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Abstract

We consider various classes of Motzkin trees as well as lambda-terms for which we de-
rive asymptotic enumeration results. These classes are defined through various restrictions
concerning the unary nodes or abstractions, respectively: We either bound their number or
the allowed levels of nesting. The enumeration is done by means of a generating function
approach and singularity analysis. The generating functions are composed of nested square
roots and exhibit unexpected phenomena in some of the cases. Furthermore, we present
some observations obtained from generating such terms randomly and explain why usually
powerful tools for random generation, such as Boltzmann samplers, face serious difficulties in
generating lambda-terms.

1 Introduction
This paper is mainly devoted to the asymptotic enumeration of lambda-terms belonging to a
certain subclass of the class of all lambda-terms. Roughly speaking, a lambda-term is a formal
expression built of variables and a quantifier λ which in general occurs more than once and acts
on one of the free variables of the subsequent sub-term. Lambda calculus is a set of rules for
manipulating lambda-terms and was invented by Church and Kleene in the 30ies (see [35, 36, 16])
in order to investigate decision problems. It plays an important rôle in computability theory, for
automatic theorem proving or as a basis for some programming languages, e.g. LISP. Due to
its flexibility it can be used for a formal description of programming in general and is therefore
an essential tool for analyzing programming languages (cf. [37, 38]) and is now widely used in
artificial intelligence. Furthermore, in typed lambda calculus types can be interpreted as logical
propositions and lambda-terms of a given type as proofs of the corresponding proposition. This is
known as the Curry-Howard isomorphism (see [45]) and constitutes in view of the above-mentioned
link to programming a direct relationship between computer programs and mathematical proofs.

Recently, there has been rising interest in random structures related to logic in general (see
[48] [27], [28], and [19]) and in the properties of random lambda-terms in particular (see [18], [30]
or [39]).

Although lambda-terms are related to Motzkin trees, the counting sequences of these two
objects have widely different behaviours. In this paper, a tree-like behaviour is meant to be
that the counting sequence asymptotically behaves as is typical for trees with average height
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asymptotically proportional to the root of the tree size. See [20] for numerous results on such
trees as well as many other classes of trees. For analyzing the structure of random lambda-terms
it is important to know the number of lambda-terms of a given size. It turns out that this is a very
hard problem. The reason is that there are many degrees of freedom for assigning variables to a
given abstraction. This leads to a large number of lambda-terms of fixed size. If we translate the
counting problem into generating functions, then the resulting generating function has radius of
convergence equal to zero. Thus none of the classical methods of analytic combinatorics (see [25])
is applicable. Therefore, in this paper we study simpler structures, obtained by bounding either
the total number of abstractions or by introducing bounds on the levels of nesting (either globally
or locally, to be formally defined in the next section) of lambda-terms. Note that the number of
nesting levels of abstraction or even the number of abstractions in lambda-terms which occur in
computer programming is in general assumed low compared to their size. E.g., for implementing
lambda-calculus we need to bound the height of the underlying stack, which is determined by
the maximal allowed number of nested abstractions. Even more, Yang et al. [47], who developed
the very successful software Csmith for finding bugs in real programs like the gcc compiler, write
on [47, p. 3]: “Csmith begins by randomly creating a collection of struct type declarations. For
each, it randomly decides on a number of members and the type of each member. The type of a
member may be a (possibly qualified) integral type, a bit-field, or a previously generated struct
type.” A declaration in a C program corresponds to an abstraction in a lambda-term, and the
engineers chose the number of abstractions before randomly generating the rest of the program.
That means that they expect the number of abstractions to be independent of the size of the
lambda-term which corresponds to their program. Thus, requiring bounds like those mentioned
above seems not to be a severe restriction from a practical point of view.

Preliminary results on the enumeration of lambda-terms with bounded unary height appeared
in [5].

The plan of the paper is as follows: We present all the formal definitions of the objects of our
interest in Section 2 and then, in Section 3, some results on restricted classes of Motzkin trees
for comparison purposes. The enumeration of lambda-terms with a fixed or bounded number of
unary nodes is done in Section 4. Sections 5 and 6 contain the main results of our paper. They are
devoted to the enumeration of lambda-terms where all bindings have bounded unary length and
lambda-terms with bounded unary height, respectively. In order to achieve our results, we first
derive generating functions for the associated counting problems, which are expressed as a finite
nesting of radicals. Then we study the radii of convergence and the type of their singularities.
This will eventually allows us to determine their number asymptotically, as their size tends to
infinity. A comparison of the two classes of lambda-terms is discussed in Section 7. Finally, we
investigate how our theoretical results fit with simulations and discover some challenging facts on
the average behaviour of a random lambda-term in Section 8.

2 A combinatorial description for lambda-terms

2.1 Representation as directed acyclic graphs
A lambda-term is a formal expression which is described by the context-free grammar

T ::= a | (T ∗ T ) | λa.T

where a is a variable. The operation (T ∗ T ) is called application. Using the quantifier λ is
called abstraction. Furthermore, each abstraction binds a variable and each variable can be bound
by at most one abstraction. A variable which is not bound by an abstraction is called free. A
lambda-term without free variables is called closed, otherwise open.

In this paper we deal with the enumeration of α-equivalence classes of closed lambda-terms:
Two terms are α-equivalent if one term can be transformed into the other one by a sequence of
α-conversions. An α-conversion is the renaming of a bound variable in the whole term (cf. [3]).
Since the lambda-terms we consider are closed, this means that the actual variable names are
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unimportant; only the structure of the bindings is relevant. E.g., we consider the terms λx.x and
λy.y to be identical.

Furthermore, note that neither application nor iterated abstraction is commutative, i.e., in
particular, the terms λx.λy.T and λy.λx.T are different (if and only if at least one variable x or
y appears in T ).

A lambda-term can be represented as an enriched tree, i.e., a graph built from a rooted tree
by adding certain directed edges (pointers). First we construct a Motzkin tree, i.e., a plane rooted
tree where each node has out-degree 0, 1, or 2, if the edges were directed away from the root.
We denote by the terms leaves, unary nodes, and binary nodes, the nodes with out-degree 0, 1,
and 2, respectively. In this tree each application corresponds to a binary node, each abstraction
to a unary node, and each variable to a leaf. The fact that an abstraction λ binds a variable
v is represented by adding a directed edge from the unary node corresponding to the particular
abstraction λ to the leaf labelled by v. Therefore, each unary node x of the Motzkin tree is carrying
(zero, one or more) pointers to leaves taken from the subtree rooted at x; all leaves receiving a
pointer from x correspond to the same variable, and each leaf can receive at most one pointer.
The Motzkin tree obtained from a lambda-term t by removing all pointers (variable bindings) is
called the underlying tree of t.

For instance, the terms (λx.(x∗x)∗λy.y) and λy.(λx.x∗λx.y) correspond to the enriched trees
T0 and T1 in Fig. 1, respectively. In particular, these terms are closed lambda-terms, because
every variable is bound by an abstraction, i.e., every leaf receives exactly one pointer.

T0 T1

Figure 1: Two examples of lambda-terms (or α-equivalence classes if the labels of the leaves are
removed): Each unary node corresponds to an abstraction λx binding all leaves below it which
are labelled by x. Binary nodes correspond to applications merging their two subtrees t1 and t2
into the more complex structure t1 ∗ t2.

As mentioned in the introduction, our interest in the present paper is in lambda-terms with
restrictions on the number of abstractions and on the number of nesting levels of abstraction,
either locally or globally. The following definitions will allow us to state our restrictions more
precisely.

Definition 1. Consider a lambda-term and its associated enriched tree T . The unary length of
the binding of a leaf e by some abstraction v in T (directed edge from v to e), denoted by lu(e),
is defined as a number of unary nodes on the path connecting v and e in the underlying Motzkin
tree.

Definition 2. Consider a lambda-term and its associated enriched tree T . The unary height of a
vertex v of T , denoted by hu(v), is defined as number of unary nodes on the path from the root to
v in the underlying Motzkin tree. The unary height of T , hu(T ), is defined by max

v vertex of T
hu(v).

We use the same notions for Motzkin trees as well.

In this paper we will enumerate lambda-terms with a fixed number of unary nodes, with
bounded unary length of the bindings, or with bounded unary height. Of course, other simplifica-
tions are possible, such as bounding the number of pointers for each unary node. Such terms are
related to linear (terms where each abstraction binds at most one variable, also called BCI terms)
and affine (terms where each abstraction binds at most one variables, also called BCK terms)
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logics as introduced in [3, 33, 32, 34], and their enumeration was treated in [7] and generalizations
can be found in [6] and [9]. For their relations to lambda-calculus see for instance [31].

2.2 Generating functions associated with lambda-terms
For each class of lambda-terms we will enumerate the terms of a given size. The size of a lambda-
term is the number of nodes in the corresponding enriched tree. It is defined recursively by

|x| = 1,

|λx.T | = 1 + |T |,
|(S ∗ T )| = 1 + |S|+ |T |.

In order to count α-equivalence classes of lambda-terms of a given size we set up a formal
equation which is then translated into a functional equation for generating functions using the
well-known symbolic method (cf. [25]).

Let us introduce the following atomic classes: the class of application nodes A, the class of
abstraction nodes U , the class of free leaves F , and the class of bound leaves D. Then the class L
of equivalence classes of lambda-terms can be described by the specification

L = F +
(
A× L2

)
+ (U × subs(F → F +D,L)) . (1)

where the substitution operator subs(F → F +D,L) corresponds to replacing some free leaves in
L by bound leaves.
Remark 1. Note that the lambda-terms specified by L are not necessarily closed. Since α-
conversion concerns only the bound variables, the equivalence here is w.r.t. α-conversion and
substitution of a free variable by another free variable which is not already present in the term.

The specification (1) gives rise to a functional equation for the bivariate generating function

L(z, f) =
∑

t lambda-term

z|t|f#free leaves in t

which reads as follows:
L(z, f) = fz + zL(z, f)2 + zL(z, f + 1). (2)

In particular, the formal generating function for lambda-terms without free variables is

L(z, 0) = [f0]L(z, f)

= z2 + 2z3 + 4z4 + 13z5 + 42z6 + 139z7 + 506z8 + 1915z9 + 7558z10 + · · ·

Note that these functional equations have to be considered in the framework of formal power
series since the fast growth of the coefficients of the generating function implies that the radius of
convergence of L(z, 0) is zero (see Corollary 3 below).

Furthermore note, that the problem of counting closed or open lambda-terms is essentially the
same. Indeed, the formal generating function for open lambda-terms can be derived from Eq. (2)
the formula L(z, 1) − L(z, 0) = (1−z)L(z,0)−zL(z,0)2

z . Consequently, the problems of enumerating
lambda-terms with or without free variables are of the same difficulty and the solution for one of
them yields the solution for the other one.

Before we start with the analysis of the generating functions associated with the considered
combinatorial structures let us introduce a few further notions.

Definition 3. We say that a function f : C→ C has a singularity of type α at z = ρ if there is a
constant c such that

f(z) ∼ c
(

1− z

ρ

)α
,

as z → ρ inside the domain of analyticity of f .
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Definition 4. If f : C → C is a function which is analytic at 0. Then let S denote the set of
all singularities of f which lie on the circle of convergence of the Taylor series of f (expanded at
z = 0). Those singularities in S which are of smallest type are called the dominant singularities
of f .

Remark 2. It is well-known since Darboux [17] that the singularities on the circle of convergence
determine the asymptotic behaviour of the coefficients of a series. The transfer theorems of Flajolet
and Odlyzko [24] make this much more precise and show that indeed only the dominant singularity
in the sense of the definition above and its type yield the (main term of the) asymptotic behaviour.

3 Restricted Motzkin trees
Before considering restricted lambda-terms, we present results on classes of restricted Motzkin
trees. We shall consider classes of Motzkin trees with restrictions analogous to those for lambda-
terms, namely a fixed or bounded number of unary nodes, and a fixed or bounded unary height,
where the unary height of a leaf is the number of unary nodes on the path from the root to that
leaf, and the unary height of a tree is the maximal unary height of a leaf.

The size of a Motzkin tree is defined as the total number of nodes. The generating function
associated with Motzkin trees satisfies the functional equation M(z) = z + zM(z) + zM2(z).
Solving this equation shows that the only power series solution is

M(z) =
1

2z

(
1− z −

√
1− 2z − 3z2

)
.

The roots of the radicand are −1 and 1/3, the latter being the dominant singularity of M(z) and
of type 1

2 . Applying a transfer theorem from [24] yields that the number of Motzkin trees of size n

is asymptotically [zn]M(z) ∼ 3n+1
2

2n
√
πn

.

3.1 Restrictions on the total number of unary nodes
LetMq be the class of Motzkin trees with exactly q unary nodes. We point out that a Motzkin
tree with exactly q unary nodes has a total size n equal to q + 1 + 2m, where m is the number of
binary nodes and m+ 1 the number of leaves.

Proposition 1. The number of Motzkin trees of size n with exactly q unary nodes is 0 if n ≡ q

mod 2; otherwise it is asymptotically equivalent to
√

2
π

1
2q q! 2nnq−

3
2 , as n→∞ and for fixed q.

Proof. The assertion is an immediate consequence of Tutte’s theorem [46] which implies directly
that the number of Motzkin trees of size n with exactly q unary nodes is (n−1)!

q!((n−q−1)/2)! .

For self-containedness and as it is in the flavour of this paper, we offer a proof of Proposition 1
based on analytic combinatorics.

ObviouslyM0 = C is the class of binary Catalan trees and its generating function is M0(z) =

C(z) = 1−
√

1−4z2

2z . For q ≥ 1 we haveMq = U ×Mq−1 +
∑q
`=0A×M` ×Mq−`. This equation

translates into a functional equation for the generating functions and we get (after solving w.r.t.
Mq(z))

Mq(z) =
zMq−1(z) + z

∑
1≤`≤q−1M`(z)Mq−`(z)

1− 2zM0(z)
. (3)

Lemma 1. There exists a sequence of polynomials sequence (Pq(z))q≥2 such that

Mq(z) =
zq+1Pq(z

2)

(1− 4z2)q−
1
2

, for q ≥ 2. (4)
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The polynomials Pq(z) are given by the recurrence relation

P2(z) = 1; Pq(z) = Pq−1(z) + z

q−2∑
l=2

Pl(z)Pq−l(z) (q ≥ 3). (5)

Proof. For convenience set ∆ = 1 − 2zM0(z) =
√

1− 4z2. From (3) one easily derives that
M2 = z3/∆3 which fits with the assertion (4). We assume that the assumption M` = z`+1P`(z2)

∆2`−1

holds for ` = 2, . . . , q − 1; Eq. (3) then gives

Mq(z) =
z

∆

(
(1 + 2M1(z))Mq−1(z) +

q−2∑
`=2

M`(z)Mq−`(z)

)

=
z

∆

(
Mq−1(z)

∆
+

q−2∑
`=2

M`(z)Mq−`(z)

)

=
z

∆

(
zqPq−1(z2)

∆2q−2
+

q−2∑
`=2

z`+1P`(z
2)

∆2`−1
· z

q−`+1Pq−`(z
2)

∆2(q−`)−1

)

=
zq+1

∆2q−1

(
Pq−1(z2) + z2

q−2∑
`=2

P`(z
2)Pq−`(z

2)

)
.

From the last formula we read off the recurrence relation (5) and get the assertion after all.

The asymptotic behaviour of the coefficients of Mq(z) is now readily obtained (recall that
n = q + 1 + 2m, with m being the number of binary nodes):

[zn]Mq(z) = [z2m]
Pq(z

2)

(1− 4z2)q−
1
2

= [zm]
Pq(z)

(1− 4z)q−
1
2

∼ [zm]
4mPq(1/4)

(1− z)q− 1
2

.

As [zm](1− z)−q+ 1
2 ∼ mq− 3

2

Γ(q− 1
2 )
, we get

[zn]Mq(z) ∼ 2n−q−1Pq(1/4)
(n− q − 1)q−

3
2

2q−
3
2 Γ(q − 1

2 )
∼ Pq(1/4)

√
2

4qΓ(q − 1
2 )

2nnq−
3
2 .

Set aq = Pq(1/4); then a2 = a3 = 1 and aq = aq−1 + 1
4

∑
2≤`≤q−2 a`aq−` for q ≥ 4. This implies

aq = 22−qCq−1 where Cq denotes the qth Catalan number. Plugging this into the asymptotic
expression for [zn]Mq(z) gives immediately Proposition 1.

Next we consider the number of Motzkin trees with at most q unary nodes. Then we have
M≤q(z) =

∑
0≤r≤qMr(z) and [zn]M≤q(z) =

∑
0≤r≤q[z

n]Mr(z). Hence the last term of the sum
gives the asymptotic main term which is [zn]Mq if n 6≡ q mod 2, and [zn]Mq−1 otherwise.

3.2 Restrictions on the unary height
Define Bk as the set of Motzkin trees such that all leaves are at the same unary height k and B≤k
as the set of Motzkin trees where leaves have unary height at most equal to k.

3.2.1 All leaves at the same unary height

Again, we start with setting up the specification and translating them into functional equations
for the generating functions.
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Lemma 2. The class B0 is equal to that of binary Catalan trees. Thus B0(z) = C(z) = (1 −√
1− 4z2)/(2z). For k ≥ 1 we have the recursive specification Bk = U × Bk−1 + A × Bk × Bk.

Thus, the generating function associated with Bk satisfies

Bk(z) =
1

2z

(
1−

√
1− 4z2Bk−1

)
=

1

2z

(
1−

√
1− 2z + 2z

√
1− 2z + · · ·+ 2z

√
1− 4z2

)
,

where the second expression has k + 1 nested square roots.

Now we turn to the asymptotic behaviour of such bounded unary height trees. For k = 1, the
dominant singularity of B1(z) is at z = 1/2 and of type 1

4 . The other singularity is at z = −1/2,
but of type 1

2 and gives therefore an asymptotically negligible contribution. We obtain

[zn]B1(z) ∼ 1

4
· 2

1
4 2nn−

5
4

Γ
(

3
4

) .

Likewise, for k ≥ 2, the singularities of Bk(z) are ±1/2, which can easily be seen by induction. The
singularity at z = −1/2 originates from the innermost radical only and is therefore of type 1/2.
At z = 1/2 all radicals vanish at once and hence the singularity is of type 1/2k+1. Consequently,
as z → 1/2, we have

Bk(z) = 1− 22−k−1

(1− 2z)2−k−1

(1 +O(
√

1− 2z )).

Determining the asymptotic behaviour is now straightforward.

Proposition 2. The number of Motzkin trees in which all leaves have exactly unary height k is

[zn]Bk(z) ∼ 2n+α n
−1−α

Γ(−α)
with α =

1

2k+1
.

Remark 3. This is another of the rather rare examples where the generating function of a re-
cursively specified combinatorial structure does not have a dominant singularity of type 1/2 (or
multiple of 1/2). A general discussion of possible singularity types of generating functions given
by systems of functional equations was recently given by Banderier and Drmota [2].

3.2.2 Motzkin trees of bounded unary height

The case k = 0 again corresponds to binary Catalan trees and for larger k a similar recursive
specification as in the previous subsection holds.

Lemma 3. The class B≤k is equal to that of binary Catalan trees. For k ≥ 1 we have the recursive
specification B≤k = Z + U × B≤k−1 + A × B≤k × B≤k. Thus the generating function associated
with B≤k satisfies

B≤k(z) =
1

2z

(
1−

√
1− 4z2 − 4z2B≤k−1

)
=

1

2z

(
1−

√
1− 2z − 4z2 + 2z

√
1− 2z − 4z2 + · · ·+ 2z

√
1− 4z2

)
.

where the second expression has k + 1 nested square roots.

Again, the first function B≤0(z) has the two singularities ±1/2, but the next ones have different
singularities. Indeed, the innermost square root

√
1− 4z2 has a zero at z = ±1/2, but the next

radical,
√

1− 2z − 4z2 + 2z
√

1− 4z2, has a zero at ρ̃1 = 0.4064073933 < 1/2. The following few
values are ρ̃2 = 0.3759923651, ρ̃3 = 0.3617581845, ρ̃4 = 0.3538076738.
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Lemma 4. Let R̃0(z) = 1 − 4z2 and R̃k(z) = 1 − 2z − 4z2 + 2z
√
R̃k−1(z). Then the values ρ̃k,

defined as the smallest real positive root of R̃k(z) = 0, form a decreasing sequence.

Proof. An easy inductive argument shows that the functions R̃k(z) are decreasing functions on
the positive real line (of course, only up to their first singularity) and smaller than 1 there: Note

that for positive z we get
√
R̃k−1(z) ≤ 1 ≤ 1 + 4z.

Notice that the class of Motzkin trees of bounded unary height is a subclass of the class of
unrestricted Motzkin trees. The generating function of the latter one has dominant singularity
equals to 1

3 . Hence, for any fixed k, we must have ρ̃k ≥ 1
3 .

Now, suppose that ρ̃k−1 ≤ ρ̃k. Then, since R̃k(z) is decreasing for positive real z and
R̃k−1(ρ̃k−1) = 0, we have R̃k(ρ̃k−1) = 1 − 2ρ̃k−1 − 4ρ̃2

k−1 ≥ 0. But 1 − 2z − 4z2 ≥ 0 if and

only if z ∈
[
−
√

5−1
4 ,

√
5−1
4

]
and

√
5−1
4 < 1/3 which contradicts the fact that ρ̃k ≥ 1

3 for all k.

Remark 4. Since the sequence (ρ̃k)k≥0 is decreasing and bounded from below by 1
3 , one can try

to prove that ρ̃k → 1
3 as k →∞. Though numerical evidence supports this, it seems not obvious

at all. Since it is not the key point of our paper we decided to skip it.

As B≤k(z) =

(
1−

√
R̃k(z)

)
/(2z) and each radical has a different dominant singularity, the

dominant singularity of B≤k is at z = ρ̃k and of type 1/2. Here the dominant singularity always
comes from the outermost radical. Thus, we obtain the following result:

Proposition 3. The number of Motzkin trees with unary height at most equal to k is

[zn]B≤k(z) ∼ C̃ρ̃−nk n−
3
2

where ρ̃k is defined in Lemma 4 and C̃ is a suitable constant.

4 Enumeration of lambda-terms with prescribed number of
unary nodes

4.1 Recurrence for the generating functions
We consider here the set Sq of lambda-terms that have exactly q unary nodes. As a consequence
their unary height is obviously bounded. We shall set up recurrence relations for the generating
functions Sq. Let z mark the total size and f mark the number of free leaves. The objects in S0

are again binary Catalan trees and all the leaves are free (since there is no unary node). Thus

S0(z, f) =
1−

√
1− 4fz2

2z
.

For q = 1 either the unique unary node is equal to the root – each leaf of the whole tree then either
becomes bound or stays free – or the root is a binary node and the unique unary node appears
either in the left or the right subtree. This yields the specification

S1 = (U × subs(F → F +D,S0)) + (A,S0,S1) + (A,S1,S0).

and a recurrence relation for the generating function:

S1(z, f) = zS0(z, f + 1) + 2zS0(z, f) S1(z, f). (6)

Solving, we get

S1(z, f) =
zS0(z, f + 1)

1− 2zS0(z, f)
=

1−
√

1− 4(f + 1)z2

2
√

1− 4fz2
.
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For general q ≥ 1 a term has either a unary node as root and q− 1 unary nodes below or a binary
node as root, and the q unary nodes are split into ` nodes assigned to the left subtree, and q − `
nodes assigned to the right subtree. Hence we obtain

Sq = (U × subs(F → F +D,Sq−1)) +

q∑
`=0

(A,S`,Sq−`),

which gives

Sq(z, f) = zSq−1(z, f + 1) + z

q∑
`=0

Sl(z, f) Sq−l(z, f).

We can easily solve it and obtain Sq(z, f) in terms of the S`(z, f) for ` < q:

Sq(z, f) =
z

1− 2zS0(z, f)

(
Sq−1(z, f + 1) +

q−1∑
`=1

S`(z, f) Sq−`(z, f).

)
(7)

The number of closed lambda-terms, which we are interested in, is then

Sq(z, 0) = Sq−1(z, 1) +

q−1∑
`=1

Sl(z, 0) Sq−l(z, 0). (8)

4.2 Solving the recurrence
Lemma 5. Let σq(f) =

√
1− 4(f + q)z2 for q ≥ 0.1 Then, for all q ≥ 0, there exists a rational

function Rq in q + 1 variables such that

Sq(z, f) = − zq−1σq(f)

2
∏q−1
`=0 σ`(f)

+Rq(z, σ0(f), . . . , σq−1(f)). (9)

Moreover, the denominator of Rq(z, σ0(f), . . . , σq−1(f)) is of the form
∏

0≤`<q σ`(f)α`,q where
the exponents α0,q, . . . , αq−1,q are positive integers.

Proof. The proof is based on induction on q. To start the induction observe that S0(z, f) =
1−σ0(z,f)

2z and R0 = 0. Now assume that (9) is true for S0(z, f), . . . , Sq(z, f). Then by (7) and
σ0(f) = 1− 2zS0(z, f) we have

Sq+1(z, f) =
z

σ0(f)

(
− zq−1σq(f + 1)

2
∏q−1
`=0 σ`(f + 1)

+Rq(z, σ0(f + 1), . . . , σq−1(f + 1)) +

q−1∑
`=1

S`(z, f)Sq−`(z, f)

)
.

By observing that σq(f + 1) = σq+1(f) we obtain

Sq+1(z, f) =
z

σ0(f)

(
− zq−1σq+1(f)

2
∏q−1
`=0 σ`+1(f)

+Rq(z, σ1(f), . . . , σq(f)) +

q−1∑
`=1

S`(z, f)Sq−`(z, f)

)
.

The induction hypothesis implies that each S`(z, f) is itself a rational function of z, σ0(f), σ1(f),
. . . , σ`(f). Hence, by setting Rq+1 = (z/σ0(f))Rq(z, σ1(f), . . . , σq(f)) +

∑q−1
`=1 S`(z, f)Sq−`(z, f)

we obtain
Sq+1(z, f) = − zqσq+1(f)

2
∏q
`=0 σ`(f)

+Rq+1(z, σ0(f), . . . , σq(f)).

The expression of the denominator of the Rq comes readily from the recurrence expression.
1σq is actually a function in the two variables z and f , but z plays no rôle in the statement and proof of this

Lemma.
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By setting f = 0, we obtain the following lemma:

Lemma 6. The generating function enumerating all closed terms with exactly q unary nodes is

Sq(z, 0) = − zq−1
√

1− 4qz2

2
∏q−1
`=0

√
1− 4`z2

+Rq(z, 1,
√

1− 4z2, . . . ,
√

1− 4(q − 1)z2), (10)

where the rational function Rq comes from Lemma 5. Its dominant singularities are z = ± 1
2
√
q .

4.3 Asymptotics
A lambda-term with exactly q unary nodes and i leaves has i−1 binary nodes and size n = q+2i−1.
From Lemma 5, the term Rq will have singularities at z = ±1/(2

√
`) for 1 ≤ ` < q. The first term

in the right-hand side of (10) has singularities of smaller type at z = 1/(2
√
q) than the second

term. Hence it gives the dominant contribution to the asymptotics of [zn]Sq(z, 0):

[zn]Sq(z, 0) ∼ [zq+2i−1]
−zq−1

√
1− 4qz2

2
∏q−1
`=1

√
1− 4`z2

∼ [zi]
−
√

1− 4qz

2
∏q−1
`=1

√
1− 4`z

, as n→∞.

The denominator
∏q−1
`=1

√
1− 4`z contributes a multiplicative factor

q−1∏
`=1

√
1− `

q
= q(1−q)/2

√
(q − 1)!

and we obtain:

Proposition 4. The number of closed lambda-terms with exactly q unary nodes and size n is 0 if
n = q mod 2; otherwise its asymptotic value is

[zn]Sq(z, 0) ∼
√

2

2q
√

(q − 1)!
√
πn3

(2
√
q)n, as n→∞.

Remark 5. Though (3) and (7) have a very similar shape, the results of Propositions 1 and 4
are rather different. But note that even though (7) was the starting point, we eventually use
(8) instead. Thus the resonance-like behaviour induced by (3) and leading to the singularity of
lower-order type described in Lemma 1 disappears.

4.4 Lambda-terms with at most q unary nodes
We denote by S≤q(z, f) the generating function for lambda-terms with at most q unary nodes,
where again z marks the nodes, and f the free leaves. If q = 0 we get once more the generating
function for binary Catalan trees: S≤0(z) = S0(z) = C(z). Otherwise, S≤q(z) =

∑q
`=0 S`(z) and

hence we can apply the results we obtained for a fixed number of unary nodes. The dominant
singularity of S≤q(z) comes from Sq(z), whereas the terms S`(z) for ` < q give negligible contri-
butions to the asymptotics: The terms with exactly q unary nodes outnumber those with at most
q − 1 such nodes and determine the asymptotic behaviour of the number of terms, which is the
same for a fixed or bounded number of unary nodes.

5 Enumeration of lambda-terms with bounded unary length
of bindings

Now we turn our attention to the problem of enumerating lambda-terms with bounded unary
length of their bindings (for the definition see Def. 1).
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Let G≤k denote the class of closed lambda-terms where all bindings have unary length less than
or equal to k. Our goal is to set up an equation specifying G≤k.

Define P̂(i,k) as the class of unary-binary trees such that every leaf e can be labelled in
min{hu(e) + i, k} ways. The classes P̂(i,k) can be recursively specified, starting from a class
Z of atoms, by

P̂(k,k) = kZ + (A× P̂(k,k) × P̂(k,k)) + (U × P̂(k,k))

and
P̂(i,k) = iZ + (A× P̂(i,k) × P̂(i,k)) + (U × P̂(i+1,k)),

for i < k. Using again the traditional correspondence between specifications and generating
functions we obtain

P̂ (k,k)(z) =
1− z −

√
(1− z)2 − 4kz2

2z
(11)

and

P̂ (i,k)(z) =
1−

√
1− 4iz2 − 4z2P̂ (i+1,k)(z)

2z
, (12)

for i < k.
Note that for every positive integer k, the class P̂(k,k) consists of all Motzkin trees with k

types of leaves. Moreover, the class P̂(0,k) is isomorphic to the class G≤k and thus the recursive
specification gives directly the generating function G≤k(z) = P̂ (0,k)(z) associated with G≤k.

We can rewrite (12) and (11) in the form

P̂ (i,k)(z) =
1

2z

(
1− 1[i=k]z −

√
R̂k−i+1,k(z)

)
, (13)

where

R̂1,k(z) = (1− z)2 − 4kz2,

R̂2,k(z) = 1− 4(k − 1)z2 − 2z + 2z2 + 2z

√
R̂1,k(z),

and

R̂i,k(z) = 1− 4(k − i+ 1)z2 − 2z + 2z

√
R̂i−1,k(z), (14)

for 3 ≤ i ≤ k + 1. Hence, G≤k(z) =
1−
√
R̂k+1,k(z)

2z .

5.1 Analysis of the radicands
Let us now introduce the definition of a dominant radicand.

Definition 5. Consider a function f(z) which is analytic at z = 0, but not entire, and of the
form

f(z) =

1−

√
pk(z) + qk(z)

√
pk−1(z) + qk−1(z)

√
. . .
√
p1(z)

2z

where pi(z) (i = 1, . . . , k) and qi(z) (i = 2, . . . , k) are polynomials in z. We call its j-th radicand,
which is p1(z) if j = 1 and pj(z) + qj(z)

√
. . . otherwise, a dominant radicand if it has a zero at a

dominant singularity of f(z).

In order to proceed, we need to know the location and type of the dominant singularity ρ̂ of the
“global” generating function G≤k(z). This means actually that we need to know which radicands
are dominant.
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Nested structures appear frequently in combinatorial objects. Often these structures lead to
generating functions of the form of continued fractions (see for example [22, 15]). Nested radicals
are less frequent. They occur for example when enumerating binary non-plane trees [42, 25, 14],
where there appears an “iterated square-root” expansion.

Lemma 7. For every k > 0 and 1 ≤ j ≤ k + 1, the function R̂j,k(z) is strictly decreasing on the
positive real line (in the interval where it is defined as a real-valued function).

Proof. We proceed by induction on j: R̂1,k(z) = (1 − z)2 − 4kz2 is clearly decreasing for z real
positive and k > 0. Now assume R̂j−1,k(z) is decreasing for z > 0. Thus, for positive z we have

d

dz
R̂j,k(z) = −8 (k − j + 1) z − 2 + 2

√
R̂j−1,k(z) +

z d
dz R̂j−1,k(z)√
R̂j−1,k(z)

.

The induction hypothesis implies R̂j−1,k(z) ≤ R̂j−1,k(0) = 1 and d
dz R̂j−1,k(z) < 0, which eventu-

ally gives d
dz R̂j,k(z) < −8(k − j + 1)z ≤ 0 for real positive z.

Observe that the function
√
R̂k,k+1 has the same dominant singularity as the function G≤k(z).

Lemma 8. Assume k > 0 and that the radical
√
R̂j,k(z) has a positive singularity and let z0

denote the smallest one. Then there are no complex singularities having the same modulus as z0.

Proof. From Eq. (13) we know that R̂j,k(z) = (1−1[j=k]z−2zP̂ (k−j+1,k)(z))2. First, assume that
z0 is a root of R̂j,k(z). Then 2z0P̂

(k−j+1,k)(z0) + 1j=kz0 = 1. If there were another (complex)
root x = z0e

iθ of the same modulus, then we would have

1 = 2z0P̂
(k−j+1,k)(z0) + 1[j=k]z0 =

∣∣∣2z0e
iθP (k−j+1,k)(z0e

iθ) + 1j=kz0e
iθ
∣∣∣ .

Since P̂ (k−j+1,k)(z) =
∑
n âj,k,nz

n can be viewed as the generating function of some suitable class
of lambda terms, for all sufficiently large n we have âj,k,n > 0. But this implies that∣∣∣2z0e

iθP (k−j+1,k)(z0e
iθ) + 1j=kz0e

iθ
∣∣∣ < 1

whenever θ 6= 0, which leads to a contradiction.
If z0 is not a root of R̂j,k(z), then z0 must be a zero of some R̂j−`,k(z) with suitable ` > 0.

This follows from the nested structure (14) of the radicals. But then we can apply the arguments
above to R̂j−`,k(z) and arrive again at a contradiction.

Let us now study the exact location and type of the dominant singularity of the functions
G≤k(z). The next lemma will also prove that the singularity in the assumption of the previous
lemma indeed exists.

Lemma 9. Let ρ̂k be the dominant singularity of the function G≤k(z). Then ρ̂k = 1
1+2
√
k
comes

from the innermost radicand and is of type 1
2 .

Proof. If a positive root of the radicand R̂i,k(z) exists, denote its smallest one as ρ̂i,k. Let us
consider the roots of the innermost radicand R̂1,k(z). Since R̂1,k(z) is a quadratic equation, we
know that it has two roots: 1

1+2
√
k
and 1

1−2
√
k
. Moreover, since k is a positive integer, ρ̂1,k = 1

1+2
√
k

is the dominant singularity of the generating function P̂ (1,k)(z) and of type 1
2 .

Let us now prove that none of the radicands R̂j,k(z), 2 ≤ j ≤ k+1, has a positive root which is
smaller than or equal to ρ̂1,k. By induction on j, using the formula ρ̂1,k = 1

1+2
√
k
, and simplifying,

we obtain R̂2,k(ρ̂1,k) = 5ρ̂2
1,k > 0. Furthermore, from Lemma 7 we know that R̂2,k(z) is decreasing

on R+. Hence, R̂2,k(z) does not have any positive root not larger than ρ̂1,k. Assume that R̂j,k(z)
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(for some j ≥ 2) does not have any positive root smaller than or equal to ρ̂1,k. Then we get

R̂j+1,k(ρ̂1,k) = (4j − 1)ρ̂2
1,k + 2ρ̂1,k

√
R̂j,k(ρ̂1,k) > 0 and again using the argument that R̂j+1,k(z)

is decreasing on the positive real line, we obtain that ρ̂1,k is the dominant singularity of R̂j+1,k(z)
and of type 1

2 .
Thus, ρ̂1,k is a dominant singularity of G≤k(z), and Lemma 8 implies that it is the only one.

The following proposition will be useful to derive the asymptotic behaviour of the number of
lambda-terms in the considered class of terms.

Proposition 5. Let ρ̂k be the root of the innermost radicand R̂1,k(z). Then

R̂1,k(ρ̂k(1− ε)) = 2(1− ρ̂k)ε+O
(
ε2
)

(15)

and

R̂j,k(ρ̂k(1− ε)) = cj ρ̂
2
k +

4ρ̂
3
2

k k
1
4√∏j−1

l=2 cl

√
ε+O (ε) ,

for 2 ≤ j ≤ k + 1, where c1 = 1 and cj = 4j − 5 + 2
√
cj−1 for 2 ≤ j ≤ k + 1.

Proof. Using the Taylor expansion of R̂1,k(z) around ρ̂k we obtain

R̂1,k(z) = R̂1,k(ρ̂k) + (z − ρ̂k)
d

dz
R̂1,k(ρ̂k) +O

(
(z − ρ̂k)2

)
.

Knowing that R̂1,k(z) has a zero at z = ρ̂k and setting z = ρ̂k(1− ε) we obtain the first claim (15).
The next step is computing an expansion of R̂j,k(z) around ρ̂k, where 2 ≤ j ≤ k + 1. From

(15) we conclude that √
R̂1,k(ρ̂k(1− ε)) =

√
2(1− ρ̂k)

√
ε+O (ε)

and from the recursive relation (14) for R̂j,k(z) we have

R̂2,k(ρ̂k(1− ε)) = 1− 2ρ̂k + 6ρ̂2
k − 4kρ̂2

k + 2ρ̂k
√

2(1− ρ̂k)
√
ε+O (ε) .

Using the formula ρ̂k = 1
1+2
√
k
and simplifying we get

R̂2,k(ρ̂k(1− ε)) = 5ρ̂2
k + 4ρ̂

3
2

k k
1
4
√
ε+O (ε) .

Assume that for 2 ≤ j ≤ k + 1 we have R̂j,k = cj ρ̂
2
k + dj

√
ε + O (ε). We just checked that this

holds for j = 2 with c2 = 4 · 2 − 5 + 2
√

1 = 5 and d2 = 4ρ̂
3
2

k k
1
4 . Now, we proceed by induction:

Observe that

R̂j+1(ρ̂k(1− ε)) = 1− 4(k − j)ρ̂2
k(1− ε)2 − 2ρ̂k(1− ε) + 2ρ̂k(1− ε)

√
cj ρ̂2

k + dj
√
ε+O (ε).

Expanding, using the formula ρ̂k = 1
1+2
√
k
, and simplifying we obtain

R̂j+1(ρ̂k(1− ε)) = (4j − 1 + 2
√
cj)ρ̂

2
k +

dj√
cj

√
ε+O (ε) .

Setting cj+1 = 4j − 1 + 2
√
cj and dj+1 =

dj√
cj

for 2 ≤ j ≤ k, we obtain R̂j+1(ρ̂k(1 − ε)) =

cj+1ρ̂
2
k + dj+1

√
ε+O (ε) . Expanding dj+1 using its recursive relation and d2 = 4ρ̂

3
2

k k
1
4 we have for

2 ≤ j ≤ k

dj+1 =
4ρ̂

3
2

k k
1
4∏j

l=2

√
cl
.

13



We are now in the position to give the asymptotic behaviour of the number of lambda-terms
having only bindings of bounded unary length.

Theorem 1. Let for any fixed k, G≤k(z) denote the generating function of lambda-terms where
all bindings have unary lengths not larger than k. Then

[zn]G≤k(z) ∼

√√√√ 2k +
√
k

4π
∏k+1
j=2 cj

n−
3
2 (1 + 2

√
k)n, as n→∞, (16)

where
c1 = 1 and cj = 4j − 5 + 2

√
cj−1, for 2 ≤ j ≤ k + 1. (17)

Proof. Lemma 9 tells us that the dominant singularity ρ̂k = 1
1+2
√
k
is algebraic and of type 1

2 .

Hence, we get the factor n−
3
2 (1 + 2

√
k)n in Eq. (16).

Let us now consider the constant (w.r.t. n) term of Eq. (16). We have seen in Proposition 5
that for z close to ρ̂k, and with the notations used in its proof, R̂k+1,k(ρ̂k(1 − ε)) = ck+1ρ̂

2
k +

dk+1
√
ε+O (ε). Since G≤k(z) = 1

2z

(
1−

√
R̂k+1,k(z)

)
, we get

G≤k(ρ̂k(1− ε)) =
1−√ck+1

2
− dk+1

4ρ̂2
k

√
ck+1

√
ε+O (ε)

which gives

[zn]G≤k(z) ∼ − dk+1

4ρ̂2
k

√
ck+1

[zn]

√
1− z

ρ̂k
, as n→∞.

Using the formulas dk+1 =
4ρ̂

3
2
k k

1
4∏k

l=2

√
cl

and ρ̂k = 1
1+2
√
k
and then simplifying, we obtain the formula

for the constant term.

5.2 Asymptotic decrease of constant term
Proposition 6. The multiplicative constant in (16) satisfies√√√√ 2k +

√
k

4π
∏k+1
j=2 cj

=
1

D2k+1e
√
k+1

√√√√ (k + 1)
1
4

(
2k +

√
k
)

k!

(
1 +O

(
1√
k

))
, as k →∞,

where D =
√
πωe

1
4−

5
4γ+ζ( 1

2 ) and ω is a computable constant with numerical value ω ≈ 0.118 . . . .

The proof of Proposition 6 is focused on obtaining the asymptotic expansion of the product∏k+1
j=2 cj as k →∞.

Lemma 10. For M →∞ we have
M∏
j=2

cj = CM !4M−1e2
√
MM−

5
4

(
1 +O

(
1√
M

))
where C is a suitable constant.

Proof. From the recursive relation (17) and by bootstrapping we obtain the asymptotic expansion

cj = 4j + 4
√
j − 3− 4√

j
− 1

j
+O

(
1

j
3
2

)
, as j →∞,

which we can rewrite as cj = (4j + 4
√
j − 3)(1 + ωj), where ωj = Θ

(
n−

3
2

)
. Consider now the

product
∏M
j=2 cj for M large – we shall take M = k+ 1 later on. We write it as

∏M
j=2(4j+ 4

√
j−

3) ·
∏M
j=2(1 + ωj) and consider each of the products separately.
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•
∏M
j=2(1 + ωj): This product has a finite limit ω if the series

∑
j ωj is convergent, which is

indeed the case. This limit can be computed numerically as limM→∞
∏

2≤j≤M
cj

4j+4
√
j−3

.
However, the convergence is slow. The best we have got from the numerical studies is
ω = 0.118 . . .

•
∏M
j=2(4j + 4

√
j − 3): This product gives us the asymptotic behaviour. Let us rewrite it as

M !4M−1
M∏
j=2

(
1 +

1√
j
− 3

4j

)
= M !4M−1 exp

 M∑
j=2

log

(
1 +

1√
i
− 3

4j

) .

Now, knowing that log
(

1 + 1√
j
− 3

4j

)
= 1√

j
− 5

4j +O

(
1

j
3
2

)
, we can compute our sum as

M∑
j=2

1√
j
− 5

4j
+O

(
1

j
3
2

)
=2
√
M − 5

4
HM + ζ

(
1

2

)
+

1

4
+O

(
1√
M

)

=2
√
M − 5

4
logM +

(
1

4
− 5

4
γ + ζ

(
1

2

))
+O

(
1√
M

)
,

where HM is the Mth harmonic number and γ = 0.57721 . . . is the Euler–Mascheroni con-
stant. We finally obtain

M∏
j=2

(4j + 4
√
j − 3) = CM !4M−1M−

5
4 exp2

√
M

(
1 +O

(
1√
M

))
,

where C = ω exp
1
4−

5
4γ+ζ( 1

2 ) .

Putting all pieces together we get the following formula for the constant term of Eq. (16)

√√√√ 2k +
√
k

4π
∏k+1
j=2 cj

=
1

D2k+1e
√
k+1

√√√√ (k + 1)
1
4

(
2k +

√
k
)

k!

(
1 +O

(
1√
k

))
,

where D =
√
πωe

1
4−

5
4γ+ζ( 1

2 ).

6 Enumeration of lambda-terms of bounded unary height
We now turn to the enumeration of lambda-terms with bounded unary height.

Let H≤k denote the class of closed lambda-terms with unary height less than or equal to k. Our
first goal is to set up an equation for the H≤k. Define the class P(i,k) as the class of unary-binary
trees such that i+hu(e) ≤ k for every leaf e (i.e. the unary height of every leaf e is at most k− i)
and every leaf e is colored with one out of i+ hu(e) colors.

As in the previous section, we observe that P(k,k) is the class of all Motzkin tree with k types
of leaves and P(0,k) is isomorphic to the class H≤k. The class P(1,k) is isomorphic to the class
obtained from H≤k by allowing free leaves. This class in turn is isomorphic to the class of closed
lambda-terms with a unary root: Just add a unary node as new root to a term of the previous
class and bind all free leaves by this newly added abstraction.

For general i, P(i,k) is isomorphic to the class of closed lambda-terms built as follows: Consider
a path of i unary nodes to which we append a Motzkin tree with unary height less than or equal
to k − i and call this structure the skeleton. Then, for each leaf e there are i+ hu(e) way to bind
it in order to make a closed lambda-term out of the skeleton.
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The classes P(i,k) can be recursively specified, starting from a class Z of atoms, by

P(k,k) = kZ + (A×P(k,k) × P(k,k))

and, for i < k, by
P(i,k) = iZ + (A×P(i,k) × P(i,k)) + (U × P(i+1,k)). (18)

Translating into generating functions we obtain

P (k,k)(z) =
1−
√

1− 4kz2

2z

and

P (i,k)(z) =
1−

√
1− 4iz2 − 4z2P (i+1,k)(z)

2z
, (19)

for i < k.
Due to the remarks above, the recursive specification gives directly the generating function

H≤k(z) = P (0,k)(z) associated with H≤k. We get an expression involving k + 1 nested radicals:

H≤k(z) =

1−

√
1− 2z + 2z

√
· · ·
√

1− 4(k − i+ 1)z2 − 2z + 2z
√
· · ·+ 2z

√
1− 4kz2

2z
. (20)

Note that for n ≤ k we have [zn]H≤k(z) = [zn]L(z, 1) and thus H≤k(z) converges to L(z, 1) in the
sense of formal convergence of power series (cf. [25, p. 731]).

In the next subsection we consider the singularities of this generating function and determine
its dominant one together with its type – we shall see that the location and the number of the
dominant radicands changes with k. Then we use this information to obtain the asymptotic
behaviour of its coefficients. In Sections 3 and 5 we have seen examples where the dominant
radicand is either the innermost one, the outermost one, or all radicands together. We know of no
previous example where the position of the dominant radicand changes depending on the number
of levels of nesting.

6.1 Analysis of the radicands
We now consider how to determine the dominant singularity of the function H≤k(z): It is again
built of nested radicals, hence its singularities are the values where at least one of the radicands
vanishes.

Theorem 2 below gives the dominant radicand in H≤k(z), i.e., the radicand whose zero is the
dominant singularity of H≤k(z). But first, we introduce two auxiliary sequences which prove to
be important in the sequel.

Definition 6. Let (ui)i≥0 be the integer sequence defined by

u0 = 0 and ui+1 = u2
i + i+ 1, for i ≥ 0

and (Ni)i≥0 by
Ni = u2

i − ui + i,

for all i ≥ 0.

Corollary 1. The sequence (Ni)i≥0 can be written without reference to the sequence (ui)i≥0 by
N0 = 0, N1 = 1 and Ni+1 = N2

i + 3Ni + 2 + (Ni + 1)
√

4Ni − 4i+ 1, for i ≥ 1.

Proof. Solve the equation Ni = u2
i − ui + i, considered as a quadratic equation in ui, then plug

its solution into the recursive definition for ui+1. This requires a little care, as the choice of the
solution for expressing ui in terms of Ni differs for i = 0 and in the case i ≥ 1.
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Remark 6. Obviously, the two sequences (ui)i≥0 and (Ni)i≥0 are strictly increasing and have
super-exponential growth. Since the growth rate will be important for our analysis, we will turn
to it later.

Theorem 2. Let (Ni)i≥0 be the sequence defined in Def. 6 and k be an integer. Define j as the
integer such that k ∈ [Nj , Nj+1). If k 6= Nj, then the dominant radicand of H≤k(z) is the j-th
radicand (counted from the innermost one outwards), and the dominant singularity ρk is of type 1

2 .
Otherwise, the j-th and the (j + 1)-st radicand vanish simultaneously at the dominant singularity
of H≤k(z), which is equal to 1/(2uj) and of type 1

4 .

The rest of this section is devoted to the proof of Theorem 2.

6.1.1 The radicands Ri,k

Let us denote by Ri,k(z) the ith radicand (1 ≤ i ≤ k + 1) of H≤k(z), according to the numbering
from the innermost outwards as adopted in the assertion of Theorem 2, i.e., we have

P (i,k)(z) =
1−

√
Rk−i+1,k(z)

2z
. (21)

We can write the radicands recursively as follows:

R1,k(z) := 1− 4kz2

and
Ri,k(z) := 1− 4(k − i+ 1)z2 − 2z + 2z

√
Ri−1,k(z), (22)

for 2 ≤ i ≤ k + 1, which gives

Ri,k(z) = 1− 4(k − i+ 1)z2 − 2z + 2z

√
1− · · ·

√
1− 4 (k − 1) z2 − 2z + 2z

√
1− 4kz2.

As H≤k(z) = P (0,k)(z) = (1 −
√
Rk+1,k(z) )/(2z), the dominant singularity of H≤k(z) is the

dominant singularity of
√
Rk+1,k(z) as well.

6.1.2 The dominant singularity of a radicand

We show below that, for any fixed k and for any i, 1 ≤ i ≤ k + 1, the ith radicand Ri,k, when
restricted to the real part of its definition domain, is decreasing and use this to determine the
interval where it is positive and to prove that it has a single real positive root, which turns out to
be the dominant singularity.

Lemma 11. For every k > 0 and 1 ≤ i ≤ k+ 1, the real function Ri,k(z) is strictly decreasing on
the positive real line (up to its first singularity).

Proof. The proof is a simple inductive argument like in Lemma 7.

Corollary 2. For every k > 0 and 1 ≤ i ≤ k + 1, the real function Ri,k(z) has at most one real
positive root.

Remark 7. If j and k are such that k ∈ [Nj , Nj+1), then it will turn out that only the j + 1 first
radicands R1,k(z), . . . , Rj+1,k(z) will be relevant for our investigations. All of them have a real
positive root. This holds due to the fact that Rj+1,k(z) is a dominant radicand of H≤k(z), which
we shall prove later on.

Definition 7. Let j ≥ 1 and k be integers such that k ∈ [Nj , Nj+1). For i = 1, . . . , j + 1 let σi,k
denote the smallest positive root of the radicand Ri,k(z).
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Lemma 12. Assume that the radical
√
Ri,k(z) has (real) positive singularities and let z0 > 0 be

the smallest of them. Then there are no complex singularities with modulus |z0|.

Proof. The proof is very similar to that of Lemma 8.

The lemma guarantees that H≤k(z) can have only one dominant singularity, which must be on
the positive real line.

Now we turn our attention to the list (σi,k)1≤i≤j where j is such that Nj ≤ k < Nj+1.

Lemma 13. Let j ≥ 1 and k ∈ [Nj , Nj+1) be given and assume that σi,k and σi+1,k exist. Then
we have σi+1,k ≤ σi,k for 1 ≤ i ≤ j.

Proof. First note that, if x0 is a singular point of some radical, then it is also a singular point of
all radicals which are lying more outwards. Therefore, if both function Ri,k(z) and Ri+1,k(z) have
positive roots, then, by definition, σi+1,k is the smallest positive root of Ri+1,k(z). Hence, it is a
singularity of

√
Ri+1,k(z) and thus of Ri,k(z) as well. This immediately implies the assertion.

Lemma 14. For any i and k the inequality Ri,k(z) > Ri,k+1(z) holds for all z > 0 for which the
two radicands are defined as real functions.

Proof. Obviously, the assertion holds for i = 1. Then, observe

Ri,k −Ri,k+1 = 4z2 + 2z
(√

Ri−1,k −
√
Ri−1,k+1

)
and hence an easy induction completes the proof.

6.1.3 When two successive radicands vanish

Lemma 15. Assume that, for two indices j and k such that 1 ≤ j ≤ k, the value σj,k, which
is a root of Rj,k, is also a root of the radicand Rj+1,k. Then σj,k = 1

1+
√

1+4(k−j)
. Moreover,

Rj−p,k(σj,k) = 4αpσ
2
j,k, for all p < j, where the sequence αp is defined by{

α0 = 0;
αp = (αp−1 + p)2 for p ≥ 1.

Proof. By our assumption, the two successive radicands Rj+1,k and Rj,k vanish for the same
value z = σj,k = σj+1,k. Therefore, from Eq. (22) shifted from j to j + 1, we obtain that
1− 4(k − j)z2 − 2z = 0, and this can only happen if σj,k is equal to 1

1+
√

1+4(k−j)
.

Now assume that j ≥ 2 and that z = σj,k, i.e. both Rj,k(z) and Rj+1,k(z) are equal to 0.
Then

0 = Rj,k(z) = 1− 4(k − j + 1)z2 − 2z + 2z
√
Rj−1,k(z) = −4z2 + 2z

√
Rj−1,k(z),

and thus Rj−1,k(z) = 4z2. Going one step further and assuming that j ≥ 3, we obtain that

Rj−1,k(z) = 1− 4(k − j + 2)z2 − 2z + 2z
√
Rj−2,k = −8z2 + 2z

√
Rj−2,k.

Plugging the value Rj−1,k(z) = 4z2 into this equation gives Rj−2,k(z) = 36z2. We iterate and
obtain for p ≤ j − 1:

Rj−p,k(z) = 1− 4(k − j + p+ 1)z2 − 2z + 2z
√
Rj−p−1,k = −4(p+ 1)z2 + 2z

√
Rj−p−1,k

If Rj−p,k(z) = 4αpz
2, then Rj−p−1,k(z) = 4αp+1z

2 with αp+1 = (αp + p+ 1)2.

Remark 8. Note that Lemma 15 implies the existence of σj,Nj
and σj+1,Nj

. By Lemma 14 we
have σj+1,k < σj,k and thus σj+1,Nj+` exists for all ` ≥ 0. This guarantees the existence of σi,k
for all 1 ≤ i ≤ j + 1, as we claimed in Remark 7.
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j 1 2 3 4 5 6
Nj 1 8 135 21 760 479 982 377 23 040 411 505 837 408
uj 1 3 12 148 21 909 480 004 287

Table 1: The first values Nj and uj .

Lemma 16. If the values j and k are such that there exists a value z cancelling both radicands
Rj+1,k and Rj,k, then we must have k = Nj where (Nj)j≥0 is defined by N0 = 0 and Ni := αi−αi−1

for i ≥ 1, with (αi)i≥0 being the sequence defined in Lemma 15.

Remark 9. The sequence (Nj)j≥0 in Lemma 16 is precisely the sequence defined in Def. 6.

Proof. From Lemma 15, simultaneous vanishing of both radicands implies that z = σj,k. Then we
know the values of the Rj−p,k(σj,k) for all p = 0, . . . , j − 1; in particular, taking p = j − 1 gives
R1,k(σj,k) = 4σ2

j,kαj−1. We have R1,k(z) = 1− 4kz2, which implies that 1 − 4kσ2
j,k = 4σ2

j,kαj−1.
Hence we have σ2

j,k = 1
4(k+αj−1) . But we also know that a suitable value z = σj,k must be equal

to −1+
√

1+4(k−j)
4(k−j) , which gives an equation for the integers k and j involving also the sequence

(αj)j≥0 defined in Lemma 15:(
−1 +

√
1 + 4(k − j)

4(k − j)

)2

=
1

4(k + αj−1)
. (23)

Setting ` = k−j and solving gives ` = (j+αj−1)(j+αj−1−1), which leads to k = (j+αj−1)2−αj−1.
Finally, the recurrence for the αi (see Lemma 15) gives k = αj − αj−1.

The first values of the Nj are given by the table of Figure 1. For each value k = Nj , the two
radicands that vanish are those numbered by j and j + 1.

Lemma 17. No more than two radicands can vanish at the same positive value. If so, then these
two radicands are consecutive ones.

Proof. Assume that two non-consecutive radicands Ri,k and Rj,k vanish simultaneously. From
Lemma 13, we know that the zeroes of the radicands decrease. Therefore, all the radicands R`,k
for i ≤ ` ≤ j would vanish simultaneously. But it is not possible that more than two successive
nested radicands Ri,k, . . . , Ri+p,k have a common positive zero: This can only happen for z = σi,k,
but then the polynomial part 1− 4(k − j + 1)z2 − 2z can be simplified into 4(j − i− 1)z2, hence
it is strictly positive as soon as j > i+ 1.

6.1.4 The sequence (Ni)i≥1

We establish here results about the growth of the sequence (Ni)i≥1.

Lemma 18. The sequence (ui)i≥0 defined in Def. 6 satisfies ui = αi + i. Moreover, the limit

χ := lim
i→∞

u
1/2i

i ≈ 1.36660956 . . .

exists. Furthermore, we have ui = bχ2ic for sufficiently large i. As a consequence, both sequences
(ui)i≥0 and (Ni)i≥1 have doubly exponential growth.

Proof. The recurrence relation on the ui is clear from the definition of the αi in Lemma 15.
Aho and Sloane [1] study doubly exponential integer sequences x = (xi)i≥0 of the form xi+1 =

x2
i +gi with |gi| < xi/4 for i sufficiently large. They show there that for any such sequence x = (xi)

the limit χx := limi→∞ x
1/2i

i exists and that the sequence can be written, for i large enough, as
xi = bχ2i

x c.
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In our case it is easy to check that, for i ≥ 4, gi = i+ 1 < ui/4. Hence the sequence (ui)i≥0 is
of a form such that the result of [1] applies, and limi→∞ u

1/2i

i can be numerically approximated
by χ ≈ 1.36660956 . . .

Finally, the relation Ni = u2
i −ui+ i = ui+1−ui−1 implies that (Ni)i≥0 is doubly exponential

as well. Of course, since αi = uj+1 − j − 1, the sequence (αi)i≥0 is also doubly exponential.

Remark 10. Note, however, that for neither of the sequences (Ni)i≥1 and (αi)i≥0 the result of
Aho and Sloane [1] can be applied (see the recurrences they satisfy, given by Corollary 1 and
Lemma 15).

6.1.5 The singularities

The following proposition sums up the properties of the singularities.

Proposition 7. (i) Let ρk be the dominant singularity of H≤k(z) for k = 0, 1, 2, . . . Then the
sequence (ρk)k≥0 is strictly decreasing.

(ii) If there exists a j ≥ 1 such that k = Nj, then the dominant singularity ρNj
= σj,Nj

= 1
(2uj)

is a root of both radicands Rj,k and Rj+1,k, and it is of type 1
4

(iii) For k ∈ (Nj , Nj+1), the dominant singularity is ρk is a root of the single radicand Rj,k; it
is of type 1

2 and lies in the interval
(

1
2uj+1

, 1
2uj

)
.

Proof. (i) If the jth radicand of H≤k is dominant, then Rj,k(ρk) = 0. This implies that
Rj,k+1(ρk) < Rj,k(ρk) = 0 and therefore ρk+1 < ρk, since the radicands are strictly de-
creasing functions by Lemma 11.

(ii) If there exists a j such that k = Nj , then the pair (j, k) = (j,Nj) is a solution of (23).

If we set σj,Nj
=
−1+
√

1+4(Nj−j)
4(Nj−j) , use (23), and then go backwards the steps in the proof

of Lemma 16, we eventually arrive at Rj,k(σj,Nj ) = Rj+1,k(σj,Nj ) = 0. The type of the
singularity is an immediate consequence of the fact that the two dominant radicands are
consecutive ones.

In order to obtain the last claim, note that Nj − j = αj −αj−1− j = (αj−1 + j)2−αj−1− j
and 1 + 4(Nj − j) = (1 − 2(αj−1 + j))2 = (1 − 2uj)

2, which gives, after simplification and
choosing the root that is positive and has smallest modulus, σj,Nj = 1/(2uj).

(iii) For Nj < k < Nj+1, Lemmas 16 and 17 tell us that no two radicands vanish simultaneously;
only the jth radicand is the dominant one and the singularity is therefore of type 1/2. The
bounds for σj,k follow from the fact that for any given value of j the sequence of zeroes of
Rj,k(z) is decreasing (see Lemma 14 and Remark 8).

The sequence of the dominant singularities for k ∈ {Nj | j ≥ 1} is 1/2, 1/6, 1/24, 1/296,
1/43818, 1/960008574, 1/460808231076756752, . . .

As a corollary, we get the well-known result that L(z, 0) only converges at z = 0, which follows
from [5] or the estimates given in [6, Section 5].

Corollary 3. The radius of convergence of the generating function L(z, 0) enumerating all lambda-
terms is zero.

Proof. The number of lambda-terms of given size n being greater than the number of lambda-
terms of size n and unary height p (for any p), the radius of convergence of the global generating
function L(z, 0) must be smaller than (or equal to) the radius of convergence ρk of the function
H≤Nk

(z), for any k. But the sequence of these radii is the sequence ( 1
2uk

) and converges to 0.
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6.2 Asymptotic analysis and transition between different behaviours
6.2.1 Behaviour of the radicands

In order to proceed, we need some information on the behaviour of the radicands in a neighbour-
hood of the dominant singularity. This is done in the two propositions that follow: Proposition 8
gives the exact values and Proposition 9 their expansions at the singularity.

Proposition 8. The values of Rs,Nj
(z) at z = σj,Nj

are as follows:

(i) If s < j (inner radicands), then, with the uj as defined in Lemma 18

Rs,Nj

(
σj,Nj

)
=

(
uj−s
uj

)2

.

(ii) If s = j or s = j + 1, then Rj,Nj
(σj,Nj

) = Rj+1,Nj
(σj,Nj

) = 0.

(iii) If j + 1 < s (outer radicands), then

Rs,Nj

(
σj,Nj

)
=
λs−j−1

u2
j

,

with the sequence λ` defined by λ0 = 0 and λ`+1 = `+ 1 +
√
λ` for ` ≥ 0.

Proof. (i) The first assertion comes from Lemma 15, which gives Rs,j(σj,Nj
) = 4αj−sσ

2
j,Nj

, and
from Lemma 18, from which we have αj−s = u2

j−s.

(ii) The second assertion is simply the definition of σj,Nj
.

(iii) For the case s > j + 1, we first check, using the equality 1 − 4(Nj − j)σ2
j,Nj
− 2σj,Nj = 0,

that

Rj+2,Nj (σj,Nj ) = 1− 4(Nj − j − 1)σ2
j,Nj
− 2σj,Nj + 2σj,Nj

√
Rj+1,Nj (σj,Nj ) = 4σ2

j,Nj
.

Now assume that for some ` ≥ 2 we have Rj+`,Nj
(σj,Nj

) = 4λ`−1σ
2
j,Nj

and proceed by
induction (we have just checked that it holds for ` = 2 with λ1 = 1). Then

Rj+`+1,Nj
(σj,Nj

) =1− 4(Nj − j − `)σ2
j,Nj
− 2σj,Nj

+ 2σj,Nj

√
Rj+`,Nj

(σj,Nj
)

=4σ2
j,Nj

(`+
√
λ`−1) = 4λ`σ

2
j,Nj

again from the fact that 1−4(Nj−j)σ2
j,Nj
−2σj,Nj = 0, and from the recurrence assumption

on Rj+`,Nj
(σj,Nj

).

Proposition 9. Let ρ = σj,Nj
be the dominant singularity of H≤Nj

(z). Then, for any ε > 0

(i)

Rj,Nj (ρ− ε) = γjε+O
(
ε2
)

with γj = − d

dz
Rj,Nj (ρ). (24)

(ii)
Rj+1,Nj

(ρ− ε) = 2ρ
√
γj ε

1
2 +O(ε), (25)

(iii) for p ≥ 2,

Rj+p,Nj
(ρ− ε) = 4ρ2λp−1 +

(2ρ)
3
2 γ

1
4
j

2p−2

√∏p−2
i=1 λi

ε
1
4 +O

(
ε

1
2

)
where the sequence (λi)i≥1 is defined in Proposition 8.
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Proof. We know that Rj−1,Nj (σj,Nj ) > 0 and that the function Rj−1,Nj (z) is analytic up to some
value z > ρ. Hence Rj,Nj

(z) itself has a Taylor expansion around ρ which yields (24). Using the
recurrence relation (14) for Rj,k(z) we immediately obtain (25).

The next step is computing the expansion of Rj+2,Nj
around ρ where it has a singularity of

type 1
4 . We obtain

Rj+2,Nj
(ρ− ε) = 4ρ2 + 2ρ

√
2ρ
√
γj ε

1
4 +O

(
ε

3
4

)
.

Now consider the radicands Rj+p,Nj (z) for p ≥ 2 and proceed by induction: They have a
common dominant singularity at z = ρ, which is of type 1

4 . Thus, for all p ≥ 2, there exist ap 6= 0

and bp such that Rj+p,Nj (ρ − ε) = ap + bpε
1
4 + O

(
ε

1
2

)
. We already know that a2 = 4ρ2 and

b2 = 2ρ
√

2ρ
√
γj . By the recurrence relation (14) for the radicands we get

Rj+p+1,Nj (ρ− ε) = 1− 4(Nj − j − p)(ρ− ε)2 − 2(ρ− ε) + 2(ρ− ε)
√
Rj+p,Nj (ρ− ε).

Plugging in the expansion ap + bpε
1
4 +O

(
ε

1
2

)
for Rj+p,Nj (ρ− ε), expanding and simplifying the

constant term through 1− 4(Nj − j)ρ2 − 2ρ = 0 gives

Rj+p+1,Nj
(ρ− ε) = 4pρ2 + 2ρ

√
ap +

ρbp√
ap
ε

1
4 +O

(
ε

1
2

)
.

Setting ap+1 = 4pρ2 + 2ρ
√
ap and bp+1 =

ρbp√
ap
, we obtain Rj+p+1,Nj

(ρ − ε) = ap+1 + bp+1ε
1
4 +

O
(
ε

1
2

)
.

– By dividing the recurrence for ap by 4ρ2, we see that ap+1

4ρ2 = p +
√

ap
4ρ2 . Coupled with

a2 = 4ρ2 and the definition of the λi, this gives ap = 4ρ2λp−1.

– Plugging the expression for ap that we have just obtained into the recurrence for the bp gives
bp+1 =

bp

2
√
λp+1

and finally

bp =
b2

2p−2

√∏p−2
i=1 λi

with b2 = (2ρ)
3
2 γ

1
4
j .

6.2.2 Asymptotic number of lambda-terms of bounded height

We are now in the position to give the asymptotic behaviour of the number of lambda-terms with
bounded unary height.

Theorem 3. Let (Ni)i≥0 and (ui)i≥0 be as in Def. 6.

(i) If there exists j ≥ 0 such that Nj < k < Nj+1, then there exists a constant hk such that

[zn]H≤k(z) ∼ hkn−3/2(σj,k)−n, as n→∞. (26)

(ii) If there exists j such that k = Nj, then the following asymptotic relation holds:

[zn]H≤Nj
(z) ∼ hkn−5/4(σj,k)−n = hNj

n−5/4(2uj)
n, as n→∞, (27)

where

hNj =
γ

1/4
j (2uj)

1/4

2Nj−j+2
√

2 Γ(3/4)

√∏Nj−j
i=1 λi

, (28)

with γj and the sequence (λi)i≥0 as defined in Proposition 8.
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Proof. The expressions given in (26) and (27) follow immediately from the fact that the dominant
singularity for the cases k 6= Nj and k = Nj is of type 1/2 and 1/4, respectively, and then applying
the transfer theorem of Flajolet and Odlyzko [24]. What is left to do is proving (28).

(ii) If k = Nj , then from Proposition 9 and H≤Nj
(z) = 1

2z

(
1−

√
RNj+1,Nj

(z)
)
we get

H≤Nj (ρ− ε) =
1−√aNj−j+1

2ρ
−

bNj−j+1

4ρ
√
aNj−j+1

ε
1
4 +O

(
ε

1
2

)
which gives (using again [24])

[zn]H≤Nj (z) ∼−
bNj−j+1

4ρ
√
aNj−j+1

(2uj)
n[zn](ρ− z) 1

4

∼−
bNj−j+1

4ρ
3
4
√
aNj−j+1

(2uj)
n n−

5
4

Γ(− 1
4 )
.

Finally, plug in the expressions of aNj−j+1 and bNj−j+1, then simplify using also Γ(− 1
4 ) = −4Γ( 3

4 ),
to obtain the expression of hNj

.

6.3 The location of singularities for large k

In this section we would like to investigate the sequence (ρk)k≥0 itself.
Let us first derive a few auxiliary results that we will need in order to proceed with the analysis

of the asymptotic behaviour of ρk as k →∞.

Proposition 10. If ρk denotes the dominant singularity of H≤k(z), then ρk ≥ 1
1+2
√
k
.

Proof. Let us recall that G≤k is the class of closed lambda-terms where all bindings have unary
length less than or equal to k, G≤k(z) its generating function and ρ̂k = 1

1+2
√
k

the dominant
singularity of G≤k(z).

Clearly, H≤k ⊆ G≤k and therefore exponential growth of G≤k(z) is not larger than the expo-
nential growth of H≤k(z), i.e. ρk ≥ ρ̂k.

Proposition 11. For i = O (log log k) we have

Ri,k

(
1

1 + 2
√
k

)
=
k2−i

k
+O

(
log log k

k

)
, as k →∞.

Proof. We prove the assertion by induction on i:

R1,k

(
1

1 + 2
√
k

)
= 1− 4k

(1 + 2
√
k)2

= k−
1
2 +O

(
1

k

)
.

Now, assume that for some i = O (log log k), Ri,k
(

1
1+2
√
k

)
= k2

−i

k +O
(

log log k
k

)
then

Ri+1,k

(
1

1 + 2
√
k

)
= 1− 4(k − i)

(1 + 2
√
k)2
− 2

1 + 2
√
k

+
2

1 + 2
√
k

√
k2−i

k
+O

(
log log k

k

)
but it is easy to see that i = O (log log k)

2

1 + 2
√
k

=
1√
k

+O

(
1

k

)
,

1− 4(k − i)
(1 + 2

√
k)2
− 2

1 + 2
√
k

=O

(
log log k

k

)
.
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Thus, we can finish the proof with the following calculations:

Ri+1,k

(
1

1 + 2
√
k

)
=

√
k2−i−2 +O

(
log log k

k2

)
+O

(
log log k

k

)
=k2−(i+1)−1 +O

(
log log k

k

)
.

Proposition 12. If j is such that Rj,k(z) is a dominant radicand of the generating function
H≤k(z), then j = O (log log k).

Proof. Let us first consider the case where both the jth and the (j + 1)st radicand are dominant.
From Theorem 2 we know that in that case k = Nj = uj+1 − uj − 1. Moreover, from Lemma 18
we have ui = bC2ic for sufficiently large i and with C ≈ 1.36660956 . . . Thus, k = C2j+1

(1 + o (1))
and applying the logarithm twice on both sides of this equation we get j = O (log log k).

In the case where Rj,k(z) is the only dominant radicand we have Nj−1 < k < Nj . It is enough
to consider the left inequality Nj−1 = C2j

(1 + o (1)) < k. Proceeding like in the previous case we
get j = O (log log k) .

We are now in the position to give the asymptotic behaviour of ρk.

Theorem 4. Let ρk be the dominant singularity of H≤k(z), then the asymptotic behaviour of ρk
can be described as follows:

• If k = Nj (Rj,k(z) and Rj+1,k(z) are dominant), then

ρk =
1

2
√
k
− 1

4k
+O

(
log log k

k
3
2

)
, as k →∞. (29)

• If Nj−1 < k < Nj (only Rj,k(z) is dominant), then

ρk =
1

2
√
k
− 1

4k
+O

(
1

k
3
2−

1

2j

)
, as k →∞. (30)

Proof. Let us first consider the case where k = Nj . From Lemma 15 and Proposition 7 we know
that ρk = σj,k = 1

1+
√

1+4(k−j)
. Proposition 12 tells us that j = O(log log k) and thus expanding

yields ρk = 1
2
√
k
− 1

4k +O
(

log log k

k
3
2

)
as desired.

Proving the result for the case where Nj−1 < k < Nj is less straightforward. Let us recall the
result of Proposition 10: ρk ≥ ρ̂k = 1

1+2
√
k

= 1
2
√
k
− 1

4k + O
(

1

k
3
2

)
. So, what is left is proving an

upper bound.
We have ρk < 1

2
√
k
, which is the value that cancels the innermost radicand R1,k(z) = 1− 4kz2.

Unfortunately, this upper bound is too weak to be used in this proof.
In order to improve the upper bound for ρk notice that ρk is a root of Rj,k(z) = 1− 4(k− j +

1)z2−2z+2z
√
Rj−1,k(z) and that σj−1,k > ρk = σj,k. This inequality can be seen as follows: The

weak inequality follows from Lemma 13. But it is even strict, because no two successive radicands
can be zero. Thus the zeros σj−1,k and σj,k of the two respective radicands must be different.

Furthermore, we know that Rj−1,k(z) is decreasing on the positive real axis (see Lemma 11)
and that ρk ≥ 1

1+2
√
k
. Thus, for z ∈ [ρk, σj−1,k] we have Rj−1,k

(
1

1+2
√
k

)
≥ Rj−1,k(z) and

Rj,k(z) ≥ Rj,k(z) where Rj,k(z) = 1− 4(k − j + 1)z2 − 2z + 2z

√
Rj−1,k

(
1

1+2
√
k

)
. One can easily

check that Rj,k(z) is decreasing for z > 0 and thus its positive root

ρk =
1

1−
√
κ+

√
5 + 4(k − j) + κ− 2

√
κ
,
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where κ = Rj−1,k

(
1

1+2
√
k

)
, must satisfy ρk ≥ ρk. This inequality together with

ρk =
1

2
√
k
− 1

4k
+O

(
1

k
3
2−

1

2j

)
,

where we used Proposition 11 for the asymptotic expansion of κ as k →∞, completes the proof.

6.4 Exponential decrease of the constant
Numerical computations for the coefficients of asymptotic expansions when k = 1, 8, 135 give

h1 =0.24261 . . . ,

h8 =9.31888 . . . · 10−5,

h135 =8.56995 . . . · 10−157.

In Theorem 3 we presented an expression for these constants (see Eq. (28)) involving the quantities
γj and (λi)i≥0 which were defined in Proposition 9. We now prove that the constant hNj decreases
exponentially fast as j →∞.

Proposition 13. The constant hNj
satisfies, as j →∞,

hNj
= D

e
1
2u

2
j−uj

(2uj)
u2
j−uj

(
1 +O

(
1

uj

))
, (31)

where

D =
C1/4

√
ω e

1
2 ζ(1/2)− 1

4 25/2Γ(3/4)π1/4
≈ 1.0506 . . . (32)

The proof of Proposition 13 starts from the value given in Eq. (28) and has two main parts:
proving that γj is of order uj and dealing with the product

∏Nj−j
i=1 λi.

6.4.1 The derivative of Rj,k(z)

Maple computations show that γj
uj

seems to converge quickly (with a precision of 10−10 for j = 7)
to a constant value, approximately equal to 6.347269145. We will show that this indeed holds.

Lemma 19. Define w`,Nj
= d

dzR`,Nj
(ρ) with ρ = σj,Nj

as in the previous section. For p ≥ 1 set

δp,j = −4
Nj − p+ 1

uj
− 2 + 2

uj−p+1

uj
and εp,j =

1

2uj−p+1
.

Then w1,Nj
= −4

Nj

uj
and, for p > 1,

wp,Nj
=

p∑
s=1

δs,j

p∏
r=s+1

εr,j .

Proof. The computation of w1,Nj is straightforward from R1,Nj (z) = 1− 4Njz
2 and ρ = 1

2uj
; note

that δ1,j = −4
Nj

uj
= w1,Nj

. Now for p ≥ 2 we have

Rp,Nj
(z) = 1− 4(Nj − p+ 1)z2 − 2z + 2z

√
Rp−1,Nj

(z),

which gives by derivation w.r.t z

R
′

p,Nj
(z) = −8(Nj − p+ 1)z − 2 + 2

√
Rp−1,Nj

(z) + z
R
′

p−1,Nj
(z)√

Rp−1,Nj
(z)

.
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Taking z = ρ = 1
2uj

, we get

wp,Nj = R
′

p,Nj
(ρ) = −4

Nj − p+ 1

uj
− 2 + 2

√
Rp−1,Nj (ρ) +

wp−1,Nj

2uj
√
Rp−1,Nj

(ρ)
.

Now we are computing γj = wj,Nj , i.e., we are interested in the wp,Nj for p ≤ j. In this range,√
Rp−1,Nj

(ρ) =
uj−p+1

uj
by Proposition 8, which gives

wp,Nj
= −4

Nj − p+ 1

uj
− 2 + 2

uj−p+1

uj
+
wp−1,Nj

2uj−p+1
= δp,j + εp,j wp−1,Nj

,

and it is then an easy exercise to obtain the explicit form of wp,Nj .

Set

Es,p,j =

p∏
r=s+1

εr,j =
1

2p−s
∏j−s
`=j−p+1 u`

.

Then

wp,Nj =

p∑
s=1

δs,j Es,p,j

and we can now turn to γj = −wj,Nj : We write

γj =−
j∑
s=1

δs,j Es,j,j

=

j∑
s=1

(
4
Nj − s+ 1

uj
+ 2− 2

uj−s+1

uj

)
Es,j,j

=

(
4
Nj + 1

uj
+ 2

) j∑
s=1

Es,j,j − 4

j∑
s=1

sEs,j,j −
2

uj

j∑
s=1

uj−s+1Es,j,j .

and consider each term in turn.

Lemma 20. The sums
∑j
s=1Es,j,j,

∑j
s=1 sEs,j,j and

∑j
s=1

uj−s+1

uj
Es,j,j all have a finite limit

when j →∞.

Proof. It suffices to write, e.g., the first sum as
∑j
s=1

1

2j−s
∏j−s

`=1 u`
and to remember the exponential

growth of the sequence (ui)i≥0. The same argument holds for the second sum. Finally, since
uj−s+1 < uj , the first sum is an upper bound of the last sum.

This shows that
γj ∼ 4

Nj
uj

∑
s≥1

Es,j,j

when j → ∞. The relation Nj = u2
j − uj + j then gives readily the following lemma, where the

value of the constant has been computed numerically.

Lemma 21. The term γj
uj

has a finite, nonzero limit when j →∞:

lim
j→∞

γj
uj

= C ≈ 6.347269145 . . .
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6.4.2 Asymptotic expansion of
∏M
i=1 λi.

Lemma 22. For M →∞ we have

M∏
i=1

λi =
√

2π ω
√
M

(
M

e

)M
e2
√
M+ζ( 1

2 )

(
1 +O

(
1√
M

))
,

for some computable constant ω which is numerically ω ≈ 0.1903 . . .

Proof. From the expression λn = n +
√
λn−1 and by bootstrapping, we obtain an asymptotic

expansion for λn when n→ +∞:

λn = n+
√
n+

1

2
− 3

8
√
n
− 1

4n
+O

(
1

n
√
n

)
,

which gives λn =
(
n+
√
n+ 1

2

)
(1 + ωn) where ωn has order n−

3
2 . Consider now the product∏M

n=1 λn for M large – we shall take M = Nj − j later on. We can write it as
∏M
n=1(n +

√
n +

1
2 )×

∏M
n=1(1 + ωn), and we consider separately each of the products.

• We first concentrate on the product of the terms 1 + ωn. We know that it has a finite limit
ω if the series

∑
n wn is convergent, which is indeed the case. This limit can therefore be

computed as limM→∞
∏

1≤n≤M
λn

n+
√
n+ 1

2

. The convergence, however, is slow (of order 1√
M
).

Thus the best we could achieve by numerical studies is ω ≈ 0.1903 . . ..

• We now turn to the product
∏M
n=1(n+

√
n+ 1

2 ), which gives the asymptotic behaviour. We
begin by writing it as

M !

M∏
n=1

(
1 +

1√
n

+
1

2n

)
= M ! exp

(
M∑
n=1

log

(
1 +

1√
n

+
1

2n

))
.

Now

M∑
n=1

log

(
1 +

1√
n

+
1

2n

)
=

M∑
n=1

(
1√
n

+O

(
1

n
√
n

))

where we can get effective bounds for the error terms. Observe that
∑M
n=1O

(
1

n
√
n

)
=

O
(

1√
M

)
. It remains to compute

∑M
n=1

1√
n
, which is equal to 2

√
M + ζ( 1

2 ) + O( 1√
M

). We
finally obtain

M∏
n=1

(
1 +

1√
n

+
1

2n

)
= e2

√
M+ζ( 1

2 )

(
1 +O

(
1√
M

))
and the final result by Stirling’s formula.

By setting M = Nj − j = u2
j − uj in Lemma 22, we obtain

Nj−j∏
i=1

λi = eζ(
1
2 )− 1

2

√
2π ω · u2u2

j−2uj+1

j e−u
2
j+2uj

(
1 +O

(
1

uj

))
. (33)

6.4.3 Putting all together

We now substitute Cuj for γj in Eq. (28), according to Lemma 21, and also plug in the asymptotic
equivalent for the product

∏Nj−j
i=1 λi that comes from (33), to obtain (31) and (32) which finishes

the proof of Proposition 13.
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7 Bounded unary height vs. bounded unary length of bind-
ings

In Table 2 we give numerical results of the constant and exponential terms for the number of
lambda-terms of bounded unary height and the number of terms where all bindings have bounded
unary length. We can see that the exponential terms for growing k are quite similar in both cases.
Note that in case II the unary height is not bounded. Thus one might expect that bounding
the unary height is a much stronger restriction and that therefore the exponential growth rates
should exhibit a larger difference than they actually do. However, there is still a difference in
the exponential growth rates, which makes it appear reasonable. The quotient of the exponential
growth rates seems to tend to one which is as expected.

Case I: Bounded unary height Case II: Bounded unary length
of bindings

k constant term exp. term constant term exp. term
1 0.242613 2 0.21851 3
2 0.520859 2.90867 0.0866674 3.82843
3 0.231818 3.62279 0.0245664 4.4641
4 0.0838137 4.21545 0.00577152 5
5 0.0265937 4.73046 0.0011921 5.47214
6 0.0079582 5.19117 0.000223117 5.89898
7 0.0025262 5.61139 0.0000385385 6.2915
8 9.31889× 10−5 6 6.21966× 10−6 6.65685
9 1.56532× 10−4 6.36386 9.46315× 10−7 7
10 1.99134× 10−5 6.70758 1.36666× 10−7 7.32456
... ...

...
...

...
133 2.16482× 10−152 23.8258 2.55075× 10−157 24.0651
134 1.30921× 10−153 23.9131 1.06018× 10−158 24.1517
135 8.56995× 10−157 24 4.3907× 10−160 24.2379

Table 2: Comparison of the constant terms and exponential terms values for the bounded unary
height lambda-terms and bounded unary length of abstractions pointers lambda-terms.

The constant factors differ significantly in both cases, but still they share a common behaviour:
They tend quite quickly to 0 as k →∞. One can also observe that for lambda-terms with bounded
unary height in the cases where k = Nj not only the term n−

5
4 appears (instead of n−

3
2 ), but also

the constant factor behaves in a little different way: It is indeed smaller than one could expect.
So far, we have no explanation for this behaviour.

8 Random generation and experiments

8.1 Random generation of lambda-terms
To get a feeling of the “average” behaviour of a combinatorial object, a method of choice is the
random generation of terms of large size. We considered two methods to try to generate a random
lambda-term of bounded unary height: the recursive method [26] and Boltzmann sampling. Boltz-
mann samplers are powerful tools to generate objects in specified combinatorial classes uniformly
at random. They were introduced in [21] and extended furthermore by numerous authors (see e.g.
[12, 13, 23, 44]). Note that, theoretically, a Boltzmann sampler can generate a tree of size close
to n on average in linear time.

We considered Boltzmann sampling of a closed term, with different success depending on the
unary height: The efficiency decreases very quickly as the maximal unary height grows. When
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Figure 2: A random lambda-term of size 30, with the edges from unary nodes to leaves.

k = 8, we can generate terms of size 10000 in a few seconds on a standard personal computer.
Figure 3 presents a term of size 6853 with unary height bounded by 8.2

Figure 3: The underlying Motzkin tree of a random lambda-term of size 6853 and unary height
≤ 8 and its profile.

However, if we consider lambda terms with a maximal unary height of 135, a Boltzmann
sampler is not able to produce objects of size larger than 200 in a “reasonable” time (less than
one day). The explanation of the phenomenon is as follows: An “average” random lambda-term
begins with a large number of unary nodes; cf. Figure 5 (see also [18] for a result in the same
vein for a related model). Drawing the sufficient number of unary nodes has very low probability
in the Boltzmann process. Figure 4 gives the various probabilities of drawing a leaf, a unary
node, or a binary node, plotted against the unary height (actually the number of recursive calls
to the generator, but the design of the generator is such that a call is done if the unary height
changes). After a (long!) starting phase, where the probability of stopping is larger than 0.9, the
Boltzmann sampler becomes efficient. In other words, Boltzmann sampling is linear, but with a
constant depending on the maximum unary height which grows very quickly: The recursive form
of the specification of lambda-terms and their varying behaviour makes them not well amenable
to random generation with a Boltzmann sampler.

2For large sizes and for the sake of readability, we have not indicated the edges between a unary node and the
leaf labels.
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Figure 4: Left: the probability that the singular Boltzmann sampler ΓP(k,135) of objects in P(k,135)

stops immediately,. Middle: the probability that the sampler ΓP(k,135) calls ΓP(k−1,135). Right:
the probability that the sampler ΓP(k,135) independently calls 2 generators ΓP(k,135).

We have thus turned to the recursive method. Using the Maple package Combstruct, we have
been able to generate quickly enough lambda-terms of size 200 and unary height bounded by
200–which means that there is de facto no restriction on the unary height of the lambda-term.
Figure 5 shows what can be considered as a “generic” lambda-term for this size.

Figure 5: Left: a lambda-term of size 200. Middle: its profile. Right: the average profile (red)
computed over 500 random lambda-terms, compared with the average profile for plane binary
trees (blue: the Airy function)

Both classes, the one with bounded unary height and the one where all bindings have bounded
unary length, can be used to approximate generic lambda-terms. But unfortunately, also in the
case of bounded unary length of bindings we are facing the same difficulties when trying to generate
them with a Boltzmann sampler. The probabilities for generating leaves, unary and binary nodes
looks very similar to Figure 4. This fact can be explained as follows: For both classes of restricted
lambda terms, the dominant radicand is either close or equal to the innermost radicand. But the
Boltzmann sampler generates these from outside inwards. That is meant in the following sense:
Each square-root is the analytical analogue of the lifting from one unary level to the next one
(cf. (18) and (19) in order to see this). The Boltzmann sampler builds an object by starting
from the root and attaching more and more nodes. So, the head of the term, i.e. the subtree
comprising all nodes of unary height zero, is precisely the object corresponding to the outermost
root; and this is generated before the nodes with larger unary height. But note that the generating
function of the class of heads has a larger dominant singularity. Hence the tuning parameter of the
Boltzmann sampler is far away from this singularity, thus giving the sampler a strong bias towards
stopping. On the other hand, moving the parameter into an interval where the sampler works
efficiently means that it is outside the domain of analyticity of the generating function associated
with lambda-terms. This implies that we have a positive probability that the sampling process
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never stops. So the sampler becomes even more inefficient than with the badly chosen tuning
we had before moving it to the allegedly better region. Bodini et al. [11] developed a general
framework for Boltzmann sampling for which tuning parameters outside the region of convergence
of the associated generating function can be used. This relies on anticipated rejection and might
help to improve the Boltzmann samplers for generating random lambda-terms.

For restricted Motkzin trees the situation is totally different, because the dominant singularity
comes from the outermost radicand. Thus the Boltzmann sampler starts to generate the object
by generating subobjects corresponding to the root which determines the singularity, and we can
choose the tuning parameter so that it in the optimal region.

8.2 Shape of a typical lambda-term
Being able to draw repeatedly random lambda-terms allows us to make tentative conjectures on
their various parameters: profile, height, etc.

Figure 6: Distribution of lambda-terms of size n ∈ [1, . . . , 198] and unary height k ∈ [1, . . . , 98]

We have plotted in Figure 6 the ratio between the number of lambda-terms with unary height
exactly k and size n, and the number of lambda-terms of size n (without restriction on the
height). The figure suggests that, for any given size n, the unary height is close to a Gaussian
distribution. In particular, this gives some experimental explanation to the change of difficulty
which we encountered when generating terms of small unary height (size about 10 000, unary height
bounded by 8) and terms of fairly large unary height (size about 10 000, unary height bounded by
135): The wave indicates the “good” estimate for the number of abstractions in a lambda-term;
for instance, if we consider lambda-terms of size 198, then the vast majority of these terms has a
unary height between 25 and 50.

Figure 5 shows a generic lambda-term, its profile (number of nodes at each level) and the
profile averaged on 500 random lambda-terms, together with the average profile of a plane binary
tree, which is up to scaling identical with that of Motzkin trees since both tree classes are simply
generated. From our simulations we can make several empirical observations:
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• The distribution of the profiles is poorly concentrated (this is also the case for plane binary
trees).

• The levels containing the larger number of nodes are much farther from the root than in
plane binary trees.

• A simulation of the distribution for the total (unary) height also shows a clear difference
to plane binary trees: The average (unary) height seems to grow almost linearly (actually
proportional to n/ log n), not proportional to

√
n as the height of binary trees or the unary

height (and also the height) of Motzkin trees. Accordingly, the width of lambda-terms
appears to grow as log n.

• A random lambda-term usually begins with a large number of successive unary nodes inter-
spersed with a few binary nodes; most binary nodes appear further down.

Figure 3 shows the underlying Motzkin tree of a large lambda term of bounded unary height
(the bound is 8) and its profile. Simulations for the case of bounded unary length of binding lead
to similar pictures. Certainly, one of the reasons is that the bound 8 is still very small to exhibit
a visible qualitative difference between the two classes of lambda-terms. On the other hand, it is
also possible that the shape of the underlying Motzkin tree is too similar in both models if k is
relatively small.

Figure 7: A random Motzkin tree of size 8368 and unary height ≤ 8 and its profile.

Figure 8: A random Motzkin tree of size 11995 and unary height ≤ 100 and its profile.
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In contrast to this is the behaviour of Motzkin trees of bounded unary height. As Figure 7
shows, the position of most of the unary nodes seems to be near the leaves whereas in a random
lambda-term of bounded unary height most the unary nodes form a string starting at the root
(cf. Figure 5).

9 Conclusion and perspectives
In this paper we have studied several classes of lambda-terms; see also [6] for further classes. It
is clear that allowing pointers from unary nodes to leaves is the main factor that determines the
complexity of such structures, and the more unary nodes we allow, the farther we are from trees.
Indeed, allowing pointers from internal nodes to leaves amounts to leaving the realm of trees for
that of directed acyclic graphs. As regards the enumeration of restricted classes, bounding the
number of unary nodes as well as bounding the unary length of bindings (which is locally bounding
the number of levels of nesting for abstractions) leads to an asymptotic behaviour that resembles
that of trees (of type n−3/2ρn), even though the latter is already of considerable combinatorial
complexity. In contrast, bounding the unary height (which means globally bounding the number
of levels of nesting for abstractions) exhibits an unusual behaviour.

Among other facts, we have discovered the unexpected behaviour of the position of the dom-
inant radicand, which jumps according to some function behaving as log(log(k)), with k being
the bound for the unary height of a lambda-term. Theorem 3 characterizes precisely these jumps
and the asymptotic number of lambda-terms with bounded unary height. The enumerative result
looks tree-like unless the bound for the unary height belongs to the special sequence (Nj)j≥1.

The fact that the generating function has a nested square-root representation, but the posi-
tion of the dominant radicand depends on the specific restriction appeared also in our studies of
Motzkin. We studied them for comparison reasons since they form the underlying structure of
lambda-terms. Regarding the asymptotic enumeration results, they exhibit the tree-like pattern,
except if we impose a very unnatural shape: In the case where all leaves have to be at the same
unary height we observe a different singularity of different type. In this case all radicands are
dominant, as opposed to the other cases where either the innermost or the outermost radicand is
dominant.

In contrast to this stands the behaviour of lambda terms of bounded unary height where
the position of the dominant radicand is depending on the bound for the unary height. This
phenomenon requires further explanation.

Further investgations indicate that the strange jumps in the behaviour are related to the
distribution of the leaves in a lambda-term with bounded unary height. It seems that they are
concentrated in the last few levels (level counting w.r.t. unary height) while the lower levels
contain almost no leaves. The number of these levels seems to be doubly logarithmic in the size
of the terms and whenever k = Nj for some j, then a new level “enters”, meaning that it contains
then a significant number of leaves. So, the special values of k are those where a transition takes
place from ` to ` + 1 levels, filled with almost all the leaves of the lambda-term. In lambda-
terms belonging to the class where all bindings have bounded unary length we expect that the
distribution of the different types of nodes (unary, binary and leaves) is more uniformly distributed
within their underlying Motzkin trees than in the bounded unary height case. This is indicated
by generation of small objects (size 100-200, cf. Figure 9).

A byproduct of our work concerns Boltzmann samplers: By trying to use them for the random
generation of lambda-terms, we have pushed them to their limit. It turned out that Boltzmann
samplers have serious difficulties to generate generic lambda-terms of large size. The same is true
if the unary height or the length of the bindings is bounded. From an analytic view point, the
reason is certainly that the dominant singularity does come from radicands lying in a deep level
of nestings. Another reason might be that the multiplicative constants in the asymptotic main
terms decrease so rapidly with growing k. We analyzed these constants exhaustively for the case
with bounds on the binding length, and for k = Nj in the bounded unary height case. It remains
an open problem to carry out a precise analysis for all k and to understand those irregularities
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Figure 9: Left: an underlying Motzkin tree of a lambda-term with bounded unary height, Right:
an underlying Motzkin tree of a lambda-term bounded unary length of bindings.

discussed in Section 7. We feel that it might be also possible to improve Boltzmann random
generation, when we wish to apply it to combinatorial structures for which Boltzmann samplers
mostly produce either small or infinite objects. Recently, a framework for Boltzmann sampling
has been developed by Bodini et al.[11] which generalizes the existing one in a direction which
might help to overcome some of the difficulties we are facing in the generation of lamda-terms.

We next mention that our approach can be extended to study formulas of quantified logic:
Instead of a single type of unary nodes, we have as many types as different quantifiers (usually
two: ∀ and ∃; l in general). We also have as many types of binary nodes as there are binary
connectors (e.g., two when we consider the connectors ∧ and ∨; h in general); here we have
studied the case l = h = 1. We expect that allowing different types of unary nodes will introduce
only a multiplicative coefficient in our results, whereas allowing different types of binary nodes
will change the singularities and thus the exponential growth.

Finally, in terms of average properties and growth, lambda-terms widely differ from the usual
models for trees such as simple families [40] or increasing trees [4], for which we know the behaviour
of classical parameters: number of trees of given size, profile, etc. Indeed they seem to behave,
in some sense, like “ornamented” paths, i.e. long strings onto which relatively small subterms are
grafted.

Of course, such results need to be explained and quantified more rigorously. Let us also mention
that the enumeration of (unrestricted) lambda-terms is still an open problem, which has to be
solved in order to study such parameters as the (average) unary height, the profile, etc.

An interesting question is the probability that a random lambda-term is in normal form. We
are currently studying this problem for restricted classes of lambda-terms and hope to give results
in a forthcoming paper.

Acknowledgement. The authors thank Pierre Lescanne for pointing out reference [47].
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