R1 := 823543 z7 − 12500
Then, we construct from it an annihilating polynomial for ui(ρ).
> R2:=factor(resultant(numer(1-z*P),R1,z));(

500 u35+3900 u28+13540 u21+27708 u14+37500 u7+3125
) (

2−5 u7)2

This polynomial contains u1(ρ) = τ, and u2(ρ) = τ2 as roots. It fac-
torizes into smaller polynomials and these two roots are in separate
factors. Thus, we can go on with the right factor which we save in
Rtau2. Then, we continue with the annihilating polynomial for µ.

> resultant(x*t-t2,subs(u=t,diff(P,u)),t);
> factor(resultant(%,subs(u=t2,Rtau2),t2));

We identify the algebraic relation for µ and save it in Rmu. Finally,
we compute the minimal polynomial for κ1:

> Rmu:=2*u^5+4*u^4+6*u^3+8*u^2+10*u+5;
> Rk1:=resultant((x+1)*(u^4+2*u^3+3*u^2+4*u)+5,Rmu,u):
> factor(Rk1/igcd(coeffs(Rk1)));

−23 x5 + 41 x4 − 10 x3 + 6 x2 + x + 1
In conclusion, κ1 is the unique real root of the polynomial 23x5 −

41x4 + 10x3 − 6x2 − x − 1. Similar computations show that (7/3)κ2

is the unique real root of the polynomial 11571875x5 − 5363750x4 +

628250x3 − 97580x2 + 5180x− 142. The Galois group of each of these
polynomials is S5. This implies that there is no closed-form formula
for the Knuth constants κ1 and κ2 in terms of basic operations on
integers, and roots of any degree.
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In the next section we want to establish a link with the results from
Nakamigawa and Tokushige. We will show how Knuth derived his
problem and how to establish more such nice identities.

5.6 links with the work of nakamigawa and tokushige

In this section, we show the connection between a result of Nakami-
gawa and Tokushige [147] and Knuth’s statement. Furthermore, we
derive extensions of this result.

Let α, β be positive rational numbers. The Nakamigawa–Tokushige
model consists of a single boundary L : y = αx + β, and a lattice
point8 Q = (q1, q2) ∈ Z2 on L, i.e., q2 = αq1 + β. Furthermore the
walks go in the opposite direction, i.e., they start in Q, use unit steps
South and West (i.e., (0,−1) and (−1, 0), respectively), and end in the
origin. Let V be the “vast” set of such walks without any restriction.
The enumeration of V is a folklore result: |V| = (q1+q2

q1
). Let W ⊂ V

be the set of walks which do not cross the line L and touch it only at
Q.

Definition 5.6.1 (Nearest distance to the boundary). Let w ∈ V be a
walk from a point Q to the point (0, 0). We define the minimum y-distance
δ(w) as follows: if the walk w touches or crosses the boundary y = αx + β

after the first step, then let δ(w) = 0, otherwise let δ(w) be the minimum of
αp1 + β− p2, where (p1, p2) runs over all lattice points on w except Q, see
Figure 30.

Figure 30: The 3 walks of length 6 in the (2/5)x + 2/5 model with δ(w) > 0.
The vertical bars mark the minimal y-distance δ(w). The first walk
has δ(w) = 1/5, whereas the last two have δ(w) = 2/5. All of
them are members of W1/5, but only the two last ones belong to
W2/5.

Hence, we see that δ(w) = 0 if and only if w ∈ V \W, and so
∑w∈V δ(w) = ∑w∈W δ(w). Note, if α and β are positive integers, then
∑w∈V δ(w) = |W|, because δ(w) = 1 for all w ∈ W. This gives rise to
the interpretation as a weighted sum corresponding to the number of
walks.

For a real t ≥ 0, let Wt := {w ∈ W | δ(w) ≥ t}, i.e., the walks
staying at least a y-distance of t away from the boundary. Due to the

8 In the article [147], Q = (m, n); we changed these coordinates in order to avoid a
conflict with our other notations.
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definition, |Wt| is a left-continuous step function of t, and we get the
representation
∫ 1

0
|Wt| dt = ∑

w∈V
δ(w).

It is quite nice that this sum can be further simplified; this is what
the next theorem states:

Theorem 5.6.2 (Nakamigawa–Tokushige lattice path integral). Let q1

and q2 be positive integers, and let α, β be positive reals with q2 = αq1 + β.
Let V be the set of walks from the origin to the point9 (q1, q2). Then, we have
∫ 1

0
|Wt| dt = ∑

w∈V
δ(w) =

β

q1 + q2

(
q1 + q2

q1

)
. (131)

Proof. This corresponds to [147, Theorem 1 and Corollary 1], where it
is proven using a cycle lemma approach. We give a generalization of
this formula in the Section 5.7 hereafter, based on our kernel method
approach, and Lagrange inversion.

A geometric bijection. If α is a rational slope, i.e., α = a/c for some
a, c ∈N \ {0}, then
∫ 1

0
|Wt| dt =

1
c ∑

t∈T
|Wt|, (132)

where T = {δ(w) |w ∈W} = {1/c, 2/c, . . . , (c− 1)/c}.
This gives rise to the following interpretation:10 If w ∈ W then the

first step is a South step. Then, let w̃ be the walk obtained from w
by omitting this step. Therefore, w̃ is a walk with q1 + q2 − 1 steps,
starting from Q− (0, 1) = (q1, q2 − 1), and ending in the origin. We
see that all these walks which never cross or touch L are in bijection
with all walks in W. Now, take a walk w ∈ Wt and its corresponding
walk w̃. As δ(w) ≥ t, we can translate the barrier L by t− 1/c down
and the walk w̃ still does not touch or cross this new barrier L̃. Hence,
all walks in Wt are in bijection with walks from (q1, q2 − 1) to the
origin which stay strictly below the barrier L̃.

Example 5.6.3. This is the bijection that Knuth used in order to state
his conjecture. In his case, we have α = β = 2/5 and q1 = 5n − 1,
q2 = 2n for n ∈ N \ {0}. We see that q2 = αq1 + β. Hence, a = 2 and
c = 5 which implies T = {1/5, 2/5, 3/5, 4/5}. In this case, the values
3/5 and 4/5 are playing no role, as |W3/5| = |W4/5| = 0 because
β = 2/5 is the maximal value for δ(w) for all walks to the origin.
Therefore,

∫ 1
0 |Wt| dt can be represented by two summands involving

9 Nota bene: As proven in Lemma 5.6.4 (Possible starting points on the boundary), if α

or β are irrational, then there is at most one such point. While if α and β are rational
(with the right gcd condition), then there are infinitely many such points.

10 In the original work, a slightly different interpretation is given.
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W1/5 and W2/5. They correspond to the two models A and B with the
barriers L1 : y < (2/5)x+ 2/5 and L2 : y < (2/5)x+ 1/5, respectively
where the paths start at (5n− 1, 2n− 1) and move by South and West
steps to the origin. Compare also Figure 30. Note that in Knuth’s
case the walks move in the opposite direction, which is obviously
equivalent.

In general, the number of summands |Wt|, which corresponds to
the number of models in the equivalent formulation, is determined
by the size of T minus the maximal y-distance at (0, 0). Hence, we
need to consider T̃ = {t ∈ T | t < β} = {1/c, . . . , k/c}. This gives k
models with walks from (q0, q1 − 1) to the origin which stay strictly
below the boundaries Li : y < αx + (β − (i − 1)/c) for i = 1, . . . , k.
Then, the above reasoning implies that the walks with boundary Li
correspond to the set Wi/c. Thus, counting the walks in these k models
and summing them up, gives the binomial closed-form appearing in
the lattice path integral theorem (131) divided by c, compare with
(132).

Up to now in this section, we explained which different counting
models are connected with the Nakamigawa–Tokushige lattice path
integral formula. Now, we discuss the possible starting points on the
boundary and their interplay with the (ir)rationality of the slope.

Lemma 5.6.4 (Possible starting points on the boundary). Let α, β be
positive reals. Then the equation y = αx + β possesses in the positive inte-
gers

1. infinitely many solutions (x, y), if α = a/c, β = b/c with a, b, c ∈
N, and gcd(a, c)|b;

x = cs− ra, y = as + rc,

with s ≥ S0 := max (dra/ce, d−rc/ae), and ra and rc are integers
such that raa + rcc = b;

2. exactly one solution (x, y) = (q1, q2), if α /∈ Q and β = q2 − αq1 >

0;

3. no solution, otherwise.

Proof. Let us start with rational slope α = a/c, with a, c ∈N. In order
to get integer solutions we need a rational β = b/c, with b ∈N. Then
we need to find the solutions of the following linear Diophantine
equation:

cy− ax = b. (133)

These solutions exist if and only if gcd(a, c)|b. By the extended Eu-
clidean algorithm we get integers ra, rc ∈ Z such that

raa + rcc = b.
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This is done by computing numbers r′a, r′c such that r′aa/ gcd(a, c) +
r′c/ gcd(a, c) = 1 and multiplying by b. All solutions are then given
by the linear combination stated in the lemma. Due to the special
form of (133) with a positive and a negative coefficient in front of the
unknowns, it follows that for all s ≥ S0 the solutions are positive.

Finally, let α be irrational. Assume there exist two points Q =

(q1, q2) and P = (p1, p2) fulfilling the assumptions. By taking the
difference we get q2 − p2 = α(q1 − p1) which implies that for q1 6= q2

we get the contradiction α ∈ Q. But for q1 = q2 it also holds that
p1 = p2 and therefore Q = P.

It is easy to see that this solution exists if and only if β = q2 − αq1

for arbitrary q1, q2 ∈N as long as β > 0.

The previous lemma also appeared in [124], there, Kempner (of
Kempner’s series fame) also mentions that a similar claim holds for
the number of algebraic rational (respectively algebraic) points on
y = αx + β when α is algebraic (respectively transcendental) slope.
The lemma gives us all possible integer solutions on a boundary with
rational slope. With this knowledge we can reformulate the lattice
path integral from Theorem 5.6.2 in order to give a more explicit
result for all possible starting points and for any slope.

Theorem 5.6.5 (Lattice path integral and explicit binomial expression).
Let a, b, c be positive integers such that gcd(a, c)|b. Let ra, rc be integers
such that raa + rcc = b. Then, q1(s) := cs− ra and q2(s) := as + rc define
all pairs (q1(s), q2(s)) of integers on the barrier L : y = a

c x + b
c . Further-

more, let V be the set of walks from (q1(s), q2(s)) to the origin strictly below
the barrier L. Then, we have
∫ 1

0
|Wt| dt =

b/c
(a + c)s + (rc − ra)

(
(a + c)s + (rc − ra)

as + rc

)
, (134)

for s ≥ S0 := max (dra/ce, d−rc/ae).

For fixed s the walks are ending after q1(s) + q2(s) = (a + c)s +
(rc − ra) steps, start at (q1(s), q2(s)) and go to the origin. In the equiv-
alent formulation the walks start at (q1(s), q2(s) − 1) and go to the
origin, but we consider k = cβ = b different boundaries, given by

L1 : y <
a
c

x +
b
c

, L2 : y <
a
c

x +
b− 1

c
, . . . , Lb : y <

a
c

x +
1
c

.

Example 5.6.6. Returning to Knuth’s model we have y < 2
5 x + 2

5 .
Thus, the explicit values are a = b = 2 and c = 5 and the assumptions
of Theorem 5.6.5 (Lattice path integral and explicit binomial expres-
sion) are satisfied, as gcd(a, c) = 1. The Euclidean algorithm gives
ra = −4 and rc = 2. From Lemma 5.6.4 on the possible starting point
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on the boundary, we deduce the possible integer coordinates on the
barrier L:

q1(s) = 5s + 4, q2(s) = 2s + 2,

for s ≥ 0 which represent the starting points of the walks. Finally,
Theorem 5.6.5 directly gives the solution

∫ 1

0
|Wt| dt =

2/5
7s + 6

(
7s + 6
2s + 2

)
.

This value can be equivalently interpreted as the number of walks in
k = 2 models starting from (5s + 4, 2s + 1) and moving to the origin
below the barriers

L1 : y <
2
5

x +
2
5

, L2 : y <
2
5

x +
1
5

.

This is exactly Knuth’s problem, where his index t = s + 1.

Formula (134) directly yields nice lattice path identities in the man-
ner of Knuth’s problem. Yet, there are even more formulae of this
type that we will reveal in the next section. But let us start with an
interesting (everyday) problem first.

5.7 duchon’s club and other slopes

Duchon’s club: slope 2/3 and slope 3/2

A Duchon walk is a Dyck path starting from (0, 0), with East and
North steps, and ending on the line y = 2

3 x (see Figure 31). This
model was analyzed by Duchon [73], and further investigated by Ban-
derier and Flajolet [19], who called it the “Duchon’s club” model, as it
can be seen as the number of possible “histories” of couples entering
a club in the evening11, and exiting in groups of 3. What is the number
of possible histories (knowing the club is closing empty)? Well, this is
exactly the number En of excursions with n steps +2,−3, or (by rever-
sal of the time) the number of excursions with n steps −2,+3. This
gives the sequence (E5n)n∈N=(1, 2, 23, 377, 7229, 151491, 3361598, . . . )
(OEIS A060941). In fact, these numbers En appeared already in the
article by Bizley [41] (who gave some binomial formulae, as we ex-
plained in Section 5.1). Duchon’s club model should then be the
Bizley–Duchon’s club model; Stigler’s law of eponymy strikes again.

One open problem in the article [73] was the following one: “The
mean area is asymptotic to Kn3/2, but the constant K can only be
approximated to 3.43”. Our method allows to identify this mysterious
constant:

11 Caveat: There are no real life facts/anecdotes hidden behind this pun!
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Theorem 5.7.1 (Area below Duchon lattice paths). The average area
below Duchon excursions of length n (lattice paths from 0 to 0, which jumps
−2 and +3) is

An ∼ Kn3/2 where K =
√

15π/2 ≈ 3.432342124 .

Proof. The approach of [21] gives an expression for A(z) = ∑ Anzn in
terms of the two small roots u1(z) and u2(z) of 1− z(1/u2 + u3) = 0.
Then, using the rotation law gives the singular behavior of A(z), and
therefore the asymptotics of An with the explicit constant K.

(a) North-East model: Dyck paths
below the line of slope 2/3

(b) Banderier–Flajolet model: excursions with
+2 and −3 jumps

Figure 31: Dyck paths below the line of slope 2/3 and Duchon’s club histo-
ries (i.e., excursions with jumps +2,−3) are in bijection. Duchon
conjectured that the average area (in gray) after n jumps is asymp-
totically equal to Kn3/2; our approach shows that K =

√
15π/2.

Arbitrary rational slope

The closed-form for the coefficient (Theorem 5.4.2) generalizes to ar-
bitrary rational slope:

Theorem 5.7.2 (General closed-forms for any rational slope). Let a, b, c
be integers such that gcd(a, c)|b. Let As(k) be the number of Dyck walks
below the line of slope y = a

c x + k
c , ending at (xs, ys) given by

xs = cs− ra, ys = as + rc − 1,

where ra and rc are integers such that raa + rcc = b. These numbers are
non-negative for s ≥ S0 := max (dra/ce, d−rc/ae). Then we have

b

∑
k=1

As(k) =
b

(a + c)s + (rc − ra)

(
(a + c)s + (rc − ra)

as + rc

)
.

Proof. This result is a direct consequence of Theorem 5.6.5 (lattice
path integral and explicit binomial expression) and the geometric bi-
jection (132).

The enumeration of lattice paths below the line y = a
c x + b

c simpli-
fies even more in the case a = b. Additionally, we are able to extend
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the nice counting formula in terms of binomial coefficients. In order
to get these nice formulae, let us first state what becomes the equiva-
lent of Theorem 5.4.1 (Closed-form for the generating function) in the
case of any rational slope.

Lemma 5.7.3 (Schur polynomial closed-form for meanders ending at
a given altitude). Let us consider walks in N2 with jumps −a and +c
starting at altitude h ≥ a. Let u1(z), . . . , ua(z) be the small roots of the ker-
nel equation 1− zP(u) = 0, with P(u) = u−a + uc. Let F0(z), . . . , Fa−1(z)
be the generating functions of meanders ending at altitude 0, . . . , a− 1, re-
spectively. They are given by

Fi(z) =
(−1)a−i−1

z
s(h+1,1a−i−1,0i) (u1(z), . . . , ua(z)) ,

where sλ(x1, . . . , xa) is a Schur polynomial, and λ = (λ1, . . . , λa) is an
integer partition, i.e., λ1 ≥ λ2 ≥ · · · ≥ λa ≥ 0. The notation 1s denotes s
repetitions of 1.

Proof. Similar to (127) for the given step set the functional equation is
given by

(1−zP(u))F(z, u)= f0(u)−zu−aF0(z)−zu−a+1F1(z)−. . .−zu−1Fa−1(z).

Applying the kernel method, one may insert the a small branches into
this equation. Then one gets a independent linear equations for the a
unknowns F0(z), . . . , Fa−1(z). Expressing the solutions by Cramer’s
rule and rearranging the determinants, one uncovers the defining
expressions for the claimed Schur polynomials (see e.g. [174, Chap-
ter 7.15] for an introduction to the relevant notions and notations).

Example 5.7.4. Let us consider the previous lemma for a = 3. We get
the linear system

z




1 u1(z) u1(z)2

1 u2(z) u2(z)2

1 u3(z) u3(z)2







F0(z)

F1(z)

F2(z)




=




u1(z)h+3

u2(z)h+3

u3(z)h+3




.

Solving it with Cramer’s rule and rearranging the determinants we
get

F0(z) =
s(h+1,1,1)(u1, u2, u3)

z
, F1(z) = −

s(h+1,1,0)(u1, u2, u3)

z
,

F2(z) =
s(h+1,0,0)(u1, u2, u3)

z
,

by the definition of Schur polynomials.

Now, we are able to extend the results of the closed-form for the
sum of coefficients (Theorem 5.4.2) even further. At its heart lies the
nice expression (130): u5

1 + u5
2. We will see that such a phenomenon

holds in full generality, involving a sum of uh
i .
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Theorem 5.7.5 (General closed-forms for lattice paths below a rational
slope y = a

c x + b
c , with b a multiple of a). Let a, c be integers such that

a < c, and let b be a multiple of a. Let As(k) be the number of Dyck walks
below the line of slope y = a

c x + k
c , k ≥ 1, ending at (xs, ys) given by

xs = cs− 1, ys = as− 1.

Then it holds for s ≥ 1 and ` ∈N such that (`+ 1)a < c that

(`+1)a

∑
k=`a+1

As(k) =
`a + c

(a + c)s + `− 1

(
(a + c)s + `− 1

as− 1

)
.

Proof. Consider walks starting at (0, 0), ending at (xs, ys), and staying
below the line a

c x + 1
c . These are counted by As(1). Let us transform

such walks by adding a new horizontal jump at the end. Note that
the first b c

ac jumps must be horizontal jumps. Thus, we can interpret
this walk as one starting from (1, 0), ending at (xs + 1, ys) staying
below the given boundary. But as a horizontal jump increases the
distance to the boundary by a

c this is equivalent to counting walks
starting at (0, 0), ending at (xs, ys), and staying below the boundary
a
c x + a+1

c . This process is shown in Figure 32. Such walks are counted
by As(a + 1).

Figure 32: Transforming walks by moving the first step to the end of the
walk. The red dot at (1, 0) and the red y-axis mark the new origin.

Thus, the sequence As(1), As(a + 1), As(2a + 1), . . . can be inter-
preted as counting walks staying always below the boundary a

c x + 1
c ,

starting at (0, 0), and ending at (xs, ys), (xs + 1, ys), (xs + 2, ys), . . ., re-
spectively. In particular, for ` ≥ 0 we define these new ending points
as (x̃s, ỹs) given by

x̃s = xs + ` = cs + `− 1, ỹs = ys = as− 1.

Analogously, the same holds for As(2), . . . , As(a− 1).

For the start, we then follow the line of thought from Theorem 5.4.2
(Closed-form for the sum of coefficients). Let us first derive the re-
spective generating functions. Therefore, we apply the bijection from
Proposition 5.3.1, reverse the time, and allow to touch y = 0. Then the
sum ∑(`+1)a

k=`a+1 As(k) can be interpreted as walks of length x̃s + ỹs =
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(a + c)s + ` − 2, starting at altitude ax̃s − cỹs + i = `a + (c − a) + i,
and ending at altitude i for i = 0, . . . , a− 1. To simplify notation, let
us introduce the constant

h := `a + c .

Then, walks end at h − a + i. Therefore, we are now able to apply
Lemma 5.7.3 (Schur polynomial closed-form for meanders ending at
a given altitude). Additionally, by reversing the summation order we
get:

(`+1)a

∑
k=`a+1

As(k) = [z(a+c)s+`−2]
a−1

∑
j=0

(−1)j

z
s(h−j,1j,0a−j−1)(u1(z), . . . , ua(z))

= [z(a+c)s+`−1]

(
a

∑
i=1

ui(z)h

)
. (135)

This surprisingly simple result is due to a nice representation the-
orem of power symmetric functions in terms of Schur polynomials:
[174, Theorem 7.17.1]. One gets this equation by setting µ = ∅ and
restricting the case to a variables. Note that this is the analog of (130).
It is in one sense the reason for the nice closed-forms in this chapter.

In contrast to Theorem 5.4.2 (Closed-form for the sum of coeffi-
cients), we proceed now differently by Lagrange inversion [135]. From
the kernel method, we know that the small branches ui(z) satisfy the
kernel equation 1− zP(u) = 0, where P(u) = u−a + uc for general
slope a/c. The entire form of the kernel equation satisfies nearly a
Lagrangean scheme

ui(z)a = z
(
1 + ui(z)a+c) .

By taking the a-th root, one gets for an auxiliary power series U(x):

U(x) = xφ(U(x)), with φ(u) =
(
1 + ua+c)1/a .

Let ω 6= 1 be an a-th root of unity (i.e., ωa = 1). Then we recover the
ui(z), i = 1, . . . , a, by

ui(z) = U
(

ωi−1z1/a
)

.

Thus, coming back to (135) we are actually interested in

a

∑
i=1

ui(z)h =
a

∑
i=1

U
(

ωi−1z1/a
)h

= ∑
n≥0

Unzn/a

(
a

∑
i=1

ω(i−1)n

)

= a ∑
n≥0

Uanzn,

where U(x)h = ∑n≥0 Unxn (in fact, by construction many coefficients
Un are 0, because U(z) has an (a + c) periodic support, but this is not
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altering our reasoning hereafter). Considering (135) again, we need
Uan for n = (a+ c)s+ `− 1. It is determined by the above Lagrangean
scheme:

Uan = [xa((a+c)s+`−1)]U(x)h

=
`a + c

a((a + c)s + `− 1)
[ua((a+c)s+`−1)−1]u`a+c−1 (1 + ua+c)(a+c)s+`−1

=
`a + c

a((a + c)s + `− 1)

(
(a + c)s + `− 1

as− 1

)
.

By the symmetry of the binomial coefficient the claim holds.

Example 5.7.6. Knuth’s original problem was dealing with bound-
aries y = 2

5 x + k
5 , (k = 1, . . . , 4). In particular, we may choose ` = 0,

and ` = 1 to get:

2

∑
k=1

As(k) =
5

7s− 1

(
7s− 1
2s− 1

)
=

2
7s− 1

(
7s− 1

2s

)
,

4

∑
k=3

As(k) =
1
s

(
7s

2s− 1

)
.

The first one is the known result, whereas the second one is yet an-
other surprising identity.

Now, we come back to the asymptotics of Section 5.5. Some key
ingredients were Proposition 5.5.4 (Periodic rule of thumb) and the
rotation law of the small branches. Happily, such a rotation law holds
in general for any slope, and the derived techniques can also be ap-
plied. This is what we present now.

Let P(u) = u−a + uc be the jump polynomial of directed walks.
Thus, we have a small branches ui(z) satisfying the kernel equation
1− zP(ui(z)) = 0. As before let τ be the unique positive root of P′(τ),
and let ρ be defined as ρ = 1/P(τ). Recall that the small branches
are possibly singular only at the roots of P′(u). The jump polynomial
has periodic support with period p = a + c as P(u) = u−aH(up) with
H(u) = 1 + u. Hence, there are p possible singularities of the small
branches

ζk = ρωk, with ω = e2πi/p.

The general version of Lemma 5.5.1 reads then as follows:

Lemma 5.7.7 (Rotation law of small branches). Let gcd(a, c) = 1. Then
there exists a permutation σ of {1, . . . , p} without fix points and an integer
κ (satisfying κa + 1 ≡ 0 mod p) such that

ui(ωz) = ωκuσ(i)(z),

for all z ∈ C with |z| ≤ ρ and 0 < arg(z) < π − 2π/p.
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Proof. We proceed as in the proof of Lemma 5.5.1. Define U(z) :=
ωκui(ωz) and a function X(z) := Ua − zφ(U) with φ(u) := uaP(u).
Then a straightforward computation shows that

X(z) = (ωκui(ωz))a − zφ (ωκui(ωz)) = ωκaui(ωz)a − zφ(ui(ωz)),

as φ(u) is p-periodic. Therefore, we get by the following transforma-
tion

ωX(z/ω) = ωκa+1ui(z)a − zφ(ui(z)) = 0,

if κa + 1 ≡ 0 mod p, because of the kernel equation. Thus, X = Ua−
zφ(U) = 0 and therefore U(z) is a root of the kernel equation. It has
to be a small root, as it is converging to 0 if z goes to 0. Furthermore,
it has to be a different root, as it has a different Puiseux expansion. By
the analytic continuation principle (as long as we avoid the cut line
arg(z) = −π) the result follows.

The last lemma allows us to state the following “meta”-result:

Paradigm 5.7.8 (Rule of thumb: enumeration and asymptotics of lat-
tice paths). Constrained 1-dimensional lattice paths have an algebraic gen-
erating function, expressible in terms of Schur functions (a symmetric func-
tion involving the small branches of the kernel). Singularity analysis gives
its asymptotic behavior, which is equal to the asymptotics at the dominant
real singularity (times the periodicity whenever the rotation law holds).

We call this a paradigm because it is rather informal in the descrip-
tion of the constraints allowed (it could be positivity, prescribed start-
ing or ending points, to live in a cone, to stay below a line of rational
slope, to have some additional Markovian behavior, to be multidimen-
sional with one border, or in bijection with any of these constraints...),
in all these cases the spirit of the kernel method and analytic combi-
natorics should give the enumeration and the asymptotics. Different
incarnations of this rule of thumb appear in [17, 19, 21, 24, 44], and
no doubt that many new lattice problems on the one hand, and many
new combinatorial problems involving some type of periodicity on
the other hand, will offer additional incarnations of this paradigm.

5.8 conclusion

In this chapter, we analyzed some models of directed lattice paths
below a line of rational slope. As a guiding thread, we first illustrated
our method on Dyck paths below the line of slope 2/5. Beside the
(pleasant) satisfaction of answering a problem of Don Knuth, this
sheds light on properties of constrained lattice paths, including the
delicate case (for analysis) of a periodic behavior.

We can shortly recall the main methods used in this chapter to
attack lattice path problems:
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This is the landscape in the com-
plex plane of |F(z)|, where F(z)
is here the generating function of
Duchon’s club excursions. One can
see the five dominant singularities.
It is enough to know the local be-
havior near the real positive singu-
larity, the rotation law implies the
same behavior at the other domi-
nant singularities.

Figure 33: Landscape in the complex plane of the generating function of
lattice paths.

Firstly, the method of choice of Nakamigawa and Tokushige was
the cycle lemma. It is a classical result for lattice paths which uses
the geometry of the problem. However, its applications are limited to
certain cases.

Secondly, a more general result is given in Theorem 5.7.5 (General
closed-forms for lattice paths below a rational slope y = a

c x + b
c ),

via the Lagrange inversion. This directly gives the sought closed-form.
However, it does not give access to the asymptotics.

Thus, thirdly, we used the kernel method to express the generating
functions explicitly in terms of (known) algebraic functions. This gave
us access to the asymptotics, and is an alternative way to access the
closed-forms. Our Proposition 5.5.4 (Periodic rule of thumb) explains
in which way the asymptotic expansions are modified in the case
of a periodic behavior (via some local asymptotics extractor and the
rotation law); we expect this approach to be reused in many other
problems.

Also, the method of holonomy theory used in Theorem 5.4.2 (Closed-
form for the sum of coefficients) shows the possible usage of com-
puter algebra to prove such conjectured identities. This is probably the
fastest technique for checking given identities, and can be automa-
tized to a great extent. The interested reader is referred to the nicely
written introductions [122, 156].

Our approach extends to any lattice path (with any set of jumps
of positive coordinates) below a line of (ir)rational slope (see [31]).
This leads to some nice universal results for the enumeration and
asymptotics. As an open question, it could be natural to look for sim-
ilar results for lattice paths (with any set of jumps with positive and
negative coordinates, and not just jumps to the nearest neighbors) in
a cone given by two lines of rational slope. This is equivalent to the
enumeration of non-directed lattice paths in dimension 2. Despite the
nice approach from the probabilistic school [59, 78] and from the com-
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binatorial school [49] via the iterated kernel method, this remains a
terribly simple problem (to state!), but a challenge for the mathemat-
ics of this century.



6
L AT T I C E PAT H S W I T H C ATA S T R O P H E S

This chapter is based on joint work with Cyril Banderier. A prelimi-
nary version of the presented results has been published in the Pro-
ceedings of the 10th edition of Génération Aléatoire de Structures
COMbinatoires (GASCom 2016) [29].

Lattice paths are a natural model in queuing theory: indeed, the
evolution of a queue can be seen as a sum of jumps [80]. In this
chapter, we consider jumps restricted to a given finite set of integers
S , where each jump j ∈ S is associated with a weight (or probability)
pj. The evolution of a queue naturally corresponds to lattice paths
constrained to be non-negative. For example, if S = {−1,+1}, this
corresponds to the so-called Dyck paths. Moreover, we also consider
the model where “catastrophes” are allowed.

Definition 6.0.1. A catastrophe is a jump j /∈ S ∪ {0} to altitude 0, see
Figure 34.

Such a jump corresponds to a “reset” of the queue. The model of
queues with catastrophes was e.g. considered in [112, 131].

−6 −7
−4

Acat Anocat Acat Acat Anocat

Figure 34: Decomposition of a Dyck path with 3 catastrophes into 5 arches.
Acat stands for an “arch ending with a catastrophe” (a walk for
which the first return to altitude 0 is a catastrophe), while Anocat
stands for an “arch with no catastrophe”.

Link with a continued fraction expansion. We first start with the
observation that the generating function of these lattice paths have
the following continued fraction expansion:

H(z) = ∑
n≥0

hnzn =
1

1− z2

1− z− z2

1− z2

1− z2

1− . . .

.

We give two proofs of this phenomenon in Theorem 6.2.1. In this
chapter, we also tackle the question of what happens for more gen-
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eral jumps than Dyck paths, and we give the enumeration and asymp-
totics of the corresponding lattice path models.

Link with generating trees. In combinatorics, such lattice paths
are related to generating trees, which are a convenient tool to enu-
merate and generate many combinatorial structures in some incre-
mental way (like e.g. permutations avoiding some pattern) [186]. In
such trees, the distribution of the children of each node follows ex-
actly the same dynamics as lattice paths with some “extended” jumps,
as was intensively investigated by the Florentine school of combina-
torics [35, 72, 81]. For example, the “extended” jumps can be a con-
tinuous set of jumps (from altitude k, one can jump to any altitude
between 0 and k, possibly with some weights, plus a finite set of
bounded jumps) [13, 16, 18, 23].

Enumeration and asymptotics: why context-free grammars would
be a wrong idea here. Our lattice paths with catastrophes correspond
to random walks with a space-dependent drift, which is decreasing
with higher altitude; this leads to some counter-intuitive behavior:
unlike classical directed lattice paths, the limiting object is no more
directly related to classical Brownian motion theory. One way to an-
alyze them could be to use a context-free grammar approach [134]:
this leads to a system of algebraic equations, and therefore we already
know “for free” that the corresponding generating functions are alge-
braic. However, this system involves nearly (c + d)2 equations (where
c is the largest negative jump and d the largest positive jump), so
solving it (with resultants or Gröbner bases) leads to computations
taking a lot of time and memory (exponential in (c + d)2): even for
c = d = 10, the needed memory to compute the algebraic equation
with this method would be more than the expected number of parti-
cles in the universe! Another drawback of this method is that it would
be a “case-by-case” analysis: for each new set of jumps, one would
have to do new computations from scratch. Hence, with this method,
there is no way to access “universal” asymptotic results: while it is
well known that algebraic functions have some asymptotics of the
type fn ∼ C.Annα, only the “critical exponent” α can be proven to
belong to some specific set (see [17]), and there is no hope to get an
easy access to C and A with this context-free grammar approach, in
a way which is independent of a case-by-case computation (which
would what is more be impossible for c + d > 20).

The solution: kernel method and analytic combinatorics. In this
chapter, we offer an alternative to the context-free grammars. Our
approach uses methods of analytic combinatorics for directed lattice
paths: the kernel method and singularity analysis, see [19, 85]. It al-
lows to get exact enumeration, the typical behavior of lattice paths
with catastrophes, and has the advantage to offer universal results
for the asymptotics and generic closed forms, whatever the set of
jumps is.
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Plan of this chapter. First, in Section 6.1, we present the model of
walks with catastrophes and derive their generating functions. In Sec-
tion 6.2, we establish a bijection between two classes of extensions of
Dyck paths. In Section 6.3, we analyze our model in more detail and
first derive the asymptotic number of excursions and meanders. Then
we use these results to obtain limit laws for the number of catastro-
phes, the number of returns to zero, the final altitude, the total ampli-
tude of catastrophes, and the average height of a catastrophe. We also
introduce the perturbed supercritical composition scheme, which is
applied repeatedly. In Section 6.4, we discuss the uniform random
generation of such lattice paths. In Section 6.5, we state a summary
of our results.

6.1 generating functions

In this section, we give some explicit formulae for the generating func-
tions of non-negative lattice paths with catastrophes, for which the

set of jumps is encoded by P(u) =
d
∑

i=−c
piui. For short, we call them

“catastrophe-walks”. Every catastrophe is also assigned a weight q >

0.
Let us now show the influence on this model when allowing catas-

trophes. First we partition the jump set S = S+ ∪· S− ∪· S0 into the
set of positive jumps j ∈ S+ iff j > 0 and the set of negative jumps
j ∈ S− iff j < 0 and the possible zero jump j ∈ S0 iff j = 0.

Theorem 6.1.1 (Generating functions for lattice paths with catastro-
phes). Let fn,k be the number of catastrophe-walks of length n from altitude
0 to altitude k, then the generating function F(z, u) = ∑k≥0 Fk(z)uk =

∑n,k≥0 fn,kukzn is algebraic and satisfies

F(z, u) = D(z)M(z, u) = D(z)∏c
i=1(u− ui(z))

uc(1− zP(u))
, (136)

Fk(z) = D(z)Mk(z) = D(z)
1

pdz

d

∑
`=1

v−k−1
` ∏

j 6=`

1
vj − v`

, (137)

for k ≥ 0, where D(z) = 1
1−Q(z) is the generating function of excursions

ending with a catastrophe, Q(z) = zq
(

M(z)− E(z)−∑j∈S+ Mj(z)
)

,
and where, for any set of jumps encoded by P(u), the ui’s and the vi’s are
the small roots and the large roots of the kernel equation (52).

Proof. Take an arbitrary non-negative path of length n. Let ω0 be the
last time it returns to the x-axis with a catastrophe. This point gives
a unique decomposition into an initial excursion which ends with a
catastrophe (this might be empty), and a meander without any catas-
trophes. This directly gives the formulae (136).
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What remains is to describe D(z). Consider an arbitrary excursion
ending with a catastrophe. We decompose it by its catastrophes, into
a sequence of minimal excursions with catastrophes which we count
by Q(z). Such paths have only one catastrophe at their very ends and
none before. Thus,

D(z) =
1

1−Q(z)
. (138)

Finally, we return to Definition 6.0.1. Thus, Q(z) is given by the
generating function of meanders that are not excursions nor mean-
ders ending at altitudes j ∈ S+ followed by a final catastrophe. This
implies the shape of Q(z).

Technically, the generating function of excursions ending with a
catastrophe D(z) is a prefix of directed lattice paths.

Remark 19. Our results depend on the choice of Definition 6.0.1. The
structure of the results does not change if a different definition is
used. In particular, only the shape of Q(z) would be affected. For
example, one could consider allowing catastrophes from any altitude.
This results in the change of Q(z) = zqM(z). In order to ensure an
easy adaptation to different models, we will state all our subsequent
results in terms of a generic Q(z).

Let us now consider an interesting class of lattice paths. A Dyck
meander is a path constructed from the possible jumps +1 and −1,
each with weight 1, and being constrained to stay weakly above the
x-axis. Accordingly, the polynomial encoding the jumps is P(u) =

u−1 + u. Additionally, we set the weight of the catastrophe to 1.

Corollary 6.1.2 (Generating functions of Dyck paths with catastro-
phes). The generating function of Dyck meanders with catastrophes, given
by F(z, 1) = ∑n≥0 mnzn, satisfies

F(z, 1) =
z(u1(z)− 1)

z2 + (z2 + z− 1)u1(z)
= 1 + z + 2z2 + 4z3 + 8z4 + 17z5 + 35z6 +O(z7),

where u1(z) = 1−
√

1−4z2

2 is the solution of the kernel equation 1− zP(u) =
0 satisfying limz→0 u1(z) = 0 (note that u1 is also the generating func-
tions of Catalan numbers). The generating function of Dyck excursions with
catastrophes, given by F0(z) = ∑n≥0 enzn, satisfies

F0(z) =
(2z− 1)u1(z)

z2 + (z2 + z− 1)u1(z)
= 1 + z2 + z3 + 3z4 + 5z5 + 12z6 + 23z7 +O(z8).

Moreover, e2n is also the number of Dumont permutations of the first kind
of length 2n avoiding the patterns 1423 and 4132.
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Proof. The formulae for F(z, 1) and F0(z) are a direct application of
Theorem 6.1.1. Then, we note that (F0(z) + F0(−z))/2 equals the gen-
erating function of Dumont permutations of the first kind of length 2n
avoiding the patterns 1423 and 4132 (see [53] for the definition of such
permutations, and the derivation of their generating function).

In the next section we will analyze Dyck paths with catastrophes
in more detail. On the way we are able to solve some conjectures of
the On-Line-Encyclopedia of Integer Sequences.

6.2 bijection for dyck paths with catastrophes

The goal of this section is to establish a bijection between two classes
of extensions of Dyck paths1. Let us first recall the classical definition
of Dyck paths: These are walks starting at altitude 0, constructed from
the steps (1, 1) and (1,−1), which never go below the x-axis and end
on the x-axis. Next, we consider two extensions (see Figure 35 for an
illustration):

1. Dyck paths with catastrophes are Dyck paths with the additional
option of jumping to the x-axis from any altitude h > 1; and

2. 1-horizontal Dyck paths are Dyck paths with the additional al-
lowed horizontal step (1, 0) at altitude 1.

−6

(a) Dyck arch ending with a catastrophe

1

(b) 1-horizontal Dyck arch

Figure 35: The bijection of Theorem 6.2.1 transforming Dyck arches ending
with catastrophes into 1-horizontal Dyck arches, and vice versa.

Let en be the number of Dyck paths with catastrophes of length n,
and let hn be the number of 1-horizontal Dyck paths of length n. Then,
one has

Theorem 6.2.1 (Bijection for Dyck paths with catastrophes). The num-
ber of Dyck paths with catastrophes of length n is equal to the number of
1-horizontal Dyck paths of length n:

en = hn.

1 We thus prove several conjectures by Alois P. Heinz, R. J. Mathar, and other contrib-
utors in the On-Line-Encyclopedia of Integer Sequences, see sequences A224747 and
A125187 therein.
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Proof. A first proof that hn = en consists in using the continued frac-
tion point of view (each level k + 1 of the continued fraction encodes
the jumps allowed at altitude k):

H(z) = ∑
n≥0

hnzn =
1

1− z2

1− z− z2C(z)

,

where C(z) is the generating function of classical Dyck paths, C(z) =
1/(1 − z2C(z)). One then gets that H(z) equals the closed form of
F0(z) given in Corollary 6.1.2.

We now also give a bijective procedure which transforms every
Dyck path with catastrophes into a 1-horizontal Dyck path, and vice
versa.

Every excursion can be decomposed into a sequence of “minimal”
excursions, in the sense that their only contact with the x-axis is at
the starting- and end point. Such paths are called arches, see Figure 34.
There are two types of arches: arches ending with catastrophes Acat(z)
and arches ending with a jump j ∈ S given by Anocat(z). This gives
the alternative decomposition to (137) of the kind (compare also Fig-
ure 34)

F0(z) =
1

1− (Acat(z) + Anocat(z))
.

Thus, without loss of generality, we continue our discussion only for
arches. The following procedure is visualized in Figure 35.

Let us start with an arbitrary arch of Dyck paths with catastrophes.
It is either a classical Dyck path, and therefore also a 1-horizontal
Dyck path, or it ends with a catastrophe of height h. First, we map
the catastrophe with h up-steps (1, 1). We draw horizontal lines to
the left, until we hit an up-step. All but the first one are replaced by
horizontal steps. Finally, we replace the catastrophe by a down step
(1,−1). All parts in between stay the same. Note, that we replaced h−
1 up-steps, and therefore lost a height of h− 1, but we also replaced
the catastrophe of height h by a down-step, which represents a gain
of height by h− 1. Thus, we again return to the x-axis. Furthermore,
all horizontal steps are at altitude 1. Thus, we always stay weakly
above the x-axis, and we got an arch of a 1-horizontal Dyck path.

The inverse mapping is analogous.

The most important building blocks in the previous bijection were
arches ending with a catastrophe. These can be made even more ex-
plicit.
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Proposition 6.2.2 (Dyck arches ending with a catastrophe). Let A(z) =
∑n≥0 anzn be the generating function of arches ending with a catastrophe.
Then, one has the following closed-forms

an =

(
n− 2
b n−3

2 c

)
,

Acat(z) = z
M(z)− E(z)−M1(z)

E(z)

=
1
2

2z2 + z− 1 +
√
(1− 2z) (1 + 2z) (1− z)2

1− 2z
= z3 + z4 + 3z5 + 4z6 + 10z7 + 15z8 + 35z9 +O(z10),

where M(z), E(z) and M1(z) are the generating functions of classical Dyck
walks for meanders, excursions, and meanders ending at 1, respectively.

Proof. Every excursion ending with a catastrophe can be uniquely de-
composed into an initial excursion and a final arch with a catastrophe.
By Theorem 6.1.1 we get the generating function of Acat(z) =

Q(z)
E(z) .

In order to compute an, we delete the final catastrophe-jump, and
the initial +1-jump which is necessary for all such arches of positive
length. The remaining part is Dyck meander (always staying weakly
above the x-axis) that never comes back to the x-axis. Thus,

an+2 =

(
n
b n

2 c

)

︸ ︷︷ ︸
meanders

− 1
n/2 + 1

(
n
n
2

)

︸ ︷︷ ︸
excursions

[[n even]],

where [[P]] denotes the Iverson bracket, which is 1 if the condition P is
true, and 0 otherwise. A simple calculation yields the final claim.

6.3 asymptotics and limit laws

The natural model in which all paths of length n have the same distri-
bution is therefore creating in return some probabilistic model on the
probability of each jump, and for each altitude: the drift of the walk
is then space-dependent, and converging to minus infinity when the
altitude of the paths is increasing. So, unlike the easier classical Dyck
paths (and their generalization via directed lattice paths, having a
finite set of given jumps), we are losing the intuition offered by Brow-
nian motion theory. This leads to the natural question of what are the
asymptotics of the fundamental parameters of our “lattice paths with
catastrophes”. This is the question we are going to answer now.

An important result of Banderier and Flajolet [19] are the asymp-
totic enumeration formulae for the four types of paths shown in
Table 2. A fundamental result is the fact that the principal small
branch u1(z) and the principal large branch v1(z) are conjugated to
each other at their dominant singularity ρ = 1

P(τ) where τ > 0 is the
minimal positive real solution of P′(τ) = 0, compare (18).
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Asymptotics of lattice paths

We start by analyzing the function D(z) = 1
1−Q(z) , or respectively

Q(z) = zq

(
M(z)− E(z)− ∑

j∈S+
Mj(z)

)
.

In particular, we need to find its singularities, which are given by the
behavior of its denominator.

Lemma 6.3.1. The equation 1−Q(z) = 0 has at most one solution ρ0 > 0
for |z| ≤ ρ. For δ ≥ 0 this solution always exists and ρ0 < 1

P(1) ≤ ρ. For
δ < 0 it depends on the value Q(ρ):





1
P(1) < ρ0 < ρ, for Q(ρ) > 1,

ρ0 = ρ, for Q(ρ) = 1,

6 ∃ρ0, for Q(ρ) < 1.

Proof. Note that Q(z) has non-negative coefficients and is aperiodic.
Thus, the strong triangle inequality |Q(z)| < Q(|z|) holds. This im-
plies, if existent, a unique minimal solution ρ0 on the positive real
axis.

Next, note that Q(z) consists of 3 different parts: the generating
function of meanders M(z), the generating function of excursions
E(z), and the sum of meanders ending at fixed altitudes ∑j∈S− Mj(z).
The functions E(z) and Mj(z) are analytic for |z| < ρ, but the behavior
of M(z) depends on the drift δ, see [19]. For δ ≥ 0 it possesses a sim-
ple pole at ρ1 := 1

P(1) ≤ ρ. Thus, limz→ρ−1
Q(z) = +∞, and together

with Q(0) = 0 this implies that there is a solution 0 < ρ0 < ρ.
For δ < 0 we have that |Q(z)| is bounded for |z| < ρ. Thus, for a

fixed jump polynomial P(u) any case can be attained by a variation
of q. As Q(z) is monotonically increasing on the real axis, it suffices
to compare its value at its maximum Q(ρ).

It remains to consider the lower bound in the case Q(ρ) > 1. Be-
cause of u1(ρ1) = 1 the singularity in the denominator is canceled
by the factor 1 − u1(z). Due to the domination property |ui(z)| <
|u1(z)| < 1 for z ∈ (0, ρ) the remaining factors are strictly smaller
than 1. A detailed discussion of this behavior can be found in the
proof of [19, Theorem 4].

Note that Q(z) strongly depends on the weight of the catastrophes
q > 0. Therefore, for a fixed step set P(u) with negative drift one can
model any of the three possible cases by a proper choice of q.
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Theorem 6.3.2. The asymptotics of excursions ending with a catastrophe
dn depends on the drift δ, the structural radius ρ, and ρ0:

dn =





ρ−n
0

ρ0Q′(ρ0)

(
1 +O

( 1
n

))
, ρ0 < ρ,

ρ−n

η
√

πn

(
1 +O

( 1
n

))
, ρ0 = ρ (and δ < 0),

D(ρ)2ηρ−n

2
√

πn3

(
1 +O

( 1
n

))
, 6 ∃ρ0 (and δ < 0),

where η is given by the Puiseux expansion of Q(z) = Q(ρ)− η
√

1− z/ρ+

O(1− z/ρ) for z→ ρ. The last two cases are only possible for δ < 0.

Proof. The singularity of D(z) arises either at the minimum of ρ and
ρ0. In the first case ρ0 < ρ, the singularity is a simple pole as the
first derivative of the denominator at ρ0 is strictly positive. We get for
z→ ρ0

1−Q(z) = (1−Q(ρ0))︸ ︷︷ ︸
=0

+ρ0Q′(ρ0))(1− z/ρ0) +O
(
(1− z/ρ0)

2) .

This yields a simple pole at ρ0 and by singularity analysis we get the
result.

By Lemma 6.3.1 the other cases are only possible for δ < 0. For
ρ0 = ρ or 6 ∃ρ0 we get a square root behavior for z→ ρ

1−Q(z) = (1−Q(ρ)) + η
√

1− z/ρ +O (1− z/ρ) . (139)

For ρ0 = ρ the constant term is 0, and we get for z→ ρ

D(z) =
1

η
√

1− z/ρ

(
1 +O(

√
1− z/ρ)

)
. (140)

However, for 6 ∃ρ0 the constant term does not vanish. This gives for
z→ ρ

D(z) = D(ρ)− ηD(ρ)2
√

1− z/ρ +O (1− z/ρ) . (141)

Applying singularity analysis yields the result.

Remark 20. Basically, Lemma 6.3.1 is responsible for the previous
asymptotics. In particular, the critical exponent α in the singular ex-
pansion D(z) = (1− z/r)α for r = ρ0 or r = ρ, respectively, satisfies

• α = −1 for ρ0 < ρ,

• α = −1/2 for ρ0 = ρ,

• α = 1/2 for 6 ∃ρ0.

With the help of the last result we are able to derive the asymptotics
of lattice paths with catastrophes. Let us state the result for excursions
next.
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Theorem 6.3.3. The number of excursions with catastrophes en is asymp-
totically equal to

en =





E(ρ0)
ρ0Q′(ρ0)

ρ−n
0

(
1 +O

( 1
n

))
, ρ0 < ρ,

E(ρ)
η

ρ−n
√

πn

(
1 +O

( 1
n

))
, ρ0 = ρ,

F0(ρ)
2

(√
2 P(τ)

P′′(τ)
1
τ + ηD(ρ)

)
ρ−n
√

πn3

(
1 +O

( 1
n

))
, 6 ∃ρ0.

Proof. As F0(z) = D(z)E(z) the singularity is either at ρ0 or ρ = 1
P(τ) .

Combining the results from Theorem 6.3.2 and [19, Theorem 3] gives
the result. Note that the cases ρ0 = ρ and 6 ∃ρ0 are only possible for
δ < 0.

Next we also state the asymptotics for the number of meanders.
The only difference is the appearance of M(z) instead of E(z), and
slight change of a factor 1

τ−1 instead of 1
τ in the first term for the case

6 ∃ρ0.

Theorem 6.3.4. The number of meanders with catastrophes mn is asymp-
totically equal to

mn =





M(ρ0)
ρ0Q′(ρ0)

ρ−n
0

(
1 +O

( 1
n

))
, ρ0 < ρ,

M(ρ)
η

ρ−n
√

πn

(
1 +O

( 1
n

))
, ρ0 = ρ,

F(ρ,1)
2

(√
2 P(τ)

P′′(τ)
1

τ−1 + ηD(ρ)
)

ρ−n
√

πn3

(
1 +O

( 1
n

))
, 6 ∃ρ0.

Proof. Analogous to the proof of Theorem 6.3.3 the result follows after
some tiresome computations from the fact that F(z, 1) = D(z)M(z).
Combining the results from Theorem 6.3.2 and [19, Theorem 4] gives
the result.

Remark 21. In the previous proofs we needed that P(u) is an ape-
riodic jump set. Otherwise, the generating function Q(z) does not
have a unique singularity on its radius of convergence, but several. In
such cases one needs to consider all singularities and sum their con-
tributions. It is a priori not clear if these yield a non-zero coefficient,
thus extra care is necessary. A systematic approach which should also
work in this case is introduced in [28].

However, the case ρ0 < ρ does not need the asymptotics of Q(z).
Thus, it also holds in the periodic case. Such a case is e.g. given by
Dyck paths with q = 1.

Corollary 6.3.5. The number of Dyck paths with catastrophes en, and Dyck
meanders with catastrophes mn is asymptotically equal to

en = Ceρ
−n
0

(
1 +O

(
1
n

))
, mn = Cmρ−n

0

(
1 +O

(
1
n

))
,
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where ρ0 ≈ 0.46557 is the unique positive root of ρ3
0 + 2ρ2

0 + ρ0 − 1, the
constant Ce ≈ 0.10381 is the unique positive root of 31C3

e − 62C2
e + 35Ce−

3, and the constant Cm ≈ 0.32679 is the unique positive root of 31C3
m −

31C2
m + 16Cm − 3. Accordingly,

P(meander of length n is an excursion) =
en

mn
∼ 0.31767.

Proof. We apply the results from Theorem 6.3.3. We directly get

ρ0 =
1
6

(
116 + 12

√
93
)1/3

+
2
3

(
116 + 12

√
93
)−1/3

− 2
3
≈ 0.46557,

which is strictly smaller than ρ0 = 1/2. The defining equations for
these algebraic numbers are computed by resultants. The asymptotics
of meanders is computed in the same way, where Cm = M(ρ0)

ρ0Q′(ρ0)
.

Average number of catastrophes

In Theorem 6.1.1 we had seen that excursions consist of two parts: a
prefix containing all catastrophes followed by the type of path one is
interested. If we want to count the number of catastrophes, it suffices
therefore to analyze this prefix given by D(z). What is more, by (138)
we know already how to count catastrophes: by counting occurrences
of Q(z). Thus, let dn,k be the number of excursions ending with a
catastrophe of length n with k catastrophes, then

D(z, v) := ∑
n,k≥0

dn,kznvk =
1

1− vQ(z)
.

Let cn,k be the number of excursions with k catastrophes. Then, we
get

C(z, v) := ∑
n,k≥0

cn,kznvk = D(z, v)E(z). (142)

Let Xn be the number of catastrophes in a random path of length n.
In other words, the probability is defined by

P (Xn = k) =
[znvk]C(z, v)
[zn]C(z, 1)

.

Theorem 6.3.6. The number of catastrophes of a random excursion with
catastrophes of length n admits a limit distribution, with the limit law being
dictated by the relation between ρ0 and ρ.

1. In the case of ρ0 < ρ the standardized random variable

Xn − µn
σ
√

n
, µ =

1
ρ0Q′(ρ0)

, σ2 =
ρ0Q′′(ρ0) + Q′(ρ0)− ρ0Q′(ρ0)2

ρ2
0Q′(ρ0)3

,

converges in law to a standard Gaussian variable N (0, 1).

lim
n→∞

P

(
Xn − µn

σ
√

n
≤ x

)
=

1√
2π

∫ x

−∞
e−y2/2 dy.
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2. In the case of ρ0 = ρ the normalized random variable

Xn

ϑ
√

n
, ϑ =

√
2

η
,

converges in law to a Rayleigh distributed random variable with den-
sity xe−x2/2.

3. In the case that ρ0 does not exist, the limit distribution is a discrete
one:

P (Xn = k) =
(nη/λ + C/τ) λn

ηD(ρ)2 + C/τD(ρ)

(
1 +O

(
1
n

))
,

where λ = Q(ρ), C =
√

2 P(τ)
P′′(τ) , and τ > 0 the unique positive real

root of P′(u) = 0. In particular, Xn converges to the random variable
given by the law of η NB(2, λ) + C

τ NB(1, λ).

Proof. First, for ρ0 < ρ we see from (142) that we are in the case of a
perturbed supercritical composition scheme from Proposition 2.3.6. It
is supercritical because Q(z) is singular at ρ0 and limz→ρ0 Q(z) = ∞.
The perturbation E(z) is analytic for |z| < ρ, and the other conditions
are also satisfied. Hence, we get convergence to a normal distribution.

Second, for ρ0 = ρ, we start with the asymptotic expansion of E(z)
at z ∼ ρ. Due to [19, Theorem 3] we have

E(z) = E(ρ)
(

1− C
τ

√
1− z/ρ

)
+O(1− z/ρ), (143)

for z ∼ ρ. This implies by (139) the asymptotic expansion

1
C(z, v)

=
1

E(ρ)

(
(1− v) + η

√
1− z/ρ

)

+O(1− z/ρ) +O
(
(1− v)

√
1− z/ρ

)
,

for z ∼ ρ and v ∼ 1. The shape above is the one necessary for the limit
scheme in [70, Theorem 1] which implies a Rayleigh distribution. By a
variant of the implicit function theorem applied to the small branches,
the function satisfies the analytic continuation properties. The other
technical details are easy to check.

Third, we know by Theorem 6.3.2 that D(z) possesses a square-
root singularity. Thus, combining the expansions (141) and (143) we
get the asymptotic expansion of C(z, v), which is of the same type of
a square root as the one from Theorem 6.3.3. Extracting coefficients
with the help of singularity analysis and normalizing by the result of
Theorem 6.3.3 shows the claim.

In the last case of a discrete limit law, the probability generating
function is asymptotically equal to

ηD(ρ, v)2 + (C/τ)D(ρ, v)
ηD(ρ)2 + (C/τ)D(ρ)

(
1 +O

(
1
n

))
.

Let us end this discussion with an application to Dyck paths.



6.3 asymptotics and limit laws 211

Corollary 6.3.7. The number of catastrophes of a random Dyck path with
catastrophes of length n is normally distributed. The standardized version of
Xn,

Xn − µn
σ
√

n
, µ ≈ 0.0708358118, σ2 ≈ 0.05078979113,

where µ is the unique positive real root of 31µ3 + 31µ2 + 40µ− 3, and σ

is the unique positive real root of 29791σ6 − 59582σ4 + 60579σ2 − 2927,
converges in law to a Gaussian variable N (0, 1).

Average number of returns to zero

In order to count the number of returns to zero, we decompose F0(z)
into a sequence of arches. Let A(z) be the corresponding generating
function. (Caveat: this is not the same generating function as A(z) in
Proposition 6.2.2.) Then,

A(z) = 1− 1
F0(z)

.

Let gn,k be the number of excursions with catastrophes of length n
and k returns to zero. Then,

G(z, v) := ∑
n,k≥0

gn,kznvk =
1

1− vA(z)
.

From now on, let Xn be the number of returns to zero in a random
path of length n. In other words, the probability is defined as

P (Xn = k) =
[znvk]G(z, v)
[zn]G(z, 1)

.

Theorem 6.3.8. The number of returns to zero of a random excursion with
catastrophes of length n admits a limit distribution, with the limit law being
dictated by the relation between ρ0 and ρ.

1. In the case of ρ0 < ρ the standardized random variable

Xn − µn
σ
√

n
, µ =

1
ρ0A′(ρ0)

, σ2 =
ρ0A′′(ρ0) + A′(ρ0)− ρ0A′(ρ0)2

ρ2
0A′(ρ0)3

,

converges in law to a standard Gaussian variable N (0, 1).

2. In the case of ρ0 = ρ the normalized random variable

Xn

ϑ
√

n
, ϑ =

√
2

E(ρ)
η

,

converges in law to a Rayleigh distributed random variable with den-
sity xe−x2/2.
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3. In the case that ρ0 does not exist, the limit distribution is a negative
binomial distribution NB(2, λ):

P (Xn = k) =
nλn

F0(ρ)2

(
1 +O

(
1
n

))
,

with λ = A(ρ) = 1− 1
F0(ρ)

.

Proof. The proof follows the same lines as the one of Theorem 6.3.6.
As the same ideas are used, we omit the tedious calculations.

Again, we give the concrete statement for Dyck paths with catas-
trophes.

Corollary 6.3.9. The number of returns to zero of a random Dyck path with
catastrophes of length n is normally distributed. The standardized version of
Xn,

Xn − µn
σ
√

n
, µ ≈ 0.1038149281, σ2 ≈ 0.1198688826,

where µ is the unique positive real root of 31µ3 − 62µ2 + 35µ− 3, and σ is
the unique positive real root of 29791σ6 + 231σ2 − 79, converges in law to
a Gaussian variable N (0, 1).

It is interesting to compare the results of Corollaries 6.3.7 and 6.3.9
for Dyck paths: more than 10% of all steps are returns to zero, and
more than 7% are catastrophes. This implies that among all returns
to zero approximately 70% are catastrophes and 30% are −1-jumps.

Average final altitude

In this section we want to analyze the final altitude of a path after a
certain number of steps. The final altitude of a path is defined as the or-
dinate of its endpoint. Theorem 6.1.1 already encodes this parameter
in u:

F(z, u) = D(z)M(z, u), M(z, u) = ∏c
i=1(u− ui(z))

uc(1− zP(u))
,

where M(z, u) is the bivariate generating function of meanders.
Let Xn be the random variable for lattice paths with catastrophes

of length n ending at altitude k. In other words, the probability is
defined as

P (Xn = k) =
[znuk]F(z, u)
[zn]F(z, 1)

.

Theorem 6.3.10. The final altitude of a random lattice path with catastro-
phes of length n admits a discrete limit distribution:

lim
n→∞

P (Xn = k) = [uk]ω(u), where

ω(u) =





∏d
`=1

1−v`(ρ0)
u−v`(ρ0)

, for ρ0 ≤ ρ,
ηD(ρ)+ C

τ−u
ηD(ρ)+ C

τ−1
∏d

`=1
1−v`(ρ)
u−v`(ρ)

, for 6 ∃ρ0.
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Proof. Let us distinguish three cases. First, in the case of ρ0 < ρ the
function D(z) is responsible for the singularity of F(z, u). Thus, by [92,
Problem 178] (see also [85, Theorem VI.12]) we get the asymptotic
expansion

lim
n→∞

[zn]F(z, u)
[zn]F(z, 1)

=
M(ρ0, u)
M(ρ0, 1)

=
d

∏
`=1

1− v`(ρ0)

u− v`(ρ0)
.

For the other cases we require by Lemma 6.3.1 δ < 0. Yet, then
we know from [19, Theorem 6] that M(z, u) admits a discrete limit
distribution. In particular, M(z, u) admits for z→ ρ the expansion

M(z, u) = M(ρ, u)
(

1 +
C

u− τ

√
1− z/ρ

)
+O (1− z/ρ) .

In the second case and third case for ρ0 = ρ and 6 ∃ρ0, we get by
multiplying this expansion with the one of D(z) from (140) and (141),
respectively, the expansion of F(z, u). Normalizing with the results of
Theorem 6.3.4 yields the result.

Corollary 6.3.11. The final altitude of a random Dyck path with catas-
trophes of length n admits a geometric limit distribution with parameter
λ = v1(ρ0)−1 ≈ 0.6823278:

P (Xn = k) ∼ (1− λ) λk.

The parameter is the unique positive real root of λ3 + λ− 1 and given by

λ =
1
6

(
108 + 12

√
93
)1/3
− 2

(
108 + 12

√
93
)−1/3

.

Total amplitude of catastrophes

Another interesting parameter is the total amplitude of catastrophes
of excursions of length n. Let an,k be the number of excursions with
catastrophes of length n and total amplitude of all catastrophes con-
tained in the path of k. The bivariate generating function Atot(z, u) =
∑n,k≥0 an,kznuk is given by

Atot(z, u) = D(z, u)E(z), where

D(z, u) =
1

1−Q(z, u)
, and

Q(z, u) = zq

(
M(z, u)− E(z)− ∑

j∈S+
uj Mj(z)

)
.

The generating function Q(z, u) keeps track of the altitudes of used
catastrophes. The new parameter u does not influence the singular
expansion of Q(z) analyzed in Theorem 6.3.2. We get for z→ ρ− and
0 ≤ u ≤ 1 the following expansion

Q(z, u) = Q(ρ, u)− η(u)
√

1− z/ρ +O(1− z/ρ), (144)
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where η(u) is a nonzero function, and in terms of the previous expan-
sion of Q(z) we have that η(1) = η.

Let Xn be the random variable for lattice paths with catastrophes
of length n and total amplitude of catastrophes k. Then we have

P (Xn = k) =
[znuk]F(z, u)
[zn]F(z, 1)

.

Theorem 6.3.12. The total amplitude of catastrophes of a random excursion
with catastrophes of length n admits a limit distribution, with the limit law
being dictated by the relation between ρ0 and ρ.

1. In the case of ρ0 < ρ the standardized random variable

Xn − µn
σ
√

n
, µ =

Qu(ρ0, 1)
ρ0Qz(ρ0, 1)

,

σ2 =

(
1 +

ρ0Quu(ρ0, 1)
Qz(ρ0, 1)

)
µ2 +

(
1− 2Qzu(ρ0, 1)

Qz(ρ0, 1)
+

Qzz(ρ0, 1)
Qz(ρ0, 1)

)
µ,

converges for σ2 > 0 in law to a standard Gaussian variable N (0, 1).

2. In the case of ρ0 = ρ the normalized random variable

Xn

ϑ
√

n
, ϑ =

√
2

Qu(ρ, 1)
η

,

converges in law to a Rayleigh distributed random variable with den-
sity xe−x2/2.

3. In the case that ρ0 does not exist, the limit distribution is discrete and
given by:

lim
n→∞

P (Xn = k) =
η(u)D(ρ, u)2 + C

τ D(ρ, u)
ηD(ρ)2 + C

τ D(ρ)
.

Proof. In the first case ρ0 < ρ we will use [85, Theorem IX.9] the
meromorphic scheme, which is a generalization of Hwang’s quasi-
powers theorem. In order to apply it we need to check three condi-
tions. First, the meromorphic perturbation condition: We know already
from the proof of Theorem 6.3.2 that ρ0 is a simple pole. What re-
mains is to show that in a domain D = {(z, u) : |z| < r, |u− 1| < ε}
the function admits the following representation

Atot(z, u) =
B(z, u)
C(z, u)

,

where B(z, u) and C(z, u) are analytic for (z, u) ∈ D. There exists a
δ > 0 such that r := ρ0 + δ < ρ. For this value the representation
holds, as B(z, u) = uc(1− zP(u))E(z) and C(z, u) = uc(1− zP(u))−
zq ∏c

i=1(1− ui(z)) are only singular for z = ρ or u = 0.
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Next, the non-degeneracy Qu(ρ, 1)Qz(ρ, 1) 6= 0 is easily checked. It
ensures the existence of a non-constant ρ(u) analytic at u = 1, such
that 1−Q(ρ(u), u) = 0.

Finally, the variability condition r′′(1) + r′(1)− r′(1)2 6= 0 for r(u) =
ρ(1)
ρ(u) is also satisfied due to

ρ(1) = ρ0, ρ′(1) = −Qu(ρ, 1)
Qz(ρ, 1)

,

ρ′′(1) = − 1
Qz(ρ, 1)

(
Qzz(ρ, 1)ρ′(1) + 2Qz,u(ρ, 1)ρ′(1) + Quu(ρ, 1)

)
.

This implies the claimed normal distribution.

Corollary 6.3.13. The total amplitude of catastrophes of a random Dyck
path with catastrophes of length n is normally distributed. The standardized
version of Xn,

Xn − µn
σ
√

n
, µ ≈ 0.2938197987, σ2 ≈ 0.5809693987,

where µ is the unique positive real root of 31µ3 + 62µ2 + 71µ− 27, and σ is
the unique positive real root of 29791σ6 − 59582σ4 + 298411σ2 − 159099,
converges in law to a Gaussian variable N (0, 1).

Amplitude of an average catastrophe

At the end of the discussion on parameters of our lattice paths with
catastrophes, we want to determine the law behind the altitude of
a random catastrophe among all lattice paths of length n. In other
words, one draws uniformly at random a catastrophe among all pos-
sible catastrophes of all lattice paths of length n.

We can construct it from the generating function counting the num-
ber of catastrophes. It is given in (142) where each catastrophe is
marked by a variable v.

Lemma 6.3.14. The bivariate generating function Aavg(z, u) counting the
altitude of a random catastrophe among all excursions with catastrophes is
given by

Aavg(z, u) = E(z) + Q(z, u)D(z)2E(z).

Proof. A random excursion with catastrophes either contains no catas-
trophes and is counted by E(z), or it contains at least one catastrophe.
In the latter we choose one of its catastrophes and its associated ex-
cursion ending with this catastrophe. Then we replace it with an ex-
cursion ending with a catastrophe whose altitude has been marked.
This corresponds to

Aavg(z, u) = E(z) +
Q(z, u)
Q(z)

∂

∂v
C(z, v)

∣∣∣∣
v=1

.

Computing this expression proves the claim.
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As before we define a random variable Xn for our parameter as

P (Xn = k) =
[znuk]Aavg(z, u)
[zn]Aavg(z, 1)

.

Due to the factor Q(z, u) the situation is similar to final altitude in
Section 6.3.

Theorem 6.3.15. The altitude of a random catastrophe of a lattice path of
length n admits a discrete limit distribution:

lim
n→∞

P (Xn = k) = [uk]ω(u), where

ω(u) =





Q(ρ0, u), for ρ0 ≤ ρ,
C
τ +(

C
τ D(ρ)2+2ηD(ρ)3)Q(ρ,u)+η(u)D(ρ)2

C
τ +(

C
τ D(ρ)2+2ηD(ρ)3)Q(ρ,1)+ηD(ρ)2 , for 6 ∃ρ0.

Proof. The proof is similar to the one of Theorem 6.3.10.
First, for ρ0 < ρ only D(z)2 is singular at ρ0, where all other terms

are analytic. Thus, by [92, Problem 178] the claim holds.
Second, in the case of ρ0 = ρ we combine the singular expan-

sions (140), (143), and (144) to get

Aavg(z, u) =
E(ρ)Q(ρ, u)
η2(1− z/ρ)

+O
(
(1− z/ρ)−1/2

)
.

In other words, the polar singularity of D(z)2 dominates, and the
situation is similar to the one before.

In the final case, 6 ∃ρ0, we again combine the singular expansions.
Yet this time the expansion of D(z) is given by (141). This implies a
contribution of all terms, as all of them are singular at once and all of
them have the same type of singularity.

Corollary 6.3.16. The amplitude of a random catastrophe among all Dyck
paths with catastrophes of length n admits a (shifted) geometric limit distri-
bution with parameter λ ≈ 0.6823278:

lim
n→∞

P (Xn = k) =




(1− λ) λk−2, for k ≥ 2,

0, for k = 0, 1.

The parameter is the unique positive real root of λ3 + λ− 1 and given by

λ =
1
6

(
108 + 12

√
93
)1/3
− 2

(
108 + 12

√
93
)−1/3

.

Comparing this result to the one for the final altitude of meanders
in Corollary 6.3.11, we see that the type of the law is of the same
nature (yet shifted for the amplitude of catastrophes), and that the
parameter λ is the same.
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6.4 uniform random generation

In order to generate our lattice paths with catastrophes, we can build
on some key methods from the last 20 years. First, classical Dyck
paths (and generalized Dyck paths) can be generated by pushdown-
automata, or equivalently, by a context-free grammar. Then, using the
recursive method of Flajolet–Zimmermann–Van Cutsem [87] (which
can be seen as a wide generalization to combinatorial structures of
what Hickey and Cohen [105] did for context-free grammars), such
paths of length n can be generated in O(n log n) average-time. Later,
Goldwurm [99] proved that this can be done with the same time-
complexity, with only O(n) memory.

The Boltzmann method introduced by Duchon–Flajolet–Louchard–
Schaeffer in [74] is also a way to get a linear average-time random
generator for paths of length within [(1 − ε)n, (1 + ε)n]. Unfortu-
nately, our lattice paths with catastrophes are not recursive in the
above sense and include some equations with a minus sign which
prohibits the above mentioned approaches. For sure, it could be pos-
sible to generate lattice paths with catastrophes via a dynamic pro-
gramming approach, but this would require O(n3) bits in memory,
our next theorem shows we can do much better:

Theorem 6.4.1 (Uniform random generation). Dyck paths with catas-
trophes can be generated in linear time. Lattice paths with catastrophes of
length n can be generated uniformly at random in time O(n3/2) and mem-
ory O(1).
Proof. Via the bijection of Theorem 6.2.1, the approaches mentioned
above can be applied to Dyck paths with catastrophes. For more gen-
eral lattice paths with catastrophes, there is no (known) bijection with
objects directly generated by a context-free grammar, so we give the
following alternative: This relies on a generating tree approach [16],
where each transition is computed via

P







jump j when at altitude k, and length m,

ending at 0 at length n


 =

f 0
m,k f k+j

n−(m+1),0

f 0
n,0

,

where f i
m,k is the number of paths with catastrophes of length m, start-

ing at altitude i and ending at altitude k. Then, for each pair (i, k), the
theory of D-finite functions applied to the algebraic functions (com-
pare Theorem 1.2.15) derived similarly to Theorem 6.1.1 allows us to
get the recurrence for the corresponding fm (see e.g. [17]). In order
to get the m-th term fm of a P-recursive sequence, there is a O(√m)

algorithm due to Chudnovsky & Chudnovsky [56]. It is possible to
win space complexity and bit complexity by computing the fm’s in
floating point arithmetic, instead of rational numbers (although all
the fm are integers, it is often the case that the leading term of the P-
recursive recurrence is not 1, and thus it then implies rational number
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Figure 36: The limit law for the final altitude in the case of a jump polyno-
mial P(u) = u40 + 10u3 + 2u−1. We observe a period 40, which is
explained by a sum of 40 geometric-like basic limit laws.

computations, and time loss in gcd computations). Rounding errors
can be corrected after the computations as the fm’s have to be integers.
All of this leads to a cost ∑n

m=1O(
√

m) = O(n3/2), moreover, a O(1)
memory is enough to output the n jumps of the lattice path, step after
step, as a stream.

6.5 conclusion

In this chapter, motivated by a natural model from queuing theory
where one allows a “reset” of the queue, we analyzed the correspond-
ing combinatorial model: lattice paths with catastrophes. We showed
how to enumerate them, how to get closed forms for their generating
functions.

En passant, we gave a bijection (Theorem 6.2.1) which extends di-
rectly to lattice paths with a −1 jump and an arbitrary set of positive
jumps, i.e. Łukasiewiecz paths. It is known that the limiting objects
associated to classical Dyck paths behave like Brownian excursions,
Brownian meanders. It was therefore interesting to see what type of
different behavior exhibit lattice paths with catastrophes; the results
we gave for the asymptotics and the limit laws of several parameters
illustrate these different behaviors. It is interesting to see that this
leads to some apparently fractal like limit laws (see Figure 36), that
we can in fact explain via our analytic combinatorics approach.

In conclusion, it is pleasant that the kernel method is once more al-
lowing to solve a variant of lattice paths, giving the exact and asymp-
totic enumeration, and also leading to uniform random generation.



Part III

T R E E S A N D T R E E - L I K E S T R U C T U R E S

This part concerns trees and tree-like structures. In Chap-
ter 7 the classical theory of Pólya trees (unlabeled rooted
trees which are considered up to symmetry) is revisited.
According to a recent result they can be interpreted as con-
ditioned critical Galton-Watson trees (or as a special class
of weighted simply generated trees) attached with many
small forests. These forests are with high probability of
size O(log n). First, this probabilistic result is put into a
unified framework of analytic combinatorics by also im-
proving certain bounds. Second, a combinatorial interpre-
tation of the occurring rational weights is given. Chapter 8
treats the compactification of binary trees. A compacted
tree is a tree in which every subtree is unique and repeat-
edly occurring subtrees are represented by pointers to ex-
isting ones. A calculus for generating functions is derived
and used to solve the (asymptotic) counting problem.





7
A N O T E O N T H E S C A L I N G L I M I T S O F R A N D O M
P Ó LYA T R E E S

This chapter is based on joint work with Bernhard Gittenberger and
Emma Yu Jin. A preliminary version of the presented results has
been accepted for publication in the Proceedings of the ANALCO17
Barcelona Conference, [97].

Plan of this chapter. First of all, in Section 7.1 we recall Pólya
trees and state a new interpretation in terms of a composition of two
classes: C-trees and D-forests. In Section 7.2 we state our main re-
sults. In Section 7.3 we prove Theorem 7.2.1 and discuss the size of
the C-tree Cn in a random Pólya tree Tn. In Section 7.4 we prove The-
orems 7.2.2 and 7.2.3. In Section 7.5 we conclude with final remarks.

7.1 decomposing pólya trees

A Pólya tree is a rooted unlabeled tree considered up to symmetry.
The size of a tree is given by the number of its nodes. We denote by
tn the number of Pólya trees of size n and by T(z) = ∑n≥1 tnzn the
corresponding ordinary generating function. By Pólya’s enumeration
theory, see Section 1.7 or [157], the generating function T(z) satisfies

T(z) = z exp

(
∞

∑
i=1

T(zi)

i

)
.

We will see that T(z) is connected with the exponential generating
function of Cayley trees. “With a minor abuse of notation” (cf. [120,
Example 10.2]), Cayley trees belong to the class of simply generated
trees. Simply generated trees have been introduced by Meir and Moon
[141] to describe a weighted version of rooted trees. They are defined
by the functional equation

y(z) = zΦ(y(z)), with Φ(z) = ∑
j≥0

φj zj, φj ≥ 0.

The power series y(x) = ∑n≥1 ynxn has non-negative coefficients and
is the generating function of weighted simply generated trees. One
usually assumes that φ0 > 0 and φj > 0 for some j ≥ 2 to exclude
the trivial cases. In particular, in the above-mentioned sense, Cayley
trees can be seen as simply generated trees which are characterized
by Φ(z) = exp(z). It is well known that the number of rooted Cayley
trees of size n is given by nn−1. Let

C(z) = ∑
n≥0

nn−1 zn

n!
,

221
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be the associated exponential generating function. Then, by construc-
tion it satisfies C(z) = z exp(C(z)). In contrast, Pólya trees are not
simply generated (see [67] for a simple proof of this fact). Note that
though T(z) and C(z) are closely related, Pólya trees are not related
to Cayley trees in a strict sense, but to a certain class of weighted
unlabeled trees which will be called C-trees in the sequel and have
the ordinary generating function C(z). This is precisely the simply
generated tree associated with Φ(z) = exp(z), now in the strict sense
of the definition of simply generated trees.

In order to analyze the dominant singularity of T(z), we follow
[150, 157], see also [85, Chapter VII.5], and we rewrite (26) into

T(z) = zeT(z)D(z), where

D(z) = ∑
n≥0

dnzn = exp

(
∞

∑
i=2

T(zi)

i

)
.

(145)

We observe that D(z) is analytic for |z| < √ρ < 1 and that
√

ρ >

ρ. From (145) it follows that T(z) can be expressed in terms of the
generating function of Cayley trees: Indeed, assume that T(z) is a
function H(zD(z)) depending on zD(z). By (145) this is equivalent
to H(x) = x exp(H(x)). Yet, this is the functional equation for the
generating function of Cayley trees. As this functional equation has
a unique power series solution we have H(x) = C(x), and we just
proved

T(z) = C(zD(z)). (146)

Note that T(z) = C(zD(z)) is a case of a super-critical composition
scheme which is characterized by the fact that the dominant singu-
larity of T(z) is strictly smaller than that of D(z). In other words,
the dominant singularity ρ of T(z) is determined by the outer func-
tion C(z). Indeed, ρ D(ρ) = e−1, because e−1 is the unique dominant
singularity of C(z).

Let us introduce two new classes of weighted combinatorial struc-
tures: D-forests and C-trees. We set dn = [zn]D(z) which is the accu-
mulated weight of all D-forests of size n. These are weighted forests of
Pólya trees which are constrained to contain for every Pólya tree at
least two identical copies or none. In other words, if a tree appears in
a D-forest it has to appear at least twice. From (26) and (145) one gets
its first values

D(z) = ∑
n≥0

dnzn = 1 +
1
2

z2 +
1
3

z3 +
7
8

z4 +
11
30

z5 +
281
144

z6 + · · · .

(147)
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The weights are defined in such a way that composition scheme (146)
is satisfied. In Theorem 7.2.2 we will make these weights explicit.

dn =
1
n

n

∑
i=2

dn−i ∑
m|i

m 6=i

mtm, for n ≥ 2,

as well as d0 = 1, and d1 = 0.
Next to D-forests, the second needed concept is the one of C-trees,

which are weighted Pólya trees. The weight is defined by the compo-
sition (146). For this purpose, let cn = [zn]C(z) = nn−1

n! be the accumu-
lated weight of all C-trees of size n. In other words, we interpret the
exponential generating function of Cayley trees C(z) as an ordinary
generating function of weighted objects:

C(z) = ∑
n≥0

nn−1

n!
zn.

Informally speaking, the composition (146) can be interpreted as
such that a Pólya tree is constructed from a C-tree where a D-forest
is attached to each node.

This construction is in general not bijective, because the D-forests
consist of Pólya trees and are not distinguishable from the underly-
ing Pólya tree, see Figure 37. In general there are different decom-
positions of a given Pólya tree into a C-tree and D-forests. Theo-
rem 7.2.2 will give a probabilistic interpretation derived from the au-
tomorphism group of a Pólya tree (see also Example 7.4.2).

Figure 37: The decomposition of a Pólya tree with 4 nodes into a C-tree
(non-circled nodes) and D-forests (circled nodes). For this Pólya
tree there are 3 different decompositions.

7.2 main results

Consider a random Pólya tree of size n, denoted by Tn, which is a
tree that is selected uniformly at random from all Pólya trees with
n vertices. We use Cn to denote the random C-tree that is contained
in a random Pólya tree Tn. For every vertex v of Cn, we use Fn(v) to
denote the D-forest that is attached to the vertex v in Tn, see Figure 38.

Let Ln be the maximal size of a D-forest contained in Tn, that is,
|Fn(v)| ≤ Ln holds for all v of Cn and the inequality is sharp. For the
upper bound see also [151, Eq. (5.5)].
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Fn(v1)

Fn(v2)
Fn(v3)

v1

v2

v3 v3

v1

v2

Fn(v1)

Fn(v2)

Fn(v3)

Figure 38: A random Pólya tree Tn (left), a (possible) C-tree Cn (mid-
dle) that is contained in Tn where all D-forests Fn(v), except
Fn(v1), Fn(v2), Fn(v3) (right), are empty.

Theorem 7.2.1. For 0 < s < 1,

(1− (log n)−s)

(−2 log n
log ρ

)
≤ Ln ≤ (1 + (log n)−s)

(−2 log n
log ρ

)
(148)

holds with probability 1− o(1).

Our first main result is a new proof of Theorem 7.2.1 by applying
the unified framework of Gourdon [100]. Our second main result is
a combinatorial interpretation of all weights on the D-forests and C-
trees in terms of automorphisms associated to a given Pólya tree.

Let cn,k denote the cumulative weight of all C-trees of size k that are
contained in Pólya trees of size n. By tc,n(u) and Tc(z, u) we denote
the corresponding generating function and the bivariate generating
function of (cn,k)n,k≥0, respectively, that is,

tc,n(u) =
n

∑
k=1

cn,kuk and Tc(z, u) = ∑
n≥0

tc,n(u)zn.

Note that cn,k is in general not an integer. By marking the nodes of all
C-trees in Pólya trees we find a functional equation for the bivariate
generating function Tc(z, u), which is

Tc(z, u) = zu exp (Tc(z, u)) exp

(
∞

∑
i=2

T(zi)

i

)

= zu exp (Tc(z, u)) D(z).

(149)

For a given permutation σ let σ1 be the number of fixed points of σ.
Our second main result is the following:

Theorem 7.2.2. Let T be the set of all Pólya trees, and MSET(≥2)(T ) be
the multiset (or forest) of Pólya trees where each tree appears at least twice
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if it appears at all. Then the cumulative weight dn (defined in (147)) of all
such forests of size n satisfies

dn = ∑
F∈MSET(≥2)(T )

|F|=n

|{σ ∈ Aut(F) | σ1 = 0}|
|Aut(F)| ,

where Aut(F) is the automorphism group of F (see Definition 1.7.2). Fur-
thermore, the polynomial associated to C-trees in Pólya trees of size n is
given by

tc,n(u) = ∑
T∈T , |T|=n

tT(u), where tT(u) =
1

|Aut(T)| ∑
σ∈Aut(T)

uσ1 .

In particular, for all T ∈ T , we have t′T(1) = |P(T)| where P(T) is the
set of all trees which are obtained by pointing (or coloring) one single node
in T.

For a given Pólya tree T the polynomial tT(u) gives rise to a prob-
abilistic interpretation of the composition scheme (146). For a given
tree the weight of uk is the probability that the underlying C-tree is
of size k. In other words, tT(u) is the probability generating function
of the random variable CT of the number of C-tree nodes in the tree
T defined by

P(CT = k) := [uk]tT(u). (150)

This random variable CT is a refinement of Tn in the sense that

P(CT = k) = P (|Cn| = k | Tn = T) .

Finally, we derive the limiting probability that for a random node
v the attached forest Fn(v) is of a given size. This result is consistent
with the Boltzmann sampler from [151]. The precise statement of our
third main result is the following:

Theorem 7.2.3. The generating function T[m](z, u) of Pólya trees, where
each vertex is marked by z, and each weighted D-forest of size m is marked
by u, is given by

T[m](z, u) = C (uzdmzm + z (D(z)− dmzm)) , (151)

where dm = [zm]D(z). The probability that the D-forest Fn(v) attached to a
random C-tree node v is of size m is given by

P (|Fn(v)| = m) =
dmρm

D(ρ)

(
1 +O

(
n−1

))
.
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7.3 the maximal size of a D -forest

We will use the generating function approach from [100] to analyze
the maximal size Ln of D-forests in a random Pólya tree Tn, which
provides a new proof of Theorem 7.2.1. Following the same approach,
we can establish a central limit theorem for the random variable
|Cn|, which has been done in [177] for the more general random R-
enriched trees.

Proof of Theorem 7.2.1. In (5.5) of [151], only an upper bound of
Ln is given. By directly applying Gourdon’s results (Theorem 4 and
Corollary 3 of [100]) for the super-critical composition scheme, we
find that for any positive m,

P[Ln ≤ m] = exp
(
− c1n

m3/2 ρm/2
)
(1 +O(exp(−mε))), where

c1 ∼
b

2
√

π(1−√ρ)(D(ρ) + ρD′(ρ))
,

as n → ∞. Moreover, the maximal size Ln satisfies asymptotically, as
n→ ∞,

ELn = −2 log n
log ρ

− 3
2

2
log ρ

log log n +O(1) and V Ln = O(1).

By using Chebyshev’s inequality, one can prove that Ln is highly
concentrated around the mean ELn. We set εn = (log n)−s where
0 < s < 1 and we get

P(|Ln −ELn| ≥ εn ·ELn) ≤
V Ln

ε2
n · (ELn)2 = o(1),

which means that (148) holds with probability 1− o(1).
It was shown in [177] that the size |Cn| of the C-tree Cn in Tn sat-

isfies a central limit theorem and |Cn| = Θ(n) holds with probability
1− o(1). The precise statement is the following.

Theorem 7.3.1 ([177, Eq. (3.9) and (3.10)], [151, Eq. (5.6)]). The size
of the C-tree |Cn| in a random Pólya tree Tn of size n satisfies a central
limit theorem where the expected value E|Cn| and the variance V |Cn| are
asymptotically

E|Cn| =
2n
b2ρ

(1 +O(n−1)), and V |Cn| =
11n

12b2ρ
(1 +O(n−1)).

Furthermore, for any s such that 0 < s < 1/2, with probability 1− o(1) we
have

(1− n−s)
2n
b2ρ
≤ |Cn| ≤ (1 + n−s)

2n
b2ρ

. (152)
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Random Pólya trees belong to the class of randomR-enriched trees
and we refer the readers to [177] for the proof of Theorem 7.3.1 in the
general setting. Here we provide a proof of Theorem 7.3.1 to show
the connection between a bivariate generating function and the nor-
mal distribution and to emphasize the simplifications for the concrete
values of the expected value and variance in this case.

Proof of Theorem 7.3.1 (see also [177]). It follows from [66, Th. 2.23]
that the random variable |Cn| satisfies a central limit theorem. In the
present case, we set F(z, y, u) = zu exp(y)D(z). It is easy to verify
that F(z, y, u) is an analytic function when z and y are near 0 and
that F(0, y, u) ≡ 0, F(x, 0, u) 6≡ 0 and all coefficients [znym]F(z, y, 1)
are real and non-negative. From [66, Th. 2.23] we know that Tc(z, u)
is the unique solution of the functional identity y = F(z, y, u). Since
all coefficients of Fy(z, y, 1) are non-negative and the coefficients of
T(z) are positive as well as monotonically increasing, this implies
that (ρ, T(ρ), 1) is the unique solution of Fy(z, y, 1) = 1, which leads
to the fact that T(ρ) = 1. Moreover, the expected value is

E|Cn| =
nFu(z, y, u)
ρFz(z, y, u)

=
[zn]∂uTc(z, u)|u=1

[zn]T(z)

=

(
[zn]

T(z)
1− T(z)

)
([zn]T(z))−1 =

2n
b2ρ

(1 +O(n−1)).

The asymptotics are directly derived from (27). Likewise, we can com-
pute the variance

V |Cn| =
[zn]T(z)(1− T(z))−3

[zn]T(z)
− (E |Cn|)2 =

11n
12b2ρ

(1 +O(n−1)).

Furthermore, |Cn| is highly concentrated around E |Cn|, which can be
proved again by using Chebyshev’s inequality. We set εn = n−s where
0 < s < 1/2 and get

P
(∣∣|Cn| −E|Cn|

∣∣ ≥ εn ·E|Cn|
)
≤ V|Cn|

ε2
n · (E|Cn|)2 = O(n2s−1) = o(1),

which yields (152).

As a simple corollary, we also get the total size of all weighted D-
forests in Tn. Let Dn denote the union of all D-forests in a random
Pólya tree Tn of size n.

Corollary 7.3.2. The size of weighted D-forests in a random Pólya tree of
size n satisfies a central limit theorem where the expected value E|Dn| and
the variance V|Dn| are asymptotically

E|Dn| = n
(

1− 2
b2ρ

)
(1 +O(n−1)), and

V|Dn| =
11n

12b2ρ
(1 +O(n−1)).
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Theorem 7.3.1 and Corollary 7.3.2 tell us that a random Pólya tree
Tn consists mostly of a C-tree (proportion 2

b2ρ
comprising ≈ 82.2%

of the nodes) and to a small part of D-forests (proportion 1 − 2
b2ρ

comprising ≈ 17.8% of the nodes). Furthermore, the average size of
a D-forest Fn(v) attached to a random C-tree vertex in Tn is b2ρ

2 − 1 ≈
0.216, which indicates that on average the D-forest Fn(v) is very small,
although the maximal size of all D-forests in a random Pólya tree Tn

reaches Θ(log n).
Remark 22. Let us describe the connection of (146) to the Boltzmann
sampler from [151]. We know that F(z, y, 1) = zΦ(y)D(z) where
Φ(x) = exp(x) and y = T(z). By dividing both sides of this equa-
tion by y = T(z), one obtains from (145) that

1 =
zD(z)
T(z)

exp(T(z)) = exp(−T(z)) ∑
k≥0

Tk(z)
k!

,

which implies that in the Boltzmann sampler ΓT(x), the number of
offspring contained in the C-tree Cn is Poisson distributed with pa-
rameter T(x). As an immediate result, this random C-tree Cn con-
tained in the Boltzmann sampler ΓT(ρ) is a critical Galton-Watson
tree since the expected number of offspring is Fy(z, y, 1) = 1 which
holds only when (z, y) = (ρ, 1).

7.4 D -forests and C -trees

In order to get a better understanding of D-forests and C-trees, we
need to return to the original proof of Pólya on the number of Pólya
trees [157]. The important step is the treatment of tree automorphisms
by the cycle index, see Section 1.7 for the needed concepts.

Proof of Theorem 7.2.2

By Pólya’s enumeration theory [157], the generating function T(z)
satisfies the functional equation

T(z) = z ∑
k≥0

Z(Sk; T(z), T(z2), . . . , T(zk))

= z ∑
k≥0

1
k! ∑

σ∈Sk

(T(z))σ1(T(z2))σ2 · · · (T(zk))σk ,

which can be simplified to (25), the starting point of our research, by a
simple calculation. However, this shows that the generating function
of D-forests from (145) is given by

D(z) = e∑∞
i=2

T(zi)
i = ∑

k≥0
Z(Sk; 0, T(z2), . . . , T(zk))

= ∑
k≥0

1
k! ∑

σ∈Sk , σ1=0
(T(z2))σ2 · · · (T(zk))σk .
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This representation enables us to interpret the weights dn of D-forests
of size n: A D-forest of size n is a multiset of k Pólya trees, where ev-
ery tree occurs at least twice. Its weight is given by the ratio of fixed
point free automorphisms over the total number of automorphisms.
Equivalently, it is given by the number of fixed point free permuta-
tions σ ∈ Sk of these trees rescaled by the total number of orderings
k!.

Let T be the set of all Pólya trees and MSET(≥2)(T ) be the multiset
of Pólya trees where each tree appears at least twice if it appears at
all. Combinatorially, this is a forest without unique trees. Then, their
weights are given by

dn = ∑
F∈MSET(≥2)(T )

|F|=n

|{σ ∈ Aut(F) | σ1 = 0}|
|Aut(F)| .

Example 7.4.1. The smallest D-forest is of size 2, and it consists of a
pair of single nodes. There is just one fixed point free automorphism
on this forest, thus d2 = 1/2. For n = 3 the forest consists of 3 single
nodes. The fixed point free permutations are the 3-cycles, thus d3 =

2/6 = 1/3. The case n = 4 is more interesting. A forest consists
either of 4 single nodes, or of 2 identical trees, each consisting of 2
nodes and one edge. In the first case we have 6 4-cycles and 3 pairs of
transpositions. In the second case we have 1 transposition swapping
the two trees. Thus, d4 = 6+3

24 + 1
2 = 7

8 .

These results also yield a natural interpretation of C-trees. We recall
that by definition

Tc(z, u) = ∑
n≥0

tc,n(u)zn,

where tc,n(u) = ∑k cn,kuk is the polynomial marking the C-trees in
Pólya trees of size n. From the decompositions (146) and (149) we get
the first few terms:

tc,1(u) = u,

tc,2(u) = u2,

tc,3(u) =
3
2

u3 +
1
2

u,

tc,4(u) =
8
3

u4 + u2 +
1
3

u.

Evaluating these polynomials at u = 1 obviously returns tc,n(1) = tn,
which is the number of Pólya trees of size n. Their coefficients, how-
ever, are weighted sums depending on the number of C-tree nodes.
For a given Pólya tree there are in general several ways to decide what
is a C-tree node and what is a D-forest node. The possible choices are
encoded in the automorphisms of the tree, and these are responsible
for the above weights as well.
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Let T be a Pólya tree, and Aut(T) be its automorphism group. For
an automorphism σ ∈ Aut(T) the nodes which are fixed points of
σ are C-tree nodes. All other nodes are part of D-forests. Summing
over all automorphisms and normalizing by the total number gives
the C-tree generating polynomial for T:

tT(u) = Z(Aut(T); u, 1, . . . , 1) =
1

|Aut(T)| ∑
σ∈Aut(T)

uσ1 . (153)

The polynomial of C-trees in Pólya trees of size n is then given by

tc,n(u) = ∑
T∈T , |T|=n

tT(u).

Example 7.4.2. For n = 3 we have 2 Pólya trees, namely the chain
T1 and the cherry T2. Thus, Aut(T1) = {id}, and Aut(T2) = {id, σ},
where σ swaps the two leaves but the root is unchanged. Thus,

tT1(u) = u3,

tT2(u) =
1
2
(u3 + u).

For n = 4 we have 4 Pólya trees shown in Figure 39. Their automor-
phism groups are given by Aut(T1) = Aut(T2) = {id}, Aut(T3) =

{id, (v3 v4)} ∼= S2, and

Aut(T4) = {id, (v2 v3), (v3 v4), (v2 v4), (v2 v3 v4), (v2 v4 v3)} ∼= S3.

This gives

tT1(u) = u4,

tT2(u) = u4,

tT3(u) =
1
2
(u4 + u2),

tT4(u) =
1
6
(u4 + 3u2 + 2u).

This enables us to give a probabilistic interpretation of the composi-
tion scheme (146). For a given tree the weight of uk is the probability
that the underlying C-tree is of size k. In particular, T1 and T2 do not
have D-forests. The tree T3 consists of a C-tree with 4 or with 2 nodes,
each case with probability 1/2. In the second case, as there is only
one possibility for the D-forest, it consists of the pair of single nodes
which are the leaves. Finally, the tree T4 has either 4 C-tree nodes with
probability 1/6, 2 with probability 1/2, or only one with probability
1/3. These decompositions are shown in Figure 37.

In the same way as we got the composition scheme in (146), we can
rewrite Tc(z, u) from (149) into Tc(z, u) = C(uzD(z)). The expected
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T1 T2 T3 T4

v3 v4 v2 v3 v4

Figure 39: All Pólya trees of size 4.

total weight of all C-trees contained in all Pólya trees of size n is the
n-th coefficient of Tc(z), which is

Tc(z) :=
∂

∂u
Tc(z, u)

∣∣∣∣
u=1

=
T(z)

1− T(z)
(154)

= z + 2z2 + 5z3 + 13z4 + 35z5 + 95z6 + 262z7 + 727z8 + · · · .

Let us explain why these numbers are integers, although the coeffi-
cients of tc,n(u) are in general not. We will show an even stronger
result. Let T be a tree and P(T) be the set of all trees with one single
pointed (or colored) node which can be generated from T.

Lemma 7.4.3. For all T ∈ T we have t′T(1) = |P(T)|.
Proof. From (153) we get that t′T(1) = ∑σ∈Aut(T)

σ1
|Aut(T)| is the ex-

pected number of fixed points in a uniformly at random chosen auto-
morphism of T. The associated random variable CT is defined in (150).
We will prove E(CT) = |P(T)| by induction on the size of T.

The most important observation is that only if the root of a subtree
is a fixed point, its children can also be fixed points. Obviously, the
root of the tree is always a fixed point.

For |T| = 1, the claim holds as E(CT) = 1 and there is just one
tree with a single node and a marker on it. For larger T consider the
construction of Pólya trees. A Pólya tree consists of a root T0 and
its children, which are a multiset of smaller trees. Thus, the set of
children is of the form

{T1,1, . . . , T1,k1 , T2,1, . . . , T2,k2 , . . . , Tr,1, . . . , Tr,kr}, with Ti,j ∈ T ,

and where trees with the same first index are isomorphic. On the
level of children, the possible behaviors of automorphisms are per-
mutations within the same class of trees. In other words, an automor-
phism may interchange the trees T1,1, . . . , T1,k1 in k1! many ways, etc.
Here the main observation comes into play: only subtrees of which
the root is a fixed point might also have other fixed points. Thus, the
expected number of fixed points is given by the expected number
of fixed points in a random permutation of Ski times the expected
number of fixed points in Tki . By linearity of expectation we get

E(CT) = E(CT0) +
r

∑
i=0

E(# fixed points in Ski)︸ ︷︷ ︸
=1

E(CTi),
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where E(CTi) = E(CTi,j) for all 1 ≤ j ≤ ki and E(CT0) = 1 because
the root is a fixed point of any automorphism. Since the expected
number of fixed points for each permutation is 1, we get on average 1
representative for each class of trees. This is exactly the operation of
labeling one tree among each equivalence class. Finally, by induction
the claim holds.

This completes the proof of Theorem 7.2.2.

As an immediate consequence of Lemma 7.4.3, t′c,n(1) counts the
number of Pólya trees with n nodes and a single labeled node (see
OEIS A000107). This also explains the construction of non-empty se-
quences of trees in (154): Following the connection of [37, pp. 61–62]
one can draw a path from the root to each labeled node. The nodes
on that path are the roots of a sequence of Pólya trees.

Remark 23. Note that Lemma 7.4.3 also implies that the total number
of fixed points in all automorphisms of a tree is a multiple of the
number of automorphisms.

Remark 24. Lemma 7.4.3 can also be proved by considering cycle-
pointed Pólya trees; see [42, Section 3.2] for a full description. Let
(T, c) be a cycle-pointed structure considered up to symmetry where
T is a Pólya tree and c is a cycle of an automorphism σ ∈ Aut(T).
Then, the number of such cycle-pointed structures (T, c) where c has
length 1 is exactly the number t′T(1).

Let us analyze the D-forests in Tn more carefully. We want to count
the number of D-forests that have size m in a random Pólya tree Tn.
Therefore, we label such D-forests with an additional parameter u
in (146). From the bivariate generating function (151) we can recover
the probability P[|Fn(v)| = m] to generate a D-forest of size m in the
Boltzmann sampler from [151].

Proof of Theorem 7.2.3

The first result is a direct consequence of (146), where only vertices
with weighted D-forests of size m are marked. For the second result
we differentiate both sides of (151) and get

T[m]
u (z, 1) =

T(z)
1− T(z)

dmzm

D(z)
= Tc(z)

dmzm

D(z)
.

Then, the sought probability is given by

P [|Fn(v)| = m] =
[zn]T[m]

u (z, 1)
[zn]Tc(z)

=
dmρm

D(ρ)

(
1 +O

(
n−1

))
.

For the last equality we used the fact that D(z) is analytic in a neigh-
borhood of z = ρ.
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Let Pn(u) be the probability generating function for the size of a
weighted D-forest Fn(v) attached to a vertex v of Cn in a random
Pólya tree Tn. From the previous theorem it follows that

Pn(u) = ∑
m≥0

[zn]T[m]
u (z, 1)

[zn]Tc(z)
um =

[zn]Tc(z)
D(zu)
D(z)

[zn]Tc(z)

=
D(ρu)
D(ρ)

(
1 +O

(
n−1

))
.

This is exactly [151, Eq. (5.2)].

Summarizing, we state the asymptotic probabilities that a weighted
D-forest Fn(v) in Tn has size equal to or greater than m.

m P[|Fn(v)| = m] ≈ P[|Fn(v)| ≥ m] ≈

0 0.9197 1.0000

1 0.0000 0.0803

2 0.0526 0.0803

3 0.0119 0.0277

4 0.0105 0.0161

5 0.0015 0.0060

6 0.0027 0.0041

7 0.0003 0.0014

Table 19: The probability that a weighted D-forest Fn(v) has size equal to or
greater than m when 0 ≤ m ≤ 7.

7.5 conclusion and perspectives

In this chapter we provide an alternative proof of the maximal size
of D-forests in a random Pólya tree. We interpret all weights on D-
forests and C-trees in terms of automorphisms associated to a Pólya
tree, and we derive the limiting probability that for a random node v
the attached D-forest Fn(v) is of a given size.

Our work can be extended to Ω-Pólya trees: For any Ω ⊆ N0 =

{0, 1, . . .} such that 0 ∈ Ω and {0, 1} 6= Ω, an Ω-Pólya tree is a rooted
unlabeled tree considered up to symmetry and with outdegree set
Ω. When Ω = N0, a N0-Pólya tree is a Pólya tree. In view of the
connection between Boltzmann samplers and generating functions,
it comes as no surprise that the “colored” Boltzmann sampler from
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[151] is closely related to a bivariate generating function. But the uni-
fied framework in analyzing the (bivariate) generating functions of-
fers stronger results on the limiting distributions of the size of the
C-trees and the maximal size of D-forests.

The next step is the study of shape characteristics of D-forests like
the expected number of (distinct) trees. The C-tree is the simply gen-
erated tree within a Pólya tree and therefore its shape characteristics
is well-known – when conditioned on its size. Moreover, D-forests
certainly show a different behavior and, though they are fairly small,
they still have significant influence on the tree.



8
C O M PA C T E D B I N A RY T R E E S

This chapter is based on joint work with Bernhard Gittenberger, An-
toine Genitrini and Manuel Kauers.

Most trees contain redundant information in form of repeated oc-
currences of the same subtree. These trees can be compacted by rep-
resenting each occurrence only once. The positions of the removed
subtrees will be remembered by pointers which point to the com-
mon subtree. Such structures are known as directed acyclic digraphs or
short as DAGs. The gain in memory was analyzed in the extended ab-
stract [86], yet the proofs have been omitted and have not been stated
later. This gap was closed in [47], where the framework was extended
to other DAG structures and analyzed in the context of XML compres-
sion.

In contrast to the previous papers which started with a given set
of trees of fixed size and computed its compacted size, we want to
determine all compacted trees of fixed size. The difficulty lies in the
fact that a compacted binary tree of size n could arise form a binary
tree of size n but also from a binary tree of size 2n. Thus, a brute-force
approach is hopeless.

Plan of this chapter. Our approach will build on the fundamental
properties of the compactification procedure. We will first analyze
the properties of this procedure in Section 8.1. These will help us to
state a combinatorial and (most importantly) recursive specification
of the problem in Section 8.2. This will also lead to our first main
result: a recurrence relation for the number of compacted binary trees, see
Theorem 8.2.1. Unfortunately, we are not able to solve this recurrence.

In Section 8.4, we consider a simplified problem and try to solve
the counting problem of relaxed binary trees. These trees are in a sense
compacted trees where the restriction of uniqueness on the subtrees is
dropped. In particular, compacted trees are a subset of relaxed binary
trees. With the same methods as used on compacted trees we are able
to derive a recurrence relation. However, this recurrence relation is of
the same level of difficulty as the one for compacted trees.

Due to this fact, we follow yet a different approach in the remaining
part of this work: we will use exponential generating functions to model
our problem. We want to emphasize at this point that the problem is
on unlabeled objects, but their asymptotic growth is of order n!An

for a specific A > 0. Hence, exponential generating functions are the
suitable choice. However, operations on exponential generating func-
tions, such as for example the product posses rather a labeled than
an unlabeled interpretation. Hence, we first derive a new calculus on

235
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exponential generating functions, modeling operations on compacted
trees. These results are presented in Section 8.3.

This strategy will be successful and we get the second main result
of our work: the enumeration of relaxed and compacted binary trees of
bounded right-height in Sections 8.4 and 8.5. The right-height of a tree
is the maximal number of right-edges (or right children) on all paths
from the root to any leaf. The calculus on exponential generating
functions proves suitable to generate iteratively, ordinary differential
equations (ODEs) for the respective generating functions. Iteratively
means that from the ODE of trees of right-height k one gets the ODE
of trees of right-height k + 1. The results are given in Theorems 8.4.8
and 8.5.6.

The third main result is the answer to the asymptotic counting prob-
lem of the number of relaxed and compacted binary trees of bounded
right-height, see Theorems 8.4.23 and 8.5.12. In order to do so, we ex-
tract the necessary information directly from the ODEs. Except for a
few exceptions it is not possible to find closed forms of the ODEs.

8.1 creating a compacted tree

In [86, Proposition 1] it was shown that for a given tree of size n its
compacted form can be computed in expected time O(n). However,
such procedures have been known since the 1970’s. Figure 40 gives a
procedure which follows a top-down decomposition scheme (i.e. post-
order traversal) of labeled binary trees. Every node (or better to say
the subtree whose root is the respective node) is associated with a
“unique identifier” (uid). Two subtrees are equivalent if and only if
the uid’s are the same.

This procedure is best understood by an example. Many problems
in computer science and computer algebra involve redundant infor-
mation. A strategy to save memory is to store every instance only
once and to mark repeated appearances.

Example 8.1.1. Consider the labeled tree necessary to store the arith-
metic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2). The result of the “Table” from
the UID procedure is

((x, 0, 0), 1), ((∗, 1, 1), 3), ((−, 3, 4), 5), ((∗, 5, 6), 7),

((y, 0, 0), 2), ((∗, 2, 2), 4), ((+, 3, 4), 6),

and the tree in its full and compacted version is shown in Figure 41.

Motivated by this procedure, let us define a DAG-structure which
we call a compacted binary tree.
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function UID(T : tree) : integer;

global counter : integer, Table : list;

begin

if T = nil

then return(O);

else

triple := <root(T),UID(left(T)),UID(right(T))>;

if Found(triple,Table)

then return(value_found);

else counter := counter+l;

Insert pair (triple,counter) in Table;

return(counter);

fi

fi

end

Figure 40: The UID procedure from [86, Fig. 2] which computes “unique
identifiers” for all subtrees of a given binary tree T. It is assumed
that counter is initially set to 0. Table is a global list that main-
tains associations between triples and already computed UID’s; it
is also initially empty. The function root(T) extracts the label of
the root of tree T.

Definition 8.1.2. A compacted binary tree is a DAG computed by the
UID procedure from a given binary tree. Every edge leading to a non-distinct
subtree is replaced by a new kind of edge, a pointer, to the already existing
subtree. Its size is defined by the number of internal nodes.

In the sequel we will only consider binary trees and their com-
pacted forms. For this reason, if we speak of compacted trees we mean
compacted binary trees. In Figure 42 we see all compacted trees of
size 0, 1 and 2.

The subclass of DAGs we are interested in is strongly influenced by
properties of trees. In particular, compacted trees are connected and
plane. Their out-degree is equal to 2, except for the unique sink (leaf)

x x

×

y y

×

x x

×

+

y y

×

−

×

x

×

y

×

+−

×

Figure 41: Tree and compacted tree associated with (* (- (* x x) (* y

y)) (+ (* x x) (* y y))) computed by the UID procedure from
Figure 40.
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Figure 42: All compacted trees of size n = 0, 1, 2. The labels in the nodes are
the uids of the corresponding subtrees.

for which it is 0. Furthermore, there is a unique source, which is the
root.

These are the properties coming from the tree structure. Next, we
treat the specific properties of the UID procedure. The result of the
algorithm strongly depends on the chosen traversal. In this case the
depth first or post-order traversal is used. (But one could also con-
sider a different one.) There are two important observations. First
of all, the post-order traversal has an important consequence on the
pointers:

Pointers only point to previously discovered trees.

In other words, the ordering imposed by the traversal restricts the
possible choices of the pointers.

Secondly, every distinct subtree is stored only once. In terms of the
corresponding compacted trees this translates into uniqueness of ev-
ery fringe subtree. A fringe subtree or short subtree is the tree which
corresponds to a node and all its children. We will only consider
such subtrees. Due to the previous observation on pointers, such sub-
trees in compacted trees need NOT be compacted trees themselves as
pointers may point to nodes that are not part of this subtree. For this
reason we define the concept of c-subtrees.

Definition 8.1.3. A c-subtree is a subtree of a compacted tree. A cherry is
a c-subtree where both children of the root are pointers.

A cherry is in a sense the “minimal” construction to create a new
subtree. It consists of a node and two pointers, which point to already
existing c-subtrees. An example is given in Figure 42: In the last tree
the c-subtree with the root node labeled with 2 is a cherry. It is also
not a compacted tree of Definition 8.1.2 as the root node has two
pointers. The only compacted tree of size 1 is also given in the same
Figure.

With this terminology we are able to characterize compacted trees
in terms of DAGs. First we look at what happens if we delete all
pointers.

Lemma 8.1.4. Deleting the leaf and all pointers from a compacted tree of
size n gives a binary tree of size n.

Proof. Obviously, by deleting the leaf and the pointers we get an
acyclic and undirected graph. It remains to show that this graph is
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connected. Assume that there exists a pointer which is the only con-
nection between two parts of the compacted tree. By the UID pro-
cedure a pointer corresponds to a multiple occurrence of a subtree.
Therefore we get a contradiction, as this subtree must already ex-
ist in the tree and is therefore connected with the root via internal
edges.

Proposition 8.1.5. A compacted tree of size n is constructed from a binary
tree of size n and the following operations:

1. add a leaf at the first possible space in post-order traversal.

2. add pointers to every node such that all nodes except the leaf have
out-degree 2.

3. point the pointers to internal nodes which are in post-order traversal
before the root node such that the corresponding subtree is unique.

Proof. On the one hand, a binary tree which is compacted by the
UID procedure and conditioned to have size n obviously has these
properties.

On the other hand, a tree with these properties is a compacted
tree, as by decompacting and compacting it, one arrives at the same
structure.

The last result tells us that cherries are responsible for the unique-
ness property of compacted trees. Note that a cherry violating the last
expression leads to a different compacted tree.

A different explanation why cherries are the crucial objects for the
uniqueness comes from the property that the compactification proce-
dure generates an increasing set of elements. By that we mean that
the next element is constructed by a new internal node and previous
already constructed elements. In particular, the first element is always
a leaf, and the second one is always an internal node with two leaves
as children (a “classical cherry” in a sense). Then, as a third element
one has an element with a new internal node and a cherry as its left
or right child, or on both sides. Let us then consider the possibilities
to create an existing subtree. There are two cases:

1. Cherry: Choose an existing subtree and let the two pointers of
the subtree point to the children of the subtree. This is possible
as the children are also subtrees which have already been used.

2. Non-cherry: In this case at least one edge is not a pointer. But
then we may assume (induction) that the subtree of the corre-
sponding child is unique. Hence, this node cannot construct an
already existing subtree.

This idea will be picked up in the next section and used to derive
a recurrence relation on the number of compacted trees of size n.
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8.2 a recurrence relation

Let cn be the number of compacted binary trees of size n. In Figure
42 we see all compacted trees of size 0, 1 and 2. It is easily checked
that the first few terms of the sequence are given by

(cn)n≥0 = (1, 3, 15, 111, 1119, 14487, 230943, 4395855, . . .) .

Note that this sequence is not found in Sloane’s OEIS. As a first step
we will derive a recursion representing this sequence.

Let cn,p be the sequence representing the number of c-subtrees of
size n where p c-subtrees with at least one internal node have already
been discovered in higher branches. We can think of the already com-
pacted subtrees as a pool of trees where our pointers can point to
additionally. Note that the leaf is always part of this pool but not
counted, and all subtrees in the pool must be constructed out of ele-
ments in the pool. In this sense the pool is closed in itself.

We define the size of the pool as the number of distinct subtrees
with at least one internal node, or equivalently with more than one
level. Thus, the pool in cn,p has size p and consists of p + 1 distinct
c-subtrees. This artificially looking convention will simplify the later
analysis.

Theorem 8.2.1. Let n, p ∈N, then

cn+1,p =
n

∑
i=0

ci,pcn−i,p+i, for n ≥ 1, (155)

c0,p = p + 1, (156)

c1,p = p2 + p + 1. (157)

Proof. An element counted by cn,p consists of n internal nodes and
one leaf. The remaining n edges of the compacted binary tree are
given by pointers. These must be chosen in such a way that no sub-
tree is generated twice. Additionally, they may point either to one
c-subtree of the pool or a c-subtree below the current node. The sec-
ond condition is due to the post-order traversal of the tree of the UID

procedure.
Now we can give a recursive decomposition of such trees. Let t be

a c-subtree with n + 1 nodes and a pool of size p. The root of t has a
left and a right subtree attached with i and n− i, i = 0, . . . , n internal
nodes, respectively. Note that every internal node also represents a
c-subtree. In the left child the pool remains the same as for its parent.
However, in the right child the pointers may additionally point to c-
subtrees of its left sibling, hence, the pool increases by the size of its
left sibling. These considerations directly give (155).

Next, let us consider the initial conditions (156) and (157). First, c-
subtrees without internal nodes can be interpreted as pointers. These
may point to any element of the pool, hence c0,p = p + 1.
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Second, the c-subtrees with 1 internal node are cherries, whose
both children are not internal nodes. Hence, they consist either of
two pointers or of a leaf and a pointer. As the pool always contains a
leaf, it is sufficient to consider the first case. Then these two pointers
have p + 1 possibilities each to point at. Among these (p + 1)2 cases
are p which must be excluded as they are the ones already found in
the pool. Note that these can be recreated by letting the pointers point
to the same children as the ones found in the pool. Hence, we get

c1,p = (p + 1)2 − p = p2 + p + 1.

Lemma 8.2.2. The number of compacted binary trees of size n satisfies the
following bounds:

n! ≤ cn ≤
1

n + 1

(
2n
n

)
· n!.

Proof. We start with a compacted tree with n internal nodes and con-
struct a binary tree with n internal nodes and labeled leaves. We pro-
ceed in the following way: Traverse the tree in post-order and give
the first leaf the label 1. Then label the internal nodes in the order
you encounter them. An example of such a tree can be found on the
left-hand side of Figure 43. Now replace every pointer by a leaf and
give the leaf the label of the node the pointer was pointing at. The tree
that is obtained in this way by transforming the tree on the left-hand
side of Figure 43, is shown on the right-hand side.

We know that pointers in a compacted tree may only point to the
left, which means that the labels of the leaves in the transformed
tree always must be smaller than their parent’s label. In other words,
the leaves of a node labeled i may only be labeled by 1, 2, . . . , i − 1
(possibly not all such labelings can really occur).

We still need to show that the total number of possible labelings is
bounded by n!. This can be seen as follows: To every leaf l of the tree
(except for the left-most one) we associate a second label in a unique
way. This label is denoted by jl and is written in red next to every
leaf (except for the left-most one) in the tree on the right-hand side of
Figure 43. In order to determine this label we again traverse the tree
in post-order. When he have reached a leaf l, we move along the path
towards the root. As soon as we encounter a “free” node, i.e., a node
with a label that has not yet been used for any of the leaves, we stop
and choose this label to be jl . Then we continue with the next leaf
according to post-order traversal. We can now observe the following:
Since the labels increase when we move towards the root, jl is at least
as big as the label of l’s parent. Thus, the number of possibilities for
labeling l is bounded by jl − 1. In total every label between 2 and
n + 1 occurs in one of the internal nodes of the tree, implying that the
total number of possible labelings of the leaves is bounded by n!.
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Figure 43: Construction in the proof of Lemma 8.2.2 for n = 4.

The last result implies that the asymptotic growth of compacted
trees is bounded and of order O(n!4nn−1/2), but also bounded from
below by n!. Thus, an ordinary generating function for cn would have
zero radius of convergence. Hence, we will need to use exponential
generating functions in order to have a non-zero radius. This idea
will be used in the next sections. First, we state a simplified problem,
which also proves very difficult to solve, but is not as technical.

A relaxed problem

A relaxed compacted binary tree (short relaxed binary tree, or just relaxed
tree) of size n is a directed acyclic graph consisting of a binary tree
with n internal nodes, one leaf, and n pointers. It is constructed from
a binary tree of size n, where the first leaf in a depth-first traversal is
kept and all other leaves are replaced by pointers. These point to any
node that has already been visited in a depth-first traversal.

Compacted trees are relaxed trees with the restriction that all sub-
trees in the corresponding tree are unique. For relaxed trees this con-
dition does not hold anymore.

Let rn be the number of relaxed trees of size n. The first few terms
of the sequence are given by

(rn)n≥0 = (1, 1, 3, 16, 127, 1363, 18628, 311250, 6173791, . . .) .

This sequence is given by the sequence A082161 in the OEIS. It counts
the number of deterministic completely defined initially connected
acyclic automata with 2 inputs and n transient unlabeled states and
a unique absorbing state, see [137]. The bijection of these trees to our
trees is trivial, by traversing relaxed trees from the root to the leaf. We
directly get a recurrence relation for these numbers

Corollary 8.2.3. Let n, p ∈N, then

rn+1,p =
n

∑
i=0

ri,prn−i,p+i, for n ≥ 1,

r0,p = p + 1.

Proof. This is a direct consequence of Theorem 8.2.1 and the fact that
the uniqueness restriction given by condition (157) was dropped.
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Note that the nature of the recurrence relation did not change com-
pared to the one of the compacted case. Unfortunately, we were not
able to find an explicit solution, or to continue from here. A more
promising approach is the one of generating functions introduced in
the next section.

8.3 operations on trees

The coefficients are growing like n!An, (compare Lemma 8.2.2, which
also holds in the relaxed case) we need to use exponential generating
functions in order to get a non-zero radius of convergence. But then
there arises a problem in the construction: exponential generating
functions are designed for labeled objects, but ours are unlabeled.
Thus, we first investigate how the nature of exponential generating
functions reflects the construction of such trees.

The use of non-standard generating functions in the enumeration
of DAGs is not new. Robinson [159] introduced the so-called “special
generating function”

A(t) = ∑
n≥0

an2−(
n
2)

tn

n!
,

to obtain nice expressions of such generating functions for labeled
DAGS. This generating function is not applicable in our context, but
exponential generating functions are.

For this purpose we restrict ourselves to a subclass: compacted
trees of bounded right-height.

Definition 8.3.1. (Spine and right-height) For any compacted tree define
the spine as the tree arising from the compacted tree by deleting all pointers
and the leaf. The right-height of a compacted tree is defined by the maximal
number of right-edges on any path from the root to another node in the spine,
compare Figure 44. The level of a node is the number of right-edges on the
path from the root to this node.

Figure 44: A binary tree with right-height 2. Nodes of level 0 are colored in
red, nodes of level 1 in blue, and the node of level 3 in green. It
proves convenient to rotate the trees by 45 degrees.

We are going to derive the exponential generating functions for
relaxed trees of bounded right-height. In this context we introduce
the following notation: LetR be a combinatorial class. Its exponential
generating function is given by R(z) = ∑n≥0 rn

zn

n! where rn denotes
the number of elements in R of size n.
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Lemma 8.3.2. (New root) Let R be the combinatorial class of relaxed trees,
and let S be the combinatorial class whose elements consist of a new root
node, an element of R as its left-child, and a pointer as its right-child. Then,

S(z) = zR(z).

Proof. Consider a tree of R of size n. Adding a new root node with
the considered tree as its left child creates a tree of size n+ 1. The new
pointer has n + 1 possibilities, in particular it may point to one of the
n internal nodes or the leaf. On the level of generating functions this
implies

S(z) = ∑
n≥0

(n + 1)rn
zn+1

(n + 1)!
= zR(z).

By the term “adding a new root” we will from now on always refer
to the case described in Lemma 8.3.2. In other words, the new root
node will be such that the old tree is the left-child and a pointer is
the right-child.

With the help of this lemma we are able to find the generating func-
tion of relaxed trees of right-height equal to 0. Let R0 be the respec-
tive combinatorial class, and R0(z) = ∑n≥0 r0,n

zn

n! be the associated
generating function.

Corollary 8.3.3. The generating function of relaxed trees of right-height
equal to 0 is

R0(z) =
1

1− z
, and r0,n = n!.

Proof. Such a tree is either just a leaf of size 0 or it is constructed
from an element of R0 by appending a new root node. Obviously,
this construction does not increase the right-height, and it constructs
all such trees. On the level of generating functions this translates into

R0(z) = 1 + zR0(z).

Solving the equation and extracting coefficients gives the result.

Note that the previous result does not need an exponential gener-
ating function based calculus, as the reasoning in the previous proof
directly implies a recursion rn+1 = (n+ 1)rn with r0 = 1, compare Fig-
ure 45. However, exponential generating functions are build in such
a way that they model exactly this situation which will prove useful
in more complicated examples.

We proceed now with other operations on combinatorial classes
and generating functions. The next two might seem “strange” at first
glance, as they do not produce relaxed trees. However, they are the
atomic operations to construct other ones.
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Figure 45: The number of relaxed trees of size n of right-height at most 0 is
equal to n!.

Lemma 8.3.4 (Adding/deleting the root while ignoring pointers). Let
R be a class of relaxed trees. Let I be the class obtained from R by adding
a new root node without pointer, and let D be the class obtained from R
by deleting the root node but preserving its pointer and deleting elements of
size 0. Then,

I(z) =
∫

R(z) dz,

D(z) =
d
dz

R(z).

Proof. Adding a new root node increases the size by one, whereas
deleting it decreases it by one. Hence, elements of R of size n are in
bijection with elements of I of size n + 1 as well as with elements of
D of size n− 1, compare Figure 46. Therefore, we get

I(z) = ∑
n≥0

rn
zn+1

(n + 1)!
=
∫

R(z) dz,

D(z) = ∑
n≥1

rn
zn−1

(n− 1)!
=

d
dz

R(z).

T T T

Figure 46: Adding a new root node without pointer, deleting a root node
while preserving its (possible) pointer, and adding a new pointer
to the existing root node.

These can then be used to derive the following to operations:

Proposition 8.3.5 (Sequences and pointers). The generating function
S(z) obtained by appending an arbitrary (possibly empty but finite) sequence
of root nodes to a class R is given by

S(z) =
1

1− z
R(z).

The generating function P(z) obtained by adding a new, additional pointer
to all root nodes of a class R is given by

P(z) = z
d
dz

R(z) + r0.

Proof. This is a direct consequence of the Lemmas 8.3.2 and 8.3.4,
compare Figures 46 and 47.
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TS = ∪ T ∪ T ∪

Figure 47: Appending a finite, possibly empty sequence to the root node.

In the sequel it will prove convenient to work with operators on
generating functions. For this purpose we will use the same letters
for the operators as were used for the combinatorial classes (or gen-
erating functions) in the previous results.

Now we have all operations needed to continue our investigation
of trees with bounded right-height. In the next sections we show how
the derived calculus can be used to derive differential equation of
relaxed and compacted trees of bounded right-height.

8.4 relaxed binary trees

We will now show how to use the methods from Section 8.3 to derive
ordinary differential equations for the exponential generating func-
tions of relaxed trees of bounded right-height. In this context we in-
troduce the following notation: Let R be the combinatorial class of
relaxed trees. Its exponential generating function is given by R(z) =
∑n≥0 rn

zn

n! where rn denotes the number of elements in R of size n.
We denote the class of relaxed trees of right-height at most k by Rk
and its corresponding exponential generating function by Rk(z) =

∑n≥0 rk,n
zn

n! .
We have derived R0(z) in Corollary 8.3.3 as

R0(z) =
1

1− z
= ∑

n≥0
n!

zn

n!
.

Let us now consider relaxed trees of right-height at most 1.

Relaxed trees of right-height at most 1

Let R1 be the combinatorial class of relaxed trees with right-height at
most 1, compare Figure 48. The corresponding generating function is
given by R1(z) = ∑n≥0 r1,n

zn

n! .

Figure 48: A relaxed tree from R1, i.e. with right-height at most 1.

We will break the problem into smaller parts by decomposing R1(z)
into

R1(z) = ∑
`≥0

R1,`(z), (158)
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where R1,`(z) is the exponential generating function of relaxed binary
trees with exactly ` right-subtrees, i.e. ` right-edges in the spine going
from level 0 to level 1. Obviously, we have R1,0(z) = R0(z) = 1

1−z . In
order to get R1,1(z) we apply the previously derived constructions.
An illustration of such a tree is shown in Figure 49.

Figure 49: A relaxed tree with exactly one right-edge in the spine.

Proposition 8.4.1. The generating function of relaxed trees with exactly
one right-edge in the spine is given by

R1,1(z) =
1

1− z

∫ 1
1− z

z (zR1,0(z))
′ dz.

Proof. The idea is to decompose the structure of R1,1(z) into smaller
parts, which are in bijection to constructible classes.

1. On level 0, after the unique right-edge there is a sequence of
nodes, whose pointers may only point to elements of itself. This
is an element of R0 and thus counted by R0(z). Hence, we can
delete this sequence, see Figure 50.

Figure 50: Step 1: We delete the first sequence of nodes on level 0.

2. Next, we see that the elements on level 1 form a sequence with
a cherry (2 pointers at one node) as its last element. Its pointers
may point to nodes of elements further down and to elements
in the previously discussed sequence of 1. By moving the R0(z)
instance on level 0 to the end of this sequence on level 1 we get a
sequence, with one special node inside which has two pointers,
compare Figure 51. In terms of generating functions we get

R̂1,0(z) :=
1

1− z
z (zR1,0(z))

′
︸ ︷︷ ︸

add root with 2 pointers

. (159)

Note that due to the cherry every element has at least one inter-
nal node.

3. Furthermore, notice that the node on level 0 of the right-edge
has no pointers. However, elements of the sequence before may
point to it. Therefore, we reinsert the node deleted in level 0
by adding it as a new root. The constructed object bijectively
corresponds to R1,1(z) elements without an initial sequence.
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Figure 51: Step 2: Nodes of level 1 can only point to nodes on level 0 (left);
moving these nodes to level 1 and deleting the level 0 node gives
R̂1,0(z) (right).

4. Finally, adding this initial sequence is achieved by a factor 1
1−z ,

compare Proposition 8.3.5. See Figure 52 for the final class of
elements.

Figure 52: Step 4: The final sequence-like object bijectively corresponding to
R1,1(z).

By the previously derived operations from Section 8.3 we get the
claimed relation on generating functions.

The main idea of the previous proof was to cut and glue the R1,1(z)
instance in such a way that a sequence-like object appears which is in
bijection with the previous one. This new object has the advantage of
being constructible by the operations introduced in Section 8.3.

Of course one can easily compute R1,1(z) explicitly. Yet, it is better
to generalize this representation to R1,`(z).

Corollary 8.4.2. The generating function of relaxed trees with exactly `

right-edges in the spine from level 0 to level 1 is given by

R1,`(z) =
1

1− z

∫ 1
1− z

z (zR1,`−1(z))
′ dz, ` > 1,

R1,0(z) = R0(z) =
1

1− z
.

Proof. By cutting at the first right-edge from level 0 to level 1 we
observe a decomposition into an initial sequence, a right-edge from
level 0 to level 1 with 2 nodes, a sequence on level 1 and an in-
stance counted by R1,`−1(z). Compare with Figure 53. Thus, we may
reuse the construction from Proposition 8.4.1 by exchanging the ini-
tial value R1,0(z) with R1,`−1(z).

Figure 53: The decomposition of R1,`(z) into an initial sequence, the first
right-edge, a sequence on level 1, and an instance of R1,`−1(z).
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Finally, we are able to combine the previous results to derive the
generating function of R1(z). We will need the notion of double facto-

rials n!! :=
b n−1

2 c
∏

k=0
(n− 2k) for n ∈N.

Theorem 8.4.3. The exponential generating function of relaxed trees of
right-height at most 1 is D-finite and satisfies

(1− 2z)R′1(z)− R1(z) = 0, R1(0) = 1.

The closed form and the coefficients are given by

R1(z) =
1√

1− 2z
, r1,n = (2n− 1)!!.

Proof. We start with the result from Corollary 8.4.2. But instead of
the integral representation, we use the following differential equation
valid for ` ≥ 1:

(1− z) ((1− z)R1,`(z))
′ = z (zR1,`−1(z))

′ .

Remembering the initial decomposition in (158) we sum over all ` ≥ 1
and get

(1− z) ((1− z) (R1(z)− R1,0(z)))
′ = z (zR1(z))

′ .

Rearranging this equation and replacing R1,0(z) = R0(z) we get

(1− 2z)R′1(z)− R1(z)− (1− z) ((1− z)R0(z))
′ = 0. (160)

Now, R0(z) = 1
1−z , hence the differential equation simplifies to

(1− 2z)R′1(z)− R1(z) = 0.

Solving this equation by separation of variables yields the closed-
form expression. Finally, extracting coefficients is easy while remem-
bering 1√

1−4z
= ∑n≥0 (

2n
n )z

n.

Remark 25. The number of increasing trees of size n is equal to (2n−
3)!!. Its generating function is given by 1−

√
1− 2z. So far we were

not able to find a bijection between these or any other objects counted
by the sequence OEIS A001147. Note that all mentioned objects are
labeled objects.

Relaxed trees of right-height at most 2

Let R2 be the combinatorial class of relaxed trees with right-height at
most 2, compare Figure 54. The corresponding generating function is
given by R2(z) = ∑n≥0 r2,n

zn

n! .
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Figure 54: A relaxed tree from R2, i.e. with right-height at most 2.

As before, we will break the problem into smaller parts by decom-
posing R2(z) into

R2(z) = ∑
`≥0

R2,`(z), (161)

where R2,`(z) is the exponential generating function of relaxed trees
of right-height at most 2 with exactly ` right-subtrees on level 0, i.e. `
right-edges in the spine going from level 0 to level 1. Obviously, we
have R2,0(z) = R0(z) = 1

1−z .

Proposition 8.4.4. The exponential generating function of relaxed trees of
right-height at most 2 with exactly one right-edge from level 0 to level 1 in
the spine satisfies

(1−2z) ((1−z)R2,1(z))
′′−((1−z)R2,1(z))

′−
(
z(zR2,0(z))′

)′
=0. (162)

Proof. The main idea is to decompose the structure of R2,1(z) again
into 4 parts (compare Figure 55): an initial sequence, the first right-
edge from level 0 to level 1, the sequence on level 0 after this right
edge, and an instance of R1(z) starting on level 1 after this right-
edge. Then we use the same transformation idea as in the proof of
Proposition 8.4.1. We take the sequence on level 0 after the right-edge
and move it to the end of the R1(z) instance. Note that this is legiti-
mate concerning the pointers. But it generates a node with 2 pointers
within a sequence of R1(z). With respect to R1(z) this change happens
on its top level to the very left.

We can now neglect the initial sequence and the level 0 node of
the right-edge, as they can be created again by known operations.
Let us call the object obtained by deleting these two parts F(z). By
Lemma 8.3.4 and Proposition 8.3.5 we get

F(z) = ((1− z)R2,1(z))′.

Note that F(z) is a structure with right-height at most 1. It is nearly
an instance of R1(z). There are only 2 differences:

First, it has a special construction after its last right-edge. With re-
spect to the differential equation (160) defining the class R1(z), this
change affects the initial condition R0(z). Thus, we can reuse this spec-
ification, by replacing the initial condition. It is given by the expres-
sion 1

1−z (zR2,0(z))′, because a (possibly empty) sequence, is followed
by a node with a double pointer, and another sequence (compare Fig-
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ure 51). Hence, this restriction is satisfied by a function G(z) given
by

(1− 2z)G′(z)− G(z)− (1− z)((1− z)G0(z))′ = 0, with

G0(z) =
1

1− z
(zR2,0(z))′.

Second, due to the unique right-edge from level 0 to level 1, every
object in F(z) has at least one node. The elements in G(z) which do
not satisfy this condition are leaves, and are a part of G0(z). As G0(z)
is a sequence construction, we can express the generating function of
elements in the class G0(z) which are not leaves by zG0(z). This then
gives

F(z) = G(z)− (1− z)G0(z).

This gives

G(z) = ((1− z)R2,1(z))
′ + (zR2,0(z))′. (163)

Putting everything together some tedious calculations show the
claimed differential equation (162).

Figure 55: Transforming R2,1 into an instance of R1.

Remark 26. We want to comment on the last reasoning in the previ-
ous proof. It might seem complicated to delete the leaf by subtract-
ing G0(z) and adding the shifted version zG0(z). Another solution
would obviously be to subtract only the occurrence of a leaf, i.e. set
F(z) = G(z) − 1. This is of course legitimate, however it leads to
an inhomogeneous differential equation. We will see that it is cru-
cial to have a homogeneous equation, because we want to sum over
infinitely many of them.

As in the R1,`(z) case, we get R2,`(z) for ` ≥ 2 by a recursive appli-
cation of the previous arguments.
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Corollary 8.4.5. The generating function of relaxed trees with right-height
at most 2, and exactly ` > 1 right-edges in the spine from level 0 to level 1
is given by

(1− 2z) ((1− z)R2,`(z))
′′ − ((1− z)R2,`(z))

′ −
(
z(zR2,`−1(z))′

)′
= 0,

with the initial value

R1,0(z) = R0(z) =
1

1− z
.

Proof. By cutting at the first right-edge from level 0 to level 1 we
observe a decomposition into an initial sequence, a right-edge from
level 0 to level 1 with 2 nodes, a sequence on level 1 and an in-
stance counted by R2,`−1(z). Thus, we may reuse the construction
from Proposition 8.4.4 by exchanging the initial value R2,0(z) with
R2,`−1(z).

Note that for the final result it is crucial that we found homoge-
neous differential equations.

Theorem 8.4.6. The exponential generating function of relaxed trees of
right-height at most 2 is D-finite and satisfies

(z2 − 3z + 1)R′′2 (z) + (2z− 3)R′2(z) = 0, R2(0) = 1, R′2(0) = 1.

A closed form and the coefficients are given by

R2(z) = −
2√
5

artanh
(

2z− 3√
5

)
− 1√

5

(
log

(
7 + 3

√
5

2

)
− πi

)
,

r2,n =
(n− 1)!√

5

((
3 +
√

5
2

)n

−
(

3−
√

5
2

)n)
.

Proof. Again, let us take the result of Corollary 8.4.5 and sum over all
` ≥ 1, while remembering the decomposition (161). By linearity this
gives

(1− 2z) ((1− z)(R2(z)− R2,0(z)))
′′

− ((1− z)(R2(z)− R2,0(z)))
′ −
(
z(zR2(z))′

)′
= 0.

(164)

A simplification gives

(z2 − 3z + 1)R′′2 (z) + (2z− 3)(R′2(z)

− (1− 2z)((1− z)R2,0(z))′′ + ((1− z)R2,0(z))′ = 0.

Inserting the initial value R2,0(z) = 1
1−z we get the D-finite expression.

The correctness of the closed form can then be easily checked with
e.g. a computer algebra system.
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In order to deduce its coefficients we observe that the differential
equation can be simplified further by an integration with respect to z.
Thus, it is equivalent to

(z2 + 3z + 1)R′2(z) = 1, R2(0) = 1,

as R′2(0) = 1. Next, observe that as we are dealing with exponen-
tial generating functions, the derivative is just a shift on the level
of coefficients. In other words, [zn]R2(z) = [zn−1]R′2(z). Therefore, a
partial fraction decomposition enables a direct extraction of the coef-
ficients.

Relaxed trees of right-height at most k

The approach from the previous section can then be generalized to
arbitrary right-height at most k for k ≥ 2. Let Rk(z) = ∑n≥0 rk,n

zn

n! be
the corresponding generating function. The idea is to use the previous
construction, and to derive the differential equation for Rk(z) from
the one of Rk−1(z).

Figure 56: A relaxed tree from R3, i.e. with right-height at most 3.

We introduce a family of linear differential operators Lk, k ≥ 1
which describe all differential equations constructed for Rk(z). We use
the notation D · F = d

dz F(z) for the differential operator and 1 · F(z) =
F(z) for the identity operator.

Theorem 8.4.7 (Differential operators). Let (Lk)k≥0 be a family of differ-
ential operators given by

L0 = (1− z),

L1 = (1− 2z)D− 1,

Lk = Lk−1 · D− Lk−2 · D2 · z, k ≥ 2.

Then the exponential generating function Rk(z) for relaxed trees with right-
height at most k satisfies

Lk · Rk = 0.

Proof. We are going to derive two families of operators: The differen-
tial operator Lk and an auxiliary operator Hk for the inhomogeneity:

Lk · Rk = Hk · R0.

For k = 1 this claim holds due to Theorem 8.4.3 and Equation (160).
We have that H1 · F = (1− z)((1− z)F)′ = L0 · ((1− z)F)′.



254 compacted binary trees

We continue with the case k = 2. In (163) we have derived the
necessary substitution to get the differential equation of R2(z) from
the one of R1(z). The idea was to decompose R2(z) with respect to
the number of right-edges from level 0 to level 1, and to get one
differential equation for each case. Observe that after summing these
equations we arrive at the final expression (164). Here we see the
influence of the previous substitution and derive the claim:

L2 · F = L1 ·
(
((1− z)F)′ + (zF)′

)
− H1 ·

(
1

1− z
(zF)′

)

= L1 ·
(

F′
)
− L0 ·

(
(zF)′′

)
.

Furthermore, also from (164) we see that (terms involving R2,0(z))

H2 · F = L1 ·
(
((1− z)F)′

)
. (165)

Inserting R0(z) = 1
1−z reproves the case k = 2.

Finally, for larger k we can recycle the previous arguments for k =

2 and apply them recursively. This holds, as we may again cut an
instance of Rk(z) at the first right-edge in the spine from level 0 to
level 1 and decompose it in the repeatedly shown fashion, compare
Figure 55. Then the same reasoning as in Section 8.4 allows us to
extract the differential equation of Rk(z) from the one of Rk−1(z) by

Lk · F = Lk−1 ·
(

F′
)
− Hk−1 ·

(
1

1− z
(zF)′

)
,

Hk · F = Lk−1 ·
(
((1− z)F)′

)
.

Hence, by induction the claim holds.

Let us apply the last theorem and compute the first few differential
equations.

(1− 2z)
d
dz

R1(z)− R1(z) = 0,

(z2 − 3z + 1)
d2

dz2 R2(z) + (2z− 3)
d
dz

R2(z) = 0,

(3z2 − 4z + 1)
d3

dz3 R3(z) + (9z− 6)
d2

dz2 R3(z) + 2
d
dz

R3(z) = 0,

− (z3 − 6z2 + 5z− 1)
d4

dz4 R4(z)− (6z2 − 24z + 10)
d3

dz3 R4(z)

− (6z− 11)
d2

dz2 R4(z) = 0.

The initial conditions can be obtained from lower solutions. Note
from the construction that the first k + 1 coefficients of Rk(z) enu-
merate all relaxed trees up to size k + 1. This is due to the fact that a
tree of size k + 1 has always right-height at most k.

Next, we take a closer look at these operators.
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Theorem 8.4.8 (Properties of Lk). For any k ∈ N, let Lk be as in Theo-
rem 8.4.7. Let `k,i ∈ C[z] be such that

Lk = `k,k(z)Dk + `k,k−1(z)Dk−1 + . . . + `k,0(z).

Then we have

`k,0(z) = 0,

`k,1(z) = `k−1,0(z)− 2`k−2,0(z),

`k,i(z) = `k−1,i−1(z)− (i + 1)`k−2,i−1(z)

− z`k−2,i−2(z), 2 ≤ i ≤ k− 1,

`k,k(z) = `k−1,k−1(z)− z`k−2,k−2(z).

The initial polynomials are `0,0(z) = 1− z, `1,0(z) = −1, and `1,1(z) =

1− 2z. Furthermore, we have

`k,k(z) =
b k+2

2 c
∑
n=0

(−1)n
(

k + 2− n
n

)
zn. (166)

Proof. The initial polynomials are given by Theorem 8.4.7. The linear-
ity and the degree constraint follow by induction using the recursive
definition of Lk. Using an ansatz and comparing coefficients gives the
recurrence relations.

The closed form of the leading coefficient can be also verified by
induction. Observe that the leading term depends only on the two
previous leading terms.

The asymptotic behavior of the number rk,n of relaxed trees with
right-height at most k is governed by these differential equations [85,
Chapter VII.9]. These are characterized to belong to a certain class.
Consider an ordinary generating function of the kind

DrY(z) + a1(z)Dr−1Y(z) + · · ·+ ar(z)Y(z) = 0, (167)

where the ai ≡ ai(z) are meromorphic in a simply connected domain
Ω. Given a meromorphic function f (z), let ωζ( f ) be the order of the
pole of f at ζ, and ωζ( f ) = 0 meaning that f (z) is analytic at ζ.

Definition 8.4.9 (Regular singularity, [85, p. 519]). The differential equa-
tion (167) is said to have a singularity at ζ if at least one of the ωζ( f ) is
positive. The point ζ is said to be a regular singularity if

ωζ(a1) ≤ 1, ωζ(a2) ≤ 2, . . . , ωζ(ar) ≤ r,

and an irregular singularity otherwise.

Definition 8.4.10 (Indicial polynomial, [85, p. 520]). Given an equation
of the form (167) and a regular singular point ζ, the indicial polynomial
I(α) at ζ is defined as

I(α) = αr + δ1αr−1 + · · ·+ δr, α` := α(α− 1) · · · (α− `+ 1),

where δi := limz→ζ(z − ζ)iai(z). The indicial equation at ζ is the alge-
braic equation I(α) = 0.
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The following technical lemma will be needed to derive the asymp-
totics (see Theorem 8.4.12) of a special type of differential equations.

Lemma 8.4.11. Let p0, . . . , pr ∈ C[x] and consider the differential operator

L = prDr + · · ·+ p1D + p0.

Suppose that x is a simple factor of pr, and suppose that for some α ∈ C, the
operator L admits a generalized series solution f (x) = ∑n∈α+Z cnxn. Then
the coefficient sequence (cn)n∈α+Z satisfies a recurrence of the form
(
([x1]pr)(n− r + 1) + ([x0]pr−1)

)
nr−1cn

+ [· · · ](n− 1)r−2cn−1

+ [· · · ](n− 2)r−3cn−2

+ . . .

+ [· · · ]cn−s = 0,

where [· · · ] are certain polynomials in n and s is some fixed non-negative
integer.

Proof. We have xjDi f = ∑n∈α+Z cnnixn−i+j = ∑n∈α+Z cn+i−j(n + i −
j)ixn for all i, j ∈N.

Write pi = ∑j pi,jxj for i = 0, . . . , r, in the understanding that j runs
through all integers but pi,j is zero for all negative and almost all
positive indices j. By assumption, we know that pr,0 = 0 6= pr,1.

It follows that piDi f = ∑n∈α+Z ∑j pi,jcn+i−j(n + i − j)ixn for i =

0, . . . , r, and

L f = ∑
n∈α+Z

r

∑
i=0

∑
j

pi,jcn+i−j(n + i− j)ixn = 0

implies, by comparing coefficients of xn,

0 =
r

∑
i=0

∑
j

pi,jcn+i−j(n + i− j)i = ∑
j

r

∑
i=0

pi,i+j(n− j)icn−j (168)

for all n ∈ α + Z.
Consider a fixed j ∈ Z. From the definition (n− j)i = (n− j)(n−

j− 1) · · · (n− j− i + 1) it follows that (n− j)i | (n− j)i+1 for every
i ∈ N. Therefore, if k is minimal such that pk,k+j 6= 0, then (n− j)k |
∑r

i=0 pi,i+j(n− j)i.
Note also that for each fixed j, the polynomial ∑r

i=0 pi,i+j(n− j)i is
nonzero if and only if at least one of the coefficients pi,i+j are nonzero,
because the falling factorials form a basis of the vector space of poly-
nomials.

For j < −r, we have i + j < 0 for all i = 0, . . . , r, and therefore
pi,i+j = 0 for all i and ∑r

i=0 pi,i+j(n− j)i = 0. Therefore there are no
terms cn−j with j < −r present in equation (168).
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For j = −r, we have i + j < 0 for all i = 0, . . . , r− 1, and therefore
pi,i+j = 0 for all these i. In addition, we have pr,r−r = pr,0 = 0 by
assumption, so again ∑r

i=0 pi,i+j(n − j)i = 0, and no term cn−j with
j = −r is present in equation (168).

Next, for j = −r + 1 we have pr,r+(−r+1) = pr,1 6= 0 by assump-
tion, so the term cn−(r−1) does occur in equation (168). Moreover, since
pi,i+(−r+1) = 0 for all i < r− 1, we have ∑r

i=0 pi,i+j(n− j)i = pr,1(n−
j)r + pr−1,0(n− j)r−1 = (pr,1n + pr−1,0)(n + r− 1)r−1.

In general, for any j > −r + 1, we have pi,i+j = 0 for all i < −j
and therefore (n− j)−j | ∑r

i=0 pi,i+j(n− j)i. (The understanding here
is that (n− j)−j = 1 if −j is not positive.) Substituting n− r + 1 for n,
we have shown the claimed form of the recurrence.

If ζ is a regular singularity of a differential equation, then all the
solutions of the differential equations behave for z → ζ like (z −
ζ)α log(z− ζ)β for some α ∈ C, β ∈ N. The exponents α are the roots
of the indicial polynomial, and exponents of the logarithmic terms
are related to multiple roots of the indicial polynomial and roots at
integer distances. More precisely, in our case the following theorem
will be applicable. It is a variant of [85, Theorem VII.9] which works
due to ωζ(ai) = 1 for all i = 1, . . . , r.

Theorem 8.4.12. Consider a differential equation (167) and a regular singu-
lar point ζ such that ωζ(ai) = 1 for all i = 1, . . . , r, and δ1 := limz→ζ(z−
ζ)a1(z) ≥ 0. Then, the vector space of analytic solutions defined in a slit
neighborhood of ζ has a basis of r− 1 analytic solutions

(z− ζ)mHm(z− ζ), m = 0, 1, . . . , r− 2,

where Hm are analytic at 0 with Hm(0) 6= 0. The r-th basis function depends
on δ1:

1. For δ1 ∈ {0, 1, . . . , r− 1} it is of the form

(z− ζ)r−1−δ1 H(z− ζ) log(z− ζ);

2. For δ1 ∈ {r, r + 1, . . .} it is of the form

(z− ζ)r−1−δ1 H(z− ζ) + H0(z− ζ) (log(z− ζ))k , k ∈ {0, 1};

3. For δ1 6∈ Z it is of the form

(z− ζ)r−1−δ1 H(z− ζ);

where H is analytic at 0 with H(0) 6= 0.

Proof. Due to ωζ(ai) = 1 we get by the definition of the indicial poly-
nomial that δi = 0 for i ≥ 2. Hence, it is given by

I(α) = αr + δ1αr−1 = αr−1(α− r + 1 + δ1).
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Therefore, the roots are 0, 1, . . . , r− 2, and r− 1− δ1.
Let us treat the consecutive range of roots 0, 1, . . . , r− 2 first. Con-

sider the equivalent recurrence relation of the coefficients (cn)n∈N of
the series solution expanded at ζ and associated to the differential
equation. It has the form

I(n)yn = Φ(yn−1, . . . , yn−N),

where I(n) is the indicial polynomial, N = maxi(r + deg(a1)), and
Φ is a linear operator with polynomial coefficients in n. Let α be a
root of the indicial polynomial, and consider the sequence (cn)n∈N

extended to Z with cn = 0 for n < α for α = 0, 1, . . . , r− 2. At n = α

we have

0 · yα = Φ(0, . . . , 0). (169)

Hence, ym can be chosen arbitrarily. By Lemma 8.4.11 for each choice,
the recurrence uniquely extends the sequence towards +∞. Therefore,
each root a gives rise to a different solution of our recurrence relation.
The set of all these solutions is linear independent. The consecutive
range of zeros implies that the values y0, . . . , yr−2 can be chosen arbi-
trarily, as they do not interfere with each other. Such a situation does
not give rise to any log-terms.

Next, let us treat the missing basis solution associated to r− 1− δ1.
In the first case, there is a multiple root of order 2. Then, the clas-

sical theory of linear differential equations implies the appearance of
logarithmic terms, see [104, 114, 163, 184].

In the second case, it is analogous to (169): The solution starts to
exist at n = r − 1− δ1. But this solution then needs to be continued
further, and at n = 0 we might have a problem. Then, there might
emerge a log term or not, this depends on the specific problem. If
the solution cannot be extended, then a log term multiplied to the
solution at n = 0 is added, see [114].

In the third case, the root does not interfere with the other solutions,
as it is not in the same modulo class mod 1. Thus, it can be continued
without problems, and has the claimed form.

Remark 27. Theorem 8.4.12 treats only the case of consecutive zeros at
the beginning. Note however that one might run into trouble in a situ-
ation with roots like {0, 1, 2, 5}. In this case it is clear that there exists
a solution with y5 arbitrary and yn = 0 for n < 5. This solution can be
extended indefinitely by the recurrence towards the right. We further
expect three linearly independent solutions starting at 0, 1, 2, respec-
tively. A full three dimensional space of such solutions may however
not exist, because we must choose y0, y1, y2 in such a way that the
recurrence extends them to y4, y5 in accordance with the requirement

0 · y5 = φ1c4 + φ2c3 + . . . (170)
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as the recurrence is supposed to hold everywhere. In general, the re-
quirement for the right-hand side to be zero forces a linear constraint
on the initial values y0, y1, y2, reducing the expected 3-dimensional
solution space to a 2-dimensional one. In this situation, the clash can
be repaired by introducing a log into the series of which yn is the co-
efficient sequence. It can also happen that the right-hand side of (170)
accidentally is zero for any choice of y0, y1, y2, because of certain re-
lation between the coefficient polynomials φ1, φ2, . . .. In this case, we
have only power series solutions and it is not necessary (and not pos-
sible) to create a solution with a log-term.

Series solutions with higher powers of logarithms appear if and
only if the phenomenon described above happens several times as
we walk through the index range. This is impossible when the roots
are 0, 1, 2, 5, but it may already happen for 0, 1, 2, 5, 6.

By Theorem 8.4.7 the differential equations of relaxed trees are of
the kind (167). The roots of the leading term are under these condi-
tions responsible for the singularities. The dominant one is as usual
the one closest to the origin. Our first aim is to show that for every
bounded right-height there exists a unique dominant singularity.

We start with the analysis of the leading polynomials. The coeffi-
cient `k,k(z) has a nice bivariate generating function representation.

The following results are supplemented by the ones in Section 8.6
which are often more general and more explicit. After the first version
of this thesis had been submitted to the referees the simplifications of
Section 8.6 were discovered. This subsequent discussion shows the
necessary steps if nothing is known about the polynomials. Then,
properties like having real, positive, and distinct roots, need to be
proven. Yet in our case, we discovered that the polynomials we are
dealing with are transformations of the well-known Chebyshev poly-
nomials. We decided to add this part in order to show two parallel
techniques of deriving the needed results. Thus, the following techni-
cal discussions can be skipped and replaced with the (less technical)
ones of Section 8.6. But note that both lead to the same results.

Lemma 8.4.13 (Bivariate generating function of leading coefficient).
Let L(x, z) = ∑n,k≥0 `k,k(z)xk be the bivariate generating function of the
leading coefficient of the Lk operators. Then,

L(x, z) =
1− z− xz
1− x + zx2 . (171)
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Proof. We start from the closed form of `k,k(z) given in (166). Note
that the upper limit can be set to ∞, as the binomial coefficients are
zero for large n. Then,

L(x, z) = ∑
k≥0

∑
n≥0

(
k + 2− n

n

)
(−z)nxk

= ∑
n≥0

(−z)n ∑
k≥0

(
n + k

n

)
xk+2n−2 − 1

x
− 1

x2

=
x−2

1− x ∑
n≥0

(
− zx2

1− x

)n

− x + 1
x2 =

x−2

1− x + zx2 −
x + 1

x2 ,

where we used that ∑k≥0 (
n+k

n )xk = 1
(1−x)n+1 , see for example [187,

Equation (2.5.7)]. Simplifying this expression shows the claim.

This bivariate generating function also helps us to get a different
representation of the leading coefficient. It will be the key to find the
exponential growth of compacted (relaxed) trees.

Lemma 8.4.14 (Leading coefficient via Catalan generating function).
Let B(z) = 1−

√
1−4z
2 be the generating function1 of the Catalan numbers,

and B̄(z) = 1+
√

1−4z
2 . Then,

`k,k(z) =
1√

1− 4z

(
B̄(z)k+3 − B(z)k+3

)
. (172)

Proof. Solving the denominator of (171) with respect to x we see that
B(z)/z and B̄(z)/z are its roots. A partial fraction decomposition of
the Laurent representation gives for k ≥ 0

[xk]L(x, z) = [xk]
z3

√
1− 4z

(
− B(z)−2

xz− B(z)
+

B̄(z)−2

xz− B̄(z)

)
.

Finally, extracting coefficients and using that B(z)B̄(z) = z shows the
claim.

We now apply this lemma twice. First, we show that there is no
root in the open domain |z| < 1

4 .

Proposition 8.4.15. There is no root of `k,k(z) inside the open disc |z| < 1
4 .

Furthermore, for sufficiently large k there is no root inside the domain
{

z : |z| < 1
4

(
1 +

2π2

k2 +O
(

1
k3

))}
\
[

1
4

,+∞
)

.

Proof. Representation (172) is a priori valid for |z| < 1
4 . Let z0 be a

root inside this domain. Then, we must have
(

1 +
√

1− 4z0

)k+3
=
(

1−
√

1− 4z0

)k+3
. (173)

1 In order not to conflict with our notation, we use the notation B(z) instead of the
commonly used C(z). The letter B should remind you of binary trees.
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Let ω = exp
( 2πi

k+3

)
be a (k + 3)-rd root of unity. Then this expression

is equivalent to the existence of a j ∈ {0, . . . , k + 2} such that

z0 =
1
4

(
1− (1−ω j)2

1 + ω j

)
, <(z0) =

1
4


1 +

1
2

1− cos
(

4π j
k+3

)

1 + cos
(

2π j
k+3

)


 .

This however implies <(z0) ≥ 1
4 contradicting |z0| < 1

4 . Note that this
representation is not valid for ω j = −1, which appears for k odd and
j = k+3

2 . Such a case is by (173) not possible.
In order to show the second claim, note that by cutting the com-

plex plane along the ray [ 1
4 ,+∞) on the positive real axis we create

a domain in which `k,k(z) can be uniquely extended. For sufficiently
large k the cosines in <(z0) can be expanded in a series, and the same
reasoning yields the result.

Using Lemma 8.4.14 a second time establishes another closed form
of `k,k(z), which is expanded at z = 1/4. By doing so, we find the
smallest real root.

Proposition 8.4.16. Let ρk be the smallest real root of `k,k(z). Then, we
have ρk ∈

( 1
4 , 1

4

(
1 + 10

k2

))
and ρk+1 < ρk for k ≥ 0.

Proof. For the first claim we start from (172). Let us use the shorthand
x =

√
1− 4z to increase readability. Then, by the binomial theorem

we have

`k,k(z) =
1

2k+3
(1 + x)k+3 − (1− x)k+3

x

=
1

2k+2

b k+2
2 c

∑
i=0

(
k + 3
2i + 1

)
x2i

=
1

2k+2

b k+2
2 c

∑
i=0

(
k + 3
2i + 1

)
(1− 4z)i. (174)

As odd powers cancel, we obtain a polynomial expression. Note that
the first expression was only valid for |z| < 1/4, however, the polyno-
mial is analytic on C. As they are equal on the disc, it is the unique
analytic continuation.

This representation implies that `k,k(z) > 0 for z ≤ 1/4. However,
in a close neighborhood of z0 = 1

4

(
1 + 10

k2

)
we claim

`k,k(z0) =
1

2k+2

b k+3
2 c

∑
i=0

(−1)i
(

k + 3
2i + 1

)
10i

k2i < 0.

The absolute value of the summands is for i > 0 a monotonically
decreasing sequence. Let Sm be the m-th partial sum

Sm =
1

2k+2

m

∑
i=0

(−1)i
(

k + 3
2i + 1

)
10i

k2i .
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As it is an alternating sum and S0 = 1 we get S2n−1 ≤ lk,k(z0) ≤ S2n

for n ≥ 1. Finally, one easily shows that S3 < 0 and S4 < 0. By
continuity there exists a root inside the claimed interval.

For the second claim, we start with (166). W.l.o.g. we assume k to
be even. As lk,k(ρk) = 0 we have

lk+1,k+1(ρk) = lk+1,k+1(ρk)− lk,k(ρk)

=
b k+2

2 c
∑
n=0

(−1)n
((

k + 3− n
n

)
−
(

k + 2− n
n

))

︸ ︷︷ ︸
=:an

ρn
k .

This is again an alternating sum, as an ≥ 0. We consider the partial
sums S′m = ∑m

n=0(−1)nanρn
k . As a0 = 0 we get S′0 = 0 and S′1 < 0.

Hence, we conclude lk+1,k+1(ρk) < 0. This implies ρk+1 < ρk, as ρk+1
is the smallest positive root and lk,k(0) = 1.

Remark 28. With the same techniques one can derive a lower bound
for ρk and show that it lies in the interval

( 1
4

(
1 + 9

k2

)
, 1

4

(
1 + 10

k2

))
.

Thus, the upper bound is a very good approximation of the actual
value.

But ρk is not the only positive root of `k,k(z). Much more is true:
all its roots are positive. Not much is known about real-rootedness
of polynomial families. However, we can adapt a result from [138]
exactly dealing with our situation.

Proposition 8.4.17 ([138, Variant of Corollary 2.4]). Let {Pn(z)} be a
sequence of polynomials that satisfies the recurrence relation

Pn(z) = αn(z)Pn−1(z) + βn(z)Pn−2(z),

where αn(z) and βn(z) are polynomials such that deg Pn = deg Pn−1 or
deg Pn−1 + 1. If for each n the coefficients of Pn(z) are alternating in sign
and βn(z) ≤ 0 for z ≥ 0 all roots of Pn(z) are real and positive.

Note that Descartes’ rule of signs directly implies for alternating
signs that all roots have to be positive if they are real. Now it is easy
to give the result of our initial problem.

Corollary 8.4.18. All roots of `k,k(z), k ≥ 0 are real, positive, and distinct.

Proof. Lemma 8.4.8 implies that all conditions of Proposition 8.4.17
are satisfied for {`k,k(z)}. Thus, all roots are real and positive.

Next, assume r 6= 0 to be a multiple root of `k,k(z). Hence, from the
closed-form (172) we deduce that

B̄(r)k+3 = B(r)k+3.

A multiple root is also a root of the derivative, thus `′k,k(r) = 0. But
this implies, again by (172) and the previous identity that

0 = `′k,k(r) = −
1
r2

k + 3
1− 4r

B(r)k+3 = − 1
r2

k + 3
1− 4r

(
1−
√

1− 4r
2

)k+3

,

which gives a contradiction.
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Remark 29. One can show even more: With [138, Lemma 2.5] one gets
that the roots of `k,k(z) and `k+1,k+1(z) are interlaced. That means
that after ordering the roots of both polynomials in an increasing
order, they are alternating in the sense that the smallest one belongs to
`k+1,k+1(z), the next one belongs to `k,k(z), the next one to `k+1,k+1(z)
again, and so on.

Remark 30. On the one hand, by its definition it is easy to see that the
coefficients of `k,k(−z) are an ultra log concave sequence. On the other
hand, it is known that polynomials with real coefficients and only real
roots have ultra log concave coefficients. Note that the converse is not
true. This notion was introduced by Pemantle [152], see also [136, 183].
A finite sequence ak, 0 ≤ k ≤ n is ultra log concave, if the sequence
ak/(n

k) is log concave, and it is log concave if a2
i ≥ ai−1ai+1 for all

0 < i < n.

In order to analyze the other polynomials we need the following
lemmas.

Lemma 8.4.19. For k ≥ 2 and 0 ≤ i ≤ b k−2
2 c we have `k,i(z) ≡ 0.

Proof. Let us start with the cases i = 0 and i = 1. By definition in
Lemma 8.4.8 we have `k,0(z) = 0 for k ≥ 2. The case i = 1 is valid for
k ≥ 4. Then, we have

`k,1(z) = `k−1,0(z)− `k−2,0(z) = 0.

For the cases i ≥ 0 we use induction on k. Assume the claim holds
for 2, . . . , k− 1 and arbitrary i. Then, we have

`k,i(z) = `k−1,i−1(z)− (i + 1)`k−2,i−1(z)− z`k−2,i−2(z) = 0.

In all three cases it is easy to check that i ≤ b k−2
2 c implies by the

induction hypothesis that these terms are equal to 0.

Lemma 8.4.20. Let ρk be the smallest real root of `k,k(z). Then, the polyno-
mials `k,i(z) for b k

2c ≤ i ≤ k− 1 have no root in the interval [0, ρk].

Proof. We will show by induction on k that the polynomials are either
strictly positive or strictly negative in the specified interval. The first
thing we notice is that `k,k(z) ≥ 0 in [0, ρk] as `k,k(0) = 1 by (166). In
particular, we will show



`k,i(z) > 0, for k− i even,

`k,i(z) < 0, for k− i odd.

The initial cases are true by `1,0(z) = −1, `2,1(z) = 2z− 3, `3,1(z) = 2,
and `3,2(z) = 9z− 6. In all other cases we have i ≥ 2.

Assume the hypothesis holds for k ∈ {2, . . . , k − 1} and arbitrary
i. The intervals [0, ρk] are decreasing subsets, i.e., [0, ρk] ⊂ [0, ρk−1].
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Thus, by the hypothesis fixed polynomials stay positive or negative if
k increases.

Let us now investigate the indices in the recursion of Lemma 8.4.8:

`k,i(z) = `k−1,i−1(z)︸ ︷︷ ︸
k−i mod 2

−(i + 1) `k−2,i−1(z)︸ ︷︷ ︸
k−i−1 mod 2

−z `k−2,i−2(z)︸ ︷︷ ︸
k−i mod 2

.

Observe that the “−” in front of the last two terms changes the sign.
Hence, the first two terms are either both strictly positive or nega-
tive. However, the last one has a different sign. The idea is now to
apply the recursion repeatedly on the first term. In order to simplify
notation we define

ej(z) := `k−j,i−j(z).

This gives

e0(z) = e1(z)− ze2(z)− (i + 1)`k−2,i−1(z)

= (1− z)︸ ︷︷ ︸
=`0,0(z)

e2(z)− ze3(z)− (i + 1)`k−2,i−1(z)− i`k−3,i−2(z).

Note that, as discussed above, the last term will always have the same
sign as the left-hand side. Thus, it has no influence and we can neglect
it. By this argument the sign is the same as the one of the recursion

ēj(z) = ēj+1(z)− zēj+2(z),

where we want to find the sign of e0(z). By Lemma 8.4.19 the recur-
sion terminates. In particular ēj(z) ≡ 0 for i− j ≤ b k−j

2 c − 1. Let j0 be
the smallest j such that this happens. It is given by

j0 =





2
(

i− b k
2c
)
+ 2, for k even,

2
(

i− b k
2c
)
+ 1, for k odd.

Finally, this recurrence is the same as the one for lk,k(z). Thus, we
know its behavior and get

`k,i(z) = e0(z) = `j0−2,j0−2(z)ej0−1(z) + h(z)

= `j0−2,j0−2(z)`k−j0+1,i−j0+1(z) + h(z),

where the function h(z) is a sum of neglected polynomials with the
sign (−1)k−i, which of course also holds for `k−j0+1,i−j0+1(z). And the
function `j0−2,j0−2(z) ≥ 0 on [0, ρk] and does not influence the sign. By
the induction hypothesis the claim holds.

With this information we are finally able to characterize the indicial
polynomials.

Proposition 8.4.21. The indicial polynomial Ik(α) of the k-th differential
equation is given by Ik(α) = αk−1(α− ( k

2 − 1)).
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Proof. By Definition 8.4.10 we need to show that δi = 0 for i ≥ 1
and δ1 = k

2 . The first claim holds by Lemma 8.4.20, as the pole of
`k,i(z)/`k,k(z) is a simple one for i ≥ 1.

Let us reformulate the second claim.

δ1 = lim
z→ρk

`k,k−1(z)
`k,k(z)
z−ρk

=
`k,k−1(ρk)

`′k,k(ρk)
?
=

k
2

, (175)

where the second equality sign holds because of L’Hospital’s rule and
Lemma 8.4.20 (ρk is not a root of `k,k−1(z)). The last equality still needs
to be proved. To finish the proof we will show the stronger claim:

`k,k−1(z) =
k
2
`′k,k(z),

for k ≥ 1 and arbitrary z. From Lemma 8.4.8 it holds for k = 1
and k = 2. We proceed by induction. Assume the claim holds for
1 ≤ i ≤ k. Then, differentiating the defining equation of `k,k(z) from
Lemma 8.4.8 we get

`′k,k = `′k−1,k−1 − z`′k−2,k−2 − `k−2,k−2.

Next, we apply the induction hypothesis and get

=
2

k− 1
`k−1,k−2 − z

2
k− 2

`k−2,k−3 − `k−2,k−2.

Rearranging the equation and utilizing the defining recurrence rela-
tion of `k,k−1 gives

=
2
k

(
`k−1,k−2 − z`k−2,k−3 − k`k−2,k−2︸ ︷︷ ︸

=`k,k−1

)

+
1
k

(
`k−1,k−1 − 2z`′k−2,k−2 + k`k−2,k−2︸ ︷︷ ︸

=0

)
.

The last expression is equal to 0 as we know the polynomial `k,k(z)
explicitly from (172) in terms of the Catalan generating function.

With the help of Lemma 8.4.19 we are able to simplify the indicial
polynomials further. The reason is that the differential equation of
order k is actually a differential equation of order

r̃ :=
⌈

k
2

⌉
for the function R̃k(z):=

db
k
2 c

dzb
k
2 c

Rk(z).

In other words,

`k,k(z)Dr̃ · R̃k + `k,k−1(z)Dr̃−1 · R̃k + · · ·+ `k,b k
2 c
(z)R̃k = 0. (176)
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Corollary 8.4.22. Let Ĩk(α) be the indicial polynomial of the reduced differ-
ential equation (176). Then,

Ĩk(α) =





αr̃−1 (α + 1) , if k even,

αr̃−1 (α + 1
2

)
, if k odd.

Proof. This is a direct consequence of Proposition 8.4.21. As only the
order of the differential equation changed but not the coefficients, we
get

Ĩk(α) = αr̃ + δ1αr̃−1 = αr̃−1
(

α−
⌈

k
2

⌉
+

k
2
+ 1
)

.

Considering the even and odd case separately yields the result.

After these technical steps, we finally arrive at our first main result.

Theorem 8.4.23 (Asymptotics of relaxed binary trees with bounded
right-height). The number rk,n of relaxed trees with right-height at most k
is given asymptotically equal to

rk,n ∼ γkn!ρ−n
k n−k/2,

where ρk ∈
( 1

4 , 1
4

(
1 + 10

k2

))
is the unique minimal real root of lk,k(z), and a

constant γk ∈ R.

Proof. Firstly, by Propositions 8.4.15 and 8.4.16 the real root ρk is the
closest one to the origin and unique in the disc of convergence.

Secondly, Lemma 8.4.20 shows that it is a simple pole of `k,i(z)
`k,k(z)

for
i = 1, . . . , k− 1. Thus, by Definition 8.4.9 it is a regular singularity.

Thirdly, by Corollary 8.4.22 the roots of the reduced indicial polyno-
mial are either {−1, 0, 1, . . . , r̃− 2} for k even, or {− 1

2 , 0, 1, . . . , r̃− 2}
for k odd. In both cases by Theorem 8.4.12 a basis in a slit neighbor-
hood of ρk consists of the analytic functions

(1− z/ρk)
sHs(1− z/ρk),

for s = 0, .., r̃− 2 and analytic function Hs at 0, and a singular function




1
1−z/ρk

H(1− z/ρk) + G(1− z/ρk) log(1− z/ρk), if k is even,

1√
1−z/ρk

H(1− z/ρk), if k is odd,

with analytic functions G, H at 0. This is a basis for R̃k(z).
In order to obtain a basis for Rk(z) we need to integrate

⌊
k
2

⌋
times.

The analytic basis functions remain analytic and the singular ones sin-
gular. As there is always just one singular function, but we know that
they are singular at ρk, these must be responsible for the asymptotic
growth. In both cases we get the singular expansion for z→ ρk of the
kind

R(z) ∼ γk(1− z/ρk)
k/2−1.
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Finally, applying the transfer theorems, the claim holds. Note that in
the even case there might be a polynomial in front of the log-term
yielding a coefficient asymptotic of n−k/2.

Let us comment on the even case. It is a priori not clear if this
logarithmic term appears or not (if not we set G ≡ 0). But due to
the appearance of the term with the polar singularity, the logarithmic
term does not influence the asymptotic main term. Obviously, it plays
a role for the error terms. For specific cases we can of course answer
this question. For k = 2 we have seen in Section 8.4 that there are no
log terms. However, in this case the reduced indicial polynomial is
only of order 1, see Corollary 8.4.22. Therefore, the consecutive range
of roots starting with 0 does not exist.

But they appear in the case of k = 4. In particular, we have the
operator

(−z3 + 6z2 − 5z + 1)D2 + (−6z2 + 24z− 10)D + (11− 6z)

and the expansion point ρ4, that is a root of −z3 + 6z2 − 5z + 1. Then,
the solution space is generated by the following two series:

1

− 48ρ2
4−267ρ4+118

14 (ρ4 − z)

+
249ρ2

4−2340ρ4+5560
588 (ρ4 − z)2

− 206442ρ2
4−1141941ρ4+502699

7056 (ρ4 − z)3

+O((ρ4 − z)4),

(z− ρ4)
−1 + 0 (z− ρ4)

−1 log(z− ρ4)

+ 0 − 6ρ2
4−33ρ4+14

7 log(z− ρ4)

+
159ρ2

4−888ρ4+440
196 (ρ4 − z) +

3ρ2
4−54ρ4+194

98 (ρ4 − z) log(z− ρ4)

− 2484ρ2
4−14439ρ4+9541

1764 (ρ4 − z)2 − 3834ρ2
4−21183ρ4+9221

588 (ρ4 − z)2 log(z− ρ4)

+O((ρ4 − z)3 log(z− ρ4)).

8.5 compacted binary trees

After the successful application of exponential generating functions
to relaxed trees of bounded right-height, we will extend this method
to compacted binary trees. In this context we introduce the following
notation: Let C be the combinatorial class of compacted trees. Its ex-
ponential generating function is given by C(z) = ∑n≥0 cn

zn

n! where cn

denotes the number of elements in C of size n. In this section we solve
the problem of finding the generating function of compacted trees of
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bounded right-height. We denote the class of compacted trees of right-
height at most k by Ck and its corresponding exponential generating
function by Ck(z) = ∑n≥0 ck,n

zn

n! .
As every subtree in a relaxed tree of right-height at most 0 is

unique, we immediately get by Corollary 8.3.3

C0(z) =
1

1− z
.

In order to handle the uniqueness of the subtrees we need to un-
derstand the cherries. By Proposition 8.1.5 this will guarantee unique-
ness.

The cherry operator

We start with the subclass C1 of compacted trees of right-height at
most 1. The same ideas as in Section 8.4 will work. However, this
case is more subtle as we have to guarantee uniqueness of the sub-
trees. The main observation in this context is that in order to estab-
lish uniqueness of the subtrees one needs to restrict the pointers of
the cherries, see Proposition 8.1.5.

Consider a situation where the pointers of a cherry are pointing
into a tree of size k. Thus, every pointer has k + 1 (leaf!) possibilities.
In a relaxed setting this would mean that there are (k + 1)2 different
configurations.

In a compacted tree every internal node (or spine node) corre-
sponds to a unique subtree. Therefore, the cherry has only (k+ 1)2− k
different options. Let us introduce the corresponding operator now.

Lemma 8.5.1 (Cherry operator). Let C be a class of compacted trees. Let
K be the class obtained from C by adding a new node with two pointers,
where the (decompacted) tree of this new node (left pointer is left child, right
pointer is right child) is not part of C. Then,

K(z) = z (zC(z))′ −
∫

zC′(z) dz

= z2C′(z) +
∫

C(z) dz.

Proof. The first term corresponds to the (unconstrained) operation of
adding a root with two pointers, see (159). The second one is respon-
sible for the correction, by deleting the number of subtrees which are
already part of C, see Figure 57:

Consider a tree of C of size k. The integrand creates a pointer at-
tached to the root possibly pointing to all elements of the subtree. The
integration operator adds a new root node without a pointer. By at-
taching the newly created pointer to this new root, and changing the
pointer in the case of it pointing to the leaf by letting it point to the
old root, we generate k new elements from this specific tree. (A new
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root with a pointer to every internal node of the tree.) This is exactly
the number of elements which we need to subtract in order to ensure
uniqueness.

The second representation results from an integration by parts.

Tk = −

k2 + k + 1 k2 + 2k + 1 k

Tk Tk

Figure 57: The construction of the cherry operator. The formulae below the
pointers state the possible destinations of the pointers in the tree
Tk. The left tree is the desired one, the other ones are constructible
ones.

Let us also define the corresponding operator K(·) which performs
the previous operation:

K(C(z)) := z (zC(z))′ −
∫

zC′(z) dz.

Next, we decompose C1(z) into

C1(z) = ∑
`≥0

C1,`(z),

where C1,`(z) is the exponential generating function of compacted
trees of right-height at most 1 with exactly ` right-subtrees on level 0.

Corollary 8.5.2. The generating function of compacted trees with exactly `

right-edges in the spine from level 0 to level 1 is given by

C1,`(z) =
1

1− z
K (C1,`−1(z)) , ` ≥ 1,

C1,0(z) =
1

1− z
.

Proof. The construction is exactly the same as in Corollary 8.4.2. The
only difference is the use of the cherry operator in (159).

Theorem 8.5.3. The exponential generating function of compacted trees of
right-height at most 1 is D-finite and satisfies

(1− 2z)C′′1 (z)− (3− z)C′1(z) = 0, C1(0) = 1, C′1(0) = 1.

The closed form for C′1(z), and the asymptotics of the coefficients are given
by

C′1(z) =
ez/2

(1− 2z)5/4 , c1,n =
e1/4

Γ(1/4)
n!2n+1

n3/4

(
1 +O

(
1
n

))
.
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Proof. Summing the result of Corollary 8.5.2 for l ≥ 1, and interchang-
ing summation, differentiation, and integration by linearity gives

(1− 2z)C′1(z)− C1(z)− (1− z) ((1− z)C1,0)
′ −

∫
zC′1(z) dz = 0.

Due to the remaining integral we differentiate both sides once more
and get

(1− 2z)C′′1 (z)− (3− z)C′1(z)−
(
(1− z) ((1− z)C1,0)

′
)′

= 0. (177)

Inserting C1,0(z) = C0(z) = 1
1−z we get the claimed differential equa-

tion

(1− 2z)C′′1 (z)− (3− z)C′1(z) = 0

It can be solved by separation of variables with respect to C′1(z). The
asymptotics follow then directly from this representation.

Compacted trees of bounded right-height

Let C2(z) decomposed such that

C2(z) = ∑
`≥0

C2,`(z),

where C2,`(z) is the exponential generating function of compacted
trees of right-height at most 2 with exactly ` right-subtrees on level 0.
Obviously, we have C2,0(z) = 1

1−z .
In the sequel we will use the notation for operators introduced in

Section 8.3 to simplify notation.

Proposition 8.5.4. The generating function of compacted trees with right-
height at most 2, and exactly ` right-edges in the spine from level 0 to level
1 is for ` ≥ 1 given by

C2,`(z) = C2,`,A(z) + C2,`,B(z),

C2,`,A(z) = A(C2,`−1(z)),

D̄2(C2,`,B(z)) = H̄2(C2,`−1(z)),

with the linear operators A = S · I · S · K, D̄2 = M1 · D · S−1, H̄2 =

(H1−M1) · (D · z + S · K), and M1 and H1 are defined in Equations (178)
and (179), respectively.

Proof. Using the same ideas as in the case of relaxed trees, we reduce
the number of levels by deleting the initial sequence, and moving the
last sequence to the end of the next lower level, compare Figure 55.
This produces an instance of C1(z) with

• a new initial condition Ĉ2,0(z) and
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T T

Figure 58: The 2 possible cases for C2(z) instances: Case (A) on the left,
where level 2 does not exist; and case (B) on the right, where
level 3 exists.

• the restriction of being non-empty.

In contrast to the relaxed case of R2,1(z) we need to distinguish
whether level 2 exists or not, compare Figure 58. The different behav-
iors of single pointers and (double) cherry pointers are responsible
for these two cases.

C2,0 initial sequence

Figure 59: The new initial condition Ĉ2,0(z). In case (A) the initial sequence
cannot be empty, whereas in case (B) it may.

(A) Let C2,1,A(z) be the generating function of this case. In this case
level 2 does not exist (i.e. the tree is part of C1(z)). Then we
need to have a cherry on level 1, as this level is not allowed to
be empty. This implies that the initial sequence of Ĉ2,0(z) shown
Figure 59 cannot be empty. Then, due to previous reasoning on
relaxed trees (compare Proposition 8.4.1), and results on C1(z)
trees (compare Corollary 8.5.2) we get the new initial condition
of case (A):

Ĉ2,0,A(z) :=
1

1− z
K (C2,0(z)) =

z (zC2,0(z))
′ −
∫

zC′2,0(z) dz
1− z

.

This implies

C2,1,A(z) = A(C2,0,A(z)) :=
1

1− z

∫
Ĉ2,0,A(z) dz

=
1

1− z

∫ 1
1− z

K (C2,0,A(z)) dz.

The first factor 1
1−z corresponds to the initial sequence on level 0,

and the integral generates the level 0 node of the distinguished
right-edge. In anticipation of the subsequent result, we intro-
duced the operator A(·).

(B) Let C2,1,B(z) be the generating function of this case. In this case
level 3 exists. Then, the initial sequence of Ĉ2,0(z) is allowed to
be empty, compare Figure 59. This means that no cherry was
lost during the transformation into an instance of C1(z) as there
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is just one pointer pointing into C2,0(z). Such a case is mod-
eled by (zC2,0(z))′. Combining it with the case of a non-empty
sequence we get the new initial condition of case (B):

Ĉ2,0,B(z) := (zC2,0(z))
′ +

1
1− z

K (C2,0(z))

=
(zC2,0(z))

′ −
∫

zC′2,0(z) dz
1− z

.

The only difference to case (A) is the lack of the factor z in front
of (zC2,0(z))

′.

By assumption we have nodes on level 2. This means that after
the transformation into an instance of C1(z) we have nodes on
level 1. Let C̄1(z) be the exponential generating function of com-
pacted trees of right-height at most 1 with at least one node on
level 1:

C̄1(z) = ∑
`≥1

C1,`(z) = C1(z)− C1,0(z).

We will continue to work in terms of operators. These are new
operators, which fulfill the same tasks as the ones from Theo-
rem 8.4.7 for relaxed trees. From (177) we get

M1(F) := (1− 2z)F′′ − (3− z)F′, (178)

H1(F) :=
(
(1− z) ((1− z)F)′

)′
, (179)

such that C1(z) satisfies M1(C1(z)) = H1(C0(z)). Thus, for C̄1(z)
we get the following differential equation:

M1(C̄1(z)) = M1(C1(z)− C1,0(z)) = H1(C1,0(z))−M1(C1,0(z)).

Then, the differential equation for C2,1,B(z) is given by

D̄2(C2,1,B(z)) := M1

(
((1− z)C2,1,B(z))

′
)

= H1(Ĉ2,0,B(z))−M1(Ĉ2,0,B(z)) =: H̄2(C2,0(z)),

because we are able to reuse the differential equation (177), with
the new initial condition Ĉ2,0,B(z). By Proposition 8.4.4 its solu-
tion is equal to ((1− z)C2,1,B(z))

′. The new differential operator
is thus given by

D̄2(F) = (2z2 − 3z + 1)F′′′ − (z2 − 10z + 6)F′′ − (2z− 6)F′.

This process can now be continued recursively, compare Corol-
lary 8.4.5. In order to derive C2,2(z) we exchange C2,0(z) by C2,1(z),
and so on.

Using the last result we are able to characterize compacted trees of
right-height at most 2.
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Theorem 8.5.5. The exponential generating function of compacted trees of
right-height at most 2 is D-finite and satisfies

(z2 − 3z + 1)C′′′2 (z)− (z2 − 6z + 6)C′′2 (z)− (2z− 3)C′2(z) = 0,

C2(0) = 1, C′2(0) = 1, C′′2 (0) = 3.

Proof. The generating function C2(z) is decomposed into three parts:

C2(z) = C2,0(z) + C2,A(z) + C2,B(z),

where C2,A(z) = ∑`≥0 C2,`,A(z), C2,B(z) = ∑`≥0 C2,`,B(z), and the ini-
tial values C2,0,A(z) = C2,0,B(z) = 0. Summing the results of Proposi-
tion 8.5.4 for ` ≥ 1 gives

C2,A(z) = A(C2(z)),

D̄2(C2,B(z)) = H̄2(C2(z)).

Finally, we get

D̄2(C2) = D̄2(C2,0 + C2,A + C2,B)

= D̄2(C2,0) + D̄2(A(C2)) + H̄2(C2),

which gives the new differential operator M2(·) and its inhomoge-
neous part H2(·):

M2(C2) := D̄2(C2)− D̄2(A(C2))− H̄2(C2) = D̄2(C2,0) =: H2(C2,0).

Note that like Equation (165) in the relaxed case we have

H2(F) = M1
(
((1− z)F)′

)
.

For the computation of M2(C2) we used Maple.

The first few differential equations computed by Maple are

(1− 2z)
d2

dz2 C1(z) + (z− 3)
d
dz

C1(z) = 0,

(z2− 3z+ 1)
d3

dz3 C2(z)− (z2− 6z+ 6)
d2

dz2 C2(z)− (2z− 3)
d
dz

C2(z) = 0,

(3z2 − 4z + 1)
d4

dz4 C3(z)− (4z2 − 18z + 10)
d3

dz3 C3(z)

+ (z2 − 12z + 14)
d2

dz2 C3(z) + (z− 3)
d
dz

C3(z) = 0.

Theorem 8.5.6 (Properties of Mk). The operator Mk(·) is a linear differ-
ential operator of order k + 1. It decomposes into

Mk = mk,k(z)Dk+1 + mk,k−1(z)Dk + . . . + mk,0(z)D + mk,−1(z),
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where the mk,i(z) are polynomials given by the following recurrence relation
for k ≥ 2

mk,−1(z) = 0,

mk,0(z) =




−2z + 3, for k even,

z− 3, for k odd,

mk,i(z) = mk−1,i−1(z) + (i + 1)mk−2,i(z)

+ (z− i− 2)mk−2,i−1(z)− zmk−2,i−2(z), 1 ≤ i ≤ k− 1,

mk,k(z) = mk−1,k−1(z)− zmk−2,k−2(z),

mk,i(z) = 0, i > k.

The initial polynomials are m0,−1(z) = −1, m0,0 = 1 − z, m1,−1 = 0,
m1,0 = z − 3, and m1,1(z) = 1− 2z. The leading coefficients mk,k(z) are
the same as `k,k(z) from the relaxed case.

Proof. The proof is analogous to the one of Lemma 8.4.8. We omit the
tedious calculations.

It may seem artificial to start the second index at −1. However, this
value is equal to 0 except when k = 0. Thus, we are actually dealing
with a differential equation of order k in F′(z). Another advantage
is that the leading polynomial mk,k(z), which is the same as the one
in the relaxed case `k,k(z), has the same indices. This will also help
us to simplify the subsequent analysis, as the most important part is
to find the roots of the leading polynomial. We can simply reuse the
results from Lemmas 8.4.13 and 8.4.14, as well as Propositions 8.4.15
and 8.4.16.

First, we need to reveal the structure of the indicial polynomial.
Like in the relaxed case none of the other polynomials will have a
root at ρk.

Lemma 8.5.7. Let ρk be the smallest real root of mk,k(z). Then, the polyno-
mials mk,i(z) for 0 ≤ i ≤ k− 1 have no root in the interval [0, ρk].

Proof. We apply the same techniques as were used in the proof of
Lemma 8.4.20. In particular, we want to show the stronger claim that




mk,i(z) > 0, for k− i even,

mk,i(z) < 0, for k− i odd.

The key idea is an inductive proof. The main observation is that the
recurrence relation for mk,i(z) is just a perturbed version of the one
for `k,i(z). Let us analyze the parity of the involved polynomials:

mk,i(z) = mk−1,i−1(z)︸ ︷︷ ︸
k−i mod 2

+(i + 1) mk−2,i(z)︸ ︷︷ ︸
k−i mod 2

+ (z− i− 2) mk−2,i−1(z)︸ ︷︷ ︸
k−i−1 mod 2

−z mk−2,i−2(z)︸ ︷︷ ︸
k−i mod 2

.
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Observe that on the interval [0, ρk] the coefficient (z − i − 2) is neg-
ative. Thus, by the induction hypothesis the first three terms are of
the correct parity. The third term is the same one as in the case of
relaxed trees. Therefore, the structure is the same. Only the perturba-
tion, which is not influencing the result, changed. We have

mk,i(z) = mk−1,i−1(z)− zmk−2,i−2(z) + h̃(z),

where h̃(z) contains the neglected polynomials. Yet the remaining
part is the same as in the previous case.

This implies that only the first two summands will contribute to the
indicial polynomial. In order to compute the value δ1 = limz→ζ(z−
ζ)a1(z) (compare the differential equation (167)) we need the follow-
ing result on mk,k−1(z).

Lemma 8.5.8 (Bivariate generating function of mk,k−1(z)). Let the func-
tion M(x, z) = ∑n,k≥0 mk,k−1(z)xk be the bivariate generating function of
mk,k−1(z) of the Mk operators. Then,

M(x, z) = −1− xz− x2z2 − 2x3z3 + x4z3

(1− x + zx2)3 . (180)

Proof. This result is simply a reformulation of the defining recurrence
relation of mk,k−1(z) combined with the result on the generating func-
tion of mk,k(z) from Lemma 8.4.13.

Before we continue, we need to analyze the polynomial mk,k−1(z).
We derive three different expressions for it in the next Lemma: a
“Catalan-expansion”, an expansion at z = 1/4, and an expansion at
z = 0.

Lemma 8.5.9. Let B(z) = 1−
√

1−4z
2 be the generating function of the Cata-

lan numbers, and B̄(z) = 1+
√

1−4z
2 . Then,

mk,k−1(z) =
1

(1− 4z)3/2

(
k2 + 5k + 4− 2z(k− 1)

2

(
B̄(z)k+2 − B(z)k+2

)

−
(
k2 + 4k + 3− 2kz

) (
B̄(z)k+3 − B(z)k+3

))

= − 1
2k+2

b k+2
2 c

∑
i=0

(1− 4z)i
(

k
2

(
k + 2

2i

)
+

1
2

(
k + 2
2i + 1

)
(181)

+

(
k2 +

7k
2

+ 3
)(

k + 2
2i + 2

)
−
(

k +
3
2

)(
k + 2
2i + 3

))

= −
(

k + 2
2

)
+
b k+2

2 c
∑
n=1

(−1)n+1zn

2n

(
k− n + 1

n− 1

) (
k3 − (4n− 5)k2

+4(n− 1)(n− 2)k + 2(n− 1)(3n− 2)) .
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Proof. The roots of the denominator of (180) with respect of x are
given by B(z) and B̄(z). A partial fraction decomposition gives then
first result, and extraction of the coefficients yields the result. The
second expression is a simplification of the first one, by an expansion
of (1 ± x)i with x =

√
1− 4z and a proper reordering. The third

result can be directly checked to be valid with the recurrence relation.
(It was found via a guess-and-prove approach, built on the sequences
of the coefficients of powers of z.)

Before we proceed we want to point out that the first expression
for mk,k−1(z) is only valid for |z| < 1

4 . The second one however is a
polynomial in z and thus analytic in the complete complex plane. It
is the analytic expansion of the first one.

As a next step we will compute the indicial polynomial of com-
pacted trees. However, first we need to strengthen the results on ρk
from Proposition 8.4.16.

Corollary 8.5.10. The smallest real root ρk of mk,k(z) satisfies for k → ∞
the following expansion

ρk =
1
4

(
1 +

π2

k2 −
6π2

k3 +
2π4 + 81π2

3k4 − 97π4 + 1288π2

12k5 +O
(

1
k6

))
.

Proof. From Proposition 8.4.16 we know that ρk = 1
4 (1 + c

k2 ), for 9 <

c < 10. Inserting this value into (174) we get

0 =
b k+2

2 c
∑
i=0

(−c)i

(2i + 1)!
(k + 3)2i+1

k2i ,

with the falling factorial (k + 3)2i+1 = ∏2i
j=0(k + 3− j). Next, we ex-

pand the last factor for k→ ∞. This gives

(k + 3)2i+1

k2i = k− (2i− 1)(i− 3) +O
(

1
k

)
. (182)

As the monomials k−i form a basis we may split the initial sum into
multiple sums. Additionally, note that the error from changing the
upper bound to ∞ is of order O(k−k). Thus, as c > 0 we get for large
k that

0 = k
∞

∑
i=0

(−1)i ci

(2i + 1)!
+O (1) = k

sin(
√

c)√
c

+O (1) .

This implies, together with 9 < c < 10 that c = π2. Continuing
this ansatz with higher order terms one can use a computer algebra
system to get the given expansion.

Proposition 8.5.11. Let Ik(α) = αk+1 + δ1αk + · · ·+ δk+1 be the indicial
polynomial of the k-th differential equation, and let ρk be the smallest real
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root of mk,k(z). Then, we have δi = 0 for i > 1, and δ1 =
mk,k−1(ρk)

m′k,k(ρk)
. Further-

more, we have

δ1 =
k
2
+

3
4
− π2

4k2 +O
(

1
k3

)
.

The indicial polynomial is given by Ik(α) = αk(α− (k− δ1)).

Proof. The first results are analogous to the ones in Proposition 8.4.21:
First, due to Lemma 8.5.7 we have δi = 0 for i > 0. Second, the
expression for δ1 is the same as in (175), and follows from L’Hospital’s
rule. Thus, the indicial polynomial is given by Ik(α) = αk+1 + δ1αk.

For the expansion of δ1 we start with Corollary 8.5.10 and use the
shorthand ρk = 1

4 (1 + c
k2 ), where c depends on k. Then, from (174)

and (181) we get

m′k,k(ρk) = −
1

2k+2

b k+3
2 c

∑
i=0

4(i + 1)
(−c)i

(2i + 3)!
(k + 3)2i+3

k2i ,

mk,k−1(ρk) = −
1

2k+2

b k+2
2 c

∑
i=0

p(i, k)
(−c)i

(2i + 3)!
(k + 2)2i

k2i ,

where p(i, k) = 2k4 + · · · is a polynomial of degree 4 in i and k.
We will now compute several asymptotic expansions. For this pur-
pose we applied the computer algebra system Maple. Firstly, similar
to (182) we derive the expansions

(k + 3)2i+3

k2i = k3
(

1− (2i + 3)(i− 2)
k

+O
(

1
k2

))
,

(k + 2)2i

k2i = 1− i(2i− 5)
k

+O
(

1
k2

)
.

Secondly, combining these results, and splitting the series with re-
spect to k we are able to find closed-form expressions for the summa-
tions with respect to i (recall that c > 0). In particular, this gives

2k+2m′k,k(ρk) = −2k3
(

cos(
√

c)
c

− sin(
√

c)√
c3

)
+O(k2),

2k+2mk,k−1(ρk) = −k4
(

cos(
√

c)
c

− sin(
√

c)√
c3

)
+O(k3).

Finally, we get δ1 = k
2 +O(1). Redoing the same computations with

more error terms and using the expansion of c = π2 +O(k−1) with
sufficiently many terms shows the claim.

Theorem 8.5.12 (Asymptotics of compacted binary trees with bounded
right-height). The number ck,n of compacted trees with right-height at most
k is asymptotically equal to

ck,n ∼ γkn!nδ1−k−1ρ−n
k = o

(
n!n−k/2−1/4ρ−n

k

)
,
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where γk ∈ R is a constant, ρk ∈
( 1

4 , 1
4

(
1 + 10

k2

))
is the root of mk,k(z), and

δ1 =
mk,k−1(ρk)

m′k,k(ρk)
.

In contrast to relaxed trees, the asymptotic of compacted trees in-
volves in general an irrational critical exponent. In Table 20 we list
their first explicit values.

k ρk ρk ≈ α α ≈ β β ≈

1 1
2 0.500 − 3

4 −0.750 − 1
2 −0.5

2 3
2 −

√
5

2 0.382 − 3
2 +

√
5

10 −1.276 −1 −1.0

3 1
3 0.333 − 16

9 −1.778 − 3
2 −1.5

4 ρ4 0.308 49α3 + 441α2 + 1260α + 1161 = 0 −2.275 −2 −2.0

5 1−
√

2
2 0.293 − 25

8 +
√

2
4 −2.772 − 5

2 −2.5

6 ρ6 0.283 243α3 + 3483α2 + 15066α + 20519 = 0 −3.268 −3 −3.0

7 1
2 −

√
5

10 0.276 − 39
10 + 3

√
5

50 −3.766 − 7
2 −3.5

Table 20: The number ck,n (rk,n) of compacted (relaxed) trees with n in-
ternal nodes and right-height at most k is asymptotically equal
to κkn!ρn

k nα (γkn!ρn
k nβ). The missing radii of convergence are

ρ4 = 2−
√

7 sin
(

1
3 arctan

(√
3

9

))
−
√

21
3 cos

(
1
3 arctan

(√
3

9

))
, and

ρ6 = 3−
√

21 sin
(

1
3 arctan

(√
3

37

))
−
√

7 cos
(

1
3 arctan

(√
3

37

))
.

We can finally answer the question (at least asymptotically) of how
many relaxed trees are actually compacted trees. Combining Theo-
rems 8.4.23 and 8.5.12 we get the following result.

Corollary 8.5.13 (Ratio of compacted among relaxed trees). Let ck,n
(rk,n) be the number of compacted (relaxed) binary trees with right-height at
most k. Then, for n→ ∞ we have

ck,n

rk,n
∼ κnδ1− k

2−1 = κn−
1
4

(
1+ π2

k2 +O
(

1
k3

))
= o

(
n−1/4

)
.

Thus, the number of compacted trees among relaxed trees for large
n is negligible. This result quantifies the restriction of uniqueness of
subtrees in the compacted trees.

8.6 connections with chebyshev polynomials

This section was added after this thesis had been submitted to the
referees. In order not to alter the structure of the previous version, it
was put at the end of the chapter. In here we present connections of
the `k,i(z) and mk,i(z) polynomials from Theorems 8.4.8 and 8.5.6 with
Chebyshev polynomials. This explains the nice results of the technical
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lemmas needed to derive the asymptotics of relaxed and compacted
binary trees.

Let us start with the definitions of Chebyshev polynomials of the first
and second kind, see [61, Chapter 18] or [2, Chapter 22].

Definition 8.6.1 (Chebyshev polynomials). The Chebyshev polynomi-
als of the first kind Tn(z) are defined by the recurrence relation

T0(z) = 1,

T1(z) = z,

Tn+2(z) = 2zTn+1(z)− Tn(z).

The Chebyshev polynomials of the second kind Un(z) are defined by
the recurrence relation

U0(z) = 1,

U1(z) = 2z,

Un+2(z) = 2zUn+1(z)−Un(z).

Relaxed binary trees

The first result gives a closed-form expression of the leading coeffi-
cients `k,k(z) (and mk,k(z)).

Lemma 8.6.2 (Transformed leading coefficient). Let `k,i(z) be the coeffi-
cients of the operator Lk from Theorem 8.4.8. Then, for the leading coefficient
we get

`k,k(z) = z
k+2

2 Uk+2

(
1

2
√

z

)
=
b k+2

2 c
∑
n=0

(−1)n
(

k + 2− n
n

)
zn,

where Tk(z) and Uk(z) are the Chebyshev polynomials of first and second
kind, respectively.

Proof. Let us start with the recurrence relation of `k,k(z) from Theo-
rem 8.4.8. Replacing z by 1

4z2 and multiplying by (2z)k+2 we get

(2z)k+2`k,k

(
1

4z2

)
= 2z · (2z)k+1`k−1,k−1

(
1

4z2

)
− (2z)k`k−2,k−2

(
1

4z2

)
,

and we recognize the recurrence relation for the Chebyshev poly-
nomials of the second kind for (2z)k`k−2,k−2

( 1
4z2

)
, compare [61, Sec-

tion 18.9]. Transforming the initial conditions, gives U2(z) and U3(z),
respectively.

The closed-form is derived from Uk(z) = ∑
b k

2 c
n=0(−1)n(k−n

n )zn.

Chebyshev polynomials are well-studied objects. We summarize
the implied results in the following lemma. It implies the results of
Propositions 8.4.15 and 8.4.16, Corollaries 8.4.18 and 8.5.10, and partly
the ones of Lemma 8.4.20.



280 compacted binary trees

Lemma 8.6.3. The roots of `k,k(z) are real, positive, and distinct. Let ρk be
the smallest real root of `k,k(z). Then, we have

ρk =
1

4 cos2
(

π
k+3

) .

Furthermore, ρk is no root of `k,k−1(z).

Proof. The results follow from the well-known results on Chebyshev
polynomials [61, Section 18.5]. In particular, the roots xk,j of Uk(z)
admit the closed-form expressions

xk,j = cos
(

jπ
k + 1

)
.

This implies the closed-form expression of ρk. The last result follows
from the closed form expression of `k,k−1(z) from Lemma 8.6.2.

Compacted binary trees

In order to compute the value δ1 = limz→ζ(z− ζ)a1(z) (compare the
differential equation (167)) we need the following result on mk,k−1(z).
It makes the results of Lemma 8.5.9 more specific.

Lemma 8.6.4 (Transformed mk,k−1(z)). For the coefficient mk,k−1(z) of
the operator Mk from Theorem 8.5.6 we get

mk,k−1(z) = z
k+2

2 hk+2

(
1

2
√

z

)
,

where

hk(z) =
(
k− 3− 2(k2 + k− 2)z2) Tk(z) +

(
1 + 2(k− 1)z2)Uk(z)

2(z2 − 1)
,

and Tk(z) and Uk(z) are the Chebyshev polynomials of first and second kind,
respectively.

Proof. From Theorem 8.5.6 we get the recurrence relation of mk,k−1(z):

mk,k−1(z) = mk−1,k−2(z)− zmk−2,k−3(z) + (z− k− 1)mk−2,k−2(z).

Its structure is similar to the one of mk,k(z), but with an additional
perturbation (z− k− 1)mk−2,k−2(z). Transforming it in the same way
as the one of mk,k(z) we get with

hk+2(z) := (2z)k+2mk,k−1

(
1

4z2

)
,

for k ≥ 0 the recurrence

hk+2(z) = 2zhk+1(z)− hk(z) +
(
1− 4z2(k + 1)

)
Uk(z).

From the theory of recurrences with constant coefficients (with re-
spect to k) [122, Chapter 4] we get that the solution space is generated
by Uk(z), Tk(z), kUk(z), kTk(z), k2Uk(z), k2Tk(z). Making an ansatz and
comparing coefficients gives the result.
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The following result gives a closed-form of the expansion derived
in Proposition 8.5.11.

Proposition 8.6.5. Let Ik(α) = αk+1 + δ1αk + · · · + δk+1 be the indicial
polynomial of the k-th differential equation, and let ρk be the smallest real
root of mk,k(z). Then, we have δi = 0 for i > 1, and δ1 =

mk,k−1(ρk)
m′k,k(ρk)

. Further-
more, we have

δ1 =
k
2
+ 1− 1

k + 3
−
(

1
4
− 1

k + 3

)
1

cos2
(

π
k+3

) .

The indicial polynomial is given by Ik(α) = αk(α− (k− δ1)).

Proof. The first results are the same as the ones of Proposition 8.5.11.
It remains to prove the closed-form of δ1.

We start with two simplifications for the root xk = cos2( π
k+1 ) of

Uk(z) when inserted into Tk(z). By the explicit expression Tk(z) =

cos (k arccos(z)) , for |z| ≤ 1, we get

Tk(xk) = − cos
(

π

k + 1

)
= −xk, and Tk+1(xk) = −1.

First, we consider mk,k−1(z). By Lemma 8.6.4 we directly get

mk,k−1(ρk) = ρ
k+2

2
k

(k− 1)xk+2 − 2((k + 2)2 + k)x3
k+2

2(x2
k+2 − 1)

,

where ρk =
1

4xk+2
, and recall that Uk(xk) = 0.

Second, we consider the derivative of mk,k(z). Therefore, we use
the following connection of Chebyshev polynomials of the first and
second kind, see [61, Section 18.9]:

U′k(z) =
(k + 1)Tk+1(z)− zUk(z)

z2 − 1
.

Thus, we get by Lemma 8.6.2 that

m′k,k(ρk) =
ρ

k−1
2

k
4

k + 3
x2

k+2 − 1
.

Combining these results shows the claim.

With these results we are able to refine our main result on com-
pacted binary trees, Theorem 8.5.12.

Theorem 8.6.6 (Refined asymptotics of compacted binary trees with
bounded right-height). The number ck,n of compacted trees with right-
height at most k is asymptotically equal to

ck,n ∼ κkn!
(

4 cos
(

π

k + 3

))n

n
− k

2− 1
k+3−( 1

4− 1
k+3 )

1
cos2( π

k+3 ) ,

where κk ∈ R is independent of n.
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Proof. The proof follows the same lines as the one of Theorem 8.4.23.
In particular, the third case of Theorem 8.4.12 gives the asymptotic
result, as δ1 is irrational for all k ∈N.

In contrast to relaxed trees, the asymptotics of compacted trees in-
volves in general an irrational critical exponent. In Table 21 we list
their first explicit values. It replaces Table 20.

k r r ≈ α α ≈ β β ≈

1 2 2.000 − 3
4 −0.750 − 1

2 −0.5

2 4 cos(π
5 )

2 2.618 − 6
5 − 1

20 cos( π
5 )

2 −1.276 −1 −1.0

3 3 3.000 − 16
9 −1.778 − 3

2 −1.5

4 4 cos(π
7 )

2 3.246 − 15
7 − 3

28 cos( π
7 )

2 −2.275 −2 −2.0

5 4 cos(π
8 )

2 3.414 − 21
8 − 1

8 cos( π
8 )

2 −2.772 − 5
2 −2.5

6 4 cos(π
9 )

2 3.532 − 28
9 − 5

36 cos( π
9 )

2 −3.268 −3 −3.0

7 4 cos( π
10 )

2 3.618 − 18
5 − 3

20 cos( π
10 )

2 −3.766 − 7
2 −3.5

Table 21: The number ck,n (rk,n) of compacted (relaxed) trees with n inter-
nal nodes and right-height at most k is asymptotically equal to
κkn!rnnα (γkn!rnnβ) with r = ρ−1

k .

Furthermore, we get the following more specific result on the ratio
of compacted trees among relaxed trees. This refines Corollary 8.5.13.

Corollary 8.6.7 (Refined ratio of compacted among relaxed trees). Let
ck,n (rk,n) be the number of compacted (relaxed) binary trees with right-height
at most k. Then, for n→ ∞ we have

ck,n

rk,n
∼ κk

γk
n
− 1

k+3−( 1
4− 1

k+3 )
1

cos2( π
k+3 ) = o

(
n−1/4

)
.

8.7 conclusion

In this chapter we solved the (asymptotic) counting problem of com-
pacted and relaxed binary trees of bounded right-height. In a com-
pacted binary tree every subtree is unique, and repeatedly occurring
subtrees have been deleted and replaced by pointers to the first ap-
pearance. By doing so, the tree structure is destroyed and we end
up with a directed acyclic graph (DAG). In a relaxed binary tree the
uniqueness condition of subtrees is dropped.

The construction also already explains the difficulty of this count-
ing problem: a compacted binary tree of size n arises from a binary
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tree of size n as well as from a binary tree of size 2n. Our main re-
sults are recurrence relations for compacted and relaxed binary trees
in Theorem 8.2.1 and Corollary 8.2.3, respectively.

Due to their super-exponential growth of order O(n!4n) exponen-
tial generating functions are the natural choice. Our second main con-
tribution is the derivation of a calculus on such exponential generat-
ing functions modeling the structural properties of compacted trees
in Section 8.3.

Resulting from these ideas, we were able to give our last main re-
sult: the derivation of ordinary differential equations for relaxed and
compacted binary trees of bounded right-height. The right-height of
a tree is the maximal number of right edges from the root to any
leaf. Furthermore, we extracted the asymptotics by extending the the-
ory of coefficient extractions of ordinary differential equations with
polynomial coefficients in Theorem 8.4.12. This yielded the sought
asymptotics in Theorems 8.4.23 and 8.5.12.

This gives quite “exotic” families of trees. The radii of convergence
are in both cases algebraic numbers, and in the case of compacted
trees, also the critical exponents are (compare Table 20 or Table 21 for
the first 7 families).

It remains an open problem to find the asymptotics of relaxed and
compacted trees without any restrictions. For our methods it was cru-
cial that the right-height was bounded by a fixed value k. The limit
k → ∞ is therefore not computable. Note that we showed that the
radius of convergence ρk converges to 1/4. But the subexponential
growth is of the shape n−λk for λ > 0. Thus, it would converge to 0.
Hence, the limits n→ ∞ and k→ ∞ are not interchangeable.

Finally, it was interesting to compare the number of compacted
trees among relaxed trees in Corollary 8.5.13. We showed that their
number is negligible for large n.

Many new questions arise after this analysis. It would be inter-
esting to consider parameters such as their average height or right-
height. Furthermore, these results give us the generating functions of
a large family of DAGs which should allow us to do a uniform ran-
dom sampling of these trees. Such results are interesting in computer
science and the analysis of algorithms, as DAGs are efficient data
structures and widely-used. Among other things, new algorithms
need to be tested on very large and non-trivial elements of an effi-
ciently computable class.





Part IV

A P P L I C AT I O N S T O N U M B E R T H E O RY

This part deals with applications of analytic combinatorics
to number theory. It considers the exact divisibility of the
rows of Pascal’s triangle by powers of primes pj. Building
on recent results it can be expressed by polynomials in
variables counting the occurrences of certain blocks of pat-
terns in the base-p expansion of the row. We express these
polynomials using generating functions and show unique-
ness and existence. Finally, singularity analysis gives us
access to certain bounds.





9
D I V I S I B I L I T Y O F B I N O M I A L C O E F F I C I E N T S B Y
P O W E R S O F P R I M E S

This chapter is based on joint work with Lukas Spiegelhofer. A man-
uscript has recently been submitted to a journal and a preprint can
be found on arxiv.org [172].

The history of binomial coefficients in congruence classes modulo
m begins not later than in the middle of the 19th century, when Kum-
mer [132] stated his famous theorem on the highest power m of a
prime p dividing a binomial coefficient (n

t): m is the number of borrows
occurring in the subtraction n− t in base p. In other words, this is the
number of indices k such that n mod pk < t mod pk. Kummer’s the-
orem was generalised to multinomial and q-multinomial coefficients
by Fray [89], and to generalised binomial coefficients by Knuth and
Wilf [128].

A complete list of results related to Pascal’s triangle modulo pow-
ers of primes would go beyond the scope of any research paper; we
refer the reader to the surveys [102, 168] by Granville and Singmaster
respectively for an overview of the topic. The question also attracts
other areas of research: in [7, Section 14.6] and [5], connections with
automatic sequences and combinatorics on words are highlighted.
Moreover, the paper [8] considers the related question of counting
coefficients equal to a given value of a polynomial over a finite field.

In this chapter we restrict ourselves to questions concerning exact
divisibility of binomial coefficients by powers of primes. This means
that we are only concerned with the residue class pj modulo pj+1, in
other words, we study the case νp(

n
t) = j, where νp(m) denotes the

largest k such that pk | m.
We therefore introduce the following notion. Let j and n be non-

negative integers and p a prime number, and define

ϑp(j, n) =
∣∣∣∣
{

t ∈ {0, . . . , n} : νp

(
n
t

)
= j
}∣∣∣∣ . (183)

Put into words, ϑp(j, n) is the number of entries in the n-th row of
Pascal’s triangle that are exactly divisible by pj. The case j = 0 can
be reduced to properties of the base-p expansion of the row number
n by appealing to Lucas’ congruence [139]. This well-known congru-
ence asserts that for t ≤ n having the (not necessarily proper) base-p
representations n = (nν−1 · · · n0)p and t = (tν−1 · · · t0)p, we have
(

n
t

)
≡
(

nν−1

tν−1

)
· · ·
(

n0

t0

)
mod p.

287
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Since p is a prime number, we have p - (n
t) if and only if none of the

factors is divisible by p, which in turn is equivalent to ti ≤ ni for all
i < ν. We obtain, denoting by |n|a the number of times the digit a 6= 0
occurs in the base-p expansion of n,

ϑ2(0, n) = 2|n|1 (184)

for the case p = 2 (Glaisher [98]) and more generally (Fine [82])

ϑp(0, n) = ∏
0≤i<ν

(ni + 1) = 2|n|13|n|24|n|3 · · · p|n|p−1 . (185)

Lucas’ congruence has been generalised and extended in different
directions, see for example [89], [123] (reproved in [166]), [58, 101,
102]; moreover [60] for an account of less recent results. In order to be
able to formulate our results concerning general j ≥ 0, we need some
notation.

Notation. The letter p always denotes a prime number; we use type-
writer font to indicate digits in the base-p expansion, except for vari-
ables representing digits. For the (p− 1)-st digit we write q, a letter
supposed to be a mnemonic relating to 9 in the decimal expansion.
If v is an infinite word over the alphabet {0, . . . , q} such that vi 6= 0

for only finitely many i ≥ 0, let (v)p = ∑i≥0 vi pi be the integer rep-
resented by v in base p. Moreover, if w = (wν−1 · · ·w0) ∈ {0, . . . , q}ν

contains at least one non-zero digit and v is as above, let |v|w be the
number of times that w occurs as a factor of v. More precisely,

|v|w = |{i ≥ 0 : (vi+ν−1, . . . , vi) = (wν−1, . . . , w0)}| . (186)

For finite words v we extend the above notions by padding with zeros.
Moreover, if n is a non-negative integer and n = (v)p, we set |n|w :=
|v|w. Occurrences of factors may overlap: for example, for p = 2 we
have |42|1010 = |101010|1010 = 2. Moreover, as a consequence of the
padding with zeros we have |1|1 = |1|01 = |1|001 = · · · = 1, while
|1|10 = 0.

The following statement is an easy reformulation of [160, Theo-
rem 2]. The method used for proving this theorem is very similar to
the method used in the older paper [33, Theorem 5], which proves a
less detailed form of the result, but can be adapted to yield the full
statement. See also Remark 31.

Theorem 9.0.1 (Rowland [160], Barat–Grabner [33]). Let p be a prime
and j ≥ 0. Then ϑp(j, n)/ϑp(0, n) is given by a polynomial Pj of degree j in
the variables Xw, where w ranges over the set

Wj =
{

w ∈ {0, . . . , q}ν : 2 ≤ ν ≤ j + 1, wν−1 6= 0, w0 6= q
}

, (187)

and Xw is set to |n|w.
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Note that W0 = ∅ and P0(x) = 1. Determining ϑp(j, n)/ϑp(0, n) by
means of this theorem is a two-step procedure:

n 7→
(
|n|w

)
w∈Wj

7→ Pj

((
|n|w

)
w∈Wj

)
=

ϑp(j, n)
ϑp(0, n)

. (188)

Barat and Grabner [33, Theorem 5] used a representation of ϑp(j,n)
ϑp(0,n) of

this kind in order to establish an asymptotic formula for the partial
sums ∑0≤n<N ϑp(j, n). Their Theorem 5 generalises the case j = 0 [84]
(see also [34, 176]), and yields a quantitative version of the statement
“any integer divides almost all binomial coefficients” [167].

Theorem 9.0.1 implies, as noted by Rowland, that the sequence n 7→
ϑp(j, n)/ϑp(0, n) is p-regular in the sense of Allouche and Shallit [6, 7].
We will however not follow this line of research in this chapter.

In Proposition 9.3.1 we will prove that a polynomial Pj as in The-
orem 9.0.1 is uniquely determined, so that we may talk about the
coefficients of Pj without ambiguity. These polynomials are the main
object of study in this chapter, and want to obtain a better under-
standing of its coefficients. Our main theorem concerns the behavior
of the coefficients of a single monomial in the sequence (Pj)j≥0 of
polynomials.

Theorem 9.0.2. Let W be the set of all words (wν−1, . . . , w0) ∈ {0, . . . , q}ν

such that ν ≥ 2, wν−1 6= 0 and w0 6= q. Assume that w(1), . . . , w(`) ∈ W,
and k1, . . . , k` are positive integers. Let cj be the coefficient of the monomial

Xk1
w(1) · · ·Xk`

w(`)

in the polynomial Pj. Then

∑
j≥0

cjxj =
1

k1!
(
log rw(1)(x)

)k1 · · · 1
k`!
(
log rw(`)(x)

)k` ,

where rw is a rational function defined at 0 such that rw(0) = 1.

The rational function rw can be determined explicitly by means
of a recurrence, see Proposition 9.3.6. The easiest nontrivial example
is r10(x) = 1 + x/2. Note that the coefficients cj always belong to
a fixed monomial Xk1

w(1) · · ·Xk`
w(`) . However, in order to increase read-

ability we will not emphasize this relationship by additional sub- or
superscripts. It will always be clear from the context which monomial
is referred to.

As a direct consequence of our results we will obtain the following
corollary.

Corollary 9.0.3. The coefficient cj of the monomial X10 in Pj is equal to[
xj] log(1 + x/2). In particular,

∑
j≥0

cj = log(3/2).
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This special case confirms an observation by Rowland [160], who
noted that a plot of the first few partial sums c′j = c0 + · · · + cj−1

“suggests that the limit of this sequence exists”. He computed the
first seven polynomials

P′j = P0 + · · ·+ Pj−1

with the help of his Mathematica package BinomialCoefficients,
which is based on his paper [160] and available from his website, and
determined the coefficients c′j that way. By the above corollary the
limit does exist indeed, and its value is log(3/2). It is however not
true for each monomial M that the sequence of coefficients of M in
P′j converges as j → ∞, nor is it the case that all coefficients of P′j are
non-negative. A simultaneous counterexample for both questions is
given by X1010 (see the examples after Corollary 9.4.3). The sequence
of coefficients of this monomial has the generating function

log
(

1 + 1
2 x3/

(
1 + x/2

)2
)

,

which has a unique dominant singularity x0 ∼ −0.86408. Therefore
negative signs occur infinitely often and the sequence of coefficients
diverges to ∞ in absolute value (this is true for the coefficients in Pj
as well as in P′j ).

While the above results concern the behavior of a single monomial
in different polynomials Pj, we will also prove an “orthogonal” result,
namely an asymptotic estimate of the number of non-zero coefficients
in Pj and P′j (Corollary 9.3.8).

The results that we have outlined above provide answers to ques-
tions posed by Rowland [160] at the end of his paper. For more details,
we refer to Section 9.2. Finally, we want to note that our main theo-
rem together with the recurrence for rw enables us to compute the
polynomials Pj very efficiently (see Remark 35).

We will also use the following notations in this chapter. The integer
s2(n) := |n|1 is the sum of digits of n in base 2, more generally sp(n) :=
|n|1 + 2 |n|2 + · · ·+ (p− 1) |n|q is the sum of digits of n in base p. For
a finite word w we denote by |w| the length of w. Finally, N denotes
the set of non-negative integers.

Plan of this chapter. In Section 9.1 we will meet the fundamen-
tal recurrence relation for the values ϑp(j, n), found by Carlitz [54],
while in Section 9.2 we list some of the polynomials Pj. In Sections 9.3
and 9.4, we will state in detail the results we announced above, and
study the rational functions rw more carefully. Section 9.5 gives an
alternative form of the fundamental recurrence relation for ϑp(j, n),
which can be written as an elegant but enigmatic infinite product.
This also yields a new proof of Carlitz’ recurrence relation. Finally,
we note in Section 9.6 that we can reuse the polynomials Pj for the
columns in Pascal’s triangle. Proofs not given in the main section are
stated in Section 9.7.
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9.1 a recurrence for the values ϑ p ( j , n)

Carlitz [54] gave a recurrence relation for the values ϑp(j, n), which
also involves another family ψp defined by1

ψp(j, n) =
∣∣∣∣
{

t ∈ {0, . . . , n} : νp

(
n
t

)
= j− νp(n + 1)

}∣∣∣∣ . (189)

He then obtains [54, Equations (1.7)–(1.9)] for n ≥ 0 and j ≥ 1, using
the convention ψp(j,−1) = 0,

ϑp(j, pn + a) = (a + 1)ϑp(j, n)

+ (p− a− 1)ψp(j− 1, n− 1), 0 ≤ a < p;

ψp(j, pn + a) = (a + 1)ϑp(j, n) (190)

+ (p− a− 1)ψp(j− 1, n− 1), 0 ≤ a < p− 1;

ψp(j, pn + p− 1) = pψp(j− 1, n).

Rewriting the recurrence (190) using the obvious identity

ψp(j, n) =





ϑp(j− νp(n + 1), n), j ≥ νp(n + 1);

0, j < νp(n + 1),

we obtain for 0 ≤ a < p

ϑp(j, pn + a) = (a + 1)ϑp(j, n)

+




(p− a− 1)ϑp(j− 1− νp(n), n− 1), j > νp(n);

0, j ≤ νp(n).
(191)

Among other things, Carlitz evaluates ϑp(j, n) for special values of
n and studies associated generating functions. Moreover, he proves
the explicit formula [54, Equation (2.5)], saying that for the base-p
expansion n = ∑ν−1

i=0 ni pi we have

ϑp(1, n) = ∑
0≤i<ν−1

(nν−1 + 1) · · · (ni+2 + 1)ni+1(p− ni − 1)×

(ni−1 + 1) · · · (n0 + 1).
(192)

By (185) this implies that

ϑp(1, n)
ϑp(0, n)

= ∑
0≤i<ν−1

ni+1

ni+1 + 1
· p− ni − 1

ni + 1
. (193)

In particular, counting identical summands, we obtain

ϑp(1, n)
ϑp(0, n)

= ∑
0≤c,a<p

c 6=0,a 6=p−1

c
c + 1

· p− a− 1
a + 1

|n|ca . (194)

1 Our notation differs slightly from Carlitz’ who wrote θj(n) instead of ϑp(j, n) and
ψj(n) instead of ψp(j, n), omitting p altogether.
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Note that we defined the quantity |n|ca as the number of occurrences
of (c, a) = (ni+1, ni) in the base-p expansion n = ∑∞

i=0 ni pi. Since c is
non-zero, this is equal to the number of occurrences of this pattern
for 0 ≤ i < ν− 1. For the prime p = 2 only one summand remains,
yielding the formula

ϑ2(1, n)
ϑ2(0, n)

=
1
2
|n|10 . (195)

This formula was observed by Howard [107, Equation (2.4)], compare
also [106, Theorem 2.2]. (The latter is however not correct if n is a
power of 2.)

9.2 the polynomials Pj for j > 1

In 1971, Howard [107] also found formulae for ϑ2(2, n), ϑ2(3, n), and
ϑ2(4, n) in terms of factor counting functions |n|w. In different nota-
tion, he obtained the formulae

ϑ2(2, n)
ϑ2(0, n)

= −1
8
|n|10 + |n|100 +

1
4
|n|110 +

1
8
|n|210 ,

ϑ2(3, n)
ϑ2(0, n)

=
1
24
|n|10 −

1
8
|n|110 −

1
2
|n|100 +

1
8
|n|1110 +

1
2
|n|1100

+
1
2
|n|1010 + 2 |n|1000 −

1
16
|n|210 +

1
8
|n|10 |n|110

+
1
2
|n|10 |n|100 +

1
48
|n|310 ,

ϑ2(4, n)
ϑ2(0, n)

= − 1
64
|n|10 +

11
384
|n|210 −

1
64
|n|310 +

1
384
|n|410 −

1
4
|n|100

− 3
8
|n|10 |n|100 +

1
8
|n|210 |n|100 +

1
2
|n|2100 +

1
32
|n|110 −

1
2
|n|1100

− 3
32
|n|10 |n|110 +

1
32
|n|210 |n|110 +

1
4
|n|100 |n|110 +

1
32
|n|2110

− |n|1000 −
1
2
|n|1010 + |n|10 |n|1000 +

1
4
|n|10 |n|1100 +

1
4
|n|10 |n|1010

− 1
16
|n|1110 +

1
16
|n|10 |n|1110 + 4 |n|10000 + |n|11000 + |n|10100

+
1
4
|n|11100 + |n|10010 +

1
4
|n|11010 +

1
4
|n|10110 +

1
16
|n|11110 .

Moreover, Howard [108] found an expression for ϑp(2, n) for gen-
eral primes p; see also [109, 185]. We also refer to Spearman and
Williams [171, Theorem 1]. They reproved the formulae above by ex-
pressing the quotient ϑ2(j, n)/ϑ2(0, n) as a sum of nonoverlapping
subwords of the binary expansion of n. We note that the factors that
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are counted in the expressions for ϑ2(j, n) always start with the digit
0 (read from right to left) and end with the digit 1. That is, the words
w occurring in these expressions belong to the set Wj defined in
Theorem 9.0.1. By this theorem we can always require the condition
w ∈ Wj, while Proposition 9.3.1 ensures uniqueness of an expression
for ϑ2(j, n) as above.

We refrained from listing formulae for j ≥ 5 for the obvious reason:
P5 contains 69 monomials, P6 already 174.

Remark 31. As we noted before, the statement of the Theorem 9.0.1
formulated by Rowland can already be found implicitly in Barat
and Grabner [33]. That is, their method of proof can be adapted to
show the theorem. More precisely, in the course of proving [33, The-
orem 5], they proved that ϑp(j, n)/ϑp(0, n) is a sum of products of
block-additive functions. Here a function f : N→ C is called `-block-
additive in base p, if there is a function F : {0, . . . , q}` → C satisfying
F(0, . . . , 0) = 0 such that for the base-p expansion n = ∑i≥0 ε i pi we
have

f (n) = ∑
i≥0

F(ε i+`−1, · · · , ε i).

These functions were first defined by Cateland in his thesis [55]. We
note that `-block-additive functions are precisely the complex linear
combinations of factor counting functions |·|w, where w contains a
non-zero letter and the length |w| is bounded by `. It follows from [33,
(3.3), (3.4)] that the `-block-additive functions occurring in the repre-
sentation of ϑp(j, n)/ϑp(0, n) take only those factors (wν−1 · · ·w0) ∈
{0, . . . , q}ν into account such that wν−1 6= 0 and w0 6= q. Moreover,
enhancing the induction hypothesis in the proof of [33, Theorem 5],
it can be shown that only `-block-additive functions, where 1 ≤ ` ≤ j,
appear, and that the occurring products of block-additive functions
have length ≤ j.

Rowland [160] used an approach very similar to Barat and Grab-
ner’s [33] (see also Spearman and Williams [171]) in order to obtain
Theorem 9.0.1. More precisely, it follows from the proof of this theo-
rem that the monomials Xw(1) · · ·Xw(`) occurring in the polynomial Pj
satisfy
∣∣w(1)∣∣+ · · ·

∣∣w(`)
∣∣− ` ≤ j. (196)

For example, if p = 2 and j = 2, only the monomials 1, X10, X2
10, X100

and X110 can occur. Based on (196) we will derive in Corollary 9.3.8
an upper bound for the number of monomials in Pj.

We note that we always write words from right to left, since our
interest in them stems from base-p expansions of an integer. Corre-
spondingly, to name a consequence of this convention, a prefix of a
word starts with the rightmost letter.
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9.3 computing the coefficients of Pj

Let p be a prime number throughout this section. For brevity of nota-
tion, we omit the index p whenever there is no risk of confusion. As
in Theorem 9.0.1, let

Wj =
{

w ∈ {0, . . . , q}ν : 2 ≤ ν ≤ j + 1, wν−1 6= 0, w0 6= q
}

,

moreover we define the set of admissible words,

W =
⋃

j≥1

Wj.

In order to get meaningful statements on the coefficients of Pj, let us
first show that the polynomial Pj is well-defined, i.e., uniquely deter-
mined. Note that it is not clear a priori that there is only one polyno-
mial Pj representing ϑp(j, n)/ϑp(0, n) as in (188): the values inserted
into this polynomial are not independent of each other, therefore we
can not use Lagrange interpolation directly for establishing unique-
ness. For example, for p = 2 we have |n|10 ≥ |n|100 for all n, so that
not all tuples (nw)w∈Wj of non-negative integers can occur as fam-
ily (|n|w)w∈Wj of block counts of a non-negative integer n. Moreover,
for the polynomial to be unique it is necessary that the blocks we
are counting satisfy some restrictions, since there are obvious iden-
tities such as |n|1 = |n|01 + |n|11. We will show that the restriction
wν−1 6= 0, w0 6= q in Theorem 9.0.1 leads to a unique polynomial Pj
after all.

Proposition 9.3.1. There is at most one polynomial Pj in the variables Xw,
where w ∈W, such that

ϑp(j, n)
ϑp(0, n)

= Pj
(
(|n|w)w∈W

)

for all n ≥ 0.

In order to prepare for the main theorem, we define generating
functions of the values ϑp(j, n), which occupy a central position in
the statements of the main results.

Tn(x) := ∑
j≥0

ϑp(j, n)xj = ∑
0≤t≤n

xνp(
n
t). (197)

Obviously, Tn(x) is a polynomial of degree maxt≤n νp(
n
t), which is

sequence A119387 in Sloane’s OEIS for the case p = 2. The recur-
rence (191) for ϑp translates to the generating functions Tn(x) as fol-
lows:

Ta(x) = a + 1,

Tpn+a(x) = (a + 1)Tn(x) + (p− a− 1)xs+1Tn−1(x),
(198)
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for n ≥ 1 and 0 ≤ a < p, where s = νp(n). We note the special case

Tcpt−1(x) = cpt, 1 ≤ c < p, t ≥ 0,

which we will use often.

Remark 32. Using the recurrence (198), one can show by induction
that

deg Tn(x) = λ− νp(m + 1)

for n ≥ 1, where λ ≥ 0 and m ∈ {0, . . . , pλ − 1} are chosen such that
n = cpλ + m for some c ∈ {1, . . . , p− 1}.

Let us compute some polynomials Tn for p = 2. From the recur-
rence (198), we obtain

T0(x) = 1, T1(x) = 2,

T2(x) = 2 + x, T3(x) = 4,

T4(x) = 2 + x + 2x2, T5(x) = 4 + 2x,

T6(x) = 4 + 2x + x2, T7(x) = 8,

T8(x) = 2 + x + 2x2 + 4x3, T9(x) = 4 + 2x + 4x2.

Note that Tn(1) = n + 1, since the n-th row of Pascal’s triangle con-
tains n + 1 entries. Moreover, we define normalized generating func-
tions Tn:

Tn(x) =
1

ϑp(0, n)
Tn(x).

By definition, we have
[
x0] Tn(x) = 1. We are extending these no-

tations to finite words v in {0, . . . , q} via the base-p expansion: if
(v)p = n, we set Tv := Tn and Tv := Tn. Based on the polynomials
Tn(x), we shall define the rational functions rw occurring in the main
theorem. In order to do so, we define the left truncation wL and the
right truncation wR on the set W ∪ {ε}, as follows. For w ∈ W, r ≥ 1
s ≥ 0, and digits c 6= 0 and a 6= q, let

εL = ε, (c0r)L = ε, (c0sa)L = ε, (c0sw)L = w;

εR = ε, (qra)R = ε, (cqsa)R = ε, (wqsa)R = w.

In other words, for w ∈W the word wL is the longest proper prefix u
of w (read from right to left) such that u ∈W ∪ {ε}. Analogously, wR

is the longest proper suffix u of w such that u ∈ W ∪ {ε}. Note that
we have (wL)R = (wR)L for all w ∈ W ∪ {ε}; we write wLR for the
common value. In what follows, we write Tn ≡ Tn(x) as a shorthand.
The following proposition, a telescoping product, is one of the central
points of this chapter, and leads directly to the main theorem.

Proposition 9.3.2. Let v ∈W ∪ {ε}. Then we have the identity

Tv = ∏
w∈W

(
TwTwLR

TwR TwL

)|v|w
. (199)
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We note that we do not use the explicit definition of Tw in the proof
of this proposition. We only need the property Tw(0) = 1, so that we
may take quotients, and the property Tε = 1. In other words, we
will show that the product reduces to the fraction Tv/Tε by canceling
identical factors. The following example clarifies this point.

Example 9.3.3. Let p = 2 and v = 100100. Then we have

Tv

Tε

=

(
T10Tε

TεTε

)2 (T100Tε

T10Tε

)2 (T10010Tε

T100T10

)(
T100100T10

T10010T100

)
.

The use of this proposition will reveal itself in a moment, when we
will combine it with the uniqueness of the coefficients of Pj (Propo-
sition 9.3.1). For each admissible word w we can finally define the
rational generating function

rw(x) :=
Tw(x)TwLR(x)
TwL(x)TwR(x)

.

Now that we know rw, our main theorem 9.0.2 can be stated com-
pletely explicitly.

Theorem 9.3.4. Assume that w(1), . . . , w(`) are admissible words and that
k1, . . . , k` are positive integers. Let cj be the coefficient of the monomial

Xk1
w(1) · · ·Xk`

w(`)

in the polynomial Pj. Then

∑
j≥0

cjxj =
1

k1!
(
log rw(1)(x)

)k1 · · · 1
k`!
(
log rw(`)(x)

)k` .

Proof. By (199), by the definition of Tn as [xj]Tn(x) = ϑp(j, n)/ϑp(0, n),
and by Theorem 9.0.1, we have
[

xj
]

∏
w∈Wj

rw(x)|n|w = Pj

((
|n|w

)
w∈Wj

)

for all n ∈ N. Let us reveal how the polynomial structure emerges
in the left-hand side. The idea is to apply an exp-log decomposition
on (199). This is legitimate, as the constant term of Tn(x) and there-
fore of rw(x) is 1, compare (197). We have the identity
[

xj
]

∏
w∈Wj

rw(x)|n|w =
[

xj
]

∏
w∈Wj

exp
(
|n|w log rw(x)

)

=
[

xj
]

∏
w∈Wj

∑
k≥0
|n|kw

(
log rw(x)

)k

k!

= ∑
kw≥0
w∈Wj


[xj] ∏

w∈Wj

(
log rw(x)

)kw

kw!


 ∏

w∈Wj

|n|kw
w ,



9.3 computing the coefficients of Pj 297

where the last step is justified since there are only finitely many sum-
mands contributing to the j-th coefficient. (This is the case by the
condition rw(0) = 1, which implies log rw(x) = O(x) for x → 0.)

The right-hand side is a polynomial in |n|w for w ∈ W, and by the
uniqueness result (Proposition 9.3.1) the theorem is proved.

Remark 33. In fact the argument given in the proof also gives a new
proof of existence of the polynomials Pj.

As a straightforward application of Theorem 9.3.4 we obtain the
corollary 9.0.3 from the introduction, which we restate here.

Corollary 9.3.5. The coefficient of X10 in the polynomial Pj is equal to
[xj] log(1 + x/2). In particular,

∑
j≥0

cj = log(3/2).

Proof. In this simple case all we need is r10(x) = T2(x) = 1+ x
2 , which

does not have a singularity or a zero in the closed unit disc.

Here are the first few rational functions rw:

r10(x) = 1 + 1
2 x,

r100(x) = 1 +
x2

1 + x/2
,

r110(x) = 1 +
1
4 x2

1 + x/2
,

r1000(x) = 1 +
2x3

1 + x/2 + x2 ,

r1010(x) = 1 +
1
2 x3

(1 + x/2)2 ,

r1100(x) = 1 +
1
2 x3

(1 + x/2 + x2)(1 + x/2 + x2/4)
.

Continuing this computation, and performing analogous experiments
for the prime numbers 3, 5, 7 in order to obtain a conjecture on the
structure of rw, we arrive at the statement of the following proposi-
tion.

Proposition 9.3.6. Let p be a prime number and let w = wν−1 · · ·w0 ∈W.
The rational function rw(x) satisfies

rw(x) = 1 +
αxν−1

TwL(x)TwR(x)
,

where

α = pν−2 wν−1

wν−1 + 1
· p− w0 − 1

w0 + 1 ∏
2≤d≤p

d−2|w′|d−1 , (200)

and w′ = wν−2 · · ·w1.
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Consider the special case w = ca of this proposition. We obtain α =
c

c+1
p−a−1

a+1 , which gives the formula Tca = 1 + c
c+1

p−a−1
a+1 x (compare

to (215)). By Theorem 9.3.4 we obtain the coefficient of Xca in the
polynomial P1 by extracting the coefficient

[x1] log
(

1 +
c

c + 1
p− a− 1

a + 1
x
)
=

c
c + 1

p− a− 1
a + 1

,

which is consistent with (194).

Remark 34. By Proposition 9.3.6 we can determine exactly for which
j a given monomial occurs first. Since Tv(0) = 1 for all admissible
words v, we have rw(x) = 1+ αxk +O

(
xk+1), where α is given by (200)

and k = |w| − 1, therefore log rw(x) = αxk +O(xk+1) for some α 6= 0.
By Theorem 9.3.4 the monomial Xw occurs first in the polynomial Pj,
where j = |w| − 1. More generally, the monomial Xw(1) · · ·Xw(k) (repe-

titions allowed) occurs first in Pj, where j =
∣∣∣w(1)

∣∣∣+ · · ·+
∣∣∣w(k)

∣∣∣− k.
That is, the lower bound for the first occurrence of a monomial given
by (196) is sharp.

We note that this observation is not sufficient to determine the
number of terms in Pj; in the generating function appearing in The-
orem 9.3.4 some higher coefficients may vanish. This is for example
the case for w = 110. We have

log r110(x) = log
(

1− (x/2)3

1− (x/2)2

)
= ∑

i≥1

x2i

i4i −∑
i≥1

x3i

i8i ,

and consequently the monomial X110 does not occur in Pj for j =

6`± 1, where ` ≥ 1. It is however true that each nontrivial monomial
occurs in infinitely many Pj.

Corollary 9.3.7. Each monomial Xk1
w(1) · · ·Xk`

w(`) except for the constant
term 1 occurs in infinitely many Pj.

Proof. By Theorem 9.3.4 the claim is equivalent to the fact that

`

∏
i=1

(
log rw(i)(x)

)ki

is not a polynomial. We will analyze the possible singularities, which
will contradict a polynomial behavior.

Assume that ρi is the radius of convergence of the power series
log rw(i)(x) and choose j ∈ {1, . . . , `} such that ρj = min1≤i≤` ρi, more-
over let xj be a singularity of log rw(j)(x) on the circle {x : |x| = ρj}.
By Proposition 9.3.6 we have 0 < ρj < ∞, and that the power se-
ries log rw(i)(x) does not have a zero apart from x = 0. Therefore
the singularities cannot cancel, which implies that xj is a singularity

of
(
log rw(1)(x)

)k1 · · ·
(
log rw(`)(x)

)k` . Consequently, this expression is
not a polynomial.
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Moreover, we want to derive an asymptotic estimate of the number
of terms in Pj, using Proposition 9.3.6.

Corollary 9.3.8. The number of terms Nj in the polynomial Pj satisfies the
bound

Nj ≤ [xj]
1

1− x
exp

(
∑
k≥1

1
k
(p− 1)2xk

1− pxk

)
.

Asymptotically, for j→ ∞, this upper bound is

eµ(σ−1/2)

2pµ1/4
√

π

e2
√

µj pj

j3/4

(
1 +O

(
1√
n

))
,

with the constants µ = (p−1)2

p and σ = ∑k≥2
1
k

1
pk−1−1 . Moreover, we have

Nj = Θ
(

pje2
√

µj j−3/4).

The same estimates are true for the number N′j of terms in the polynomials
P′j .

Proof. The terms in Pj are built from the variables in Wj, see (187). In
W =

⋃
j≥1 Wj there are pk−1(p − 1)2 many words w of weight |w| −

1 equal to k, for k ≥ 2. The corresponding generating function is
W(x) = (p− 1)2 x

1−px .
First, we want to determine the number of monomials having total

weight j. By (196) these are the monomials that are part of Pj but not of
Pj−1, we obtain therefore the maximal number of “new” monomials
in Pj.

A monomial is nothing else but a multiset of variables in W. Thus,
by the multiset construction (see [85, page 27]) we obtain the exp-
part of the generating function in the corollary. Finally, the factor 1

1−x
stems from the fact that also monomials from P0, . . . , Pj−1 are allowed
in Pj.

For the asymptotic result, we first need to find the dominant singu-
larity, i.e., the one closest to the origin. Note that the possible singu-
larities are at ω`

k p−1/k, for ` = 0, . . . , k− 1, where ωk = exp(2πi/k) is
a k-th root of unity. As p ≥ 2 the dominant one is found at 1/p for
k = 1. Thus, we may decompose our generating function into

exp
(
(p− 1)2x

1− xp

)
S(x),

where S(x) is the generating function of the remaining factors. The
crucial observation is that S(x) is analytic for |x| < 1/

√
p, hence,

for |x| < 1/p. This is a well-known type of functions for which a
complete asymptotic expansion is known. Using Wright’s result [188,
Theorem 2] we get the final result. The constants are coming from
S(1/p). The last statement follows from Proposition 9.3.6 and the
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asymptotic statement, since the number of “new” monomials occur-
ring with a non-zero coefficient is a positive portion of the asymptotic
main term.

This type of functions was already intensively considered in the
literature. It appears in the enumeration of permutations. The analy-
sis builds on a saddle point method, see [85, Example VIII.7, p. 562].
Wright [188] derived the asymptotics for the general form of an ex-
ponential singularity we encounter here, extending the work of Per-
ron [154].

Remark 35. We note that for the upper bound in Corollary 9.3.8 we
do not need Proposition 9.3.6, but it suffices to use Rowland’s pa-
per, see (196). The lower bound however uses the fact that all “new”
monomials do occur in the polynomial Pj, by Proposition 9.3.6.

For the prime p = 2, we implemented the method of finding the
coefficients of Pj by Theorem 9.3.4 in the Sage computer algebra sys-
tem. In particular, we retrieve the formulae for ϑ2(2, n), . . . , ϑ2(4, n)
obtained by Howard [107], Spearman and Williams [171] and Row-
land [160] before. Computing P0, . . . , P11 took less than five minutes
using our implementation, which is a significant improvement over
Rowland’s algorithm [160].

We compare the actual number of non-zero coefficients in Pj (first
line of numbers) with the upper bound from Corollary 9.3.8 (second
line).

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

1 1 4 11 29 69 174 413 995 2364 5581 13082

1 2 5 12 30 72 176 420 1005 2378 5611 13144

From this numerical evidence it seems reasonable to conjecture that
the upper bound given in Corollary 9.3.8 gives in fact the asymptotic
main term of the number Nj of non-zero coefficients of Pj. However,
the exact behavior of the integers Nj seems to be difficult to grasp,
and remains an open problem at the moment.

9.4 asymptotic behavior of the coefficients

In this section we study the different asymptotic behaviors exhibited
by a sequence (cj)j≥0 of coefficients of a monomial. More precisely,
we restrict ourselves to p = 2 and monomials Xw for w ∈ W. The
following lemma explains how the coefficients of the logarithm of a
rational function behave asymptotically. We will apply it repeatedly
in the subsequent discussion.
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Lemma 9.4.1 (Coefficient asymptotics of log ◦ rat). Let r(x) be a rational
function defined at 0 such that r(0) = 1. Choose L ≥ 0, ε0, . . . , εL−1 ∈
Z \ {0} and pairwise different ξ0, . . . , ξL−1 ∈ C \ {0} in such a way that

r(x) = (1− ξ0x)ε0 · · · (1− ξL−1x)εL−1 .

(Note that this decomposition is unique up to the order of the factors.) Then

[xn] log r(x) = − 1
n ∑

0≤i<L
ε iξ

n
i (201)

for n ≥ 1. In particular, if we assume w.l.o.g. that ξ0, . . . , ξm−1, for some
1 ≤ m ≤ L, have maximal absolute value among the ξi, and M = |ξ0|, then

[xn] log r(x) = − 1
n ∑

0≤i<m
ε iξ

n
i +O

(
(M− ε)n) (202)

for some ε > 0. If moreover m = 1, we have for all k ≥ 1

[xn]
(
log r(x)

)k
= k(−ε0)

k(log n
)k−1 ξn

0
n

(
1 +O

(
1
n

))
. (203)

Proof. The first two statements follow immediately from the identity

[xn] log
(

1
1− x

)
= [xn] ∑

n≥1

xn

n
=

1
n

. (204)

The asymptotic statements can be proved using standard results from
singularity analysis (see Flajolet and Sedgewick [85]). We begin with
the case that m = 1. First of all, the location of the dominant singu-
larity (the one closest to the origin) is responsible for the exponential
growth of the coefficients. Next note that the function log r(x) is sin-
gular if the rational function is either singular, or takes the value 0. If
we assume that ε0 > 0, the dominant singularity comes from the zero
1/ξ0 of the numerator of r(x), and the exponential growth of the n-th
coefficient is given by ξn

0 . More precisely, a Taylor expansion of r(x)
at x = r shows that

log (r(x)) = log
(

h(x)(x− r)dr
)
= −dr log

(
1

1− x/r

)
+ log(h(x)),

where log(h(x)) is analytic for |x| ≤ |r|+ ε. If ε0 < 0, we simply swap
numerator and denominator of r(x) and adjust the sign. If m > 1 one
deals separately with the different singularities.

If higher powers of the logarithm are considered we have to deal
with Cauchy products. In this case one can elementarily show the
appearance of the

(
log n

)k−1 terms by partial summation combined
with ∑n

k=1
1
k = log n +O (1) . For more details we refer to [85, Chap-

ter VI].
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Examples. Let p = 2 and consider log (r110(x)) = log
(

1+x/2+x2/4
1+x/2

)
.

Here, the numerator has the two roots 2e2πi/3 and 2 e−2πi/3, whereas
the denominator has the root −2. In this case all roots lie on the
same circle |x| = 2, and therefore cancellations take place (compare
Remark 34). By (201) we obtain

[xn] log r110(x) =
2−n

n

(
(−1)n − e2πin/3 − e−2πin/3

)
.

In this special case we have equality, as no other roots are involved.
Since the radius of convergence is larger than 1, we can obtain the
infinite sum of coefficients cj of X110 by inserting 1 into the generating
function:

∑
j≥0

cj = ∑
j≥0

[
xj
]

log r110(x) = lim
j→∞

[
xj
] log r110(x)

1− x

= log r110(1) = log(7/6).

Now we consider the generating function 1
2

(
log(1 + x/2)

)2 corre-
sponding to the coefficients cj of X2

10. In this case we have, by (203),

cj =
(−1)j log j

j · 2j

(
1 +O(1/j)

)
.

In this simple case an exact form of the coefficients can be obtained
from (201), using the Cauchy product of

log r10(x) = ∑
j≥1

(−1)j

j · 2j xj

with itself:

cj =
[

xj
] 1

2
(
log r10(x)

)2
=

(−1)j

2j+1 ∑
i1,i2≥1
i1+i2=j

1
i1i2

.

Moreover, similarly as in the first example we have

∑
j≥0

cj =
1
2
(
log(3/2)

)2.

Let us now consider special classes of monomials, whose generat-
ing function has a large radius of convergence and can be evaluated
at x = 1.

Corollary 9.4.2. Consider the words w = 1s0 or w = 14s+100 for s ≥
1. For fixed word w and an integer k ≥ 0 let cj be the coefficient of the
corresponding monomial Xk

w. Then the radius of convergence of ∑j≥0 cjxj is
greater than 1 (more precisely, equal to 2 for the first family of values). Thus,

∑
j≥0

cj =
1
k!

log
(
rw(1)

)k.
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Proof. By the main theorem the considered generating function is
given by 1

k! log
(
rw(x)

)k. Let us start with the first family of words.

We need to analyze the rational function rw(x) = T1s0(x)
T
1s−10(x) , as our plan

is to apply Lemma 9.4.1. It is not difficult to show (see also (213)) that

T1s0(x) =
1− (x/2)s+1

1− x/2
.

Thus, rw(x) = 1−(x/2)s+1

1−(x/2)s , and we see that all roots of the numerator
and the denominator are located on the circle |x| = 2.

For the second family of words, we get

T1r00(x) =
qr+1(x/2)
qr(x/2)

· 1− (x/2)r

1− (x/2)r+1 , qr(t) = 4tr+1 + tr − 4t2 − 1.

Hence, we are interested in the roots of the polynomials qr(x). By
Rouche’s Theorem there are exactly 2 roots inside the disc |t| <

2−1(1 + 2−r+2). These two are very close to ±i/2. In particular, by
Newton’s method starting with i/2, we get after one iteration the
very good approximation

i
2
+

(
i
2

)r (1
2
− i

4

)
+O

(
1

22r

)
.

Therefore, the roots of qr(t) are in absolute value greater than 1/2 for
r ≡ 1, 2 mod 4 and less than 1/2 for r ≡ 0, 3 mod 4. In particular,
for r ≡ 1 mod 4 we have that the roots of qr+1(x/2) and qr(x/2) are
both in absolute value greater than 1. Thus, the radius of convergence
is larger than 1, and it is legitimate to insert 1.

By Lemma 9.4.1 the sequence of coefficients (cj)j≥0 for a given word
w can exhibit different kinds of behaviors, corresponding to the posi-
tion of the zeros and singularities of rw(x). Because of the construc-
tion of rw(x), there is a convergence–divergence dichotomy, which we
summarize in the following corollary.

Corollary 9.4.3. Let w ∈ W and write rw(x) = (1 − ξ0x)ε0 · · · (1 −
ξL−1x)εL−1 with pairwise different, non-zero ξi ∈ C and non-zero ε i ∈ Z,
such that |ξ0| ≥ · · · ≥ |ξL−1|.

(a) If |ξ0| ≤ 1, the sequence cw converges. Moreover we have the convergent
series

∑
j≥0

cj = log rw(1).

(b) If |ξ0| > 1, the sequence cw diverges. If moreover 1/ξ0 is the only
dominant singularity, then ξ0 is a real number in (−∞,−1], and we
have cw(j) ∼ −ε0ξ

j
0/j.
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Proof. The case that |ξ0| < 1 is clear, since the function log rw(x) has
no singularity in the closed unit disc in this case. For the case |ξ0| = 1
we note that ξi 6= 1 for all i, since Tv has only positive coefficients.
Since the sum ∑j≥1 ξ j/j converges for all ξ 6= 1 on the unit circle,
the sum ∑j≥1 cj converges by (201). Abel’s limit theorem finishes the
proof for this case. Finally, case (b) follows from Lemma 9.4.1 and the
positivity of coefficients of Tv.

In the following, let p = 2. We have seen (Corollaries 9.3.5 and 9.4.2)
that case (a) occurs for w = 1s0, where s ≥ 1.

Case (b) appears for w = 1010 (dominant singularity at x0 ∼
−0.86408). In this case the singularity is coming from the log, as
rw(x0) = 0. Thus log becomes singular. This is also called a super-
critical composition scheme, as the outer function is responsible for
the singularity.

This case also appears for w = 10100 (dominant singularity again
at x0 ∼ −0.86408). In this case however, the denominator of rw is
zero at x0, thus the singularity is coming from a simple pole. This is
also called a subcritical composition scheme, as the inner function is
responsible for the singularity.

By approximate computation of the roots of Tv using GNU Octave
we determined all words of length at most 10 for which case (a) oc-
curs. Besides for the words of the form 1s0 or 14s+100, this also seems
to be the case for the words 1s01t0, where s ≥ 1 and t ≥ 2. Here is
the list of remaining words w ∈ W of length at most 10, not falling
into one of these three classes, for which this case occurs too.

10011110, 101101110, 101110110,

101111010, 101111100, 111011010,

1011011110, 1011101110, 1011110110,

1101101110, 1101110110, 1101111010,

1101111100, 1111011010.

We leave the classification of the words w ∈ W for which the sum
∑j≥0 cj converges as an open problem.

9.5 a simplified recurrence for ϑ p ( j , n)

Rarefying ϑp(j, n) in the first coordinate by the factor p− 1, and shift-
ing j by sp(n) many places, the recurrence (191) is transformed into
a simpler form: the term νp disappears, instead the maximal shift oc-
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curring in the first coordinate is 2p− 1. We pass to the details. Define,
for k, n ≥ 0,

ϑ̃p(k, n) =





ϑp
(
(k− sp(n))/(p− 1), n

)
,

k ≥ sp(n) and

p− 1 | k− sp(n);

0, otherwise.

(205)

Setting for simplicity ϑ̃p(k, n) = 0 if k < 0 or n < 0, we obtain
the following recurrence relation for k, n ≥ 0, where we use the Kro-
necker delta, which is defined by δi,i = 1, and δi,j = 0 for i 6= j.

ϑ̃p(0, n) = δ0,n, for n ≥ 0;

ϑ̃p(k, 0) = δk,0, for k ≥ 0,
(206)

and for n ≥ 0 and 0 ≤ a < p,

ϑ̃p(k, pn + a) = (a + 1)ϑ̃p(k− a, n)

+ (p− a− 1)ϑ̃p(k− p− a, n− 1).
(207)

The proof of this new recurrence is straightforward and uses the iden-
tity

sp(n + 1)− sp(n) = 1− (p− 1)νp(n + 1), (208)

which follows immediately by writing n in base p and counting the
number of times the digit q occurs at the lowest digits of n, and also
the recurrence

sp(pn + a) = sp(n) + a with 0 ≤ a < p.

In Tables 22–24 we list some coefficients of ϑ̃p(k, n) for p = 2, 3, 5,
respectively.

Next, we want to derive a product representation from the recur-
rence (207). In order to do so, we note the well-known fact due to
Legendre stating that

νp(n!) =
n− sp(n)

p− 1
, (209)

for prime p. This can be proved easily by summing the identity (208).
Applying (209) three times, we obtain

νp

(
n
t

)
=

sp(n− t) + sp(t)− sp(n)
p− 1

. (210)

We note that, by Kummer’s theorem [132], the left-hand side of (210)
is the number of borrows occurring in the subtraction n− t.

Let us define the bivariate generating function T̃(x, z) as follows
∑k,n≥0 ϑ̃p(k, n)xkzn. We will prove that T̃ can be written compactly as



306 divisibility of binomial coefficients by powers of primes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1

1 2 2 2 2 2

2 1 4 1 4 4 1 4 4 4 1 4

3 2 2 2 8 2 2 4 8 2 8 8 2 2

4 1 4 4 1 4 5 4 4 16 4 4

5 2 2 2 2 8 8

6 1

Table 22: The first coefficients of ϑ̃2(k, n), where empty entries denote 0’s.
The first variable corresponds to the row, the second one to the
column.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1

1 2 2 2

2 3 4 3 4 4

3 2 6 6 2 6 8 6

4 1 4 9 4 5 12 12

5 2 6 6 4 8 18

6 3 4 3 4

7 2 2

8 1

Table 23: The first coefficients of ϑ̃3(k, n), where empty entries denote 0’s.
The first variable corresponds to the row, the second one to the
column.

an infinite product. By definition (205), the binomial coefficient (n
t)

contributes to k = sp(n) + (p− 1)νp(
n
t). Thus, we obtain by (210)

T̃(x, z) = ∑
n≥0

zn
n

∑
t=0

xsp(n)+(p−1)νp(
n
t) = ∑

n≥0
zn

n

∑
t=0

xsp(t)+sp(n−t)

=

(
∑
n≥0

znxsp(n)

)2

= ∏
i≥0

(
1 + xzpi

+ x2z2pi
+ · · ·+ xp−1z(p−1)pi

)2
,

where the last equality holds due the uniqueness of the base-p ex-
pansion of an integer n. This product representation should be com-
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1

1 2 2

2 3 4 3

3 4 6 6 4

4 5 8 9 8

5 4 10 12 12

6 3 8 15

7 2 6 12

8 1 4 9

9 2 6

Table 24: The first coefficients of ϑ̃5(k, n), where empty entries denote 0’s.
The first variable corresponds to the row, the second one to the
column.

pared to Carlitz [54, Equations (3.3), (3.12)]. Since he does not use
the transformation in the first coordinate, his product takes a more
complicated form. For p = 2 we have the special case

∑
k,n≥0

ϑ̃2(k, n)xkzn = ∏
i≥0

(
1 + xz2i

)2
.

We note that this product representation can be used for an alterna-
tive proof of Carlitz’ recurrence (190).

We finish this section with a remark on divisibility in columns of
Pascal’s triangle.

9.6 divisibility in columns of pascal’s triangle

In the recent paper [68] by Drmota, Kauers, and Spiegelhofer, we
deal with a conjecture by Cusick (private communication, 2012, 2015)
stating that

ct := dens{m ≥ 0 : s2(m + t) ≥ s2(m)} > 1/2,

for all t ≥ 0. Here dens A denotes the asymptotic density of a set A ⊆
N, which exists in this case. By (210) this corresponds to a problem
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on divisibility in columns of Pascal’s triangle: if we define ρ2(j, t) =
dens

{
m ≥ 0 : ν2(

m+t
m ) = j

}
2, the conjecture states that

∑
j≤s2(t)

ρ2(j, t) > 1/2. (211)

The authors of [68, Theorem 1] gave a partial answer, solving the
conjecture for almost all t in the sense of asymptotic density. The full
statement is however still an open problem.

Surprisingly, the “column densities” ρ2(j, t) can be expressed by the
same polynomial Pj as the “row counts” ϑ2(j, n) (see [68, Sections 3.2
and 3.3]). We have ρ2(0, t) = 2−|t|1 and, for example,

ρ2(1, t)/ρ2(0, t) =
1
2
|t|01 ,

ρ2(2, t)/ρ2(0, t) = −1
8
|t|01 + |t|011 +

1
4
|t|001 +

1
8
|t|201 .

In general, if we denote by w the Boolean complement of the word
w ∈ W, these expressions are obtained by inserting the value |t|w for
the variable Xw in Pj (compare to (188)):

t 7→
(
|t|w
)

w∈Wj
7→ Pj

((
|t|w
)

w∈Wj

)
=

ρ2(j, t)
ρ2(0, t)

.

9.7 proofs

Proof of Proposition 9.3.1. Assume that Pj and P̃j are two polynomials
in the variables Xw (w ∈ W), representing ϑ(j, n)/ϑ(0, n), and let R
be the maximal degree with which a variable Xw occurs in Pj or P̃j.
Moreover, let ` be such that `+ 1 is the maximal length of a word w
such that the variable Xw occurs in one of the polynomials. The strat-
egy is to compute the coefficients of a polynomial starting from its
values. For a multivariate polynomial in M variables, where the de-
gree of each variable is bounded by R, this can be done by evaluating
the polynomial at each tuple in {0, . . . , R}M, and applying recursively
the fact that a univariate polynomial q is determined by deg q + 1 of
its values. We adapt this strategy, taking the dependence between the
variables into account.

On the set W` we have a partial order � defined by v � w if and
only if v is a factor of w. For convenience, we extend this order to a
total order on W` and denote it the same symbol �. Let w0, . . . , wM−1

be the increasing enumeration of W` (where M = |W`|). We will
work with certain “test integers”, defined as follows. For a vector

2 In [68], the authors use the notations δ(j, t) = dens
{

m ≥ 0 : s2(m + t)− s2(m) = j}
for all j ∈ Z, and b2j = dens

{
m : 2j - (m+t

m )}. We have ρ2(j, t) = δ(s2(t)− j, t) for all
j ≥ 0 and b2j (t) = ρ2(0, t) + · · ·+ ρ2(j− 1, t) for j ≥ 1.
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a = (am)m<M in {0, . . . , R}M let n(a) be the integer whose binary
expansion is given by the concatenation vM−1 · · · v0, where

vm =
(

wmq
`0`
)am

(
q`0`

)R−am
.

The idea behind this is that q`0` acts as a “separator” in the sense that
admissible factors of length ≤ `+ 1 are contained completely in one
of the building blocks wmq

`0` or q`0`. (At this point the restrictions
wν−1 6= 0, w0 6= q for a word wν−1 · · ·w0 ∈ W come into play.) By
varying the values am we can therefore vary the factor count |·|wm

without changing |·|wm′ for m′ > m. For simplicity, we rename the
variables Xwm to Xm. We prove the following statement by induction
on s.

Claim. Assume that s ∈ [0, M]. Then, for all a0, . . . , aM−1, k0, . . . , ks−1 ∈
{0, . . . , R} we have
[

Xk0
0 · · ·X

ks−1
s−1

] (
Pj − P̃j

) (
X0, . . . , Xs−1, |n(a)|ws

, . . . , |n(a)|wM−1

)
= 0.

The case s = 0 follows from the assumption that Pj and P̃j yield the
same value for all assignments Xw = |n|w, where n ≥ 0. The case s =
M is the desired statement that Pj = P̃j, by the fact that the degree of
each variable in Pj and P̃j is bounded by R. Assume therefore that the
statement holds for some s < M and let a0, . . . , aM−1, k0, . . . , ks−1 ∈
{0, . . . , R}. We define polynomials Q(Xs) and Q̃(Xs) in one variable,
of degree at most R, by

Q(Xs) =
[

Xk0
0 · · ·X

ks−1
s−1

]
Pj

(
X0, . . . , Xs, |n(a)|ws+1

, . . . , |n(a)|wM−1

)
,

analogously Q̃. By the definition of the total order � we have
∣∣n
(
a(r)
)∣∣

wm
=
∣∣n(a)

∣∣
wm

for 0 ≤ r ≤ R and m > s, where

a(r)` =

{
a`, ` 6= s;

r, ` = s.

By the induction hypothesis for a(0), . . . , a(R), we obtain the equality
Q(N) = Q̃(N) for the R + 1 values

∣∣∣n
(
a(0)
)∣∣∣

ws
, . . . ,

∣∣∣n
(
a(R))

∣∣∣
ws

of N,

therefore

0 =
[

Xks
s

]
(Q− Q̃)(Xs)

=
[

Xk0
0 · · ·Xks

m

] (
Pj − P̃j

) (
X0, . . . , Xs, |n(a)|ws+1

, . . . , |n(a)|wM−1

)
.

This proves that Pj = P̃j.
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Proof of Proposition 9.3.2. Let v ∈ W ∪ {ε}. The proof is by induction
on the length of v, the case v = ε being trivial. Moreover, for the
words c0sa, where c ∈ {1, . . . , q}, s ≥ 0 and a ∈ {0, . . . , q− 1}, we
obtain

∏
w∈W

(
TwTwLR

TwR TwL

)|v|w
=

Tc0sa

Tc0s
· Tc0s

Tc0s−1
· · · Tc0

Tε

= Tc0sa.

Suppose that the statement holds for some v′ ∈ W. It is sufficient to
show that it is also true for v = a0sv′, where a ∈ {1, . . . , q} and s ≥ 0.

Since words in W do not end with the letter 0, an admissible factor
of v is either a factor of v′ or a suffix of v. This implies that the product
corresponding to v is obtained from the product corresponding to v′,
multiplying by TwTwLR /(TwR TwL) for each suffix (read from right to
left) w of v such that w ∈W. This product of suffixes equals

∏
w suffix of v

w∈W

TwTwLR

TwR TwL

= ∏
w suffix of v

w∈W

Tw

TwR
∏

w suffix of v′
w∈W

TwR

Tw
=

Tv

Tv′
.

This shows the desired form and together with the induction hypoth-
esis it yields the claim.

Finally, we prove Proposition 9.3.6 by a somewhat tedious case dis-
tinction.

Proof of Proposition 9.3.6. Assume w = wν−1 · · ·w0 ∈ W. The state-
ment we want to prove is equivalent to

TwTwLR − TwL TwR = αxν−1, (212)

where

α = pν−2 wν−1

wν−1 + 1
p− w0 − 1

w0 + 1 ∏
2≤d≤p

d−2|w′|d−1 ,

and w′ is obtained from w by omitting the left- and rightmost digits.
We want to prove the statement by induction on the right depth of
w ∈W. This is the number of right truncations needed to map w to a
base case, which are words v such that vLR = ε. Among the base cases
there are words v satisfying vL = ε. These are exactly the words of
the form c0ta, for c 6= 0, t ≥ 0 and a 6= q. The remaining base cases
fall into exactly one of the following classes, where c ∈ {1, . . . , q} and
a ∈ {0, . . . , q− 1}.

v = cqsa with s ≥ 1;

v = cbqsa with b 6∈ {0, q} and s ≥ 0;

v = c0tbqsa with t ≥ 1, b 6∈ {0, q} and s ≥ 0;

v = c0tqsa with t ≥ 1 and s ≥ 1.
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We begin with the following formulae, which can be proved from
the recurrence (198) in a straightforward way, and which we will use
throughout this proof. Assume that w = {0, . . . , q}∗, s ≥ 1, t ≥ 0,
c ∈ {1, . . . , q}, and a ∈ {0, . . . , q− 1}. Then

Twqsa(x) = ps
(
(a + 1) + (p− a− 1)(p− 1) ∑

1≤i<s
(x/p)i

)
Tw(x)

+ (p− a− 1)xsTw(q−1)(x),
(213)

Twc0ta(x) =
1
p

(
(p− a− 1)(px)t+1+(a + 1)(p− 1) ∑

1≤i≤t
(px)i

)
×

Tw(c−1)(x) + (a + 1)Twc(x).
(214)

We note the following special case of (214):

Tca = (c + 1)(a + 1) + c(p− a− 1)x. (215)

We proceed to evaluating TwTwLR − TwL TwR for the base cases, thus
confirming (212) for these cases. If w = ca, c 6= 0, and a 6= q, we have
TwTwLR − TwL TwR = Tw − 1 = c

c+1
p−a−1

a+1 x by (215). If w = cqsa, where
s ≥ 1, c 6= 0, and a 6= q, we obtain by (213) and (215)

Tcqsa(x) = 1 +
p− a− 1

a + 1
(p− 1)

(
(x/p)1 + · · ·+ (x/p)s)

+ (x/p)s c
c + 1

p− a− 1
a + 1

x,

Tqsa(x) = 1 +
p− a− 1

a + 1
(p− 1)

(
(x/p)1 + · · ·+ (x/p)s),

therefore

TwTwLR − TwL TwR = Tcqsa(x)− Tqsa(x) = xs+1 p−s c
c + 1

p− a− 1
a + 1

.

If w = c0ta, where t ≥ 1, c ∈ {1, . . . , q}, and a ∈ {0, . . . , q− 1}, we
obtain by (214)

Tc0ta(x) = 1 +
p− a− 1

a + 1
c

c + 1
ptxt+1 +

p− 1
p

c
c + 1

(
px +· · ·+ (px)t),

Tc0t(x) = 1 +
p− 1

p
c

c + 1
(
(px)1 + · · ·+ (px)t),

therefore

TwTwLR − TwL TwR = ptxt+1 p− a− 1
a + 1

c
c + 1

.

Now let w = cbqsa for some c 6= 0, b ∈ {1, . . . , q− 1}, s ≥ 0, and
a 6= q. The case s = 0 can be verified easily: after a short calculation
we obtain the expected result

Tcba − TbaTcb =
c

c + 1
p

(b + 1)2
p− a− 1

a + 1
x2.
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Otherwise we get by (213):

(b + 1)TwTwLR − TwL TwR = (b + 1)Tcbqsa − TbqsaTcb

= (b + 1)
(

ps((a + 1) + (p− a− 1)(p− 1)×
(
(x/p)1 + · · ·+ (x/p)s−1))Tcb + (p− a− 1)xsTcb(q−1)

)

−
(

ps((a + 1) + (p− a− 1)(p− 1)
(
(x/p)1 + · · ·+ (x/p)s−1))Tb

+ (p− a− 1)xsTb(q−1)
)

Tcb

= (p− a− 1)xs
(
(b + 1)Tcb(q−1) − Tb(q−1)Tcb

)
.

Using the case s = 0, we obtain

TwTwLR − TwL TwR =
p− a− 1

a + 1
(p− 1)p−sxs(Tcb(q−1) − Tb(q−1)Tcb

)

=
c

c + 1
1

(b + 1)2
p− a− 1

a + 1
p−s+1xs+2.

Let w = c0tbqsa, where c 6= 0, t ≥ 1, b 6∈ {0, q}, s ≥ 0, and a 6= q. If
s = 0, we obtain by (215) and (214)

(b + 1)TwTwLR − TwL TwR = (b + 1)Tc0tba − TbaTc0tb

= (b + 1)
(
(a + 1)Tc0tb + (p− a− 1)xTc0t(b−1)

)

−
(
(b + 1)(a + 1) + b(p− a− 1)x

)
Tc0tb

= (b + 1)(p− a− 1)x
(

1
p

(
(p− b)(px)t+1

+ b(p− 1) ∑
1≤i≤t

(px)i
)

Tc−1 + bTc

)

− b(p− a− 1)x
(

1
p

(
(p− b− 1)(px)t+1

+ (b + 1)(p− 1) ∑
1≤i≤t

(px)i
)

Tc−1 + (b + 1)Tc

)

= (p− a− 1)pt+1xt+2c.

Therefore we get in this case

TwTwLR − TwL TwR = pt+1xt+2 c
c + 1

1
(b + 1)2

p− a− 1
a + 1

.
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If s ≥ 1, we obtain, using (213)–(215),

(b + 1)TwTwLR − TwL TwR = (b + 1)Tc0tbqsa − TbqsaTc0tb

= (b + 1)
(

ps
(
(a + 1) + (p− a− 1)(p− 1) ∑

1≤i<s
(x/p)i

)
Tc0tb

+ (p− a− 1)xsTc0tb(q−1)

)

−
(

ps
(
(a + 1) + (p− a− 1)(p− 1) ∑

1≤i<s
(x/p)i

)
Tb

+ (p− a− 1)xsTb(q−1)

)
Tc0tb

= (p− a− 1)xs((b + 1)Tc0tb(q−1) − Tb(q−1)Tc0tb
)

= (p− a− 1)xs
(
(b + 1)

(
(p− 1)Tc0tb + xTc0t(b−1)

)

−
(
(b + 1)(p− 1) + bx

)
Tc0tb

)

= (p− a− 1)xs+1
(
(b + 1)Tc0t(b−1) − bTc0tb

)

= (p− a− 1)(b + 1)xs+1
(

1
p

(
(p− b)(px)t+1

+ b(p− 1) ∑
1≤i≤t

(px)i
)

Tc−1 + bTc

)

− (p− a− 1)bxs+1
(

1
p

(
(p− b− 1)(px)t+1

+ (b + 1)(p− 1) ∑
1≤i≤t

(px)i
)

Tc−1 + (b + 1)Tc

)

= (p− a− 1)pt+1xs+t+2c,

which yields the statement also for this case.
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We proceed with the case w = c0tqsa, where c 6= 0, t, s ≥ 1, and
a 6= q. In this case, we have

TwTwLR − TwL TwR = Tc0tqsa − TqsaTc0t

=

(
ps
(
(a + 1) + (p− a− 1)(p− 1) ∑

1≤i<s
(x/p)i

)
Tc0t

+ (p− a− 1)xsTc0t(q−1)

)

−
(

ps
(
(a + 1) + (p− a− 1)(p− 1) ∑

1≤i<s
(x/p)i

)

+ (p− a− 1)xsTq−1

)
Tc0t

= (p− a− 1)xs(Tc0t(q−1) − (p− 1)Tc0t
)

= (p− a− 1)xs
((

(p− 1)Tc0t + xt+1T(c−1)qt
)
− (p− 1)Tc0t

)

= (p− a− 1)ptcxs+t+1,

therefore

TwTwLR − TwL TwR = pt−sxs+t+1 c
c + 1

p− a− 1
a + 1

.

Equation (212) therefore holds for the base cases. Assume that we
have already established the statement for all w ∈ W having right
depth ≤ d− 1, where d ≥ 1, and assume that w̃ ∈ W has right depth
equal to d. Then w̃ is of (exactly) one of the following forms, which
we have to treat one by one.

wb0, w0 ∈W, b ∈ {1, . . . , q− 1}; (216)

wb0t, w0 ∈W, b ∈ {1, . . . , q}, t ≥ 2; (217)

wqsa, w ∈W, s ≥ 1, a ∈ {0, . . . , q− 1}; (218)

wa, w ∈W, a ∈ {1, . . . , q− 1}. (219)

We will use the following auxiliary formulae. If wb ∈W, where b 6= 0

and (wb)L 6= ε, then

b(b + 1)
(

T(wb)−1T(wb)L
− T(wb)L−1Twb

)
=

p
p− 1

(
Tw0T(w0)LR

− T(w0)L
T(w0)R

)
.

(220)

If moreover w = wν−1 · · ·wr0
r ∈ W, where r ≥ 0 is maximal, and

wL 6= ε is satisfied, we have

xr+1
(

Tw−1TwL − TwL−1Tw

)
=

1
p− 1

(
Tw0T(w0)LR

− T(w0)L
T(w0)R

)
. (221)

Let us now prove these formulae. We handle the case wL = ε sep-
arately. Since (wb)L 6= ε by assumption, there exist d ∈ {1, . . . , q},



9.7 proofs 315

c ∈ {1, . . . , q− 1} and t ≥ 0 such that w = d0tc. We obtain by (215)
and (214)

T(wb)−1T(wb)L
− T(wb)L−1Twb

= Td0tc(b−1)Tcb − Tc(b−1)Td0tcb

=
(

bTd0tc + (p− b)xTd0t(c−1)
)(

(c + 1)(b + 1) + c(p− b− 1)x
)

−
(
(c + 1)b + c(p− b)x

)(
(b + 1)Td0tc + (p− b− 1)xTd0t(c−1)

)

= px
(
(c + 1)Td0t(c−1) − cTd0tc

)

= px
(
(c + 1)

( 1
p

(
(p− c)(px)t+1 + c(p− 1) ∑

1≤i≤t
(px)i

)
Td−1 + cTd

)

− c
( 1

p

(
(p− c− 1)(px)t+1 + (c + 1)(p− 1) ∑

1≤i≤t
(px)i

)
Td−1

+ (c + 1)Td

))

= pt+2xt+2d,

moreover

(c + 1)Tw0T(w0)LR
− T(w0)L

T(w0)R

= (c + 1)Td0tc0 − Tc0Td0tc

= (c + 1)
(
Td0tc + (p− 1)xTd0t(c−1)

)
−
(
(c + 1) + c(p− 1)x

)
Td0tc

= (p− 1)x
(
(c + 1)Td0t(c−1) − cTd0tc

)

= (p− 1)x
(
(c + 1)

( 1
p

(
(p− c)(px)t+1 + c(p− 1) ∑

1≤i≤t
(px)i

)
d

+ c(d + 1)
)

− c
( 1

p

(
(p− c− 1)(px)t+1 + (c + 1)(p− 1) ∑

1≤i≤t
(px)i

)
d

+ (c + 1)(d + 1)
))

= (p− 1)pt+1xt+2d.

Passing from T to T, we obtain the statement (220) for the case wL = ε,
(wb)L 6= ε. If wL 6= ε, we have (wb)L = wLb, moreover r is also the
number of zeros at the low digits of wL. Therefore

T(wb)−1T(wb)L
− T(wb)L−1Twb

=
(
bTw + (p− b)xr+1Tw−1

)(
(b + 1)TwL + (p− b− 1)xr+1TwL−1

)

−
(
bTwL + (p− b)xr+1TwL−1

)(
(b + 1)Tw + (p− b− 1)xr+1Tw−1

)

= pxr+1(Tw−1TwL − TwL−1Tw
)
,

and (220) and (221) follow easily using the instance Tw0 = Tw + (p−
1)xr+1Tw−1 of the recurrence (198). We have to treat the cases (216)–
(219). Assume that w̃ = wb0, where w0 ∈ W and b ∈ {1, . . . , q− 1}.
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Since (wb)L = w̃RL 6= ε (this holds since the right depth of w̃ is not
zero), we have w̃L = (wb)L0 and therefore

Tw̃Tw̃LR − Tw̃L Tw̃R

= Twb0T(wb)L
− T(wb)L0

Twb

=
(
Twb + (p− 1)xT(wb)−1

)
T(wb)L

−
(
T(wb)L

+ (p− 1)xT(wb)L−1
)
Twb

= (p− 1)x
(
T(wb)−1T(wb)L

− T(wb)L−1Twb
)
.

By (220) we have

Tw̃Tw̃LR − Tw̃L Tw̃R = (p− 1)x
b

b + 1
(
T(wb)−1T(wb)L

− T(wb)L−1Twb
)

=
px

(b + 1)2

(
Tw0T(w0)LR

− T(w0)L
T(w0)R

)
.

Since the right depth of w0 is smaller than d, we can apply the in-
duction hypothesis and the case (216) is finished. Now we assume
that w̃ = wb0t, where w0 ∈ W, b ∈ {1, . . . , q}, and t ≥ 2. We
first note that for a finite word v ∈ {0, . . . , q}∗ we have the identity
Tvb0t = Tvb0t−1 + (p − 1)xtTvb0t−1−1 = Tvb0t−1 + (p − 1)xt pt−1Tv(b−1),
analogously for t− 1 instead of t, therefore

Tvb0t = (1 + px)Tvb0t−1 − pxTvb0t−2 .

Moreover, we also have w̃L = (wb0)L0
t−1 = w′b0t for some w′ ∈

{0, . . . , q}∗. We may therefore calculate:

Tw̃Tw̃LR − Tw̃L Tw̃R =
(
(1 + px)Twb0t−1 − pxTwb0t−2

)
Tw′b0t−1

−
(
(1 + px)Tw′b0t−1 − pxTw′b0t−2

)
Twb0t−1

= px
(
Twb0t−1 Tw′b0t−2 − T(wb0t−1)L

T(wb0t−1)R

)
.

If t > 2 or (wb)L 6= ε, we have w′b0t−2 = (wb0t−1)LR, therefore

Tw̃Tw̃LR − Tw̃L Tw̃R = px
(
Twb0t−1 T(wb0t−1)LR

− T(wb0t−1)L
T(wb0t−1)R

)

and we can use the induction hypothesis. Otherwise, we have w = d0r

for some d ∈ {1, . . . , q} and r ≥ 0, and we obtain

Tw̃Tw̃LR − Tw̃L Tw̃R =
1

(d + 1)(b + 1)2

(
Tw̃Tw̃LR − Tw̃L Tw̃R

)

=
px

(d + 1)(b + 1)2

(
Twb0Tb − T(wb0)L

T(wb0)R

)

= px
(
Twb0Tε − T(wb0)L

T(wb0)R

)

= px
(
Twb0T(wb0)LR

− T(wb0)L
T(wb0)R

)
,

so that we can apply the hypothesis also in this case. Assume that
w̃ = wqsa, where w = wν−1 · · ·wr0

r ∈W and r ≥ 0 is maximal, s ≥ 1,
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and a ∈ {0, . . . , q− 1}. The right depth of w̃ is at least one. Therefore
wL 6= ε, and we obtain, using (213) and (221),

Tw̃Tw̃LR − Tw̃L Tw̃R

=

(
ps
(
(a + 1) + (p− a− 1)(p− 1) ∑

1≤i<s
(x/p)i

)
Tw

+ (p− a− 1)xsTw(q−1)

)
TwL

−
(

ps
(
(a + 1) + (p− a− 1)(p− 1) ∑

1≤i<s
(x/p)i

)
TwL

+ (p− a− 1)xsTwL(q−1)

)
Tw

= (p− a− 1)xs(Tw(q−1)TwL − TwL(q−1)Tw
)

= (p− a− 1)xs
((

(p− 1)Tw + xr+1Tw−1
)
TwL

−
(
(p− 1)TwL + xr+1TwL−1

)
Tw

)

= (p− a− 1)xs+r+1(Tw−1TwL − TwL−1Tw
)

= (p− a− 1)
1

p− 1
xr(Tw0T(w0)LR

− T(w0)L
T(w0)R

)
,

therefore

Tw̃Tw̃LR −Tw̃L Tw̃R =
p− a− 1

a + 1
1

p− 1
p−rxr(Tw0T(w0)LR

−T(w0)L
T(w0)R

)
.

Now one of the two cases (216) or (217) is applicable. It remains
to deal with the fourth case. Assume that w̃ = wa, where w =

wν−1 · · ·wr0
r ∈ W and r ≥ 0 is maximal, and a ∈ {1, . . . , q − 1}.

As in the last case, we have wL 6= ε, therefore we can use (221) and
obtain

Tw̃Tw̃LR − Tw̃L Tw̃R =
(
(a + 1)Tw + (p− a− 1)xr+1Tw−1

)
TwL

−
(
(a + 1)TwL + (p− a− 1)xr+1TwL−1

)
Tw

= (p− a− 1)xr+1(Tw−1TwL − TwL−1Tw
)

=
p− a− 1

p− 1
(
Tw0T(w0)LR

− T(w0)L
T(w0)R

)
,

therefore

Tw̃Tw̃LR − Tw̃L Tw̃R =
p− a− 1

a + 1
1

p− 1
(
Tw0T(w0)LR

− T(w0)L
T(w0)R

)
.

As in the previous case, this expression can be treated with one of the
cases (216) or (217). The proof is complete.





Part V

A P P E N D I X





N O TAT I O N

n! factorial of a non-negative integer n

0! = 1, n! = n · (n− 1)! = n(n− 1) · 1
Γ(z) Gamma function: Γ(z) =

∫ ∞
o tz−1e−tdt

Γ(n) = (n− 1)! for a non-negative integer n

αk falling factorial of α for a real α and a non-negative k:

α0 = 1, αk = α · (α− 1)k−1 = α(α− 1) · (α− k + 1)(
α

k

)
binomial coefficient for real α and non-negative k:
(

α

k

)
=

αk

k!
, for n ∈N :

(
n
k

)
=

n!
(n− k)!k!

P[X] probability of X

E(X) expected value of X

V(X) variance of X

|T| size of the combinatorial object T

reflection-absorption model

Let c, d, c0, d0 be positive integers. The jump polynomial for altitude
k 6= 0 is equal to

P(u) =
d

∑
i=−c

piui,

whereas the jump polynomial for altitude k = 0 is given by

P0(u) =
d0

∑
i=−c0

p0,iui.

The weights pi and p0,i are probabilities, i.e. pi, p0,i ∈ [0, 1] such that
∑d

i=−c pi = ∑d0
i=−c0

p0,i = 1. P≥(u) and P≥0 (u) denote the non-zero
parts of P(u) and P0(u), respectively.

Furthermore, during the discussion of Łukasiewicz bridges in Sec-
tion 4.3 the following expression was introduced, which plays a simi-
lar role as P≥0 (u) for excursions:

Q(u) = P≥0 (u) +
p0,−1

p−1
u(P≥)′(u).

Table 25 summarizes the used constants and gives the location of
their first appearance.
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Constant Definition Description First Appearance

τ P′(τ) = 0, τ > 0 structural constant [19] and Equation (73)

ρ 1
P(τ) structural radius [19] and Equation (73)

ρ1 1− ρ1P≥0 (u1(ρ1)) = 0 unique sol. in supercr. case Lemma 4.2.1

ρ≥0
1

P≥0 (τ)
structural reflection radius Remark 11

ρB 1− ρBQ(u1(ρB)) = 0 unique sol. for bridge equation Lemma 4.3.3

λ
P≥0 (τ)

P(τ) = ρ

ρ≥0
arch constant Proposition 4.2.4

λB
P0(τ)
P(τ) general arch constant Proposition 4.3.7

δ P′(1) drift [19] and Section 4.4

δ≥0 (P≥0 )′(1) drift at 0 Section 4.4

C
√

2 P(τ)
P′′(τ) square root coeff. of u1 at ρ Equation (73)

γ 1
αρ2

1+1
supercritical excursion factor Theorem 4.2.2

γB
1

1+ρ2
B Q′(ρB)

supercritical bridge factor Theorem 4.3.6

κ Cρ(P≥0 )′(τ) critical excursion constant Theorem 4.2.2

κB CρP′0(τ) +
p0,−1
p−1

2τ
C critical bridge constant Theorem 4.3.6

α (P≥0 (u1(z)))′
∣∣∣
z=ρ1

linear Taylor coefficient at ρ1 Theorem 4.2.2

α2 (P≥0 (u1(z)))′′
∣∣∣
z=ρ1

α2
2 is the quadr. Taylor coeff. at ρ1 Theorem 4.2.5

a1 (P≥0 (u1(z)))′
∣∣∣
z=1

linear Taylor coefficient at 1 Lemma 4.6.3

a2 (P≥0 (u1(z)))′′
∣∣∣
z=1

a2
2 is the quadr. Taylor coeff. at 1 Lemma 4.6.3

Table 25: Used constants in the reflection-absorption model (Chapter 4) and
the location of their first appearance.



C O E F F I C I E N T A S Y M P T O T I C S O F S TA N D A R D
F U N C T I O N S

Figure 60: A table from [85, Figure VI.5, p. 388] of some commonly encoun-
tered functions and the asymptotic forms of their coefficients. The
following abbreviation is used: L(z) := log 1

1−z .
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orem for the arguments of zeta-functions of certain cusp forms.
Acta Appl. Math., 96(1-3):221–231, 2007.

[94] M. Gaudin. The Bethe wavefunction. Cambridge University Press,
New York, 2014. Translated from the 1983 French original, pub-
lished by Masson.

[95] I. M. Gessel. A factorization for formal laurent series and lat-
tice path enumeration. Journal of Combinatorial Theory, Series A,
28(3):321–337, 1980.

[96] B. Gittenberger, A. Genitrini, M. Kauers, and M. Wallner. Com-
pacted binary trees. Manuscript, 2017. In preparation.

[97] B. Gittenberger, E. Y. Jin, and M. Wallner. A note on the scal-
ing limits of random polya trees. In 2017 Proceedings of the
Fourteenth Workshop on Analytic Algorithmics and Combinatorics
(ANALCO). 2017. To appear.

[98] J. Glaisher. On the residue of a binomial-theorem coefficient
with respect to a prime modulus. Quarterly Journal of Pure and
Applied Mathematics, 30:150–156, 1899.

[99] M. Goldwurm. Random generation of words in an algebraic
language in linear binary space. Inform. Process. Lett., 54(4):229–
233, 1995.

[100] X. Gourdon. Largest component in random combinatorial struc-
tures. In Proceedings of the 7th Conference on Formal Power Series
and Algebraic Combinatorics (Noisy-le-Grand, 1995), volume 180,
pages 185–209, 1998.

[101] A. Granville. Zaphod Beeblebrox’s brain and the fifty-ninth row
of Pascal’s triangle. Amer. Math. Monthly, 99(4):318–331, 1992.

[102] A. Granville. Arithmetic properties of binomial coefficients. I. Bi-
nomial coefficients modulo prime powers, volume 20 of CMS Conf.
Proc. Amer. Math. Soc., Providence, RI, 1997.

[103] G. H. Hardy and S. Ramanujan. Asymptotic formulæ for the
distribution of integers of various types [Proc. London Math.
Soc. (2) 16 (1917), 112–132]. In Collected papers of Srinivasa Ra-
manujan, pages 245–261. AMS Chelsea Publ., Providence, RI,
2000.



bibliography 333

[104] P. Henrici. Applied and computational complex analysis. Vol. 2.
Wiley Classics Library. John Wiley & Sons, Inc., New York,
1991. Special functions—integral transforms—asymptotics—
continued fractions, Reprint of the 1977 original, A Wiley-
Interscience Publication.

[105] T. Hickey and J. Cohen. Uniform random generation of strings
in a context-free language. SIAM J. Comput., 12(4):645–655,
1983.

[106] F. T. Howard. A combinatorial problem and congruences for
the Rayleigh function. Proc. Amer. Math. Soc., 26:574–578, 1970.

[107] F. T. Howard. The number of binomial coefficients divisible by
a fixed power of 2. Proc. Amer. Math. Soc., 29:236–242, 1971.

[108] F. T. Howard. Formulas for the number of binomial coefficients
divisible by a fixed power of a prime. Proc. Amer. Math. Soc.,
37:358–362, 1973.

[109] J. G. Huard, B. K. Spearman, and K. S. Williams. On Pascal’s
triangle modulo p2. Colloq. Math., 74(1):157–165, 1997.

[110] B. D. Hughes. Random walks and random environments. Vol. 1.
Oxford Science Publications. The Clarendon Press Oxford Uni-
versity Press, New York, 1995. Random walks.

[111] K. Humphreys. A history and a survey of lattice path enumer-
ation. J. Statist. Plann. Inference, 140(8):2237–2254, 2010.

[112] B. Hunter, A. C. Krinik, C. Nguyen, J. M. Switkes, and H. F.
Von Bremen. Gambler’s Ruin with Catastrophes and Windfalls.
Journal of Statistical Theory and Practice, 2008.

[113] H.-K. Hwang. On convergence rates in the central limit
theorems for combinatorial structures. European J. Combin.,
19(3):329–343, 1998.

[114] E. L. Ince. Ordinary Differential Equations. Dover Publications,
New York, 1944.

[115] J. L. Jain, S. G. Mohanty, and W. Böhm. A course on queueing
models. Statistics: Textbooks and Monographs. Chapman & Hal-
l/CRC, Boca Raton, FL, 2007.

[116] E. J. Janse van Rensburg. Square lattice directed paths adsorb-
ing on the line y = qx. Journal of Statistical Mechanics: Theory and
Experiment, 2005(09):P09010, 2005.

[117] E. J. Janse van Rensburg, T. Prellberg, and A. Rechnitzer. Par-
tially directed paths in a wedge. J. Combin. Theory Ser. A,
115(4):623–650, 2008.



334 bibliography

[118] E. J. Janse van Rensburg and A. Rechnitzer. Adsorbing and col-
lapsing directed animals. J. Statist. Phys., 105(1-2):49–91, 2001.

[119] S. Janson. Brownian excursion area, Wright’s constants in graph
enumeration, and other Brownian areas. Probab. Surv., 4:80–145,
2007.

[120] S. Janson. Simply generated trees, conditioned Galton-Watson
trees, random allocations and condensation. Probab. Surv.,
9:103–252, 2012.

[121] S. Johnson. Analytic combinatorics of planar lattice paths. Mas-
ter’s thesis, Simon Fraser University, 2012.

[122] M. Kauers and P. Paule. The concrete tetrahedron. Texts and
Monographs in Symbolic Computation. Springer, 2011. Sym-
bolic sums, recurrence equations, generating functions, asymp-
totic estimates.

[123] G. S. Kazandzidis. Congruences on the binomial coefficients.
Bull. Soc. Math. Grèce (N.S.), 9(fasc. 1):1–12, 1968.

[124] A. J. Kempner. A theorem on lattice-points. Annals of Mathemat-
ics, 19(2):127–136, 1917.

[125] J. F. C. Kingman. On queues in heavy traffic. J. Roy. Statist. Soc.
Ser. B, 24:383–392, 1962.

[126] D. E. Knuth. The art of computer programming. Vol. 1: Fundamental
algorithms. Addison-Wesley, 1968.

[127] D. E. Knuth. 20th Annual Christmas Tree Lecture: (3/2)-ary Trees.
Stanford University, 2014. https://www.youtube.com/watch?v=
P4AaGQIo0HY.

[128] D. E. Knuth and H. S. Wilf. The power of a prime that divides a
generalized binomial coefficient. J. Reine Angew. Math., 396:212–
219, 1989.

[129] C. Krattenthaler. Lattice Path Enumeration. CRC Press, 2015. in:
Handbook of Enumerative Combinatorics, M. Bóna (ed.), Dis-
crete Math. and Its Appl.

[130] V. Kraus. Asymptotic study of families of unlabelled trees and other
unlabelled graph structures. Thesis, TU Wien, 2011.

[131] A. Krinik, G. Rubino, D. Marcus, R. J. Swift, H. Kasfy, and
H. Lam. Dual processes to solve single server systems. J. Statist.
Plann. Infer., 135(1):121–147, 2005.

[132] E. E. Kummer. Über die Ergänzungssätze zu den allgemeinen
Reciprocitätsgesetzen. J. Reine Angew. Math., 44:93–146, 1852.



bibliography 335

[133] I. Kurkova and K. Raschel. On the functions counting walks
with small steps in the quarter plane. Publ. Math. Inst. Hautes
Études Sci., 116:69–114, 2012.

[134] J. Labelle and Y.-N. Yeh. Generalized Dyck paths. Discrete Math.,
82(1):1–6, 1990.

[135] J.-L. Lagrange. Nouvelle méthode pour résoudre les équations
littérales par le moyen des séries. Mémoires de l’Académie Royale
des Sciences et Belles-Lettres de Berlin, 24:251–326, 1770. Reprinted
in Œuvres de Lagrange, tome 2. Paris: Gauthier-Villars, pp. 655-
726, 1868.

[136] T. M. Liggett. Ultra logconcave sequences and negative depen-
dence. Journal of Combinatorial Theory, Series A, 79(2):315–325,
1997.

[137] V. A. Liskovets. Exact enumeration of acyclic deterministic au-
tomata. Discrete Applied Mathematics, 154(3):537–551, 2006.

[138] L. L. Liu and Y. Wang. A unified approach to polynomial se-
quences with only real zeros. Adv. in Appl. Math., 38(4):542–560,
2007.

[139] E. Lucas. Sur les congruences des nombres eulériens et les coef-
ficients différentiels des functions trigonométriques suivant un
module premier. Bull. Soc. Math. France, 6:49–54, 1878.

[140] T. Mansour and M. Shattuck. Pattern avoiding partitions, se-
quence A054391 and the kernel method. Appl. Appl. Math.,
6(12):397–411, 2011.

[141] A. Meir and J. W. Moon. On the altitude of nodes in random
trees. Canad. J. Math., 30(5):997–1015, 1978.

[142] D. Merlini, R. Sprugnoli, and M. C. Verri. The area determined
by underdiagonal lattice paths. Proceedings of CAAP’96, Lecture
Notes in Computer Science 1059, pages 59–71, 1996.

[143] R. Miranda. Algebraic curves and Riemann surfaces, volume 5.
Amer Mathematical Society, 1995.

[144] D. Mirimanoff. À propos de l’interprétation géométrique du
problème du scrutin. Enseign. Math., 23:187–189, 1923.

[145] S. G. Mohanty. Lattice path counting and applications. Academic
Press [Harcourt Brace Jovanovich, Publishers], 1979. Probability
and Mathematical Statistics.

[146] T. Motzkin. Relations between hypersurface cross ratios, and
a combinatorial formula for partitions of a polygon, for per-
manent preponderance, and for non-associative products. Bull.
Amer. Math. Soc., 54:352–360, 1948.



336 bibliography

[147] T. Nakamigawa and N. Tokushige. Counting lattice paths via a
new cycle lemma. SIAM J. Discrete Math., 26(2):745–754, 2012.

[148] T. V. Narayana. Lattice path combinatorics with statistical appli-
cations, volume 23 of Mathematical Expositions. University of
Toronto Press, 1979.

[149] A. Nijenhuis and H. S. Wilf. Combinatorial algorithms. Academic
Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-
London, second edition, 1978. For computers and calculators,
Computer Science and Applied Mathematics.

[150] R. Otter. The number of trees. Ann. of Math. (2), 49:583–599,
1948.

[151] K. Panagiotou and B. Stufler. Scaling limits of random pólya
trees. arXiv preprint, arXiv:1502.07180, 2015. https://arxiv.

org/abs/1502.07180.

[152] R. Pemantle. Towards a theory of negative dependence. Journal
of Mathematical Physics, 41(3):1371–1390, 2000.

[153] R. Pemantle and M. C. Wilson. Analytic combinatorics in several
variables, volume 140 of Cambridge Studies in Advanced Mathemat-
ics. Cambridge University Press, Cambridge, 2013.

[154] O. Perron. Über das infinitäre Verhalten der Koeffizienten einer
gewissen Potenzreihe. Arch. der Math. u. Phys. (3), 22:329–340,
1914.

[155] M. Petkovšek. The irrational chess knight. Proceedings of FP-
SAC’98, pages 513–522, 1998. Formal power series and algebraic
combinatorics (Toronto, July 1998).

[156] M. Petkovsek, H. S. Wilf, and D. Zeilberger. A = B. AK Peters,
1996.

[157] G. Pólya. Kombinatorische anzahlbestimmungen für grup-
pen, graphen und chemische verbindungen. Acta Mathematica,
68(1):145–254, 1937.

[158] H. Prodinger. The kernel method: a collection of examples. Sém.
Lothar. Combin., 50:Art. B50f, 19, 2003/04.

[159] R. W. Robinson. Counting labeled acyclic digraphs. In New di-
rections in the theory of graphs (Proc. Third Ann Arbor Conf., Univ.
Michigan, Ann Arbor, Mich., 1971), pages 239–273. Academic
Press, New York, 1973.

[160] E. Rowland. The number of nonzero binomial coefficients mod-
ulo pα. J. Comb. Number Theory, 3(1):15–25, 2011.



bibliography 337

[161] B. Salvy and P. Zimmermann. Gfun: a Maple package for the
manipulation of generating and holonomic functions in one
variable. ACM Transactions on Mathematical Software, 20(2):163–
177, 1994.

[162] M. Sato. Generating functions for the number of lattice paths
between two parallel lines with a rational incline. Math. Japon.,
34(1):123–137, 1989.

[163] L. Schlesinger. Handbuch der Theorie der linearen Differentialgle-
ichungen. In zwei Bänden, Band I. Reprint. Bibliotheca Mathemat-
ica Teubneriana, Band 30. Johnson Reprint Corp., New York-
London, 1968.

[164] E. Schulte-Geers and W. Stadje. Maximal percentages in Pólya’s
urn. J. Appl. Probab., 52(1):180–190, 2015.

[165] U. Schwerdtfeger. Linear functional equations with a catalytic
variable and area limit laws for lattice paths and polygons. Eu-
ropean J. Combin., 36:608–640, 2014.

[166] D. Singmaster. Notes on binomial coefficients. I. A generaliza-
tion of Lucas’ congruence. J. London Math. Soc. (2), 8:545–548,
1974.

[167] D. Singmaster. Notes on binomial coefficients. III. Any integer
divides almost all binomial coefficients. J. London Math. Soc. (2),
8:555–560, 1974.

[168] D. Singmaster. Divisibility of binomial and multinomial coefficients
by primes and prime powers. Fibonacci Assoc., Santa Clara, Calif.,
1980.

[169] J. G. Skellam and L. R. Shenton. Distributions associated with
random walk and recurrent events. J. Roy. Statist. Soc. Ser. B.,
19:64–111 (discussion 111–118), 1957.

[170] A. V. Skorokhod. Stochastic equations for diffusion processes
with boundaries. II. Teor. Verojatnost. i Primenen., 7:5–25, 1962.

[171] B. K. Spearman and K. S. Williams. On a formula of Howard.
Bull. Hong Kong Math. Soc., 2(2):325–340, 1999. (Available on
Spearman’s website).

[172] L. Spiegelhofer and M. Wallner. Divisibility of binomial coef-
ficients by powers of primes. arXiv preprint, arXiv:1604.07089,
2016. http://arxiv.org/abs/1604.07089. Submitted.

[173] R. Stanley. Catalan Numbers. Cambridge University Press, 2015.



338 bibliography

[174] R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of
Cambridge Studies in Advanced Mathematics. Cambridge Univer-
sity Press, Cambridge, 1999.

[175] R. P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of
Cambridge Studies in Advanced Mathematics. Cambridge Univer-
sity Press, Cambridge, second edition, 2011.

[176] K. B. Stolarsky. Power and exponential sums of digital sums
related to binomial coefficient parity. SIAM J. Appl. Math.,
32(4):717–730, 1977.

[177] B. Stufler. Random enriched trees with applications to random
graphs. arXiv preprint, arXiv:1504.02006, 2015. https://arxiv.

org/abs/1504.02006.

[178] M. Tsagris, C. Beneki, and H. Hassani. On the folded normal
distribution. Mathematics, 2(1):12, 2014.

[179] C. Walck. Hand-book on statistical distributions for experimental-
ists. Dec. 1996. http://www.fysik.su.se/~walck/suf9601.pdf.
Online; accessed 22/10/2014.

[180] M. Wallner. Lattice path combinatorics. Master’s thesis, Vienna
University of Technology, 2013.

[181] M. Wallner. A half-normal distribution scheme for generating
functions. arXiv preprint, arXiv:1610.00541, 2016. http://arxiv.
org/abs/1610.00541. Submitted.

[182] M. Wallner. A half-normal distribution scheme for generating
functions and the unexpected behavior of motzkin paths. In Pro-
ceedings of the 27th International Conference on Probabilistic, Com-
binatorial and Asymptotic Methods for the Analysis of Algorithms,
pages 341–352, 2016.

[183] Y. Wang and Y.-N. Yeh. Log-concavity and lc-positivity. Journal
of Combinatorial Theory, Series A, 114(2):195 – 210, 2007.

[184] W. Wasow. Asymptotic expansions for ordinary differential equa-
tions. Dover Publications, Inc., New York, 1987. Reprint of the
1976 edition.

[185] W. A. Webb. The number of binomial coefficients in residue
classes modulo p and p2. Colloq. Math., 60/61(1):275–280, 1990.

[186] J. West. Generating trees and forbidden subsequences. Discrete
Mathematics, 157:363–374, 1996.

[187] H. S. Wilf. generatingfunctionology. Academic Press Inc., Boston,
MA, second edition, 1994.



bibliography 339

[188] E. M. Wright. The Coefficients of a Certain Power Series. J.
London Math. Soc., S1-7(4):256, 1933.




