
THE DYING FIBONACCI TREE

BERNHARD GITTENBERGER

1. Introduction

Consider a tree with two types of nodes, say A and B, and the following properties:

1. Let the root be of type A.

2. Each node of type A produces exactly one descendent of each type with probability p and

no descendent with probability 1 − p.

3. Nodes of type B produce one descendent of type A with probability p and no descendent

with probability 1 − p.

If p = 1 then the resulting tree is the Fibonacci tree. It can easily be verified that the number

of A’s in the n-th layer equals the n-th Fibonacci number Fn and the number of B’s equals

Fn−1. Let An and Bn denote the number of A’s and B’s, respectively, in the first n layers of

the tree. Then we have

An

An + Bn
=

∑n
i=1

Fi
∑n+1

i=2
Fi

= 1 − Fn+1 − F1
∑n+1

i=2
Fi

Using the well known representation of the Fibonacci numbers Fn = (αn − α−n)/
√

5 where

α = (1 +
√

5)/2 we immediately get

An

An + Bn
= 1 − αn+1 − α−n−1 − α + 1/α

(α2(1 − αn) − α−1(1 − α−n))/(1 − α)
∼ 1

α
=

√
5 − 1

2
(1)

We are interested in the distribution of the number of A’s and B’s conditioned on the total

number of nodes for the case p < 1. In this case there occur trees with a finite number of nodes

with positive probability and due to (1) we might conjecture that the ratio An/(An + Bn)

behaves similarly for trees conditioned on the tree size to be n if p is close to 1. This is the topic

of the next section. The last section is devoted to the connection between the dying Fibonacci

tree and branching processes.
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2. The number of type A nodes in the dying Fibonacci tree

We will consider now the case p < 1. Let T denote a dying Fibonacci tree, TA and TB the

number of A’s and B’s, respectively, and |T | the total number of nodes. Set anm = P{TA =

n, TB = m} and q = 1 − p. Let A(u, v) =
∑

n,m≥0
anmunvm be the probability generating

function associated to anm. Furthermore let B(u, v) be the analogous generating function for

trees that start with a root of type B. Due to the construction of the dying Fibonacci tree we

have the following relations between A(u, v) and B(u, v):

A(u, v) = u(q + pA(u, v)B(u, v))

B(u, v) = v(q + pA(u, v))

and thus

A(u, v) = u(q + vpqA(u, v) + vp2A2(u, v)).

From this we get

Theorem 2.1. The probability that a tree with exactly n A’s and exactly m B’s occurs is given

by

P{TA = n, TB = m} =
1

n

(

n

m

)(

m

n − m − 1

)

pn−1qm+1

Proof. The above probability is given by the coefficients anm which may be determined explicitly

by means of Lagrange’s inversion formula. We have

[un]A(u, v) =
1

n
[zn−1](q + vpqz + vp2z2)n.

This implies

[unvm]A(u, v) =
1

n
[zn−1vm](q + vpqz + vp2z2)n

=
1

n
[zn−1]

(

n

m

)

qn−mpm(qz + pz2)m

=
1

n

(

n

m

)

qn−mpm[zn−1−m](q + pz)m

=
1

n

(

n

m

)(

m

n − m − 1

)

pn−1qm+1

and we are done.
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The distribution of the number of A’s in trees of size n is given by

am,n−m
∑

i+j=n aij
.

In order to get some information on the behavior of these quantities we modify the generating

function A(u, v) to A(xu, x) such that it keeps track on the number of A’s and the tree size and

use as a lemma the following result of Drmota[2]:

Lemma 2.1. Let A(x, u) =
∑

n,k≥0
ankxnuk =

∑

n≥0
ϕn(u)xn be a generating function of non-

negative numbers an,k such that there are n1, n2, n3, k1 < k2 < k3 with an1k1
an2k2

an3k3
> 0

and gcd(k3 − k2, k2 − k1) = 1. Set d = gcd{n − l : ϕn(u) 6= 0} where l = min{m > 0 :

ϕm(u) 6= 0}. Furthermore let A(x, u) satisfy a functional equation A = F (A, x, u) where the

expansion F (A, x, u) =
∑

fijkAixjuk has non-negative coefficients and suppose that the system

of equations

A = F (A, x, u)

1 = FA(A, x, u)

has positive solutions A = f1(u), x = f2(u) for u ∈ [a, b] such that (f1(u), f2(u), u) are regular

points of F (A, x, u). In addition suppose that Fx(f1(u), f2(u), u) and FAA(f1(u), f2(u), u) are

positive. Then we have

ank =
d

2πn2

g(h(k/n))

σ(h(k/n))

1

h(k/n)kf2(h(k/n))n

(

1 + O
(

n−1/2
))

uniformly for k/n ∈ [µ(a), µ(b)] and n ≡ lmod d, where

g(u) =

([

xFx

FAA

]

(f1(u), f2(u), u)

)1/2

,

µ(u) =

[

uFu

xFx

]

(f1(u), f2(u), u),

and h(u) is the inverse function of µ(u).

If 1 ∈ (a, b) then discrete random variables Xn with P{Xn = k} = ank/ϕn(1) are asymptot-

ically normal with mean EXn = µ(1)n + O (1) and variance O (n). Furthermore we have

ϕn(1) =
d√
2π

g(1)f2(1)
−nn−3/2(1 + O

(

n−1
)

), as n → ∞. (2)

As a consequence we get
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Theorem 2.2. Let T be a dying Fibonacci tree and p close to 1. Then the distritbution of the

random variable TA/n conditioned on |T | = n is asymptotically normal with mean value

µ =
2

3

(

1 +
1

2
q1/3 + O

(

q2/3
)

)

.

and variance O (1/n). Besides, we have

P{|T | = n} =
g√
2π

ρ−nn−3/2(1 + O
(

n−1
)

)

where

g =

√
q

3
√

2

(

1 +
1

12 3
√

2
q1/3 + O

(

q2/3
)

)

, as q → 0, (3)

and

ρ =
1

3
√

4q

(

1 − 1

3 3
√

2
q1/3 + O

(

q2/3
)

)

, as q → 0.

Remark . This means that for p close to 1 large Fibonacci trees contain about twice as many

type A nodes as type B nodes and so the conjecture stated in the introduction, namely that

the ratio will be close to the golden ratio, is surprisingly false.

Proof. Obviously, A(xu, x) satisfies the functional equation

A = F (A, x, u) = xuq + x2upqA + x2up2A2.

Thus we have to show that the system

A = xuq + x2upqA + x2up2A2

1 = x2upq + 2x2up2A

has positive solution A = f1(u) and x = f2(u) for u ∈ (a, b) for some interval (a, b). As the first

equation is quadratic in A we can get an explicit expression for A:

A =
1 − x2upqA −

√

x4p2q2u2 − 4x3p2qu2 − 2x2pqu + 1

2x2up2A2

The second equation means that we have to set the discriminant equal to zero:

x4p2q2u2 − 4x3p2qu2 − 2x2pqu + 1 = 0. (4)

Note that the left hand side is positive if x = 0 and negative if u = 1 and x = 1/
√

pq. Thus

there exists a positive root of the above equation if u lies near 1. Consequently there exists

an interval (a, b) containing 1 such that for u ∈ (a, b) the above system has positive solutions
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f1 and f2. Furthermore, it is easy to verify that the other assumptions of Lemma 2.1 are also

fulfilled. Thus the number of A’s in trees of size n is asymptotically normally distributed with

mean µ(1) and variance O
(

n−1
)

. Now let us study the mean in detail, especially for p tending

to 1. We have already seen that x = O
(

1/
√

pq
)

. If q tends to zero then p2q/(
√

pq)3 → ∞ while

the other terms of (4) remain bounded. Thus x = o(1/
√

pq). This implies that the third order

term is the dominant one and we get

x =
y

3

√

4p2q
, as q → 0,

where y = 1 + w with w = o(1). Using this and keeping in mind that yk = 1 + kw + O
(

w2
)

and that p = 1 + O (q) we get

1

4

(

y2 3

√

q

2

)2

− y3 − y2 3

√

q

2
+ 1 = 0

=⇒ 1

4

3

√

q2

4
− 3w − 3

√

q

2
+ o(w) = 0

=⇒ w ∼ −1

3
3

√

q

2

Set s = 3

√

q/2. We will now use this information to get a better asymptotic result via boot-

strapping as demonstrated by de Bruijn[1]. We have

1

4
(1 + 4w + O

(

w2
)

)s2 − 3w − 3w2 + O
(

w3
)

− (1 + 2w + O
(

w2
)

)s = 0

=⇒ s2

4
− 3w − 3w2 − s − 2sw + O

(

w3
)

= 0

=⇒ w2 + w

(

1 +
2s

3

)

+
s

3
− s2

12
+ O

(

s3
)

= 0

Solving the quadratic equation yields

w = −s

3
+

7

36
s2 + O

(

s3
)

and consequently

x =
1

3
√

4q

(

1 − 1

3
3

√

q

2
+

7

36

3

√

q2

4
+ O (q)

)

=
1

3
√

4q

(

1 − 1

3
3

√

q

2
+ O

(

q2/3
)

)

, as q → 0. (5)

Since

A =
1 − x2pqA

2x2p2A2
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we get

A =
1 − q1/3

2
3
√

2

(

1 − q1/3

3
3
√

2
+ O

(

q2/3
)

)

q−2/3

3
√

2

(

1 − 2q1/3

3
3
√

2
+ O

(

q2/3
)

)

= 3

√

2q2

(

1 +
1

6 3
√

2
q1/3 + O

(

q2/3
)

)

, as q → 0. (6)

The mean value µ(1) we are searching for is given by

µ(1) =

[

uFu

xFx

]

(A(x(1), 1), x(1), 1) =
A

xq + 2x2pqA + 2x2p2A2

Using the asymptotic expansions for x and A we get

µ(1) =
2

3

(

1 +
1

2
q1/3 + O

(

q2/3
)

)

.

The second statement is an immediate consequence of (2): Note that

g(1) =

([

xFx

FAA

]

(f1(1), f2(1), 1)

)1/2

,

=

√

q + xA + xA2

2x
(1 + O (q))

and thus inserting (5) and (6) we obtain (3).

3. The dying Fibonacci tree and branching processes

This section is devoted to the connection between the dying Fibonacci tree and branching

processes. We will first present a few basic facts of the theory of branching processes. The reader

who is interested in detail may e.g. consult [3].

Consider a particle that produces ξ children after one time unit and assume that ξ is a

random variable on the natural numbers. Denote by Zi the number of particles of the i-th

generation (thus Z0 = 1). The stochastic process (Zn;n ≥ 0) is called branching process if the

following conditions are fulfilled:

1. The value of Zn+1 only depends on Zn, i.e. (Zn;n ≥ 0) is a Markov chain.

2. The numbers of children of the particles are independent and identically distributed with

the distribution of ξ.

Let ξk = P{ξ = k} = P{Z1 = k}. Then the probability generating function associated to

the branching process is

f(z) =
∑

k≥0

ξkzk
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and EZ1 = f ′(1). Depending on the value of f ′(1) three classes of branching processes can

be distinguished: If f ′(1) < 1 then the process is called subcritical, for f ′(1) > 1 it is called

supercritical and for f ′(1) = 1 it is called critical. For subcritical processes we have EZn → 0,

in the supercritical case EZn → ∞ holds and in the critical case we have EZn = 1. The

total number of particles that is produced is called the total progeny. It can be shown that

P{total progeny = n} tends to zero polynomially if the process is critical and exponentially

otherwise.

If a branching process consists of several types of particles then a similar situation occurs.

Let aij be the expectation of the number of particles of type j produced by a particle of type

i. Then the indicator for criticality is the largest positive eigenvalue ρ of the matrix (aij). If

ρ < 1 the process is subcritical and the expected generation sizes tend to zero. For ρ > 1 the

process is supercritical and for ρ = 1 it is critical. P{total progeny = n} behaves in the same

way as for single type branching processes.

The dying Fibonacci tree may obviously be regarded as a branching process with two types

of particles. Now let us examine for which p the dying Fibonacci tree is a critical branching

process. The matrix of the expectations aij is given by

(

p p
p 0

)

and the eigenvalues are the solutions of

λ2 − pλ − p2 = 0.

Thus the largest positive eigenvalue is p(1 +
√

5)/2. This implies that the dying Fibonacci tree

yields a critical branching process if and only if p equals the golden ratio. This fits also with

the behaviour of the total progeny: We have by Lemma 2.1

P{total progeny = n} = ϕn(1) =
1√
2π

x(1)−nn−3/2

and p = (
√

5 − 1)/2 is the only value for which x(1) = 1 as can easily be seen by setting x = 1

and u = 1 in (4).

Let us investigate the expected number of type A particles if p is the golden ratio. It is easy

to see that A(x(1), 1) = 1 and xFx = 1 − p + 2p(1 − p) + 2p2 = 1 + p and thus we get
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Theorem 3.1. The dying Fibonacci tree yields a critical branching process if and only if p

equals the golden ratio and in this case the ratio of the number of type A nodes and the total

number of nodes conditioned on the total progeny tends to the golden ratio.

References

[1] N. G. de Bruijn, Asymptotic Methods in Analysis, North Holland, 1958.

[2] M. Drmota, Asymptotic distributions and a multivariate Darboux method in enumeration problems, J.

Comb. Theory, Ser. A, 67, 2 (1994), 169–184.

[3] B.A. Sevastyanov, Verzweigungsprozesse, Akademie–Verlag, Berlin, 1974.


