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Abstract. We consider the asymptotic behavior of b-additive functions f with respect to a base

b of a canonical number system in the Gaussian number field. In particular, we get a normal

limit law for f(P (z)) where P (z) is a polynomial with integer coefficients. Our methods are

exponential sums over the Gaussian number field as well as certain results from the theory of

uniform distribution.

0. Notations

Throughout the paper we use the following notations: We write e(z) = e2πiz; C, R, Q, Z, N and
N0, denote the set of complex numbers, real numbers, rational numbers, integers, positive integers,
and positive integers including zero, respectively. Q(i) denotes the field of Gaussian numbers, and
Z[i] the ring of Gaussian integers. We write tr(z) and N(z) for the trace and the norm of z over Q,
and {z} for the minimal distance of a real number z to the next integer. Furthermore, the largest
integer less than or equal to a real number z is denoted by [z]. λn denotes the n-dimensional
Lebesgue measure. V T denotes the transposition of the matrix V . For a set A we denote its
closure by Ā and its boundary by ∂A. Furthermore we use the symbol f � g to mean that
f = O (g) and f � g to mean that g = O (f).

1. Introduction

Let νq(n) denote the sum of digits function of n in its q-adic representation for some integers
q ≥ 2 and n ≥ 0. This function and related functions have been studied by several authors. In
1975 Delange [2] computed the average of νq(n):

1

N

∑

n<N

νq(n) =
q − 1

2
logq N + γ1(logq N),

where γ1 is a continuous, nowhere differentiable and periodic function with period 1.
Higher moments were considered by Kirschenhofer [18] and independently by Kennedy and

Cooper [17] who obtained a formula for the variance

1

N

∑

n<N

ν2
q (n) − 1

N2

(

∑

n<N

νq(n)

)2

=

(

q − 1

2

)2

logq N + γ(logq N)

with a continuous fluctuation γ of period 1. Grabner, Kirschenhofer, Prodinger and Tichy [10]
extended this result (dth moment for the case q = 2) and showed

1

N

∑

n<N

ν2(n)d =
1

2d
(log2N)d +

d−1
∑

i=0

(log2N)iγi(log2N),

where the γi are again continuous fluctuations of period 1.
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In the literature there can also be found generalizations of these results to other than q-adic
number systems. In particular, it is possible to extend the notion of q-adic number systems to
number fields in a rather natural way. Since in the remaining part of this paper number systems
in the Gaussian number field Q(i) play a prominent rôle, we recall their definition.

Definition 1.1. A pair (b,N ) with b ∈ Z[i] and N = {0, 1, . . . , |b|2−1} is called canonical number
system if any γ ∈ Z[i] has a representation of the form

γ = c0 + c1b+ · · · + chb
h, ch 6= 0 if h 6= 0,

where h ∈ N0 and cj ∈ N for j = 0, 1, . . . , h. b is called base and N is called set of digits of (b,N ).
Furthermore, we define the sum of digits function by

νb(γ) = c0 + c1 + · · · + ch.

Remark 1.1. Of course, the set of digits is uniquely determined by the base of a canonical number
system. For the ring of Gaussian integers Z[i] the bases were characterized by Kátai and Szabó
[16] who showed that the only bases are given by b = −n± i, where n ∈ N. For generalizations to
arbitrary number fields we refer to [14, 15, 19, 20].

Grabner, Kirschenhofer and Prodinger [9] and Thuswaldner [23] generalized Delange’s result to
canonical number systems in the Gaussian integers and to arbitrary canonical number systems,
respectively. A treatment of the higher moments in the general case has been done recently by
Gittenberger and Thuswaldner [8]. E.g. for the Gaussian integers we have

1

Nπ + O
(√

N
)

∑

|z|2<N

(νb(z))
d

=

( |b|2 − 1

2

)d

logd
|b|2 N +

d−1
∑

j=0

logj
|b|2 NΦj(log|b|2 N) + O

(√
N logd

|b|2 N
)

,

where Φ0, . . . ,Φd−1 are again continuous periodic fluctuations of period 1 and b is the base of a
canonical number system in Z[i].

Let b be the base of a canonical number system in Z[i]. Then obviously each γ ∈ C has a unique
representation of the shape α0 + α1b with α0, α1 ∈ R. Thus the mapping

φ : C → R2; α0 + α1b 7→ (α0, α1)

is well defined. It turns out, that in order to simplify some computations it is convenient to use
this embedding.

There also exist distributional results for the sum of digits function and related functions. For
instance, Bassily and Kátai [1] studied the distribution of q-additive functions on polynomial
sequences. Recall that a function f is said to be q-additive if f(0) = 0 and

f(n) =
∑

j≥0

f(aj(n)qj) for n =
∑

j≥0

aj(n)qj ,

where aj(n) ∈ E := {0, 1, . . . , q − 1}. A special q-additive function is the sum of digits function
νq(n). Bassily and Kátai [1] showed the following theorem:

Theorem 1.1. Let f be a q-additive function such that f(cqj) = O (1) as j → ∞ and c ∈ E.
Furthermore let

mk,q :=
1

q

∑

c∈E

f(cqk), σ2
k,q :=

1

q

∑

c∈E

f2(cqk) −m2
k,q,

and

Mq(x) :=
N
∑

k=0

mk,q, D2
q(x) =

N
∑

k=0

σ2
k,q
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with N =
[

logq x
]

. Assume that
Dq(x)

(log x)1/3 → ∞ as x → ∞ and let P (x) be a polynomial with

integer coefficients, degree r, and positive leading term. Then, as x→ ∞,

1

x
#

{

n < x

∣

∣

∣

∣

f(P (n)) −Mq(x
r)

Dq(xr)
< y

}

→ Φ(y),

where Φ is the normal distribution function.

Similar distribution results for the sum of digits function of number systems related to substi-
tution automata were considered by Dumont and Thomas [5]. For number systems whose bases
satisfy linear recurrences we refer to [3].

In this paper we will extend the above result of Bassily and Kátai to canonical number systems
in Z[i]. The concept of q-additivity is extendible to these number systems in an obvious way:

Definition 1.2. Let (b,N ) be a canonical number system in Z[i]. A function f is called b-additive
if f(0) = 0 and

f(γ) =
∑

j≥0

f(aj(γ)b
j) for γ =

∑

j≥0

aj(γ)b
j (aj(γ) ∈ N ).

After these preparations we state our main result:

Theorem 1.2. Let f be a b-additive function such that f(cbj) = O (1) for j ∈ N and c ∈ N .
Furthermore let

mk :=
1

|b|2
∑

c∈N

f(cbk), σ2
k :=

1

|b|2
∑

c∈N

f2(cbk) −m2
k,

and

M(N) :=

L
∑

k=0

mk, D2(N) =

L
∑

k=0

σ2
k

with L =
[

log|b|N
]

. Assume that D(N)
(log N)1/3 → ∞ as N → ∞ and let P (z) = prz

r + · · ·+ p1z + p0

be a polynomial with coefficients in Z[i]. Then, as N → ∞,

1

#{z | |z|2 < N}#

{

|z|2 < N

∣

∣

∣

∣

f(P (z)) −M(N r)

D(Nr)
< y

}

→ Φ(y),

where Φ is the normal distribution function and z runs over the Gaussian integers.

Corollary 1.1. Since νb(z) fulfills all the conditions posed upon the b-additive function f in the
theorem, we have

1

#{z | |z|2 < N}#

{

|z|2 < N

∣

∣

∣

∣

νb(P (z)) −M(N r)

D(Nr)
< y

}

→ Φ(y).

The paper is organized as follows: In the next section we extend some results of Hua [12] on
exponential sums to the Gaussian number field. Section 3 is devoted to the construction of an
Urysohn function for a certain domain related to the fundamental domain of the number system
which will allow us to keep track of certain digits in a digit expansion. We will analyze some
properties of the Fourier series of this function. Since we cannot avoid some errors arising in the
region where the Urysohn function attains values in (0, 1), we have to analyze the number of hits
in this region for the polynomial sequence under consideration. This will be done in Section 4 by
means of the Erdős-Turán-Koksma inequality. In Section 5 we will derive a proposition giving the
crucial distributional result which will allow us to reduce our problem to the considerably simpler
case P (z) = z and to complete the proof of Theorem 1.2. This is done in the last section.

2. Exponential Sums Over Number Fields

In this section we establish a result on exponential sums of polynomials over the number field
Q(i). Before we state this result, we list some lemmas which will be needed in its proof. We start
with estimates for exponential sums of a simple type.
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Lemma 2.1. Let h, q ∈ Z[i] and define the square Dν := {z = a+ bi ∈ Z[i] | − ν ≤ a, b ≤ ν}. If
we set h/q = r + si and

V :=
∑

z∈Dν

e

(

tr

(

h

q
z

))

,

then the estimate

V ≤ min

(

4ν2,
ν

{2r} ,
ν

{2s} ,
1

4{2r}{2s}

)

holds.

Proof. Let z = a+ bi. It is easy to see that

V =
∑

a+bi∈Dν

e(2(ra− sb)) =

ν
∑

a=−ν

e(2ra)

ν
∑

b=−ν

e(−2sb).

Using the estimate (cf. Hua [12, Lemma 1.8])
∣

∣

∣

∣

∣

K2
∑

k=K1

e(kα)

∣

∣

∣

∣

∣

≤ min

(

K2 −K1,
1

2{α}

)

we derive

|V | ≤ min

(

2ν,
1

2{2r}

)

min

(

2ν,
1

2{2s}

)

and the result follows. �

With help of this result we derive a corresponding result for open discs. In the following, the
summation variable z always runs over the Gaussian integers.

Lemma 2.2. Let h, q ∈ Z[i] and

S =
∑

|z|2<N

e

(

tr

(

h

q
z

))

.

If we set h/q = r + si then the estimate

S � (logN)σ1 min

(

N

(logN)σ1
,

√

N/(logN)σ1

{2r} ,

√

N/(logN)σ1

{2s} ,
1

{2r}{2s}

)

+
N

(logN)σ1/2

holds for each positive real number σ1.

Proof. This result follows easily from Lemma 2.1. We tesselate the open disc |z|2 < N by

squares of side length
√

N/(logN)σ1 . There are O ((logN)σ1) such squares in this open disc,
which do not intersect its boundary. The contribution CI of these squares can be estimated with
help of Lemma 2.1 by

CI � (logN)σ1 min

(

N

(logN)σ1
,

√

N/(logN)σ1

{2r} ,

√

N/(logN)σ1

{2s} ,
1

{2r}{2s}

)

.

Since the squares intersecting the boundary can be covered by an annulus of width

O
(√

N/(logN)σ1/2
)

, the contribution CB of these squares can be estimated by

CB � N

(logN)σ1/2
.

This yields the result. �

Remark 2.1. The same reasoning easily shows that the estimate in Lemma 2.2 remains valid if

the range of summation has the shape z ∈ ⋂J
j=1

(

aj + {y ∈ Z[i] : |y|2 ≤ cjN}
)

with aj ∈ Z[i] and
cj > 0.
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Lemma 2.3. Let h, q ∈ Z[i] with |q| > 2 and (h, q) = 1 and

S =
∑

|z|2<N

e

(

tr

(

h

q
z

))

.

Then

|S| �
√
N |q|.

Proof. It is easy to see that there exists a residue system R modulo q with

R ⊂ {z ∈ Z[i] | |z| ≤ 2|q|}. (2.1)

Suppose we tesselate the open disc KN := {z | |z|2 < N} with translates of R. Let T be this
tesselation. Now define

EN := {R ∈ T | R ⊂ KN},
FN := {R ∈ T | R 6⊂ KN}.

Since |q| > 2 and the different of Q(i) is 2 · Z[i], we have by Hua [11, Theorem 3]

∑

z∈R

e

(

tr

(

h

q
z

))

= 0 for R ∈ EN .

Thus

S :=
∑

R∈FN

∑

z∈R∩KN

e

(

tr

(

h

q
z

))

.

By (2.1), this sum has at most O
(√

N |q|
)

summands. This implies the result. �

Next we give a lemma that will help us to reduce the degree of the polynomial in an expo-
nential sum. The rational version of it has been proved in [12]. Since the Q(i) version given
here can be proved in exactly the same way, we omit the proof. Adapting Hua’s [12] notation

to the present situation let the symbol
∑c′

x denote the sum over all integers in a set of the form
⋂J

j=1

(

aj + {y : |y|2 ≤ cjN}
)

with aj ∈ Z[i] and 0 < cj < c′. In this context the exact values

of aj , cj and c′ are not important. For details we refer to Hua [12, Lemma 3.3 and 3.4] and
Vinogradov [24, p. 185].

Lemma 2.4. (cf. [12, Lemma 3.3 and 3.4]) Let f(x) =
∑k

j=0 ajx
j be a polynomial of degree k

and set

S :=
∑

|z|2<N

e(tr (f(z))).

Then we have the estimate

|S|2k−1 ≤ cN2k−1−k

∣

∣

∣

∣

∣

∣

c′
∑

y1

· · ·
c′
∑

yk−1

c′
∑

yk

e (tr (y1 · · · yk−1(k!akyk + β)))

∣

∣

∣

∣

∣

∣

with certain computable numbers c and β.

Let dk(z) be the number of representations of z as a product of k nonzero Gaussian integers.
It is well-known that

∑

|z|2<N

dk(z) � N(logN)k−1

(cf. Narkiewicz [22, p. 514]). From this result we easily deduce the following lemma (cf. Hua [12,
Lemma 6.1]).
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Lemma 2.5. For σ2 ≥ 23k − 1 the estimate
∑

|z|2<N

′
dk(z) = O

(

N(logN)−σ2
)

holds. Here the prime (’) indicates that the sum is taken over all z in the range of summation,
for that

(logN)σ2 ≤ cdk(z).

Next we prove a version of Weyl’s Lemma (cf. [12, Lemma 3.5]).

Lemma 2.6. Let h, q ∈ Z[i], with (h, q) = 1 and let

G(M) :=
∑

|z|2<M

g(z)

where

g(z) := (logN)σ1 min

(

N

(logN)σ1
,

√

N/(logN)σ1

{2r} ,

√

N/(logN)σ1

{2s} ,
1

{2r}{2s}

)

,

with r = <(hz/q), s = =(hz/q) and σ1 > 0. Then

G(M) �
(

M

|q|2 + 1

)

(

N |q| + |q|2 log2+σ1 N
)

.

Proof. Let T0 be a set of complete residue systems mod q that form a tiling of Z2, such that
each R ∈ T0 is a translate of R0 = Z[i] ∩ q{α+ βi | 0 ≤ α, β ≤ 1}. Let T be the set of all R ∈ T0

having nonempty intersection with |z|2 < M . Then we can write

G(M) ≤
∑

R∈T

GR

with

GR =
∑

z∈R

g(z).

Note that since (h, q) = 1 we have
∑

z∈R

g(hz) = GR

and thus we may w.l.o.g. assume h = 1.
We want to approximate the sum GR by an integral and will use the Koksma-Hlawka inequality

to estimate the error caused by this approximation (cf. [4, Theorem 1.14]). To this end we need
the star discrepancy (see [4, p. 5] for a definition) D∗

R of the lattice induced by R, which is easily
seen to be D∗

R = O (|q|). Moreover, we use the notion of bounded variation in the sense of Hardy

and Krause V (k)(g), whose definition can also be found in [4, p. 10]. For g(z) we easily derive
V (2)(g) = O (N). After these preparations the Koksma-Hlawka inequality yields

ER :=

∣

∣

∣

∣

∣

∫

Q·[0,1]2
g(φ−1(x, y)) dx dy −GR

∣

∣

∣

∣

∣

≤ D∗
RV

(2)(g) = O (N |q|) ,

where Q is the matrix corresponding to a multiplication with q in Z[i]. Summing up over all residue
systems contained in T and taking into account the residue systems intersecting the boundary of
|z|2 < M we obtain

∑

R∈T

ER = O
((

M

|q|2 + 1

)

N |q|
)

. (2.2)

It remains to estimate the integral

I :=

∫

Q·[0,1]2
g(φ−1(x, y)) dx dy =

∫

Q·[0,1]2
g̃((x, y)Q−1) dx dy,
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where

g̃(x, y) = (logN)σ1 min

(

N

(logN)σ1
,

√

N/(logN)σ1

{2x} ,

√

N/(logN)σ1

{2y} ,
1

{2x}{2y}

)

.

Using the transformation formula and splitting the range of integration according to the values of
the function {·} we get

I = |q|2
(

∫ 1

0

min

(
√

N

(logN)σ1
,

1

{2a}

)

da

)2

(logN)σ1

= 4|q|2
(

∫ 1
4

0

min

(
√

N

(logN)σ1
,

1

2a

)

da

+

∫ 1
2

1
4

min

(
√

N

(logN)σ1
,

1

(1 − 2a)

)

da

)2

(logN)σ1

= 4|q|2






√

N

(logN)σ1

∫

1

2·

√

N
(log N)σ1

0

da+

∫ 1
4

1

2·

√

N
(log N)σ1

1

2a
da

+

∫

1
2−

1

2·

√

N
(log N)σ1

1
4

1

(1 − 2a)
da+

√

N

(logN)σ1

∫ 1
2

1
2−

1

2·

√

N
(log N)σ1

da







2

(logN)σ1

= O
(

|q|2 log2+σ1 N
)

.

Summing up over all residue systems and combining this with (2.2) we obtain the result. �

Proposition 2.1. Let (h, q) = 1 and

f(x) =
h

q
xk + α1x

k−1 + . . .+ αk−1x+ αk

where (logN)σ ≤ |q|2 ≤ Nk(logN)−σ. Then we have

S =

∣

∣

∣

∣

∣

∣

∑

|z|2<N

e(tr(f(z)))

∣

∣

∣

∣

∣

∣

= O
(

N(logN)−σ0
)

with σ ≥ 2k+2σ0 + 23(k+2).

Proof. For k = 1 we obtain, applying Lemma 2.3 and keeping in mind the upper bound for |q|2,

S =

∣

∣

∣

∣

∣

∣

∑

|z|2<N

e

(

tr

(

h

q
+ α1

))

∣

∣

∣

∣

∣

∣

≤ N(logN)−σ/2.

Suppose now that k > 1. An application of Lemma 2.4 in combination with Lemma 2.2 and
Remark 2.1 yields

|S|2k−1 ≤ cN2k−1−k
c′
∑

y1

· · ·
c′
∑

yk−1



min





N

(logN)σ1
,

√

N
(log N)σ1

{2r} ,

√

N
(log N)σ1

{2s} ,
1

{2r}{2s}



 (logN)σ1

+
N

(logN)σ1/2

)

where

r = <
(

k!
h

q
y1 · · · yk−1

)

and s = =
(

k!
h

q
y1 · · · yk−1

)

.
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Setting

ξ := k!y1 · · · yk−1 (2.3)

we have |ξ|2 ≤ M = c′
k
k!Nk−1. For a fixed ξ 6= 0 the number of solutions of (2.3) is less than

or equal to dk−1(ξ). For ξ = 0 the number of solutions of (2.3) is O
(

Nk−2
)

. Thus we can
apply Lemma 2.5 to obtain (note that the prime (’) has the same meaning as in the statement of
Lemma 2.5)

|S|2k−1 � N2k−1−k



N
∑

|ξ|2≤M

′
dk−1(ξ)

+(logN)σ2+σ1

∑

|ξ|2≤M

min

(

4N

(logN)σ1
,

√

N/(logN)σ1

{2r} ,

√

N/(logN)σ1

{2s} ,
1

4{2r}{2s}

)

+NM(logN)σ2−σ1/2 +Nk−1(logN)σ2

)

� N2k−1−k

(

M(logM)−σ2N

+(logN)σ2+σ1

∑

|ξ|2≤M

min

(

4N

(logN)σ1
,

√

N/(logN)σ1

{2r} ,

√

N/(logN)σ1

{2s} ,
1

4{2r}{2s}

)

+NM(logN)σ2−σ1/2 +Nk−1(logN)σ2

)

.

Note that the last summand Nk−1(logN)σ2 comes from the contributions of the case ξ = 0. Now
we may apply Lemma 2.6 to the last sum. This yields

|S|2k−1 � N2k−1−k

(

Nk(logN)−σ2 + (logN)σ2

(

M

|q|2 + 1

)

(

N |q| + |q|2 log2+σ1 N
)

+NM(logN)σ2−σ1/2 +Nk−1(logN)σ2

)

.

Setting σ1 := 2k+1σ0 + 23k+1 − 2 and σ2 := 2k−1σ0 + 23k − 1 we arrive at

|S|2k−1 � N2k−1

(logN)−2k−1σ0 .

This proves the result. �

3. Approximations of the Fundamental Domain and the Fourier Series of an

Urysohn Function

In this section we will prove some auxiliary results in order to generalize Lemma 5 of Bassily
and Kátai [1]. Since the set of all numbers having integer part zero in their b-adic representation
has a rather complicated shape, the proof will be much more involved than the proof of the q-adic
analogue. This set is defined by

F ′ =

{

z ∈ C | z =

∞
∑

`=1

ε`(z)b
−`, ε` ∈ N

}

and we call it the fundamental domain of the number system (b,N ). In our context it is convenient
to work with the φ-embedding of F ′ in R2. We have

F := φ(F ′) =

{

z ∈ R2 | z =

∞
∑

`=1

B−`a`, a` ∈ φ(N )

}
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with

B =

(

0 1 − n2

1 −2n

)

.

It is well-known (cf. for instance [7, 21]) that one can approximate F with the help of the sets

Q0 :=

{

z ∈ R2 | ‖z‖∞ ≤ 1

2

}

,

Qk :=
⋃

a∈N

B−1(Qk−1 + φ(a)).

The approximation satisfies d(∂Qk, ∂F) � |b|−k with respect to the Hausdorff metric d(·, ·). It is
easy to see that the sets Qk are connected sets and that they are the unions of |N |k parallelograms.
Moreover (cf. [7, 21]), there exists a µ with 1 < µ < |b|2 such that O

(

µk
)

of these parallelograms
intersect the boundary of Qk.

Following Bassily and Kátai [1, Lemma 5] we will need for each a ∈ N a function that lets us
keep track of a certain position in a digital expansion. Therefore we define an Urysohn function
fa for the domain

Fa = B−1(F + φ(a)),

i.e., that subdomain containing the numbers whose fractional parts start with the digit a. To this
matter we need tubes Pk,a with the following properties.

Lemma 3.1. For all a ∈ N and all k ∈ N there exists an axe-parallel tube Pk,a with the following
properties:

• ∂Fa ⊂ Pk,a for all k ∈ N.
• λ2(Pk,a) = O

(

µk/|b|2k
)

.

• Pk,a consists of O
(

µk
)

axe-parallel rectangles, each of which has Lebesgue measure

O
(

|b|−2k
)

.

Proof. We construct a tube Pk,a that has the required properties. Let Qk,a := B−1(Qk +φ(a)).
Then the family Qk,a has the same properties with respect to Fa as the family Qk has with respect
to F . Thus the boundary ∂Qk,a of Qk,a is a polygon Π′

k,a. Let Rk,a be the family of the |N |k
parallelograms that result in Qk,a. By the remarks at the beginning of the present section, O

(

µk
)

of the elements of Rk,a have nonempty intersection with ∂Qk,a. Thus the number of edges of
Π′

k,a is bounded by O
(

µk
)

. Since each element of Rk,a has diameter c|b|−k with some absolute

constant c, we conclude that the length of Π′
k,a is O

(

µk|b|−k
)

. From this polygon we construct a

polygon Πk,a with axe parallel sides in the following way: Let EΠ′

k,a
be the set of edges of Π′

k,a.

Then define
Πk,a :=

⋃

(α1,α2)(β1,β2)∈EΠ′

k,a

α2≤β2

((α1, α2)(β1, α2) ∪ (β1, α2)(β1, β2)).

Note that the length, the number of edges, and the maximal distance from Fa are comparable for
Π′

k,a and Πk,a. Thus all estimates we gave for Π′
k,a also hold for Πk,a.

Now, since d(Πk,a, ∂Fa) < c′|b|−k, we conclude that the tube

Pk,a :=
{

z ∈ R2 | ‖z − Πk,a‖∞ ≤ 2c′|b|−k
}

has the properties required in the statement of the present lemma. �

For the remaining part of this paper we fix to each pair (k, a) a polygon Πk,a and the corre-
sponding tube Pk,a having the properties stated in Lemma 3.1.

Denote by Ik,a the set of all points inside Πk,a. Now we define fa by

fa(x, y) =
1

∆2

∆/2
∫

−∆/2

∆/2
∫

−∆/2

ψa(x+ x1, y + y1) dx1 dy1, (3.1)
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where ∆ = 2c′|b|−k and

ψa(x, y) =







1 if (x, y) ∈ Ik,a

1/2 if (x, y) ∈ Πk,a

0 otherwise.

Thus fa is the desired Urysohn function which equals 1 for z ∈ Ik,a\Pk,a, 0 for z ∈ R2\(Ik,a∪Pk,a),
and linear interpolation in between. Our next task is to give estimates for the Fourier coefficients
of this function.

Lemma 3.2. Let fa(x, y) =
∑

n1,n2∈Z
cn1n2

e(n1x + n2y) be the Fourier expansion of fa. Then
for the Fourier coefficients cn1n2

we get the estimates

cn1n2
= O

(

µk

∆2n2
1n

2
2

)

(n1, n2 6= 0),

cn10 = O
(

µk

∆n2
1

)

(n1 6= 0),

c0n2
= O

(

µk

∆n2
2

)

(n2 6= 0),

c00 =
1

|b|2 .

Proof. If Πk,a is not rectangular, then the domain Ik,a can be split into finitely many rectangles
with axe-parallel edges. By the construction of Πk,a this can be done in a way, such that not
more than O

(

µk
)

of these rectangles intersect the boundary Πk,a of Ik,a. Suppose first that Ik,a

consists only of one rectangle with lower left vertex (α1, β1) and upper right vertex (α2, β2). Then
elementary calculations yield

cn1n2
=

(

e
(

n1∆
2

)

− e
(

−n1∆
2

)) (

e
(

n2∆
2

)

− e
(

−n2∆
2

))

16π4∆2n2
1n

2
2

(e(n1α1) − e(n1α2))(e(n2β1) − e(n2β2))

= O
(

1

∆2n2
1n

2
2

)

(n1, n2 6= 0),

cn10 =
e
(

n1∆
2

)

− e
(

−n1∆
2

)

4π2∆n2
1

(e(n1α1) − e(n1α2))(β1 − β2) = O
(

1

∆n2
1

)

(n1 6= 0), (3.2)

c0n2
=

e
(

n2∆
2

)

− e
(

−n2∆
2

)

4π2∆n2
2

(e(n1β1) − e(n1β2))(α1 − α2) = O
(

1

∆n2
2

)

(n2 6= 0),

c00 = (α1 − α2)(β1 − β2).

Suppose first that n1, n2 6= 0. From the shape of (3.2) it is clear that the contribution of each rec-
tangle to the Fourier coefficient of fa is determined by its vertices: Observe that those coefficients
have the shape

cn1n2
= C(n1, n2)

∑

(a1,a2)

sgn((a1, a2))e(n1a1 + n2a2),

where the sum runs over all vertices (a1, a2) of the rectangular subdomains and the sign of a
vertex is negative if (a1, a2) is the upper left or the lower right vertex of a rectangle and positive
otherwise. Now consider the rectangles of the above described tiling. Then the contribution of
these rectangles is the sum of the contributions of each of its vertices. Thus one easily checks that
these contributions cancel, unless the rectangle vertex under discussion coincides with a vertex of
Πk,a. Hence to each vertex v = (α, β) of Πk,a there corresponds a contribution

cn1n2
(v) = ±

(

e
(

n1∆
2

)

− e
(

−n1∆
2

)) (

e
(

n2∆
2

)

− e
(

−n2∆
2

))

16π4∆2n2
1n

2
2

(e(n1α+ n2β)).

Since, by the construction of the Polygon Πk,a we have O
(

µk
)

such vertices, the result follows for
this case. The cases cn10 and c0n2

can be treated in a similar way. It is easy to see that c00 is
equal to the Lebesgue measure of Fa, which is |b|−2. �
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For certain pairs (n1, n2) it turns out that the corresponding Fourier coefficient cn1n2
vanishes.

The next lemma provides a characterization of these pairs.

Lemma 3.3. Suppose that for the pair (n1, n2) 6= (0, 0) the condition

b | (b̄n1 − n2) (3.3)

holds. Then we have cn1n2
= 0 for the corresponding Fourier coefficient.

Proof. Suppose first that n1, n2 6= 0. We are dealing with the Urysohn function for a domain
with boundary Πk,a and as in the proof of Lemma 3.2 we tile the domain into rectangular subdo-
mains. As in the proof of Lemma 3.2 we see that all these contributions cancel, apart from those
rectangle vertices that coincide with the vertices of Πk,a.

Now let us examine the shape of Πk,a. Due to the fact that the translates Īk,a+φ(z) (z ∈ b−1Z[i])
of Īk,a form a tiling of R2, for each vertex v of Πk,a there exists an a′ ∈ b−1Z[i] such that
v − φ(a′) ∈ Πk,a. Hence each vertex has a corresponding vertex in Πk,a (in case of triple or
quadruple points, i.e., the points belonging to three or four translates, respectively, there are two
or three corresponding vertices, respectively). This induces a partitioning R of the set of vertices.
Observe that the rectangular tiling of Ik,a can be done in such a way that each vertex v belongs to
four different rectangles which can be classified into four types according to their relative position
to v (R1(v), . . . , R4(v), ordered clockwise starting with upper left). Of course, these rectangles
are not all contained in Ik,a, but to each class ρ of R there correspond exactly four rectangles
R1(ρ), . . . , R4(ρ) that are contained in Ik,a, one of each type.

Now let us consider the contributions to the Fourier coefficients of corresponding points v1 =
(α1, α2) and v2 = (β1, β2) (triple and quadruple points can be treated analogously). We want to
show that in presence of condition (3.3) the Fourier coefficient cn1n2

vanishes. To this matter it
suffices to show that the contribution of each class ρ of R is zero. Due to the above considerations
we have to show that

e(n1a1 + n2a2) = 1 (3.4)

for (a1, a2) = φ((ν1 + ν2i)b
−1) with ν1 + ν2i ∈ Z[i], since in this case the contributions of R1(ρ)

and R3(ρ) cancel with the contributions of R2(ρ) and R4(ρ) in the same way as for vertices not
coinciding with a vertex of Πk,a. By (3.3) there exist c + di ∈ Z[i] with (−n − i)n1 − n2 =
(−n+ i)(c+di). Comparing real and imaginary parts and inserting into (3.4) gives n1a1 +n2a2 =
−ν1d− ν2c ∈ Z and we are done for the case where n1, n2 6= 0.

Next we deal with the case (n1, 0), where n1 6= 0. In this case the Fourier coefficients are of the
shape

cn10 = C(n1)
∑

(a1,a2)

sgn((a1, a2))e(n1a1)a2,

where the sum runs over all vertices of the rectangle subdivision of Ik,a. As in the first case one
easily checks that the contributions corresponding to rectangle vertices not coinciding with the
vertices of Πk,a vanish. Thus let us consider the contributions at the vertices of Πk,a. Arguing
in the same way as above, yields that each class ρ of vertices corresponding to the vertex, say
(a1, a2), gives a contribution

cn10(ρ) = ±C ′e(a1n1) 6= 0.

But each vertex of Πk,a belongs to a horizontal edge of Πk,a. It is easy to check that the class ρ′

corresponding to the vertex (a1, a
′
2) situated on the other end of this edge gives a contribution of

the shape

cn10(ρ
′) = ∓C ′e(a1n1).

Since these two contributions have opposite signs, they cancel and we have shown the result also
for this case. The case (0, n2) can be treated in an analogous way. �
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4. An Application of the Erdős-Turán-Koksma Inequality

Before we can prove our key proposition, we have to ensure that a certain sequence, connected
with the polynomial P (z) does not meet the tube Pk,a too often. Precisely, we want to get an
estimate for the quantities

Fj := #

{

z ∈ Z[i]
∣

∣

∣ |z|2 < N and φ

(

P (z)

bj+1

)

∈
⋃

a∈N

Pk,amodB−1Z2

}

. (4.1)

To this matter we use the two dimensional version of the Erdős-Turán-Koksma Inequality (cf. [4,
Theorem 1.21]).

Lemma 4.1. Let x1, . . . , xL be points in the 2-dimensional real vector space R2 and H an arbi-
trary positive integer. Then the discrepancy DL(x1, . . . , xL) fulfills the inequality

DL(x1, . . . , xL) � 2

H + 1
+

∑

0≤‖h‖∞≤H

1

r(h)

∣

∣

∣

∣

∣

1

L

L
∑

l=1

e(h · xl)

∣

∣

∣

∣

∣

,

where h ∈ Z2 and r(h) = max(1, |h1|) · max(1, |h2|).

It will turn out that the exponential sum occurring in this inequality can be estimated with
help of Proposition 2.1. In fact, we shall establish the following result.

Lemma 4.2. Let Fj be defined as in (4.1) and let µ < |b|2 be as at the beginning of Section 3.
Then

Fj �
(

µ

|b|2
)k

N +N(logN)−λµk,

for an arbitrary positive constant λ.

Proof. Since the discrepancy is defined as a supremum over certain rectangles, we subdivide
the tube Pk,a into a family of rectangles. Let Ra be one of these rectangles. Furthermore, let

xz := φ
(

P (z)
bj+1

)

for each z ∈ Z[i] with |z|2 < N . We want to derive an estimate for

Fj(Ra) := #

{

z ∈ Z[i]
∣

∣

∣
|z|2 < N and φ

(

P (z)

bj+1

)

∈ RamodB−1Z2

}

It is clear that

Fj(Ra) � Nλ2(Ra) +NDL({xz})

where L = πN + O
(√

N
)

. Thus it remains to estimate the discrepancy of the point sequence

{xz}. Applying Lemma 4.1 yields

DL({xz}) �
2

H + 1
+

∑

0≤‖h‖∞≤H

1

r(h)

∣

∣

∣

∣

∣

∣

1

L

∑

|z|2<N

e(h · xz)

∣

∣

∣

∣

∣

∣

. (4.2)

Thus we have to estimate the exponential sum in (4.2). Let

τ(z) := (tr(z), tr(bz))T = Ξφ(z), (4.3)

where Ξ = V V T and V is the Vandermonde matrix

V =

(

1 1
b b̄

)

.

With these notations we have

h · φ
(

P (z)

bj+1

)

= hΞ−1τ

(

P (z)

bj+1

)

= tr

(

2
∑

l=1

h̃lb
l−1P (z)

bj+1

)

= tr(r(z)),
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where (h̃1, h̃2)
T := hΞ−1 and r(z) is a certain polynomial. It is easy to see that r(z) fulfills the

conditions of Proposition 2.1. Thus we apply this proposition to (4.2) to derive the estimate

DL({xz}) �
2

H + 1
+

∑

0≤‖h‖∞≤H

1

r(h)
(logN)−σ0

for an arbitrary constant σ0. Thus we arrive at

Fj(Ra) � Nλ2(R) +N(logH)2(logN)−σ0 +
N

H + 1
.

Now observe that (because of possible overlappings) Fj ≤ ∑

a∈N

∑

R Fj(Ra), where the second
sum runs over all rectangles R, in which we subdivided Pk,a. By the properties of Pk,a listed in
Lemma 3.1 we conclude that

Fj �
(

µ

|b|2
)k

N +

(

N(logN)−σ0(logH)2 +
N

H + 1

)

µk.

Setting H := exp
(

(logN)σ0/4
)

and λ := σ0/4 the result follows. �

5. The Key Step

In this section we prove a proposition that will play a crucial rôle in the proof of our main
result. Before we state this proposition, we state a lemma that gives sharp bounds for the length
of the b-adic representation of a Gaussian integer. This result was first proved in a more general
setting in [13] (cf. also [9]).

Lemma 5.1. Let l be the length of the b-adic representation of z ∈ Z[i], i.e., the smallest number
l, such that z =

∑

0≤j<l ajb
j with aj ∈ N . Then the estimate

2 log|b|2 |z| − c ≤ l ≤ 2 log|b|2 |z| + c

holds for a certain absolute constant c.

With help of this lemma we can formulate the following result. As in the introduction we will
denote the j-th digit of a number z ∈ Z[i] in its b-adic representation by aj(z).

Proposition 5.1. Let L = 2 log|b|2 N + c be an upper bound for the maximal length of the b-adic

representation of Gaussian integers z with |z|2 < N . For

L1/3 ≤ l1 < l2 < · · · < lh ≤ rL− L1/3

we have, as N → ∞,

Θ := #{|z|2 < N | alj (P (z)) = bj , j = 1, . . . , h} =
πN

|b|2h
+ O

(

N(logN)−σ′

)

,

uniformly for bj ∈ N and lj in the given range. z runs over the Gaussian integers and σ′ is an
arbitrary positive constant.

Proof. For v ∈ R2 let

t(v) = fb1

(

B−l1−1v
)

· · · fbh

(

B−lh−1v
)

(note that φ(bz) = Bφ(z)). Furthermore, let

M = {M = (µ1, . . . , µh) | µj = (mj1,mj2) with mj1,mj2 ∈ Z; j = 1, . . . , h}.
Then a straight forward calculation yields

t(x, y) =
∑

M∈M

TMe





h
∑

j=1

µjB
−lj−1(x, y)T



 ,

where TM =
∏h

i=1 cmi1mi2
.
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Obviously we have
∣

∣

∣

∣

∣

∣

Θ −
∑

|z|2<N

t(φ(P (z)))

∣

∣

∣

∣

∣

∣

≤ Fl1 + · · · + Flh . (5.1)

With the same notations as in (4.3) we get

∑

|z|2<N

t(φ(P (z))) =
∑

M∈M

TM

∑

|z|2<N

e





h
∑

j=1

µjB
−lj−1φ(P (z))





=
∑

M∈M

TM

∑

|z|2<N

e





h
∑

j=1

µjB
−lj−1Ξ−1τ(P (z))



 .

Set
µ̃j = (m̃j1, m̃j2) := µjB

−lj−1Ξ−1

and observe that

µ̃jτ(P (z)) =

2
∑

i=1

m̃jitr(b
i−1P (z))

= tr

(

2
∑

i=1

m̃jib
i−1P (z)

)

and thus
∑

|z|2<N

t(φ(P (z))) =
∑

M∈M

TM

∑

|z|2<N

e(tr(q(z)))

with a polynomial q(z). Now we want to apply Proposition 2.1 to this sum. Hence we have to
check if the leading coefficient of q(z) satisfies the conditions of Proposition 2.1. In particular, we
have

q(z) =

h
∑

j=1

2
∑

i=1

m̃jib
i−1P (z).

It is an easy exercise to derive that the leading coefficient is

AM

HM
:= pr

h
∑

j=1

b−lj−1(b̄mj1 −mj2)

b̄− b
,

where (AM , HM ) = 1 in Z[i]. We will now characterize those M , for which (logN)σ < HM .
Assume that the vector µh satisfies the condition b 6 | (b̄mh1 −mh2). Now we have

HMpr

h
∑

j=1

blh−lj (b̄mj1 −mj2)

b̄− b
= AMblh+1. (5.2)

Let b = pε1
1 · · · pεg

g be the prime factor decomposition of b. Then pεt
t 6 | (b̄mh1 −mh2) for some t

and hence (5.2) implies plhεt
t | HM . Thus there exists an η > 0 such that HM ≥ bηlh . By the

assumptions on lh we conclude that (logN)σ < HM . In case of bmi1 −mi2 = 0 for i = s+1, . . . , h
and b 6 | (b̄ms1 −ms2) we can prove similarly that HM ≥ bηls . If, on the other hand, there exists
a j ∈ {1, . . . , h}, such that b|b̄mj1 −mj2, Lemma 3.3 implies that the corresponding TM = 0.

Thus we have proved that
∑

M∈M

TM

∑

|z|2<N

e(tr(q(z))) =
∑

M∈M

′
TM

∑

|z|2<N

e(tr(q(z))),

where the prime (’) indicates that we only sum overM = 0 and thoseM ∈ M, for which the leading
coefficient rk/qk of q(z) has qk � (logN)σ for arbitrary σ. Since the inequality qk � Nr(logN)−σ

is obvious, we can apply Proposition 2.1 to each of the inner sums corresponding to nonzero M .
Thus they are bounded uniformly by O (N(logN)−σ0), where σ0 is an arbitrary positive constant.
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Concerning the summand corresponding to M = 0 we remark, that the summands of the inner
sum are all equal to 1. Since c00 := |b|−2 by Lemma 3.2 the contribution corresponding to M = 0

is πN/|b|2h + O
(√

N
)

. Using (5.1) we arrive at

Θ =
πN

|b|2h
+ O



N(logN)−σ0

∑

M 6=0

|TM |



+ O





h
∑

j=1

Flj



 .

Setting k = C log logN with some positive constant C, the result follows from Lemma 4.2 and the
estimate

∑

M

|TM | � ∆−2h

which is a consequence of Lemma 3.2. �

6. Proof of the Theorem

Now we are ready to give a proof of Theorem 1.2. To this matter set A := [L1/3] and B := L−A,
where L is defined as in the statement of Proposition 5.1. Furthermore, define the function

f ′(P (z)) =

B
∑

j=A

f(aj(P (z))bj).

Since f(cbj) = O (1), we conclude that f ′(P (z)) = f(P (z)) + O
(

L1/3
)

. We also define the
approximations

M ′(Nr) :=
B
∑

j=A

mj and D′2(Nr) :=
B
∑

j=A

σ2
j

for M(Nr) and D2(Nr). It is obvious that M ′(Nr)−M(N r) = O
(

L1/3
)

and D′2(Nr)−D2(Nr) =

O
(

L1/3
)

. Summing up all these estimates we arrive at

max
|z|2<N

∣

∣

∣

∣

f(P (z)) −M(N r)

D(Nr)
− f ′(P (z)) −M ′(Nr)

D′(Nr)

∣

∣

∣

∣

→ 0 for N → ∞

using the requirements upon D(N) stated in the theorem. This means that it is enough to show
that

1

#{z | |z|2 < N}#

{

|z|2 < N

∣

∣

∣

∣

f ′(P (z)) −M ′(Nr)

D′(Nr)
< y

}

→ Φ(y).

By the Fréchet-Shohat Theorem (cf. for instance [6, Lemma 1.43]) this holds if and only if the
moments

ξk(N) :=
1

#{z | |z|2 < N}
∑

|z|2<N

(

f ′(P (z)) −M ′(Nr)

D′(Nr)

)k

converge to the moments of the normal law for N → ∞. Instead of proving this, we compare
ξk(N) with

ηk(N) :=
1

#{z | |z|2 < Nr}
∑

|z|2<Nr

(

f ′(z) −M ′(Nr)

D′(Nr)

)k

.

Proposition 5.1 now implies that

ξk(N) − ηk(N) → 0 for N → ∞.

Obviously, ηk(N) are the moments of

f ′(z) −M ′(Nr)

D′(Nr)
(|z|2 < Nr).

By Lemma 5.1 these are sums of independently identically distributed random variables (apart
from 2c variables, which are not independent from the others; but since c is an absolute constant,
they do not play any rôle). Thus it follows from the central limit theorem that their distribution
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converges to the normal law. Hence, also ηk(N) converge to the moments of the normal law. This
yields

lim
N→∞

ξk(N) = lim
N→∞

ηk(N) =

∫

xkdΦ.

Applying the Fréchet-Shohat Theorem again the other way round, the theorem follows.
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