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We consider simply generated trees, where the nodes are equipped with weakly monotone labellings with elements
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1 Introduction

We consider rooted trees, where the nodes are labelled monotonically by elements of {1,2, . . . ,r}; this
will mean that any sequence of labels lying on the direct path from the root to an arbitrary node in the tree
is weakly monotone. Such tree structures were introduced in Prodinger and Urbanek (1983) and studied
further in Kirschenhofer (1984). Very recently some parameters in monotonically labelled tree structures
are treated in Morris and Prodinger (2005).

The previous work deals either with t-ary trees or with ordered trees (planted plane trees) as the under-
lying model for the non-labelled trees, which are then equipped with monotone labelling with elements
of {1,2, . . . ,r}.§ In Prodinger and Urbanek (1983) asymptotic results for the number T [r]

n of monoton-
ically labelled trees of size n with elements of {1, . . . ,r} are obtained. In Kirschenhofer (1984) first
results for the shape of such trees are given: he gives asymptotic equivalents for the expectation E(Hn, j)
for j fixed and n → ∞, where Hn, j measures the height (counted by the number of edges lying on the
direct path from the root) of the j-st leaf (who are enumerated from left to right) in a random size-n
tree. Morris and Prodinger (2005) use the method of moments to obtain limiting distribution results for
the Steiner-distance Yn,p and the ancestor-tree size Xn,p of p randomly chosen nodes in a random size-
n monotonically labelled binary tree (for p fixed and n → ∞). For t-ary trees and ordered trees they
give asymptotic equivalents for the first two moments. The size of the ancestor-tree of p chosen nodes
v1, . . . ,vp in a rooted tree measures the size of the tree spanned by the root and v1, . . . ,vp and therefore
counts the number of nodes that are lying on at least one direct path from the root to vi for 1 ≤ i ≤ p and
the Steiner-distance of p chosen nodes v1, . . . ,vp in a tree counts the number of nodes that lie on at least
one direct path from vi to v j for 1 ≤ i ≤ j ≤ p. The special instance p = 1 of Xn,p measures the depth Dn
of a random node in a random size-n tree and is of particular interest.

In the present work we use as the underlying non-labelled tree model so called simply generated tree
families, where of course t-ary trees and ordered trees are included as the most prominent members. We
are studying then for monotonically labelled simply generated trees above mentioned tree statistics, which
extend the previous work on this subject. In particular we will give limiting distribution results for the
random variables Dn, Xn,p, Yn,p and Hn, j for n → ∞ and p fixed resp. j ∼ cκrn, with 0 < c < 1. Here
κr is the constant (depending on the tree familiy considered), which appears in E(Ln) ∼ κrn, where Ln
is the random variable that counts the number of leaves in a random monontonically with elements of
{1, . . . ,r} labelled tree of size n. The corresponding results for ordinary (= unlabelled) simply generated
trees (which are all well known, see Drmota (1994); Meir and Moon (1978); Panholzer (2004)) are of
course always contained as the special case r = 1.

Furthermore we show that the number of nodes N [l]
n labelled with l, with 1 ≤ l ≤ r, in a random mono-

tonically with elements of {1, . . . ,r} labelled size-n tree, are for r ≥ 2 asymptotically Gaussian distributed.

It is planned by the authors to continue the present work and possibly establish functional limit laws as
obtained for simply generated trees (see e. g. Gittenberger (1999)).

§ In Prodinger and Urbanek (1983) also monotonically labelled rooted trees (also called Pólya trees) are studied, where an asymptotic
equivalent for the number of such trees with n nodes is given. For the tree parameters studied here we will not treat this tree model,
since such work is not even done for the unlabelled case r = 1.
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2 Preliminaries
A family Tr of monotonically with elements of {1, . . . ,r} labelled simply generated trees can be defined
(in analogy to Meir and Moon’s Meir and Moon (1978) definition of simply generated tree families)
in the following way. A sequence of non-negative numbers (ϕk)k≥0 with ϕ0 > 0 (ϕk can be seen as the
multiplicative weight of a node with out-degree k) is used to define the weight w(T ) of any ordered tree (=
planted plane tree) T by w(T ) = ∏v ϕd(v), where v ranges over all vertices of T and d(v) is the out-degree
of v. Since we want to exclude degenerate cases we always assume that there exists a k ≥ 2 such that
ϕk > 0. Furthermore, L [r](T ) denotes the set of different monotone labellings of the tree T with elements
of {1,2, . . . ,r} and L[r](T ) :=

∣

∣L [r](T )
∣

∣ its cardinality. Then the family Tr consists of all trees T together
with their weights w(T ) and the set of monotone labellings L [r](T ). For brevity we will call a family T
of trees M-labelled, if it consists of simply generated trees labelled monontonically with elements in M.

For a given degree-weight sequence (ϕk)k≥0, we define the total weights

T [r]
n := ∑

|T |=n
w(T ) ·L[r](T ),

where |T | denotes the size of the tree T . For integer sequences (ϕk)k≥0, the quantities T [r]
n can be consid-

ered as the number of different {1, . . . ,r}-labelled size-n trees of Tr.
Furthermore we define by

ϕ(t) := ∑
k≥0

ϕktk
,

the degree-weight generating function ϕ(t), which contains all the information required for analysing the
tree parameters considered here.

However it is more instructive to define the tree families Tr by systems of formal equations as done for
t-ary trees and ordered trees in Prodinger and Urbanek (1983). To do this we use the auxiliary families T̃r
of {2,3, . . . ,r +1}-labelled trees. Then Tr can be described by the system of formal recurrences

T1 = ©1 × ϕ
(

T1
)

,

T2 = ©1 × ϕ
(

T2
)

+ T̃1,

... (1)

Tr = ©1 × ϕ
(

Tr
)

+ T̃r−1,

with © a node and ϕ(Ti) a substituted structure.
This formal equation (1) can be translated directly into the following system of functional equations

for the generating functions Tr(z) := ∑n≥0 T [r]
n zn (of course, the corresponding generating functions for Tr

and T̃r coincide):

T1(z) = zϕ
(

T1(z)
)

,

T2(z) = zϕ
(

T2(z)
)

+T1(z),
... (2)

Tr(z) = zϕ
(

Tr(z)
)

+Tr−1(z).
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Assumption 1 For our further analysis we always make the following assumptions on the degree-weight
generating function ϕ(t):

(i) ϕ(t) is aperiodic, i. e. gcd{k : ϕk > 0}= 1,

(ii) ϕ(t) has a positive radius of convergence R > 0,

(iii) For all r ≥ 1 exists a minimal positive solution τr < R of the equation

t =
ϕ(t)
ϕ′(t)

+Tr−1
( 1

ϕ′(t)

)

.

Of course, one could also treat ϕ(t) with period d := gcd{k : ϕk > 0} > 1 analogous to (unlabelled)
simply generated tree families, but we restrict ourselves to this case. Although it seems hard to verify
assumption (iii) in general, one can give sufficient conditions that cover the interesting cases. E. g.,
assumption (iii) always holds for entire degree-weight generating functions ϕ(t) (as in the instance of
polynomials, or equivalently for trees with bounded degrees). Moreover, for functions ϕ(t) with a finite
radius of convergence R < ∞, assumption (iii) holds if limt→R−

ϕ(t)
ϕ′(t) = 0 (as in the instance of ordered

trees).
With Assumption 1 it follows then with arguments as in Meir and Moon (1978) or Drmota (2004) that

the unique dominant singularity ρr of Tr(z) is given by ρr := 1
ϕ′(τr)

, where τr is defined above. It is easily
seen that τ1 < τ2 < τ3 < .. . , whereas ρ1 > ρ2 > ρ3 > .. .

The local expansion of Tr(z) around the dominant singularity z = ρr follows also directly from Drmota
(2004):

Tr(z) = gr(z)−hr(z)
√

1− z
ρr

= τr −
√

2(ϕ(τr)+T ′
r−1(ρr))

ϕ′′(τr)

√

1− z
ρr

+O
(

1− z
ρr

)

, (3)

where gr(z) and hr(z) are analytic functions in a neighbourhood of z = ρr.
Singularity analysis (Flajolet and Odlyzko (1990)) gives thus the following asymptotic expansion of

the number T [r]
n of {1, . . . ,r}-labelled trees of size n:

T [r]
n =

√

ϕ(τr)+T ′
r−1(ρr)

2πϕ′′(τr)
ρ−n

r n−
3
2
(

1+O(n−1)
)

. (4)

For the most interesting cases of t-ary trees and ordered trees an asymptotic equivalent for T [r]
n was already

established in Prodinger and Urbanek (1983), where also an asymptotic expansion of the singularities ρr
(for r → ∞) was given.

3 Results
In this section we collect the results of the tree statistics considered, where we make in all theorems
presented the Assumption 1. We further use the abbreviation σr :=

√

ρ2
r ϕ′′(τr)(ϕ(τr)+T ′

r−1(ρr)) for a
constant appearing frequently.
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Theorem 1 The depth Dn of a randomly chosen node in a random {1, . . . ,r}-labelled tree of size n con-

verges for n → ∞ in distribution to a Rayleigh distributed random variable X, Dn√
n

(d)−−→ X, with density
functions f (x) given by

f (x) = σ2
r xe−

σ2
r x2
2 , for x ≥ 0, and f (x) = 0 otherwise.

Theorem 2 The random variable Xn,p which counts the size of the ancestor-tree of p randomly chosen
nodes in a random {1, . . . ,r}-labelled tree of size n and the random variable Yn,p which counts the Steiner-
distance of p randomly chosen nodes in a random {1, . . . ,r}-labelled tree of size n, converge for fixed
p ≥ 1 (resp. p ≥ 2) and n → ∞ in distribution to generalized Gamma distributed random variables:

Xn,p√
n

(d)−−→ Xp,
Yn,p√

n
(d)−−→ Yp,

where Xp = Yp+1 and Yp is a random variable with density function

fp(x) =
2

(p−2)!

( σr√
2

)2(p−1)
x2p−3e−

σ2
r x2
2 , for x ≥ 0, and fp(x) = 0 otherwise.

If g(a,h,A;x) =
|h|

Γ(a)A( x
A)ah−1e−( x

A )h
(for x > 0) denotes the density function of the generalized Gamma

distribution we get thus that Xp resp. Yp have densitiy functions g
(

p,2,

√
2

σr
;x
)

resp. g
(

p−1,2,

√
2

σr
;x
)

.

Theorem 3 The random variable Hn, j which counts the height of the j-st (from left to right enumerated)
leaf in a random {1, . . . ,r}-labelled tree of size n converge in distribution for a (asymptotically) fixed ratio
j
n = cκr + o(1), with 0 < c < 1, and n → ∞ to a Maxwell distributed random variable Hc, Hn, j√

n
(d)−−→ Hc,

with density function hc(x) given by

hc(x) =
σ3

r x2

4
√

2π(c(1− c))
3
2

e−
σ2

r x2
8c(1−c) , for x ≥ 0, and hc(x) = 0 otherwise.

The constant κr appearing here is given by κr = 1
ϕ(τr)+T ′

r−1(ρr)
∑r

l=1
ϕ0

∏r−1
s=l

(

1−ρrϕ′(Ts(ρr))
) .

Theorem 4 The random vector Nn = (N [1]
n , . . . ,N[r]

n ), where N [l]
n counts the number of nodes that are

labelled with element l in a random {1, . . . ,r}-labelled tree (with r ≥ 2) of size n, converges for n → ∞ in
distribution to a Gaussian distributed random vector with mean value ∼ nµ and covariance matrix ∼ nΣ:

Nn −nµ√
n

(d)−−→ N (0,Σ).

The mean vector µ = (µ[1], . . . ,µ[r]) is given by

µ[l] =
ϕ(Tl(ρr))

ϕ(τr)+T ′
r−1(ρr)

1

∏r−1
s=l

(

1−ρrϕ′(Ts(ρr))
) , for 1 ≤ l ≤ r−1,

µ[r] =
ϕ(τr)

ϕ(τr)+T ′
r−1(ρr)

.



6 Bernhard Gittenberger and Alois Panholzer

The proofs of these results are sketched in the next sections, where the following common abbreviations
are used: Dx is the differential operator w. r. t. x, Ex denotes the evaluation operator at x = 1, and Nx
denotes the evaluation operator at x = 0.

4 The depth of nodes

We obtain from the formal description (1) of Tr the following system of functional equations for the
generating functions Mr(z,v) := ∑n≥1 ∑m≥0 nP{Dn = m}T [r]

n znvm:

M1(z,v) = zvϕ′(T1(z)
)

M1(z,v)+ zvϕ
(

T1(z)
)

,

M2(z,v) = zvϕ′(T2(z)
)

M2(z,v)+ zvϕ
(

T2(z)
)

+M1(z,v),
... (5)

Mr(z,v) = zvϕ′(Tr(z)
)

Mr(z,v)+ zvϕ
(

Tr(z)
)

+Mr−1(z,v),

which give the solutions

Mr(z,v) =
zvϕ
(

Tr(z)
)

+Mr−1(z,v)
1− zvϕ′(T3(z)

) . (6)

To establish the limiting distribution of Dn we use the method of moments and compute EvDs
vMr(z,v)

for fixed integers s ≥ 1. Using (6) one can show the following suitable expansion:

EvDs
vMr(z,v) =

s!(zϕ
(

Tr(z)
)

+Mr−1(z,1))

(1− zϕ′(Tr(z)
)

)s+1 +O
( 1

(1− zϕ′(Tr(z)
)

)s

)

, for s ≥ 1.

Together with Mr(z,1) = zT ′
r (z), which follows from the definition, we get from (3) the following expan-

sion around the dominant singularity z = ρr:

EvDs
vMr(z,v) =

s!ρr(ϕ(τr)+T ′
r−1(ρr))

(2ρ2
r ϕ′′(τr)(ϕ(τr)+T ′

r−1(ρr)))
s+1

2

(

1− z
ρr

)− s+1
2 +O

(

(

1− z
ρr

)− s
2
)

.

Singularity analysis gives then

E
(

Ds
n
)

∼ [zn]EvDs
vMr(z,v)

n[zn]Tr(z)
∼ 2

s
2 Γ
( s

2 +1
)

σs
r

n
s
2 . (7)

Thus the s-th moments of the normalized depth Dn√
n converge to the moments of the Rayleigh distribution

and together with the Theorem of Fréchet and Shohat this shows Theorem 1.
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5 Distances between nodes
5.1 Ancestor-tree size
The system of functional equations for the generating functions Gr(z,u,v) := ∑n≥1 ∑0≤p≤n ∑m≥0

(n
p

)

P{Xn,p =

m}T [r]
n znupvm is obtained easily from (1) and given by

G1(z,u,v) = zv(1+u)ϕ
(

G1(z,u,v)
)

+(1− v)T1(z),

G2(z,u,v) = zv(1+u)ϕ
(

G2(z,u,v)
)

+(1− v)T2(z)+G1(z,u,v),
... (8)

Gr(z,u,v) = zv(1+u)ϕ
(

Gr(z,u,v)
)

+(1− v)Tr(z)+Gr−1(z,u,v).

We are interested here in the ancestor-tree size of p ≥ 1 randomly chosen nodes for p fixed. Thus we
differentiate Gr(z,u,v) p-times w. r. t. u and evaluate at u = 0. Studying the resulting equations in a way
analogous to Panholzer (2004) one can show inductively the following asymptotic equivalent (for n → ∞,
m = O(

√
n) and p ≥ 1 fixed):

NuDp
u Gr(z,u,v) ∼ (p−1)!

ϕ′′(Tr(z))2p−1

(

2(p−1)

p−1

)

(Cr(z)ϕ′′(Tr(z)))p (zv)2p−1

(1− zvϕ′(Tr(z)))2p−1 , (9)

with

Cr(z) =
r

∑
l=1

(ϕ′(Tr(z)))r−lϕ(Tl(z))

∏r−1
s=l (ϕ′(Tr(z))−ϕ′(Ts(z)))

.

Extracting coefficients from (9) at vm immediately gives then

[vm]NuDp
uGr(z,u,v) ∼ m2p−2

(p−1)!
(Cr(z)ϕ′′(Tr(z)))p

ϕ′′(Tr(z))2p−1(ϕ′(Tr(z)))2p−1 (zϕ′(Tr(z)))m
. (10)

For the remaining task of extracting coefficients from (10) at zn we can use Cauchy’s integration for-
mula with a Hankel contour like integration path as was done for the corresponding parameter in simply
generated trees in Panholzer (2004). Together with the evaluation

Cr(ρr) = ϕ(τr)+T ′
r−1(ρr),

which follows by induction, one gets finally the required asymptotic equivalent:

P{Xn,p = m} =
[znvm]NuDp

uGr(z,u,v)
p!
(n

p

)

[zn]Tr(z)
∼ 2m2p−1

np(p−1)!
( σr√

2

)2pe−
σ2

r m2
2n .

Setting m = x
√

n+o(
√

n) leads then to

√
nP{Xn,p = m} ∼ 2

(p−1)!
( σr√

2

)2px2p−1e−
σ2

r x2
2 . (11)

Since the right-hand side of (11) is the density function of a generalized Gamma distribution the first part
of Theorem 2 is shown.
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5.2 Steiner-distance

Since the parameters Steiner-distance and ancestor-tree size are closely related, we obtain that the gen-
erating functions Fr(z,u,v) := ∑n≥1 ∑0≤p≤n ∑m≥0

(n
p

)

P{Yn,p = m}T [r]
n znupvm and Gr(z,u,v) (as defined

in Subsection 5.1) are connected; the formal equation (1) can be translated into the following system of
equations:

F1(z,u,v) = G1(z,u,v)− zvϕ′(T1(z)
)

G1(z,u,v)+ zϕ′(T1(z)
)

F1(z,u,v)− (1− v)zϕ′(T1(z)
)

T1(z),

F2(z,u,v) = G2(z,u,v)− zvϕ′(T2(z)
)

G2(z,u,v)+ zϕ′(T2(z)
)

F2(z,u,v)− (1− v)zϕ′(T2(z)
)

T2(z)

+F1(z,u,v)−G1(z,u,v),
... (12)

Fr(z,u,v) = Gr(z,u,v)− zvϕ′(Tr(z)
)

Gr(z,u,v)+ zϕ′(Tr(z)
)

Fr(z,u,v)− (1− v)zϕ′(Tr(z)
)

Tr(z)

+Fr−1(z,u,v)−Gr−1(z,u,v).

We are here interested in the Steiner-distance for fixed p ≥ 2. The task of computing NuDp
u Fr(z,u,v)

can be reduced to compute NuDp
u Gi(z,u,v) for 1 ≤ i ≤ r (which has been done in Subsection 5.1), since

we get:

NuDp
u Fr(z,u,v) =

1− zvϕ′(Tr(z)
)

1− zϕ′(Tr(z)
) NuDp

uGr(z,u,v)+
r−1

∑
j=1

∏r−1
l= j (z(1− v)ϕ′(Tl(z)

)

)

∏r
l= j(1− zϕ′(Tl(z)

)

)
NuDp

uG j(z,u,v).

It follows that (for n → ∞, m = O(
√

n) and p ≥ 2 fixed):

NuDp
uFr(z,u,v) ∼ 1− zvϕ′(Tr(z)

)

1− zϕ′(Tr(z)
) NuDp

uGr(z,u,v). (13)

Together with the asymptotic equivalent (9) of NuDp
uGr(z,u,v) we can show the asymptotic equivalent

here required:

P{Yn,p = m} =
[znvm]NuDp

uFr(z,u,v)
p!
(n

p

)

[zn]Tr(z)
∼ 2m2p−3

np−1(p−2)!
( σr√

2

)2(p−1)e−
σ2

r m2
2n .

Again by setting m = x
√

n+o(
√

n) we obtain the second part of Theorem 2.
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6 The height of the leaves
Defining the generating functions Ar(z,u,v) := ∑n≥1 ∑ j≥1 ∑m≥0 P{Hn, j = m}T [r]

n znu jvm one can again
show by using (1) the following system of functional equations for Ar(z,u,v):

A1(z,u,v) = ϕ0zu+
zv
(

ϕ
(

y1(z,u)
)

−ϕ
(

T1(z)
)

)

y1(z,u)−T1(z)
A1(z,u,v),

A2(z,u,v) = ϕ0zu+
zv
(

ϕ
(

y2(z,u)
)

−ϕ
(

T2(z)
)

)

y2(z,u)−T2(z)
A2(z,u,v)+A1(z,u,v),

... (14)

Ar(z,u,v) = ϕ0zu+
zv
(

ϕ
(

yr(z,u)
)

−ϕ
(

Tr(z)
)

)

yr(z,u)−Tr(z)
Ar(z,u,v)+Ar−1(z,u,v),

where the generating functions yr(z,u) are defined by yr(z,u) := ∑n≥1 ∑m≥1 P{Ln = m}T [r]
n znum. These

generating functions satisfy themselves the following system of functional equations:

y1(z,u) = ϕ0z(u−1)+ zϕ
(

y1(z,u)
)

,

y2(z,u) = ϕ0z(u−1)+ zϕ
(

y2(z,u)
)

+ y1(z,u),

... (15)

yr(z,u) = ϕ0z(u−1)+ zϕ
(

yr(z,u)
)

+ yr−1(z,u).

It follows immediately from Drmota’s studies concerning systems of functional equations (see e. g.
Drmota (2004)) that the functions yr(z,u) have in a neighbourhood of u = 1 the following local expansion
around the dominant singularity ρr(u):

yr(z,u) = τr(u)−
√

2
[

ϕ0(u−1)+ϕ
(

τr(u)
)

+
( ∂yr−1

∂z

)

(ρr(u),u)
]

ϕ′′
(

τr(u)
)

√

1− z
ρr(u)

+O
(

1− z
ρr(u)

)

, (16)

and furthermore that the number of leaves Ln of a {1, . . . ,r}-labelled tree follows a Gaussian limit law
with mean value E(Ln) ∼ κrn, where κr is given by

κr =
ϕ0ρr +

( ∂yr−1
∂u

)

(ρr,1)

ρr(ϕ(τr)+T ′
r−1(ρr))

=
1

ϕ(τr)+T ′
r−1(ρr)

r

∑
l=1

ϕ0

∏r−1
s=l

(

1−ρrϕ′(Ts(ρr))
) .

Equation (14) gives immediately the solution

Ar(z,u,v) =
ϕ0zu+Ar−1(z,u,v)

1− vz ϕ(yr(z,u))−ϕ(Tr(z))
yr(z,u)−Tr(z)

=
r

∑
j=1

ϕ0zu

∏r
l= j
(

1− v fl(z,u)
) ,

where we use the abbreviation

fr(z,u) := z
ϕ(yr(z,u))−ϕ(Tr(z))

yr(z,u)−Tr(z)
.
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For our asymptotic evaluations of the coefficients of Ar(z,u,v) we use partial fraction expansion and
obtain (for n → ∞, j ∼ cκrn and m = O(

√
n)) the asymptotic equivalent

Ar(z,u,v) ∼ ϕ0zu
1− v fr(z,u)

r

∑
l=1

(

fr(z,u)
)r−l

∏r−1
s=l

(

rr(z,u)− fs(z,u)
) ,

resp. also

[vm]Ar(z,u,v) ∼
(

r

∑
l=1

ϕ0ρr

∏r−1
s=l

(

1−ρrϕ′(Ts(ρr))
)

)

(

fr(z,u)
)m

=
(

ϕ0ρr +
(∂yr−1

∂u

)

(ρr,1)
)(

fr(z,u)
)m

.

(17)
Extracting coefficients of (17) can now be done similar to Drmota (1994) by using Cauchy’s integration

formula and a double Hankel contour like integration path. We eventually get

[znu jvm]A(z,u,v) ∼ ρr
(

ϕ(τr)+T ′
r−1(ρr)

)

σ2
r ρ−n

r m2

8π
( j

κr

)
3
2
(

n− j
κr

)
3
2

exp
(

− σ2
r m2n

8( j
κr

)(n− j
κr

)

)

. (18)

Setting
j
n

= cκr +o(1),
m√

n
= x+o(1),

we obtain from (18)

√
nP{Hn, j = m} ∼ σ3

r x2

4
√

2π(c(1− c))
3
2

exp
(

− σ2
r x2

8c(1− c)

)

. (19)

Since the right-hand side of (19) is the density function of the Maxwell distribution Theorem 3 is shown.

7 The distribution of the labels
Defining the generating functions
Nr(z;v1, . . . ,vr) := ∑n≥1 ∑mi≥0, for 1≤i≤r P{(N [1]

n , . . . ,N[r]
n ) = (m1, . . . ,mr)}T [r]

n znvmr
1 vmr−1

2 · · ·vm1
r we obtain

from (1) the following system of functional equations:

N1(z;v1) = zv1ϕ
(

N1(z;v1)
)

,

N2(z;v1,v2) = zv2ϕ
(

N2(z;v1,v2)
)

+N1(z;v1),

... (20)

Nr(z;v1,v2, . . . ,vr) = zvrϕ
(

Nr(z;v1,v2, . . .vr)
)

+Nr−1(z;v1,v2, . . . ,vr−1).

Studying the system (20) gives the following local expansion in a neighbourhood of the dominant
singularity z = ρr(v1, . . . ,vr) uniformly around (v1, . . . ,vr) = (1, . . . ,1):

Nr(z;v1, . . . ,vr) = τr(v1, . . . ,vr)−
√

2(vrϕ(τr(v1,...,vr))+(
∂Nr−1

∂z )(ρr(v1,...,vr);v1,...,vr))

vrϕ′′(τr(v1,...,vr))

√

1− z
ρr(v1, . . . ,vr)

+O
(

1− z
ρr(v1, . . . ,vr)

)

.

(21)

Theorem 4 follows now by singularity analysis and applying a theorem of Bender and Richmond (1983).
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