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Abstract

Expressions for the multi-dimensional densities of Brownian bridge local time are derived

by two different methods: A direct method based on Kac’s formula for Brownian functionals

and an indirect one based on a limit theorem for strata of random mappings.
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1 Introduction

Throughout this paper, the standard Brownian motion (BM) will be denoted by x(t). The reflect-
ing Brownian bridge (rBB) is the process x+(t) which is identical in law to (|x(t)−tx(1)|, 0 ≤ t ≤ 1).

We are interested in the process (τ+(a), a ≥ 0) where τ+(a) is the total local time of x+(t) at
level a, defined by

τ+(a) = lim
ε→0

1

ε

∫ 1

0

I[a,a+ε](x
+(t)) dt.

Several representations of the one dimensional density of this process are known. Though there is
no direct study of this process, results on symmetric random walks or random mappings ([2, 7])
yield various density representations (see [21, 22, 7]).

Apart from the random mapping (see Sec. 2.3), applications of the rBB local time can be
found in the analysis of Shellsort : (see Louchard [17, Sec. 2]). We need the distribution of the
number I(2n) of inversions in a 2-ordered permutation of the 2n values {1 · ·2n} (i.e. permutation
consisting of two interleaved sorted permutations). Position i of the odd part of the permutation
contains value k if the path Un corresponding to the permutation satisfies Un(i) = k − i (this is
Knuth’s correspondence between 2-ordering and path in a lattice, see Knuth [15, p. 87]). Now
Un([nt] − nt)/

√
2n ⇒ BB(t) and I(2n) =

∑n
i=1 |i − Un(i) − 1|.

The local time of the rBB at `/
√

2n corresponds to the number of positions i containing 2i+ `
or 2i − `.

The rBB local time corresponds also to the number of jumps at some level of the empirical
distribution, in the context of the classical Kolmogorov-Smirnov distribution function.

Denote by fx(y) the density of τ+(x). Then in [7] we find the representation

fx(y) =
1

i
√

2π

∫

S

eα

2 cosh2(x
√

2α )
exp

(

− y√
2

√
αex

√
2α

cosh(x
√

2α )

)

dα (1)

where S := (a − i∞, a + i∞), a > 0, is a straight line parallel to the imaginary axis, which is the
Brownian bridge analogon to the density presented in [5, 13] for the Brownian excursion. We will
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generalize this formula to several dimensions and offer two approaches: the first one is a direct
computation by means of Kac’s formula for Brownian functionals and the second one is based on
the fact that the process consisting of the – suitably normalized – strata of a random mapping
converges weakly to Brownian bridge local time.

The paper is organized as follows. In Sec. 2 we summarize basic notations and methods.
Some preliminary formulas based on Kac’s formula and their inversion are given in Sec. 3. Sec.
4 is devoted to the general multi-dimensional density. The Brownian excursion analogon of this
problem has been treated in [12]. Thus we will keep our presentation rather brief and refer to [12]
for details.

We would like to mention that MAPLE was of great help in computing some complicated
expressions (with some guidance of course).

2 Basic notations and known results

2.1 Kac’s formula for Brownian functionals

Denote by η(t) any of the processes defined in the previous section. Then we will use the notation

Ea[B(η)] := Pr[B|η(0) = a]

where B(η) is an event belonging to the Borel field generated by η(t). Furthermore denote by
Lα(f(x)) :=

∫∞
0

e−αxf(x) dx the Laplace transform of f(x). Then the classical density (for
η(t) = x(t))

p(t, x, y)dy := Ex[x(t) ∈ dy] =
1√
2πt

exp

[

− (x − y)2

2t

]

dy

implies

Lα(p(t, x, y)) =
exp(−

√
2α|x − y|)√
2α

(2)

where the Laplace transform is taken with respect to t.
Let h ≥ 0 be a piecewise continuous function and let G be the differential operator

(Gu)(a) :=
1

2
u′′(a) − h(a)u(a).

Kac’s formula states that, for α > 0 and f ∈ C(R1).

u(a) = Ea

∫ ∞

0

e−αt exp

(

−
∫ t

0

h[x(s)] ds

)

f(x(t)) dt (3)

is the bounded solution of
(α − G)u = f. (4)

The solution of (4) is given by u(a) =
∫

G(a, b)f(b) db where the Green function G is given by

G(a, b) = G(b, a) = 2W−1g1(a)g2(b), a ≤ b,

where 0 < g1 ∈↑, 0 < g2 ∈↓ are independent solutions of Gg = αg and W is their constant positive
Wronskian: W = g′1g2 − g1g

′
2. (See Itô and McKean [14, par 2.6], Louchard [18])

If we add to h in (3) another function h∗, the modified Green function G∗(a, b) satisfies the
relation

G∗(a, b) = G(a, b) −
∫

G(a, x)h∗(x)G∗(x, b) dx

(see Itô and McKean [14, p. 67]).
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Particularly, for h∗(x) = γI(ξ,η)(x)/(η−ξ) (where I(ξ,η) is the indicator function of the interval
(ξ, η) with η > ξ) we obtain by letting η ↓ ξ

G∗(a, b) = G(a, b) − γ
G(a, ξ)G(ξ, b)

1 + γG(ξ, ξ)
. (5)

This corresponds to adding γt+(t, ξ) to
∫ t

0
h[x(s)] ds. Letting γ ↑ ∞, we get from (5)

G(a, b) − G(a, ξ)G(ξ, b)

G(ξ, ξ)
(6)

which corresponds to

∫ ∞

0

e−αtEa

[

exp

[

−
∫ t

0

h[x(s)] ds

]

, t < mξ, x(t) ∈ db

]

dt a, b < ξ.

where ma(η) := inf(s : η(s) = a) denotes the hitting time.

2.2 Random mappings and local time

As usual, a random mapping on the {1, . . . , n} is defined to be an element of the set Fn of
all mappings ϕ : {1, . . . , n} → {1, . . . , n} equipped with the uniform distribution. It can be
represented by its functional graph Gϕ, i.e. the graph consisting of the nodes 1, 2, . . . , n and of
the edges (i, ϕ(i)), i = 1, . . . , n. It is easy to see that each component of such a graph consists of
exactly one cycle of length ≥ 1 each point of which is the root of a labeled tree (a so called Cayley
tree). Thus for each point x ∈ Gϕ there exists a unique path connecting x with the next cyclic
point. The length of this path is called the distance of x to the cycle. The set of all points at a
fixed distance r from the cycle is often called the r-th stratum of ϕ.

Let Ln(t) denote the number of nodes in the t-th stratum of a random mapping ϕ ∈ Fn. For
noninteger t define

Ln(t) = (btc + 1 − t)Ln(btc) + (t − btc)Ln(btc + 1), t ≥ 0.

There is a lot of literature on random mappings, and interested readers should consult e.g.
[16]. In the sequel we will need the following result from [7]:

Theorem 2.1 The following limit theorem holds in C[0,∞):

1√
n

Ln(t
√

n)
w−→ 1

2
τ+

(

t

2

)

in C[0,∞), as n → ∞.

By means of this theorem we will compute the multi-dimensional local time denstities: Let

an = nn−1 be the number of Cayley trees consisting of n nodes. Furthermore denote by a
(r1···rd)
k1···kdn

the number of all random mappings in Fn which have ki nodes in stratum ri, where r1 < . . . < rd.
Then by setting

b0(z, u) = u

bi+1(z, u) = zebi(z,u) (7)

and

a(z) =
∑

n≥0

an
zn

n!
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and using standard combinatorial techniques (readers not familiar with these techniques may
consult e.g. [10] and [8]) we can write down the generating function of these numbers in the form

g(z, u1, . . . , ud) =
∑

k1,...,kd,n≥0

a
(r1···rd)
k1···kdnuk1

1 · · ·ukd

d zn

=
1

1 − br1
(z, u1bh12

(z, u2bh23
(· · ·ud−1bhd−1,d

(z, uda(z)) · · ·))

where hij = rj − ri.
The multi-dimensional density can be determined by evaluating the proper coefficient of

g(z, u1, . . . , ud): If we set ri = bρi
√

nc and ki = byi
√

nc and denote by fρ1···ρd
(y1, . . . , yd) the

joint density of
τ+(ρ1), . . . , τ

+(ρd), then by Theorem 2.1 we have

fρ1/2,...,ρd/2 (2y1, . . . , 2yd) = 2−d lim
n→∞

nd/2n!

nn
[znuk1

1 · · ·ukd

d ]g(z, u1, . . . , ud) (8)

where the symbol [zn]f(z) denotes the coefficient of zn in the power series expansion of f(z).

3 Preliminary formulas

In this section, we define some auxiliary functions built on Kac’s formula. Let (ρi) be a strictly
monotonically increasing sequence of non-negative real numbers. Set

ϕd(α) :=

∫ ∞

0

e−αtE
[

e−β1

√
tτ+(ρ1/

√
t)−···−βd

√
tτ+(ρd/

√
t)
] dt√

2πt

and

ϕ̄d(α) :=

∫ ∞

0

[e−αt − 1]E
[

e−β1

√
tτ+(ρ1/

√
t)−···−βd−1

√
tτ+(ρd−1/

√
t)[t < mρd

]
] dt√

2πt
.

where m. is related to the Brownian bridge of duration t.

Lemma 1 We have
ϕd(α) = G∗∗

d (a, b)|a=b=0 (9)

and
ϕ̄d(α) = Ḡ∗∗

d (a, b)|a=b=0 (10)

where

G∗∗
d (a, b) = G∗

d(a, b) − βd
G∗

d(a,−ρd)G
∗
d(−ρd, b)

1 + βdG∗
d(−ρd,−ρd)

(11)

Ḡ∗∗
d (a, b) = Ḡ∗

d(a, b) − Ḡ∗
d(a,−ρd)Ḡ

∗
d(−ρd, b)

Ḡ∗
d(−ρd,−ρd)

with

G∗
d(a, b) =























G(a, b) − β1
G(a, ρ1)G(ρ1, b)

1 + β1G(ρ1, ρ1)
for d = 1

G∗∗
d−1(a, b) − βd

G∗∗
d−1(a, ρd)G

∗∗
d−1(ρd, b)

1 + βdG∗∗
d−1(ρd, ρd)

for d > 1

(12)
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and

Ḡ∗
d(a, b) =























G(a, b) − G(a, ρ1)G(ρ1, b)

G(ρ1, ρ1)
for d = 1

G∗∗
d−1(a, b) −

G∗∗
d−1(a, ρd)G

∗∗
d−1(ρd, b)

G∗∗
d−1(ρd, ρd)

for d > 1

(13)

and

G(a, b) =
exp

(

−
√

2α|a − b|
)

√
2α

.

Proof: By (2) we have

G(a, b)db =

∫ ∞

0

e−αtEa[x(t) ∈ db]dt.

Inserting h ≡ 0 and f(y) = Idb(y) into Kac’s formula and adding γt+(t, ρ) as described before
formula (6) yields

G1(a, b)db = lim
γ↑∞

∫ ∞

0

e−γtEa[exp(−γt+(t, ρ)), x(t) ∈ db]dt

=

∫ ∞

0

e−αtEa[x(t) ∈ db, t < mρ]dt.

Adding a local time βt+(t, ρ) to the exponent gives a modification of the Green function according
to (5) and thus we have

G2(a, b) =

∫ ∞

0

e−αtEa[e−βt+(t,ρ)x(t) ∈ db]dt

and continuing in this way (considering ρd,−ρd) yields the recursion (12) and (11). For obtaining
(13) we have to take into account that the d-th step we restrict to [t < mρd

] and [t < m−ρd
] (in

the way we got (5) and (6), i.e. by adding γt+(t, ρd) and γt+(t,−ρd) to the exponent and letting
γ ↑ ∞ instead of adding the local time β1t

+(t, ρ1).
2

Examples

Dimension 0

ϕ̄1(α) = Sh(
√

2αx1)√
2αCh(

√
2αx1)

: it is correct and corresponds to the Kolmogorov-Smirnov formula.

Dimension 1

ϕ1(α) − ϕ̄1(α) =
2e2

√
2αx1

(1 + e2
√

2αx1)(
√

2αe2
√

2αx1 + β1[1 + e2
√

2αx1 ])

=
1

Ch(
√

2αx1)[
√

2αe
√

2αx1 + 2β1Ch(
√

2αx1)]

Inverting, this leads to (1)
Dimension 2

ϕ2(α) − ϕ̄2(α) =
α

2f2
3 [β2 +

√
αE2,1

√
2Sh2,1

+ f5

f3
]

with

f5 := −α
Ch1

Sh2,1

5



f3 =
√

2Ch1Sh2,1[β1 +

√
αCh2√

2Ch1Sh2,1

]

Ch1 := cosh(
√

2αρ1)

Sh2,1 := sinh(
√

2α(ρ2 − ρ1))

E2,1 := e
√

2α(ρ2−ρ1)

Inverting leads to
α

4Ch2
1Sh2

2,1

e
−y1

√

αCh2
√

2Ch1Sh2,1
−y2

√

αE2,1
√

2Sh2,1

√

y1

a1
I1(2

√
a1y1)

a1 =
αy2

2Sh2
2,1

In order to get our density representations we have to invert the formulas. This is done by the
following

Lemma 2 Set Bd(t) := e−β1

√
tτ+(ρ1/

√
t)···−βd

√
tτ+(ρd/

√
t). We obtain the following inversion for-

mulas:

E[Bd(1), 1 > mρd
] =

1√
2πi

∫

S

eu[Ψd(u) − Ψ̄d(u)] du

Proof: See [12, Section 4].
2

4 Multi-dimensional densities

We offer two different proofs of our results: the first one is based on some properties of G∗∗
d . The

other one is based on Cauchy’s formula applied to (8) and singularity analysis.

Lemma 3 We have

A. ϕd(α) − ϕ̄d(α) = Θ(d) with

Θ(d) :=
αd−1

2[F1(d)]2[βd + C1(d) + C2(d)D2(d)/F1(d)]

where

C1(d) =

√

α

2
Ed,d−1/Shd,d−1

C2(d) = − α

2Sh2
d,d−1

C3(d) =

√

α

2

Shd,d−2

Shd,d−1Shd−1,d−2

F1(d) = βd−1D2(d) + D1(d)

D2(d) = (βd−2D2(d − 1) + D1(d − 1))
√

2Shd,d−1

=
√

2Shd,d−1F1(d − 1)

D1(d) = C3(d)D2(d) + C2(d − 1)D2(d − 1)
√

2Shd,d−1

=
√

2Shd,d−1C3(d)F1(d − 1) + 2Shd,d−1Shd−1,d−2C2(d − 1)F1(d − 2)

The coefficient of β1 · · ·βd−2 in D2(d) equals 2(d−1)/2Ch1

∏d
l=2 Shl,l−1 or, equivalently, the

initial values of F1(d) are given by

F1(1) = Ch1 F1(2) =
√

2Ch1Sh2,1[β +

√
2Ch2√

2Ch1Sh2,1

]

where Shi,j = sinh(
√

2α(ρi − ρj)), Chi,j = cosh(
√

2α(ρi − ρj)), and Ei,j = e
√

2α(ρi−ρj).
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B.

ϕ̄d(α) − ϕ̄d−1(α) = Θ(d − 1) − αd−1

2[F1(d)]2[C1(d) + C2(d)D2(d)/F1(d)]

Once we have proved Lemma 3, it is now routine to derive the following Theorem: Part A is
computed as in [12] in Part B, we use the transforms

Lα

[

1

a
(1 − eax)

]

=
1

α(α + a)

Theorem 4.1 .

A. The d-dimensional density is given by

fρ1···ρd
(y1, y2, . . . , yd;M > ρd) =

1

i
√

2π

∫

S

eααd−1

2dCh2
1

∏d
l=2 Sh2

l,l−1

·

· exp

[

−ydC1(d) −
d−1
∑

l=2

ylC3(l + 1) − y1

√
αCh2√

2Ch1Sh2,1

]

·

·
d−1
∏

l=1

[
√

yl

alyl+1
I1[2

√
alylyl+1]

]

dα (14)

with M = supu∈[0,1][Y (u)|L = 1] and al := − α
2Sh2

l+1,l

.

B. The constraint densities fρ1···ρd
(y1, . . . , yk; ρk+1 > M > ρk) are given by (14) where we

replace d by k and −ykC1(k) by −ykC3(k + 1).

4.1 The proofs

4.1.1 Using some properties of G∗∗
d

Proof: Proof of Lemma 3, Part A. Actually, we will use the same notation as in the proof of
[12, Lemma 3] and use auxiliary functions D3(d), D4(d), for which we will prove the following
relations:

D2(d) = βd−2D4(d) + D3(d)

D1(d)

D2(d)
= C3(d) + C4(d)D4(d)/D2(d)

C4(d) = C2(d − 1)

D3(d)

D4(d)
=

D1(d − 1)

D2(d − 1)

D4(d) = D2(d − 1)
√

2Shd,d−1

The coefficient of β1 · · ·βd−3 in D4(d) = 2(d−1)/2Ch1

∏d
l=2 Shl,l−1.

By (12) and (13) we have

G∗∗
d (a, b) − Ḡ∗∗

d (a, b) =
2G∗∗

d−1(a, ρd)G
∗∗
d−1(ρd, b)

[1 + βdG∗∗
d−1(ρd, ρd)]Ĝd−1(ρd, ρd)

=
Ĝd−1(a, ρd)Ĝd−1(ρd, b)

2[Ĝd−1(ρd, ρd)]2[βd + 1
Ĝd−1(ρd,ρd)

]
(15)
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where Ĝd(a, b) = G∗∗
d (a, b) − G∗∗

d (a,−b).

We have Ĝd(a, b) = Ĝ(b, a), Ĝd(a, b) = Ĝd−1(a, b)−βd
Ĝd−1(a,ρd)Ĝd−1(ρd,b)

1+βdĜd−1(ρd,ρd)
and Ĝ satisfies the 4

relations in the appendix of [12]. From now on we use Ĝ instead of G∗∗, the proof follows closely
Sec. 5.4.1 of [12],
Proof: Proof of Lemma 3, Part B.

We must now analyze Ḡ∗∗
d (a, b) − Ḡ∗∗

d−1(a, b)

= G∗∗
d−1(a, b) − Ḡ∗∗

d−1(a, b) − Ĝd−1(a, ρd)Ĝd−1(b, ρd)

2Ĝd−1(ρd, ρd)

This first part clearly leads to Θ(d − 1).
The second part gives

− αd−1

2F 2
1 [C1(d) + C2(d)D2(d)/F1(d)]

2

4.1.2 Using the random mapping approach

Now we will use the results of section 2.2 in order to deduce Theorem 4.1. The proof runs in
the following way: First we apply [6, Lemma 2.1] in order to get an asymptotic expansion of
g(z, u1, . . . , ud). Then we will apply Cauchy’s formula and singularity analysis in the sense of
Flajolet and Odlyzko [9]. We will omit details like error estimates, since this works in a very
similar way as in [12]. There is also another way to get a more rigorous proof via the random
mapping approach: When we consider random mapping built of planted plane trees instead of
Cayley trees. Since this can be viewed as a special case of constrained random mappings (see
[3, 4, 11]), it is easy to see that Theorem 2.1 still holds (with a different scaling parameter of
course:

√
2 instead of 2). Thus the explicit formulas [12, eq. 31 and eq. 32] can be used instead

of the asymptotic ones below and the error estimates are much easier. But on the other hand,
dealing with those explicit expressions is much more involved and does not provide any deeper
insight.

We have

Lemma 4 Assume that |z − 1
e | → 0 in such a way that |a(z)| ≤ 1 + O

(

1√
n

)

, as n → ∞, and

|u − a(z)| = O
(

1√
n

)

. Then we have the following asymptotic relation uniformly for r = O (
√

n):

br(z, u) =
Ar − uBr

Cr − uDr
(1 + O ((1 − a(z))))

where

Ar =

(

1 +
a(z)

2

1 − a(z)r

1 − a(z)
− a(z)r

)

a(z)

Br =
a(z)

2

1 − a(z)r

1 − a(z)
− a(z)r

Cr = 1 +
a(z)

2

1 − a(z)r

1 − a(z)

Dr =
1

2

1 − a(z)r

1 − a(z)

Proof: Set ϕ(t) = et, σ = 1, and τ = 1 in [6, Lemma 2.1]. Then the above form can be obtained
by elementary algebra.

2
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Using this expansion we obtain after a straight forward calculation the following formula:
[uk1

1 · · ·ukd

d ]g(z, u1, . . . , ud) = [zn]F (z) with

F (z) =

(

Cr1

Cr1
− Ar1

− Dr1

Dr1
− Br1

)(

Dr1
− Br1

Cr1
− Ar1

)k1
(

Ah12

Ch12

)k1
(

Dhd−1,d

Chd−1,d

)kd

Sd

×
d−1
∏

l=2

[

(

Dhl−1,l

Chl−1,l

)kl
(

Ahl,l+1

Chl,l+1

)kl

Sl

]

, (16)

where

Sl =

min(kl−1,kl)−1
∑

i=0

(

kl−1

i + 1

)(

kl − 1

i

)(

1 − Bhl−1,l
Chl−1,l

Ahl−1,l
Dhl−1,l

)i+1

.

Now, in order to calculate this coefficient we use Cauchy’s integral formula choosing a truncated
line normal to the real axis and complemented by a circular arc as integration path. To be precise,
we integrate along Γ = γ′ ∪ Γ′ given by

γ′ =

{

z : z =
1

e

(

1 − 1 + it

n

)

and |t| ≤
√

2n + 1

}

Γ′ =

{

z : |z| =
1

e
and arctan

√
2n + 1

n − 1
≤ | arg z| ≤ π

}

On γ′ we substitute z = 1
e

(

1 − α
n

)

. Now using the well known expansion for the tree function (see
e.g. [19]) on γ′

a(z) ∼ 1 −
√

2α

n

we obtain the asymptotic relations

Cr1

Cr1
− Ar1

− Dr1

Dr1
− Br1

∼ 1

cosh2
(

ρ1

√

α/2
) (17)

(

Dr1
− Br1

Cr1
− Ar1

)k1

∼ exp



−y1

√
2α

sinh
(

ρ1

√

α/2
)

cosh
(

ρ1

√

α/2
)



 (18)

(

Ahl,l+1

Chl,l+1

)k

l

∼ exp



−
yl

√
2α cosh

(

(ρl+1 − ρl)
√

α/2
)

sinh
(

(ρl+1 − ρl)
√

α/2
)



 (19)

(

Dhl,l+1

Chl,l+1

)k

l+1

∼ exp



−
yl

√
2α cosh

(

(ρl+1 − ρl)
√

α/2
)

sinh
(

(ρl+1 − ρl)
√

α/2
)



 (20)

The sum in Sl can be approximated with the help of Stirling’s formula and by extending the
range of summation to infinity (for details see [12]). In this way we get

Sl ∼
2α

sinh2
(

(ρl+1 − ρl)
√

α/2
)

√

√

√

√

yl sinh2
(

(ρl+1 − ρl)
√

α/2
)

2yl+1α
I1






2

√

√

√

√

2αylyl+1

sinh2
(

(ρl+1 − ρl)
√

α/2
)







(21)
and inserting (17)–(21) into (16) and applying (8) yields (4.1) as desired.

Proof of Part B: This part is immediate: One has just to compute the coefficients

[znu0
1 · · ·u0

d]g(z, u1, . . . , ud)
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[znuk1

1 u0
2 · · ·u0

d]g(z, u1, . . . , ud)

...

[znuk1

1 · · ·ukd−1

d−1 u0
d]g(z, u1, . . . , ud)

which is an easy exercise.
2

References

[1] ALDOUS, D. (1991) The continuum random tree II: an overview. In Stochastic Analysis, M.
T. Barlow and N. H. Bingham, Eds., Cambridge University Press.

[2] ALDOUS, D. and PITMAN, J. (1994), Brownian bridge asymptotics for random mappings.
Random Struct. Alg. 5, 487–512.

[3] ARNEY, J. and BENDER, E. A. (1982) Random mappings with constraints on coalescence
and number of origins. Pacific J. Math. 103, 269–294.

[4] BARON, G., DRMOTA, M. and MUTAFCHIEV, L. (1996) Predecessors in random map-
pings. Combin. Probab. Comput. 5, 317–335.

[5] COHEN, J.W. and HOOGHIEMSTRA, G. (1981) Brownian excursion, the M/M/1 queue
and their occupation times. Math. Operat. Res. 6, 608–629.

[6] DRMOTA, M. and GITTENBERGER, B. (1997) On the profile of random trees. Rand. Str.
Alg. 10, 421–451.

[7] DRMOTA, M. and GITTENBERGER, B. Strata of random mappings – a combinatorial
approach Stoch. Proc. Appl., to appear.

[8] DRMOTA, M. and SORIA, M. (1995) Marking in combinatorial constructions: generating
functions and limiting distributions. Theoret. Comp. Sci. 144, 67–99.

[9] FLAJOLET, P. and OODLYZKO, A. M. (1990) Singularity analysis of generating functions,
SIAM J. Discr. Math. 3, 216–240.

[10] FLAJOLET, P. and VITTER, J. S. (1990) Average-Case Analysis of Algorithms and Data
Structures. In Handbook of Theoretical Computer Science, J. van Leeuwen, Ed., vol. A: Al-
gorithms and Complexity. North Holland, Ch. 9, pp. 431–524.

[11] GITTENBERGER, B. (1997) On the number of predecessors in constrained random map-
pings. Stat. Probab. Letters 36, 29–34.

[12] GITTENBERGER, B. and LOUCHARD, G. The Brownian excursion multi-dimensional local
time density. J. Appl. Probab., to appear.

[13] HOOGHIEMSTRA, G. (1982) On the explicit form of the density of Brownian excursion local
time. Proc. Amer. Math. Soc. 84, 127–130.
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