
And/Or trees revisited

B. Chauvin ∗, P. Flajolet †, D. Gardy ‡, B. Gittenberger §

October 9, 2003

Revised version october 2003

Abstract

We consider boolean functions over n variables. Any such function can
be represented (and computed) by a complete binary tree with and or or
in the internal nodes and a literal in the external nodes, and many dif-
ferent trees can represent the same function, so that a fundamental ques-
tion is related to the so-called complexity of a boolean function: L(f) :=
minimal size of a tree computing f .

The existence of a limiting probability distribution P (.) on the set of and/or
trees was shown by Lefmann and Savicky [8]. We give here an alternative
proof, which leads to effective computation in simple cases. We also consider
the relationship between the probability P (f) and the complexity L(f) of a
boolean function f . A detailed analysis of the functions enumerating some
sub-families of trees, and of their radius of convergence, allows us to improve
on the upper bound of P (f), established by Lefmann and Savicky.

1 Introduction

Random And/Or boolean formulas and functions play an important rôle in the lit-
erature of theoretical computer science, and one of the fundamental questions they

∗LAMA, CNRS UMR 8100, Université de Versailles Saint-Quentin, 78035 Versailles Cedex,
France.

†INRIA Rocquencourt, Domaine de Voluceau, 78153 Le Chesnay, France.
‡PRISM, CNRS FRE 2510, Université de Versailles Saint-Quentin, 78035 Versailles Cedex,

France.
§Department of Geometry, Technische Universität Wien, Wiedner Hauptstraße 8-10/113, A-

1040 Wien, Austria.

1



2

raise is that of their representation by a data structure such as a tree or a circuit.
Some properties of a representation, such as its size, are actually properties of the
associated boolean function, and estimating the usefulness of a given representation,
e.g. its average size, quickly leads to investigating probability distributions on some
space of boolean functions.

Several recent works have attempted to define probability distributions for suit-
able models of such functions. For instance, Friedman [6] investigated distributions
involved in the random k-SAT problem, where iterated conjunctions of small dis-
junctions appear. A sequence of probability distributions defined on formulas of the
same size and with the same tree structure appear in his model. Paris et al. [11]
show that the proportion prn,k of boolean formulas f on n variables which take the
value true for k affectations of the variables (and the value false for the remaining
22n − k affectations) has a well defined limit, when the number n of boolean vari-
ables and the formula size both tend to infinity; this amounts to defining the limiting
probability distribution of the prn,k. Closely related to the present work, and indeed
at its origin, are some papers by Savicky et al. Savicky and Lefmann [8] obtain a
relation between the probability of a boolean function and its complexity. Further
papers [15, 16] establish relationships between functions of given limited complexity
and some probability distributions or some enumeration results. By contrast, earlier
results of Savicky [13, 14] present a way of iteratively building boolean formulas,
which leads to a limiting uniform distribution on the set of boolean functions on
a fixed number of variables, and is closest in spirit to the work of Friedman [6].
Woods [17] presents, among other results relative to logical sentences, a model of
boolean formulas which is closely related to our approach, both in the tools used
(generating functions) and in the final result (existence of a limiting distribution on
the set of boolean functions).

We consider in the present paper the model for boolean functions presented for
example by Lefmann and Savicky in [8], where the probability of a boolean function
is proportional to the number of boolean formulas of a given type which compute
it. The boolean functions are defined on n variables x1, x2, . . . , xn. Since the literals
are then x1, x̄1, x2, x̄2, . . . , xn, x̄n, there are 22n

such boolean functions. All along the
paper, n is fixed, and we consider some special values in sections 2.2 to 2.4.

In such a context, formulas of size m with n variables are represented by labeled
rooted binary trees where the m internal nodes are labeled by and and or and the
m + 1 external nodes by a literal, i.e., a variable or its negation. Each of the m
inner nodes is labeled by and or or with equal probability 1/2 and independently of
the other nodes; each leaf is labeled by a literal, chosen according to the uniform
distribution on the 2n literals and independently of the labeling of all the other



3

nodes. Many different trees can compute the same function, so that a fundamental
question is to evaluate the so-called complexity of a boolean function, which we
define as

L(f) := minimal size of a tree computing f.

In this paper, we define the size of a binary tree as the number of its internal nodes1.
We should also mention that several different complexity measures for boolean func-
tions have been proposed in the literature; see e.g. [2] for a recent survey.

The aim of this paper is dual: a better understanding of the limiting probabil-
ity distribution on the space of boolean functions, and a study of the relationship
between the probability of a given boolean function and its complexity. For the first
topic, we need to make precise what we mean by the probability of a given function.
As suggested by Woods [17] and further argued by Lefmann and Savicky [8], a nat-
ural definition of the limiting distribution is as the limit of the uniform distribution
on and/or trees of finite size approaching infinity. More precisely, for any fixed m
there is a uniform distribution Pm on the set of and/or trees with n variables and m
internal nodes. Let f be some boolean function and define t(f, m) as the number of
trees of size m that compute f . Then the probability of this function is by definition

Pm(f) =
t(f, m)

Tm

,

where Tm is the total number of and/or trees with size m (we give later on a simple
formula (3) for Tm). For simplicity’s sake, we use the same notation Pm for the
distributions on trees and on functions, although the last one is actually the image
probability of Pm by the canonical application which associates to a tree the boolean
function it computes.

Lefmann and Savicky proved [8, Theorem 2.3] that these distributions Pm have
a limit P when m goes to +∞, which they describe as a biased tree distribution.
Section 2 of this paper is devoted to an alternative description of this limiting
distribution P and to some explicit computations for the cases n = 1, 2 or 3 using
generating functions. The case of general n relies on results for systems of algebraic
equations due to Drmota [3], Lalley [7] or Woods [17].

The combined approach by generating functions and branching processes also
allows us to define a second probability distribution on boolean fonctions: starting
from a critical branching process, we label at random its internal and external nodes

1We can also choose the number of external nodes or the total number of nodes. In Lefmann
and Savicky’s paper [8], the size is the number of external nodes, so that there is a +1 shift when
comparing our results to theirs.



4

to obtain a random and/or tree, i.e. a random boolean function. We present this ap-
proach in Section 2.6, together with some numerical computations and comparisons
with our first probability distribution P .

The second topic, namely the study of the relationships between P (f) and L(f),
improves on the relation proved by Lefmann and Savicky:

1

4
.
( 1

8n

)L(f) ≤ P (f) ≤ (1 + O(1/n)) exp
(
−c

L(f)

n3

)
. (1)

The lower bound seems to be tight, but the upper bound can be improved, to yield
an order n−2 instead of n−3. Following Lefmann and Savicky, our method is to start
from Markov inequality: for any function f and for ε > 0, the definition of the
complexity gives (again using the same notation for both distributions P on trees
and on functions, as we did for Pm)

P (f) = P (the tree τ computes f) ≤ P ((1 + ε)‖τ‖ ≥ (1 + ε)L(f))

≤ E[(1 + ε)‖τ‖]

(1 + ε)L(f)
.

The upper bound in (1) can be improved as ε becomes larger. That means a better
control of E[(1+ ε)‖τ‖], in other words a fine evaluation of the radius of convergence
of the generating function of the size of a tree. This is achieved in Section 3 where
the following theorem is proved.

Theorem 1 Almost surely,

1

4
.
( 1

8n

)L(f) ≤ P (f) ≤ (1 + O(1/n)) exp
(
−c

L(f)

n2

)
. (2)

Finally we discuss our results, both on the improvement on Lefmann and Savicky’s
bound for the complexity and on the probability distributions, in Section 4, where we
also consider possible extensions to other models of boolean formulae, which would
take into account the commutativity and associativity of the boolean operators.

2 Enumerating functions and limit distribution

for and/or trees

We recall that the generating function for binary trees, counted by the number of
(internal and external) nodes, satisfies the equation

b(z) = 1 + z b(z)2,



5

which gives

b(z) =
1−

√
1− 4z

2z
.

Now define the set T of and/or trees, assuming that the number of variables is n:

T = ⊕1≤i≤n({xi}+ {x̄i})⊕ (∧, T , T )⊕ (∨, T , T );

hence the equation on the generating function for these trees enumerated by number
of internal nodes:

T (z) = 2n + 2zT (z)2,

which gives

T (z) =
1−

√
1− 16nz

4z
.

This gives readily the number of and/or trees with m internal nodes (a formula
already given in former papers [8, 11]):

Tm := [zm]T (z) = 2m(2n)m+1Cm, (3)

with Cm the Catalan number: Cm = (2m)!/m!(m + 1)!.

2.1 From the distribution on trees to the distribution on

boolean functions

We assume in this section that the probability distribution over and/or trees on n
variables and of size m (i.e. number of internal nodes, or number of leaves minus 1) is
uniform. Let us stress again that this distribution depends on m, and that through-
out this section n is a fixed parameter. This induces a probability distribution Pm

over the boolean functions on n variables: Let t(f, m) be the number of trees of size
m that compute a given boolean function f 2; then the probability of this function
is

Pm(f) = t(f, m)/Tm.

Assume that we know the generating function tf (z) =
∑

m t(f, m)zm enumerating
the trees that compute the function f ; then the probability Pm(f) is simply

Pm(f) =
[zm]tf(z)

[zm]T (z)
.

2Both the numbers of trees Tm and t(f, m) and the distribution Pm(f) depend on the parame-
ter n, which we do not mention explicitely unless necessary.



6

Hence knowing the asymptotic behaviour, as m tends to infinity, of the coefficients
of the functions tf (and of T ) will give us the existence of a limiting distribution
on the boolean functions and possibly a way of computing it. Now Lefmann and
Savicky [8, Thm. 2.3] simply assert the existence of this limiting distribution:

P (f) = lim
m→+∞

Pm(f).

In the sequel, we first examine how we can explicitely compute the limiting distri-
bution for n = 1...3, before turning to the case of general n.

Remark: One might wish to study a different probability distribution P≤m(f),
defined as the ratio of the number of trees of size smaller than or equal to m that
compute the boolean function f , over the total number of trees of size smaller than or
equal to m. Such an approach has the advantage that the supports of the probability
distributions P≤m, for increasing m, are increasing subsets of the set of all (finite
or infinite) binary trees labelled by ∧, ∨ and literals. By the Kolmogorov existence
theorem [1, Sect. 36], we know the existence of a limiting probability distribution
on the set of finite and/or trees. Using generating functions, we can write

P≤m(f) =
[zm]{tf(z)/(1− z)}
[zm]{T (z)/(1− z)} .

Assume that the function tf (z) has a radius of convergence 1/16n (see below); as
the function T (z) has the same radius of convergence 1/16n, we see that dividing
by 1 − z introduces, in both cases, a singularity at 1, larger than the radius of
convergence; hence the asymptotic behaviour is determined by the singularities at
1/16n and the asymptotic limit of P≤m(f) is exactly the limit of Pm(f) (although
the values for finite m differ).

2.2 Case of a single variable

In this part, we consider what happens when there is a single variable x, and two
literals x and x̄. There are four functions:

f1 = False; f2 = x̄; f3 = x; f4 = True.

Let us denote by Af the set of trees computing the boolean function f . We have
that

ATrue = (∧, ATrue, ATrue)⊕ (∨, Ax, Ax̄)⊕ (∨, Ax̄, Ax)

⊕(∨, ATrue, A)⊕ (∨, A, ATrue) \ (∨, ATrue, ATrue).



7

The substraction of the last term comes from the fact that the two preceding terms
both contain the trees (∨, ATrue, ATrue), which we must count only once. We get an
equation on the generating functions, where tf is the enumerating g.f. for the trees
that compute the boolean function f , and where T is, as above, the enumerating
function for all trees:

tTrue(z) = 2ztx(z)tx̄(z) + 2ztTrue(z)T (z). (4)

By symmetry (exchange ∨ with ∧ and True with False, in the equation defining
ATrue, to get the equation on AFalse),

tFalse(z) = 2ztx(z)tx̄(z) + 2ztFalse(z)T (z). (5)

Now consider the set of trees that compute the function f3 = x:

Ax = {x} ⊕ (∧, Ax, Ax)⊕ (∧, Ax, ATrue)⊕ (∧, ATrue, Ax)

⊕(∨, Ax, AFalse)⊕ (∨, AFalse, Ax)⊕ (∨, Ax, Ax)

Hence the equation on the generating functions:

tx(z) = 1 + 2ztx(z)2 + 2ztx(z)tTrue(z) + 2ztx(z)tFalse(z). (6)

By symmetry, we get a similar equation for the function f2 = x̄:

tx̄(z) = 1 + 2ztx̄(z)2 + 2ztx̄(z)tTrue(z) + 2ztx̄(z)tFalse(z). (7)

Now we solve this system of four equations in four variables, tTrue, tFalse, tx and tx̄,
to get first (obvious) that tTrue = tFalse and tx = tx̄, then that

tTrue(z) =
2zt2x(z)

1− 2zT (z)
,

and finally a polynomial equation on the function tx(z):

1 + 2zy2 − y + 8
z2y3

1− 2zT (z)
= 0,

with T (z) = (1−
√

1− 16z)/4z. Solving, we get three solutions for this equation:

2

1−
√

1− 16z
;

−1

8z

(
1 +

√
1− 16z ±

√
2 + 16z + 2

√
1− 16z

)
.



8

The solution tx(z) is the (unique) function such that its value at z = 0 exists and is
equal to 1; hence

tx(z) =
−1

8z

(
1 +

√
1− 16z −

√
2 + 16z + 2

√
1− 16z

)
.

Expanding this expression around the singularity z0 = 1/16, we get

tx(z) = 2(
√

3− 1) + 2

(
1√
3
− 1

)√
1− 16z

+2

(
7
√

3

9
− 1

)
(1− 16z) + O

(
(1− 16z)3/2

)
,

and a transfer lemma [4] gives readily

t(x, m) = [zm]tx(z) ∼ 22m+2

√
3− 1√

3
Cm−1.

We finally obtain the asymptotic probability of the function x by dividing the num-
ber t(x, m) of trees computing this function by the total number of trees Tm:

Pm(x) ∼
√

3− 1√
3

.
m + 1

2m− 1
→

√
3− 1

2
√

3
= 0.21132486....

Now the function enumerating the trees that compute the function True is

tTrue(z) =
1

8z

(
2−

√
2 + 16z + 2

√
1− 16z

)
,

which gives for Pm(True) an asymptotic probability equal to 1/2
√

3 = 0.28867513...
In view of future generalization, let us look again at the initial system of four

equations: We can rewrite each equation in a standard form

tf = 1f literal + ztF (Af,∨ + Bf,∧)F,

where F is the vector (tFalse, tx, tx̄, tTrue), and the matrices Af,∨ and Bf,∧ are ob-
tained by a process to be described in Section 2.5, and are given below for the



9

functions True and x (the other cases are symmetrical):

BTrue,∧ =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 ATrue,∨ =




0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1




Bx,∧ =




0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 0


 Ax,∨ =




0 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0




2.3 Functions on two variables

We have now two variables x1 and x2, four literals and sixteen boolean functions.
Writing down the recurrence relations on the sets Af and translating them into
generating functions gives us a system of sixteen algebraic equations, each of degree
two. Symmetries (the generating function for a boolean function f is equal to the
generating function for ¬ f ; the variables x1 and x2 can be exchanged; the generating
functions for the boolean functions l1 ∧ l2 and l1 ∨ l2, where the li are the literals
on x1 and x2, are the same) reduce it to a system of order 4, where a, b, c and d are
the generating functions respectively for the boolean fonctions True, x1, x1∧x2 and
x1 xor x2

3: 



a = 2zaT + 4zb2 + 20zc2 + 2zd2 + 16zbc + 8zcd;
b = 1 + 2zb2 + 4zc2 + 4zab + 8zbc;
c = 2zb2 + 8zc2 + 4zac + 8zbc + 4zbd + 4zcd;
d = 4zc2 + 2zd2 + 4zad + zcd.

Furthermore, we have that

T = 2a + 4b + 8c + 2d. (8)

The solution of this system will give us closed-form expressions of the functions,
which can be readily expanded around the singularity z = 1/32, and finally exact
and approximate expressions for the probabilities. We leave the details to the reader
and give for example the function d(z):

d(z) =
1

8z

(
−1− τ0 + 2τ1 −

√
τ2 +

√
8τ3

)
,

3We denote by x1 xor x2 the boolean function (x1∧x̄2)∨(x̄1∧x2) . This is simply the + operator
on {0, 1}.



10

with τ0 =
√

1− 32z, τ1 =
√

2 + 2τ0 and

τ2 = 2(1 + τ0)(2− τ1)− 32z;

τ3 = (1 + τ0)(5− 2τ1) + 16z(−3 + 2τ0 + τ1 − τ0 τ1)− 128z2.

Now, if we have an expansion tf = αf − βf

√
1− z/ρ + O(z− ρ) with βf > 0 at the

singularity ρ = 1/32, then the probability of the function f is (the details are given
in Section 2.5)

P (f) =
βf

T (ρ)
= βf/8.

Define

α = (2
√

2− 1)2 = 9− 4
√

2;

β = −129 + 90
√

2 + 61
√

3− 38
√

6;

γ2 = (
√

3− 1)(2
√

2 +
√

3) = 3− 2
√

2−
√

3 + 2
√

6;

δ =

√
6− 2

√
2 +

√
3− 2

√
6 =

1√
2
(2
√

2− 1−
√

3);

ν = 153− 117
√

2 + 61
√

3− 38
√

6.

We obtain the following asymptotic probabilities:

P (True) =
β

6αγ
√

2
;

P (x1) = 1− 3

2
√

2
+ P (True)− ν

6αδ
= P (True)− (

√
2− 1)2

2
√

2
− ν

6αδ
;

P (x1 ∧ x2) =

√
2− 1

2
− P (True) +

ν

12αδ
=

ν

12αδ
− P (x1xorx2);

P (x1xorx2) = P (True)−
√

2− 1

2
.

Floating values are easy to compute:

P (True) = .20940201...; P (x1) = .06717345...;

P (x1 ∧ x2) = .03848896...; P (x1 xor x2) = .00229522...

In other terms, a random boolean function is one of the constant functions (True or
False) almost 42% of the time, a literal 27% of the time, a function of the kind l1∧ l2
in 30% of the cases, and either x1 xor x2 or its negation less than .5% of the times.
The average complexity of a random boolean function under this probability distri-
bution is 2/

√
3−

√
2 + 1 = 0.740486...



11

2.4 Functions on three variables

We consider here the case where n = 3. There are fourteen different classes of
boolean functions; in each class the same generating function enumerates the binary
trees associated to the boolean functions. Let us denote these fourteen generating
functions by the column vector t(z) = t(t1(z), . . . , t14(z)). Then t(z) satisfies a
functional equation of the form

t(z) = Q(t(z)), (9)

where each component of the vector-valued function Q is quadratic in each of the
ti (for details see section 2.5). By the Drmota-Lalley-Woods theorem (see again
section 2.5) we know that each of the functions ti admits a representation of the
form

ti(z) ∼ αi − βi

√
1− 48z, z → 1

48

Thus for z = 1/48 the system (9) has a unique solution (α1, ..., α14). Hence the fixed
point can be obtained by iteration, starting from a vector whose coordinates are all
equal to zero.

In order to compute the values βi, i = 1, . . . , 14, observe that Drmota [3] showed
that the vector (βi)i=1,...,14 is an eigenvector with eigenvalue 1 of the Jacobian

∂Q

∂t
=

(
∂Qi

∂tj

)

i,j=1...14

evaluated at z = 1/48. Since 1 is an eigenvalue of multiplicity 1 at z = 1/48, we
can easily compute the eigenvector and normalize it to obtain the results presented
below. We give, for each class, the generic form of boolean functions belonging to
it (li ∈ {xi, x̄i} for i = 1..3; other functions of the class are obtained by permuting
literals or exchanging ∨ and ∧), its cardinality (number of boolean functions), the
complexity and probability common to all the functions of the class, and finally the
cumulated probability of the class. The classes are in decreasing order of individual
probability. The values given below were obtained with 30.000 iteration steps, and
rounded to three digits.



12

Boolean Function Card. Compl. Indiv. Prob. Cumul. Prob.

True 2 1 0.165 0.330
l1 6 0 0.0314 0.188
l1 ∧ l2 24 1 0.00995 0.239
l1 ∧ l2 ∧ l3 16 2 0.00768 0.123
(l1 ∧ l2) ∨ l3 48 2 0.00211 0.101
(l1 ∧ l3) ∨ (l̄1 ∧ l2) 24 3 0.28710−3 0.00689
l1 xor l2 6 3 0.19210−3 0.00115
(l1 xor l2) ∨ l3 24 4 0.15710−3 0.00377
(l1 ∧ (l2 ∨ l3)) ∨ (l2 ∧ l3) 8 4 0.14910−3 0.00119
(l1 ∧ l2 ∧ l3) ∨ (l̄1 ∧ l̄2) 48 4 0.96210−4 0.00462
(l1 ∧ l2 ∧ l3) ∨ (l̄1 ∧ l̄2 ∧ l̄3) 8 5 0.56010−4 0.44810−3

(l1 ∧ (l2 ∨ l3)) ∨ (l̄1 ∧ l̄2 ∧ l̄3) 24 5 0.21710−4 0.52110−3

(l1 ∧ (l2 xor l̄3)) ∨ (l̄1 ∧ (l2 ∨ l̄3)) 16 7 0.27910−5 0.44610−4

(l1 xor l2) xor l3 2 9 0.81410−7 0.16310−6

Again, we notice that this model gives a predominant place to constants and to
very simple functions: a function has a probability 0.330 to be constant and 0.757 to
have complexity 0 or 1; the functions of complexity 2 have a global 0.224 probability;
the probability that the complexity is equal to 3 drops to 0.008, and the cumulated
probability of functions with complexity 4 or larger is 0.0106. The average complexity
of a random boolean function under this model is equal to 1.08.

2.5 General case

For each boolean function f on n variables we can write an equation on the set Af

of trees computing it:

Af = 1{f literal} ⊕
∑

g,h:f=g∨h

(∨, Ag, Ah)⊕
∑

g,h:f=g∧h

(∧, Ag, Ah).

This equation on sets of trees translates into an equation on the generating functions
enumerating these sets. We obtain

tf (z) = 1{f literal} + z
∑

g,h:g∨h=f

tg(z) th(z) + z
∑

g,h:g∧h=f

tg(z) th(z).. (10)

The 22n

boolean functions on n variables can be defined by their truth table: We
associate to each function f a word (f [1], ..., f [p]) of length p = 2n over the alphabet



13

{0, 1}, representing its value for each of the p assignments of values 0 or 1 to the n
variables xi, i.e. a column of the truth table. The alphabetical order of the words
also gives an ordering on the functions of the set F of boolean functions, which we
denote then by f1, ..., f2p : f1 = (0, ..., 0) = False, f2 = (0, ..., 0, 1) = x̄1∧ x̄2∧ ...∧ x̄n,
and ¬fi = f2p−i.

Now the relations f = g ∨ h and f = g ∧ h translate into relations on the
corresponding words: For each j, we have that f [j] = g[j]+h[j] (for ∨, with 1+1 = 1)
or f [j] = g[j].h[j] (for ∧). For example, for n = 3, a boolean function is defined by
a word of {0, 1}8; the function f = x1 ∨ x3 can equivalently be defined by the word
(0, 1, 0, 1, 1, 1, 1, 1); let g = (0, 0, 0, 1, 0, 0, 0, 1) (g = x2 ∧ x3); then the functions h
such that f = g ∨ h are all the functions (0, 1, 0, ∗, 1, 1, 1, ∗), where ∗ stands for 0 or
1, which gives us four possible functions.

Define the vector f = (tf1
, ..., tf2p ) of the generating functions; furthermore

define, for each boolean function fk, two matrices

Afk
= (ai,j(fk)) , Bfk

= (bi,j(fk)) ,

with ai,j(fk) = 1 if fk = fi ∨ fj and 0 otherwise, and with bi,j(fk) = 1 if fk = fi ∧ fj

and 0 otherwise. Then we can write the equation (10) as

tf(z) = 1{f literal} + ztf .(Af + Bf ).f (11)

= 1{f literal} + z
∑

1≤i,j≤2p

(ai,j + bi,j) tfi
(z) tfj

(z), (12)

where tf is the vector obtained from f by transposition. Now we have such an
equation for each of the 2p functions f , which gives a system of 2p algebraic equations
on 2p unknown functions fi.

Theorem 2 The limiting probability distribution of Pm(f), m → +∞, exists and
can be computed.

Proof
If we instantiate the equation (11) for each of the fi, we obtain a nonlinear polyno-
mial system −→y = Φ(−→y ), where each component has nonnegative coefficients, and
such that the dependency graph is connected and that the system is a-proper (i.e.
a certain Lipschitz condition is satisfied). Then, by results on systems of algebraic
equations (see Drmota [3], Lalley [7] or Woods [17]), all component solutions are
algebraic with a common singularity, and we can expand the functions around their
singularity to get the asymptotic behaviour of the probabilities Pm(f) for large m.
We give below the version due to Flajolet and Sedgewick [5, Th. 8.13, p. 71].



14

Positive polynomial systems. Consider a nonlinear polynomial system −→y = Φ(−→y )
that is a-proper, a-positive and a-irreductible. In that case, all component solutions yj

have the same radius of convergence ρ < ∞. Then, there exist functions hj analytic
at the origin such that

yj = hj

(√
1− z/ρ

)
(z → ρ−) (1 ≤ j ≤ 2p).

In addition, all other dominant singularities are of the form ρω with ω a root of
unity. If furthermore the system is a-aperiodic, all yj have ρ as unique dominant
singularity. In that case, the coefficients admit a complete asymptotic expansion of
the form

[zn]yj(z) ∼ ρ−n

(
∑

k≥1

dkn
−1−k/2

)
.

In our case, it is easy to check that the system is non linear, a-proper, a-positive,
a-irreducible and a-periodic (the definitions come again from [5, Th. 8.13, p. 71]).
We can then apply the theorem: There exists a solution (tf1

, ..., tf2p ) to the algebraic
system; the tf have a common, strictly positive, radius of convergence ρ and a unique
dominant algebraic singularity at ρ < +∞, with an expansion around ρ

tf(z) = αf − βf

√
1− z/ρ + O(1− z/ρ), (13)

which gives by a transfer lemma [4]

t(f, m) = [zm]tf (z) = −βf [z
m]
√

1− z/ρ (1 + O(1/m)).

The radius of convergence is also the radius for the function T (z) =
∑

f tf (z); hence
ρ = 1/16n and

t(f, m) = βfCm−1ρ
−m21−2m(1 + O(1/m)).

Now we have that Pm(f) = t(f, m)/Tm; plugging in the value of Tm from equation
(3), we get

Pm(f) =
βf

4n
(1 + O(1/m)),

which provides another proof of the existence of the asymptotic distribution P . ut
Numerical computation of the asymptotic probabilities? The functions tf are

defined at ρ; plugging the values (13) for each f into the equations (10) and identi-
fying in each equation the coefficient of

√
1− z/ρ, we get a system of size 2p+1 on

the αf and βf , whose generic equations are
{

αf = 1{f literal} + ρ
∑

g∨h=f αg αh + ρ
∑

g∧h=f αgαh;

βf = ρ
∑

g∨h=f(αg βh + αh βg) + ρ
∑

g∧h=f(αg βh + αh βg).



15

Now this system can be solved numerically with the help of a Computer Algebra
System such as Maple; see the indications given in Section 2.4 for the special case
n = 3.

2.6 Yet another probability distribution

The terms αf that appear in the expansion (13) can be interpreted to give rise to a
different probability distribution π on the space of boolean functions.

Proposition 1 The probability of computing the function f , when we start from
a simple critical branching process (the probabilities that a node has 0 or 2 sons
are both equal to 1/2) and label the nodes randomly and independantly, to obtain a
random and/or tree, is

π(f) =
tf(ρ)

T (ρ)
=

αf

4n
.

Proof: Let τ be a random and/or tree obtained by considering a simple critical
Galton Watson process and labelling at random the nodes: We label the internal
nodes by ∧ and ∨ with equal probability, and the leaves by the 2n literals, again
with equal probability. Let τ̃ be the underlying unlabelled tree; almost surely τ̃ is
finite. Denote by |τ̃ | or |τ | its size (total number of nodes), and by ||τ || the number
of its internal nodes: |τ | = 2||τ || + 1. In this critical Galton Watson process, the
probability that the process stops at one node and the probability that the node has
two sons are both equal to 1/2; hence the probability that we obtain an unlabelled
tree τ̃ of size |τ̃ | is

Proba(τ̃) =
1

2|τ̃ |
.

Now the probability of a given labelled tree τ is obtained by multiplying the proba-
bility of τ̃ by the probability of the labelling, which is itself equal to the probability
2−||τ || of labelling the internal nodes as in τ , times the probability (1/2n)||τ ||+1 of
labelling the leaves:

Proba(τ) =
1

2|τ |
.

1

2||τ ||
.

1

(2n)||τ ||+1
.



16

Define π(f) :=
∑

τ computes f Proba(τ); we have that

π(f) =
1

4n

∑

τ computes f

(
1

16n

)||τ ||

=
1

4n

∑

m

t(f, m)

(
1

16n

)m

=
tf (1/16n)

T (1/16n)
=

αf

4n
.

It is interesting to compute the distribution {π(f)} for small n and to compare
it to the distribution {P (f)}. Numerical data suggest that the distribution π(f) is
even more strongly biased towards functions of low complexity, mostly literals, than
the distribution P , and that the average complexity of a random boolean function
under π(f) is less than half its average complexity under P . For example, n = 1
leads to

π(True) = 2−
√

3
2

= 0.1339745960...

π(x) =
√

3−1
2

= 0.3660254040...

The average complexity under this distribution is 2 −
√

3 = 0.268, versus 1/
√

3 =
0.577 under the distribution P .
For n = 2, we obtain (as in Section 2.3, we use γ =

√
3− 2

√
2 + 2

√
6−

√
3 and

δ = (2
√

2− 1−
√

3)/
√

2):

π(True) = 1− γ
2

= 0.0864216570...

π(x1) = 3√
2
− 1− γ

2
− δ√

2
= 0.1595538420...

π(x1 ∧ x2) = 1+γ
2
−
√

2 + δ
2
√

2
= 0.0234588600...

π(x1 xor x2) =
√

2− 1+γ
2

= 0.000635219...

The average complexity is equal now to 1 + 2(
√

2 +
√

3) = 0.364, to be contrasted
with 0.740, the average complexity under P (.).
Finally, the case n = 3 gives the following results, where for comparison purposes
we give both distributions P (f) and π(f), and where the weighted probabilities (for
π) are relative to the cumulative values of boolean functions in the fourteen classes:



17

Boolean Function P (f) π(f) Cumul. prob. for π(f)

True 0.165 0.0642 0.128
l1 0.0314 0.0994 0.596
l1 ∧ l2 0.00995 0.00776 0.186
l1 ∧ l2 ∧ l3 0.00768 0.00282 0.0451
(l1 ∧ l2) ∨ l3 0.00211 0.81710−3 0.0392
(l1 ∧ l2) ∨ (l̄1 ∧ l3) 0.28710−3 0.88010−4 0.00211
l1 xor l2 0.19210−3 0.67310−4 0.40410−3

(l1 xor l2) ∨ l3 0.15710−3 0.31410−4 0.75410−3

(l1 ∧ (l2 ∨ l3)) ∨ (l2 ∧ l3) 0.14910−3 0.32110−4 0.25710−3

(l1 ∧ l2 ∧ l3) ∨ (l̄1 ∧ l̄2) 0.96210−4 0.22010−4 0.00106
(l1 ∧ l2 ∧ l3) ∨ (l̄1 ∧ l̄2 ∧ l̄3) 0.56010−4 0.99910−5 0.79910−4

(l1 ∧ (l2 ∨ l3)) ∨ (l̄1 ∧ l̄2 ∧ l̄3) 0.21710−4 0.37010−5 0.88810−4

(l1 ∧ (l2 xor l̄3)) ∨ (l̄1 ∧ (l2 ∨ l̄3)) 0.27910−5 0.35410−6 0.56610−5

(l1 xor l2) xor l3 0.81410−7 0.76710−7 0.15310−6

We see that the distribution π(f) leads to literals almost 60% of the time, to
functions of complexity 1 in more than 31% cases, of complexity 2 less than 9%,
and that functions of complexity 3 or larger are less than 0.5%. Accordingly, the
average complexity under this distribution is 0.4998, again less than half the average
complexity 1.086 under the distribution P (.).
Comparing the two sets of values P (f) and π(f) for n = 1...3, we see that, apart
from the interversion of literals and constants, the relative order of boolean functions,
sorted in decreasing probability, is the same for the two distributions. Moreover, with
the exception of literals, we always have that π(f) < P (f). It would be desirable to
give a rigorous proof of this fact for all n, which is equivalent to αf < βf , with the
exception of literals where αl > βl.

3 Improving the bounds of Lefmann and Savicky

3.1 Lefmann and Savicky’s model

In [8, th 2.3], Lefmann and Savicky obtain a limiting distribution P , which is both
the limiting distribution of the uniform probability on finite trees of given size Pm,
when m goes to infinity, and the limiting distribution when k goes to infinity, of
some probabilities pk constructed by the machinery of segments. This second rep-
resentation leads to the following description of the limiting distribution P , as a



18

pruned infinite binary biased tree (the terminology comes from the branching liter-
ature, see [9] for instance). Start from a binary biased tree, in which there are two
types of nodes: c-nodes and n-nodes. All the nodes on the spine of the biased tree
(including the root), are c-nodes which reproduce always with two children, a c-node
and a n-node. The nodes that don’t belong to the spine are n-nodes, and they split
having no descendant with probability 1/2 and having two n-nodes children with
probability 1/2 (note that these critical branching subtrees are a.s. finite and are
those considered in Section 2.6).

PSfrag replacements

c

c

c

c

c

c

n n n

n

nnn

nnn

n

We then label internal nodes of the tree by ∧ (resp. ∨) with probability 1/2
(resp. 1/2) and external nodes with literals (each literal occurs with probability
1/2n). Finally we prune the tree: the idea is to propagate sets of conditions along
the branches of the tree, from the root to the leaves; when the set associated to a
node becomes no consistent, the subtree rooted at this node needs not be evaluated
at all.

We then define the pruning as follows: For a given and/or tree, let us mark the
internal nodes by conditions, with the following inductive procedure:

* if node v is the root, it is marked by a set ρ0 of conditions; ρ0 can be the
empty set ∅, as it happens further.

* if node v, marked by a set of conditions ρ, has two internal nodes as children,
then ρ is inherited by the children;



19

PSfrag replacements

c
n

v

ρ

ρ

ρ

* if node v, marked by a set of conditions ρ, has for children an internal node
and an external node containing a literal l, then

- if node v is labelled by a “and”, then the internal child node is
marked by ρ ∪ {l = True};

- if node v is labelled by a “or”, then the internal child node is marked
by ρ ∪ {l = False}.

PSfrag replacements

c
n
v
ρ

vv

ll

ρρ∧ ∨

ρ ∪ {l = True} ρ ∪ {l = False}

When applying this procedure to the whole tree, some sets of conditions associ-
ated to some nodes may no longer be consistent. In this case, the subtree beginning
at such a node does not influence the boolean function and thus it can be replaced
by any constant. By pruning the tree, such a subtree is deleted. It is easy to see that
the pruned tree is almost surely finite.

PSfrag replacements

c
n
v
ρ

v
l
ρ

∧
∨

ρ ∪ {l = True}
ρ ∪ {l = False}

v

∧∧

∧

∨

∅

X1

X2 X3 X1

{X1 = True}

{X1 = True}

{X1 = True}

{X1 = True; X1 = True}
non consistent

useless subtree



20

After pruning, standard simplifications rules (e.g. f∧f = f) can also be applied
to get a smaller marked tree. Finally, a tree τ gives a pruned tree τ̂ , then a simplified
tree τ̃ , and these three trees compute the same function f ∈ F , so that there is an
upper bound for the complexity of f :

L(f) ≤ ‖τ̃‖ ≤ ‖τ̂‖ .

In the following, for simplicity, we denote by τ (instead of τ̃) a pruned, simplified tree
and ‖τ‖ is the number of internal nodes of the tree τ associated with a consistent set
of conditions. The Markov inequality then gives a way of estimating the complexity:
for any function f ,

P (f) = P (tree τ computes f) ≤ P ((1 + ε)‖τ‖ ≥ (1 + ε)L(f))

≤ E[(1 + ε)‖τ‖]

(1 + ε)L(f)
.

This inequality yields a nontrivial bound as soon as 1 + ε is less than the radius
of convergence of the generating function of the size of a tree. That is why, in the
following, we are looking for a good evaluation of this radius. We get it by successive
approximations, both a truncation at height d, and a set of k conditions at the root.

3.2 Basic relations

For a tree τ and an integer d, let ‖τ‖d,k be the number of internal nodes in tree τ
at height at most d, when τ is a tree obtained by pruning according to a set of k
conditions at the root. The exact values of the conditions do not matter, only the
cardinality of the set of conditions does. Notice that 0 ≤ k ≤ n.

Define the two generating functions

Fd,k(z) := IE(z‖τ‖d,k/ the root of τ is a n− node);

Hd,k(z) := IE(z‖τ‖d,k/ the root of τ is a c− node) .

We need to investigate these generating functions and their recurrence relations,
especially the function H for k = 0 and for d → +∞ to get finally IE(z‖τ‖). We then
take z = 1+ε for ε as large as possible. From now on, we assume that z is a positive
real number.

The following relations are almost obvious, they are summarized in the following
lemmas.



21

Lemma 1 Starting from more conditions at the root gives a smaller pruned tree, so
that

‖τ‖d,k+1 ≤ ‖τ‖d,k

and consequently, the following inequalities on the generating functions Fd,k and Hd,k

hold for z ≥ 1
0 ≤ Fd,k+1(z) ≤ Fd,k(z); (14)

0 ≤ Hd,k+1(z) ≤ Hd,k(z) . (15)

Lemma 2 Cutting the tree at height d + 1 gives a larger tree than cutting at height
d:

‖τ‖d,k ≤ ‖τ‖d+1,k

so obviously for z ≥ 1
Fd,k(z) ≤ Fd+1,k(z);

Hd,k(z) ≤ Hd+1,k(z) .

The following recursions come from the structure of pruning the infinite tree. They
are given by Lefmann and Savicky ([8]) in their lemmas 3.3 and 3.4.

Lemma 3

F0,k(z) = H0,k(z) = z;

Fd+1,k(z) =
z

4

(
F 2

d,k(z) +
k

n
Fd,k(z) + 2(1− k

n
)Fd,k+1(z) +

k

n
+ 1
)
;

Hd+1,k(z) =
z

4

(
2Fd,k(z)Hd,k(z) +

k

n
Hd,k(z) + 2(1− k

n
)Hd,k+1(z) +

k

n

)
.

3.3 Comparing with a branching Galton-Watson process

Let us gather up the threads of the proof of theorem 1: recall that the aim is to
get a fine evaluation of the radius of convergence of the generating function IE(z‖τ‖)
of the size of a tree τ . For a positive real argument, this generating function is the
increasing limit when d → +∞ of the generating functions Hd,k for trees truncated
at height d with k = 0 conditions. We are going to control the radius of convergence
of Hd,k with a uniform (in d) upper bound of the functions Hd,k (lemma 5). Because
of the intricate relations between Fd,k and Hd,k (which appear in lemma 3), we need
the same kind of uniform (in d) upper bound of the functions Fd,k (lemma 4). Nicely,
it comes from comparing the generating function Fd,k to the generating function of



22

a Galton-Watson process (depending on k and not on d). Finally the study of the
special case k = 0 is achieved in lemma 6.

We begin with lemma 3 together with inequality (14) which give for every
fixed k:

Fd+1,k(z) ≤ z

4

(
F 2

d,k(z) + (2− k

n
)Fd,k(z) +

k

n
+ 1
)

so that defining

ϕ̃k(u) :=
1

4
u2 + (

1

2
− k

4n
)u +

1

4
+

k

4n
it reads

Fd+1,k(z) ≤ zϕ̃k(Fd,k(z)) . (16)

This is the key equation for comparing our generating function to the generating
function of a Galton-Watson one: indeed, ϕ̃k is the reproduction function associated
to a Galton-Watson process, with generating function Gk solution of

Gk(z) = zϕ̃k(Gk(z)). (17)

In this branching process,

p2 := IP( 2 children ) =
1

4
,

p1 := IP( 1 child ) =
1

2
− k

4n
,

p0 := IP( 0 child ) =
1

4
+

k

4n
.

Let α := k/n and notice that α ∈ [0, 1]. Equation (17) is quadratic and can be
explicitely solved, giving

Gk(z) =
1

2z

[
4− z(2− α)−

√
16− 8z(2− α)− (8− α)αz2

]
. (18)

This expression allows to compute explicitely the radius of convergence ρ(Gk)
of the generating function Gk (directly or by a derivation standard in branching
processes):

ρ(Gk) =
−2 + α + 2

√
1 + α

2α(1− α/8)

and its expansion around α = 0 is

ρ(Gk) = 1 +
α2

16
+ O(α3) = 1 +

k2

16n2
+ O(

k3

n3
)



23

so that for any constant C < 1/16, for k > 0 and n large enough,

ρ(Gk) ≥ 1 + C
k2

n2
.

Now, the key equation (16) provides a uniform (in d) upper bound for the
generating functions Fd,k, and the following lemma is straightforward.

Lemma 4 For any fixed k > 0 and for n large enough, the sequence (Fd,k)d increases
to a limit Fk when d → +∞. Moreover, at the limit:

∀z, 1 ≤ z ≤ ρ(Gk) , Fk(z) ≤ Gk(z) .

This implies that the radius of convergence ρ(Fk) of the generating function Fk, is
greater than ρ(Gk), so that for any constant C < 1/16,

ρ(Fk) ≥ 1 + C
k2

n2
.

Now we use the same kind of comparison for the generating functions Hd,k. For
the same reasons as Fd,k, lemma 3 with inequality (15) gives for every fixed k

Hd+1,k ≤
z

4

[
2Fd,kHd,k + (2− k

n
)Hd,k +

k

n

]

and by the previous study of the Fd,k,

Hd+1,k ≤
z

4

[
(2Gk + 2− k

n
)Hd,k +

k

n

]
.

Define a candidate upper bound function Hk by the equation

Hk =
z

4

[
(2Gk + 2− k

n
)Hk +

k

n

]
;

the explicit expression (18) of Gk(z) gives the following form for Hk:

Hk(z) =
αz√

16− 8(2− α)z − α(8− α)z2
(19)

and it appears that Hk has the same radius of convergence as Gk:

ρ(Hk) = ρ(Gk) ≥ 1 + C
k2

n2
,

for any constant C < 1/16. An obvious recurrence shows that for every d and k, the
functions Hd,k are upperbounded by Hk. By dominated convergence (recall that the
sequence (Hd,k) is increasing in d), the sequence (Hd,k) converges to a function hk,
when d goes to infinity and ρ(hk) ≥ ρ(Hk). We have proved:



24

Lemma 5 For any fixed k > 0, and for n large enough, the sequence (Hd,k)d in-
creases to a limit hk when d → +∞. There exists a function Hk, given by (19), which
dominates hk. This implies that the radius of convergence ρ(hk) of hk, is greater than
ρ(Hk), so that for any constant C < 1

16
, and n large enough,

ρ(hk) ≥ 1 + C
k2

n2
.

Study for k = 0:
The final step now comes from the direct study of Fd,0 and Hd,0 whose evolution

is given by lemma 3:

Fd+1,0(z) =
z

4

[
Fd,0(z)2 + 2Fd,1(z) + 1

]
;

Hd+1,0(z) =
z

4

[
2Hd,0(z)Fd,0(z) + 2Hd,1(z)

]
.

As before, we begin with the study of Fd,0 to deduce the radius of Hd,0. By lemma
4,

Fd+1,0 ≤
z

4

[
Fd,0(z)2 + 2G1(z) + 1

]

and we define a fixed point F by the equation

F =
z

4

[
F 2 + 2G1 + 1

]
. (20)

This gives

F (z) =
2−

√
4− z2(2G1(z) + 1)

z
.

Recall that by (18),

G1(z) =
1

2z

[
4− z(2− 1

n
)−

√
16− 8z(2− 1

n
)− (8− 1

n
)
1

n
z2
]

,

and

ρ(G1) = 1 +
1

16n2
+ O(

1

n3
) . (21)

so that, for 1 ≤ z ≤ ρ(G1),

√
4− z2(2G1(z) + 1) = 1 +

1

n
+ O(1− z) ,



25

which shows that the radical does not cancel and thus does not introduce a singu-
larity smaller than ρ(G1).
Consequently, ρ(F ) ≥ ρ(G1) and by (21), ρ(F ) ≥ 1+C/n2 for any constant C < 1/16
and n large enough.

Using the fact that G1(z) ≥ 1 for z ≥ 1 and equation (20), one can easily verify
F0,0(z) = z ≤ F (z) and obtain by the usual recursion that for every d ≥ 0, Fd,0 ≤ F .
Then

ρ(Fd,0) ≥ ρ(F ) ≥ 1 +
C

n2
,

for any constant C < 1/16.

From the previous uniform upper bound on Fd,0 and from lemma 5, the functions
Hd,0 satisfy

Hd+1,0 ≤
z

4

[
2Hd,0F + 2H1

]
=

z

2

[
Hd,0F + H1

]

and H1 is given by formula (19). Define a fixed point H by

H =
z

2

[
HF + H1

]
,

so that ρ(H) ≥ ρ(H1) ≥ 1 + C/n2. For every 1 ≤ z ≤ ρ(G1) = ρ(H1), we have
H1(z) ≥ 1 and zF (z) ≥ 1. It follows that H0,0(z) = z ≤ H(z) and by recursion
Hd,0 ≤ H, for every d ≥ 0. We have proved

Lemma 6 For every d ≥ 0,

ρ(Hd,0) ≥ ρ(H) ≥ 1 + C
1

n2
.

When d goes to infinity, by lemma 5, we finally obtain that Hd,0 increases to the
generating function of the size of a pruned, simplified and/or tree, and the radius of
convergence is as least 1 + C/n2, thus giving the theorem.

4 Concluding remarks

We begin by commenting on the quality of the bounds in Theorem 1: The lower
bound is tight, but the upper bound is not, and can possibly be improved. A natural
approach would be to get a better lower bound of the radius of convergence, possibly
using results by Nguyên Thê [10]. However, it is possible that Markov’s inequality is
not strong enough to give a really tight upper bound, and that a different approach
may have to be sought.



26

Numerical computations suggest a point worth mentioning (accordingly for a
small number n of variables, but the situation is probably even more marked for
larger n). Assuming all trees equally likely gives a very high probability P (f) to
functions of complexity 0 or 1 (mainly the constants), and functions of higher com-
plexity quickly become negligible. The alternative distribution π(f) behaves in a
similar way, and is even more biased towards literals.

We should investigate further the relationship between the probability distri-
butions P (.) (defined by equiprobable and/or trees) and π(f) (defined by labelling
critical branching processes). We conjecture that, except for literals, we always have
that π(f) < P (f) for binary planar trees.

A desirable extension of the model for boolean formulae takes into account the
commutativity or associativity of the boolean operators when representing a func-
tion by a tree (i.e. by a boolean formula). Preliminary investigations show that the
natural model becomes that of non planar (for commutativity) general (for associa-
tivity) trees, for which we can write generating functions using Polya’s theory of tree
enumeration [12]. Such tree models are also related to those of Woods [17], where
he proved a general theorem on the existence of a limiting distribution, although
no explicit computations were given. This should allow us to prove, in a manner
similar to that of Section 2, the existence of a limiting probability distribution, and
to compute numerical distributions for small values of n.

It is then natural to try and compare these different distributions, which are
all defined on the same set of boolean functions but stem from different underlying
tree models. We might extend the distribution π(f) to non planar general trees, and
examine the conjecture π(f) < P (f) in this new context. The relationship between
complexity and probability also deserves further investigations: Does a modification
of Theorem 1 still hold if we substitute different probability distributions for P ?
What about other complexity measures? We hope to study all these points in a
forthcoming paper.

5 Acknowledgements

We are indebted to the referee for careful reading and accurate suggestions.

References

[1] P. Billingsley. Probability and Measure, Third Edition. Wiley, 1995.



27

[2] H. Buhrman and R. de Wolf. Complexity measures and decision tree complex-
ity : a survey. Theoretical Computer Science., 288:21–43, 2002.

[3] M. Drmota. Systems of functional equations. Random Structures and Algo-
rithms, 10:103–124, 1997.

[4] P. Flajolet and A. M. Odlyzko. Singularity analysis of generating functions.
SIAM J. on Discrete Math., 3(2):216–240, 1990.

[5] P. Flajolet and R. Sedgewick. Analytic combinatorics: Functional equations,
rational and algebraic functions. Technical Report 4103, INRIA, January 2001.

[6] J. Friedman. Probabilistic spaces of boolean functions of a given complexity:
generalities and random k-sat coefficients. Technical Report CS-TR-387-92,
Princeton University, Princeton, NJ, 1992.

[7] S.P. Lalley. Finite range random walk on free groups and homogeneous trees.
Ann. Probab., 21(4):2087–2130, 1993.

[8] H. Lefmann and P. Savický. Some typical properties of large and/or boolean
formulas. Random Structures and Algorithms, 10:337–351, 1997.

[9] R. Lyons, R. Pemantle, and Y. Peres. Conceptual proofs of l log l criteria for
mean behavior of branching processes. Ann. Probab., 23:1125–1138, 1995.

[10] M. Nguyên Thê. Distribution of the size of simplified or reduced trees. In
Mathematics and Computer Science II. Birkhauser, 2002.

[11] J. B. Paris, A. Vencovská, and G. M. Wilmers. A natural prior probability
distribution derived from the propositional calculus. Annals of Pure and Applied
Logic, 70:243–285, 1994.

[12] G. Pólya and R.C. Read. Combinatorial enumeration of Groups, Graphs and
Chemical Compounds. Springer Verlag, New York, 1987.

[13] P. Savicky. Random boolean formulas representing any boolean function with
asymptotically equal probability. Discrete Mathematics, 83:95–103, 1990.

[14] P. Savický. Bent functions and random boolean formulas. Discrete Mathemat-
ics, 147:211–234, 1995.

[15] P. Savický. Complexity and probability of some boolean formulas. Combina-
torics, Probability and Computing, 7:451–463, 1998.



28

[16] P. Savický and A. Woods. The number of boolean functions computed by
formulas of a given size. Random Structures and Algorithms, 13:349–382, 1998.

[17] A. Woods. Coloring rules for finite trees, and probabilities of monadic second
order sentences. Random Structures and Algorithms, 10:453–485, 1997.


