THE DYING FIBONACCI TREE

BERNHARD GITTENBERGER

1. Introduction

Consider a tree with two types of nodes, say A and B, and the following properties:

1. Let the root be of type A.
2. Each node of type A produces exactly one descendent of each type with probability p and no descendent with probability $1-p$.
3. Nodes of type B produce one descendent of type A with probability p and no descendent with probability $1-p$.

If $p=1$ then the resulting tree is the Fibonacci tree. It can easily be verified that the number of A 's in the n-th layer equals the n-th Fibonacci number F_{n} and the number of B 's equals F_{n-1}. Let A_{n} and B_{n} denote the number of A 's and B 's, respectively, in the first n layers of the tree. Then we have

$$
\frac{A_{n}}{A_{n}+B_{n}}=\frac{\sum_{i=1}^{n} F_{i}}{\sum_{i=2}^{n+1} F_{i}}=1-\frac{F_{n+1}-F_{1}}{\sum_{i=2}^{n+1} F_{i}}
$$

Using the well known representation of the Fibonacci numbers $F_{n}=\left(\alpha^{n}-\alpha^{-n}\right) / \sqrt{5}$ where $\alpha=(1+\sqrt{5}) / 2$ we immediately get

$$
\begin{equation*}
\frac{A_{n}}{A_{n}+B_{n}}=1-\frac{\alpha^{n+1}-\alpha^{-n-1}-\alpha+1 / \alpha}{\left(\alpha^{2}\left(1-\alpha^{n}\right)-\alpha^{-1}\left(1-\alpha^{-n}\right)\right) /(1-\alpha)} \sim \frac{1}{\alpha}=\frac{\sqrt{5}-1}{2} \tag{1}
\end{equation*}
$$

We are interested in the distribution of the number of A 's and B 's conditioned on the total number of nodes for the case $p<1$. In this case there occur trees with a finite number of nodes with positive probability and due to (1) we might conjecture that the ratio $A_{n} /\left(A_{n}+B_{n}\right)$ behaves similarly for trees conditioned on the tree size to be n if p is close to 1 . This is the topic of the next section. The last section is devoted to the connection between the dying Fibonacci tree and branching processes.

[^0]
2. The number of type A nodes in the dying Fibonacci tree

We will consider now the case $p<1$. Let T denote a dying Fibonacci tree, T_{A} and T_{B} the number of A 's and B 's, respectively, and $|T|$ the total number of nodes. Set $a_{n m}=P\left\{T_{A}=\right.$ $\left.n, T_{B}=m\right\}$ and $q=1-p$. Let $A(u, v)=\sum_{n, m \geq 0} a_{n m} u^{n} v^{m}$ be the probability generating function associated to $a_{n m}$. Furthermore let $B(u, v)$ be the analogous generating function for trees that start with a root of type B. Due to the construction of the dying Fibonacci tree we have the following relations between $A(u, v)$ and $B(u, v)$:

$$
\begin{aligned}
& A(u, v)=u(q+p A(u, v) B(u, v)) \\
& B(u, v)=v(q+p A(u, v))
\end{aligned}
$$

and thus

$$
A(u, v)=u\left(q+v p q A(u, v)+v p^{2} A^{2}(u, v)\right) .
$$

From this we get

Theorem 2.1. The probability that a tree with exactly $n A$'s and exactly $m B$'s occurs is given by

$$
P\left\{T_{A}=n, T_{B}=m\right\}=\frac{1}{n}\binom{n}{m}\binom{m}{n-m-1} p^{n-1} q^{m+1}
$$

Proof. The above probability is given by the coefficients $a_{n m}$ which may be determined explicitly by means of Lagrange's inversion formula. We have

$$
\left[u^{n}\right] A(u, v)=\frac{1}{n}\left[z^{n-1}\right]\left(q+v p q z+v p^{2} z^{2}\right)^{n} .
$$

This implies

$$
\begin{aligned}
{\left[u^{n} v^{m}\right] A(u, v) } & =\frac{1}{n}\left[z^{n-1} v^{m}\right]\left(q+v p q z+v p^{2} z^{2}\right)^{n} \\
& =\frac{1}{n}\left[z^{n-1}\right]\binom{n}{m} q^{n-m} p^{m}\left(q z+p z^{2}\right)^{m} \\
& =\frac{1}{n}\binom{n}{m} q^{n-m} p^{m}\left[z^{n-1-m}\right](q+p z)^{m} \\
& =\frac{1}{n}\binom{n}{m}\binom{m}{n-m-1} p^{n-1} q^{m+1}
\end{aligned}
$$

and we are done.

The distribution of the number of A 's in trees of size n is given by

$$
\frac{a_{m, n-m}}{\sum_{i+j=n} a_{i j}}
$$

In order to get some information on the behavior of these quantities we modify the generating function $A(u, v)$ to $A(x u, x)$ such that it keeps track on the number of A 's and the tree size and use as a lemma the following result of Drmota[2]:

Lemma 2.1. Let $A(x, u)=\sum_{n, k \geq 0} a_{n k} x^{n} u^{k}=\sum_{n \geq 0} \varphi_{n}(u) x^{n}$ be a generating function of nonnegative numbers $a_{n, k}$ such that there are $n_{1}, n_{2}, n_{3}, k_{1}<k_{2}<k_{3}$ with $a_{n_{1} k_{1}} a_{n_{2} k_{2}} a_{n_{3} k_{3}}>0$ and $\operatorname{gcd}\left(k_{3}-k_{2}, k_{2}-k_{1}\right)=1$. Set $d=\operatorname{gcd}\left\{n-l: \varphi_{n}(u) \neq 0\right\}$ where $l=\min \{m>0$: $\left.\varphi_{m}(u) \neq 0\right\}$. Furthermore let $A(x, u)$ satisfy a functional equation $A=F(A, x, u)$ where the expansion $F(A, x, u)=\sum f_{i j k} A^{i} x^{j} u^{k}$ has non-negative coefficients and suppose that the system of equations

$$
\begin{aligned}
A & =F(A, x, u) \\
1 & =F_{A}(A, x, u)
\end{aligned}
$$

has positive solutions $A=f_{1}(u), x=f_{2}(u)$ for $u \in[a, b]$ such that $\left(f_{1}(u), f_{2}(u), u\right)$ are regular points of $F(A, x, u)$. In addition suppose that $F_{x}\left(f_{1}(u), f_{2}(u), u\right)$ and $F_{A A}\left(f_{1}(u), f_{2}(u), u\right)$ are positive. Then we have

$$
a_{n k}=\frac{d}{2 \pi n^{2}} \frac{g(h(k / n))}{\sigma(h(k / n))} \frac{1}{h(k / n)^{k} f_{2}(h(k / n))^{n}}\left(1+\mathcal{O}\left(n^{-1 / 2}\right)\right)
$$

uniformly for $k / n \in[\mu(a), \mu(b)]$ and $n \equiv l \bmod d$, where

$$
\begin{aligned}
g(u) & =\left(\left[\frac{x F_{x}}{F_{A A}}\right]\left(f_{1}(u), f_{2}(u), u\right)\right)^{1 / 2}, \\
\mu(u) & =\left[\frac{u F_{u}}{x F_{x}}\right]\left(f_{1}(u), f_{2}(u), u\right)
\end{aligned}
$$

and $h(u)$ is the inverse function of $\mu(u)$.
If $1 \in(a, b)$ then discrete random variables X_{n} with $P\left\{X_{n}=k\right\}=a_{n k} / \varphi_{n}(1)$ are asymptotically normal with mean $E X_{n}=\mu(1) n+\mathcal{O}(1)$ and variance $\mathcal{O}(n)$. Furthermore we have

$$
\begin{equation*}
\varphi_{n}(1)=\frac{d}{\sqrt{2 \pi}} g(1) f_{2}(1)^{-n} n^{-3 / 2}\left(1+\mathcal{O}\left(n^{-1}\right)\right), \quad \text { as } n \rightarrow \infty . \tag{2}
\end{equation*}
$$

As a consequence we get

Theorem 2.2. Let T be a dying Fibonacci tree and p close to 1. Then the distritbution of the random variable T_{A} / n conditioned on $|T|=n$ is asymptotically normal with mean value

$$
\mu=\frac{2}{3}\left(1+\frac{1}{2} q^{1 / 3}+\mathcal{O}\left(q^{2 / 3}\right)\right) .
$$

and variance $\mathcal{O}(1 / n)$. Besides, we have

$$
P\{|T|=n\}=\frac{g}{\sqrt{2 \pi}} \rho^{-n} n^{-3 / 2}\left(1+\mathcal{O}\left(n^{-1}\right)\right)
$$

where

$$
\begin{equation*}
g=\frac{\sqrt{q}}{\sqrt[3]{2}}\left(1+\frac{1}{12 \sqrt[3]{2}} q^{1 / 3}+\mathcal{O}\left(q^{2 / 3}\right)\right), \quad \text { as } q \rightarrow 0 \tag{3}
\end{equation*}
$$

and

$$
\rho=\frac{1}{\sqrt[3]{4 q}}\left(1-\frac{1}{3 \sqrt[3]{2}} q^{1 / 3}+\mathcal{O}\left(q^{2 / 3}\right)\right), \quad \text { as } q \rightarrow 0
$$

Remark. This means that for p close to 1 large Fibonacci trees contain about twice as many type A nodes as type B nodes and so the conjecture stated in the introduction, namely that the ratio will be close to the golden ratio, is surprisingly false.

Proof. Obviously, $A(x u, x)$ satisfies the functional equation

$$
A=F(A, x, u)=x u q+x^{2} u p q A+x^{2} u p^{2} A^{2}
$$

Thus we have to show that the system

$$
\begin{aligned}
A & =x u q+x^{2} u p q A+x^{2} u p^{2} A^{2} \\
1 & =x^{2} u p q+2 x^{2} u p^{2} A
\end{aligned}
$$

has positive solution $A=f_{1}(u)$ and $x=f_{2}(u)$ for $u \in(a, b)$ for some interval (a, b). As the first equation is quadratic in A we can get an explicit expression for A :

$$
A=\frac{1-x^{2} u p q A-\sqrt{x^{4} p^{2} q^{2} u^{2}-4 x^{3} p^{2} q u^{2}-2 x^{2} p q u+1}}{2 x^{2} u p^{2} A^{2}}
$$

The second equation means that we have to set the discriminant equal to zero:

$$
\begin{equation*}
x^{4} p^{2} q^{2} u^{2}-4 x^{3} p^{2} q u^{2}-2 x^{2} p q u+1=0 \tag{4}
\end{equation*}
$$

Note that the left hand side is positive if $x=0$ and negative if $u=1$ and $x=1 / \sqrt{p q}$. Thus there exists a positive root of the above equation if u lies near 1 . Consequently there exists an interval (a, b) containing 1 such that for $u \in(a, b)$ the above system has positive solutions
f_{1} and f_{2}. Furthermore, it is easy to verify that the other assumptions of Lemma 2.1 are also fulfilled. Thus the number of A 's in trees of size n is asymptotically normally distributed with mean $\mu(1)$ and variance $\mathcal{O}\left(n^{-1}\right)$. Now let us study the mean in detail, especially for p tending to 1 . We have already seen that $x=\mathcal{O}(1 / \sqrt{p q})$. If q tends to zero then $p^{2} q /(\sqrt{p q})^{3} \rightarrow \infty$ while the other terms of (4) remain bounded. Thus $x=o(1 / \sqrt{p q})$. This implies that the third order term is the dominant one and we get

$$
x=\frac{y}{\sqrt[3]{4 p^{2} q}}, \quad \text { as } q \rightarrow 0
$$

where $y=1+w$ with $w=o(1)$. Using this and keeping in mind that $y^{k}=1+k w+\mathcal{O}\left(w^{2}\right)$ and that $p=1+\mathcal{O}(q)$ we get

$$
\begin{aligned}
& \frac{1}{4}\left(y^{2} \sqrt[3]{\frac{q}{2}}\right)^{2}-y^{3}-y^{2} \sqrt[3]{\frac{q}{2}}+1=0 \\
\Longrightarrow & \frac{1}{4} \sqrt[3]{\frac{q^{2}}{4}}-3 w-\sqrt[3]{\frac{q}{2}}+o(w)=0 \\
\Longrightarrow & w \sim-\frac{1}{3} \sqrt[3]{\frac{q}{2}}
\end{aligned}
$$

Set $s=\sqrt[3]{q / 2}$. We will now use this information to get a better asymptotic result via bootstrapping as demonstrated by de Bruijn[1]. We have

$$
\begin{aligned}
& \frac{1}{4}\left(1+4 w+\mathcal{O}\left(w^{2}\right)\right) s^{2}-3 w-3 w^{2}+\mathcal{O}\left(w^{3}\right)-\left(1+2 w+\mathcal{O}\left(w^{2}\right)\right) s=0 \\
\Longrightarrow & \frac{s^{2}}{4}-3 w-3 w^{2}-s-2 s w+\mathcal{O}\left(w^{3}\right)=0 \\
\Longrightarrow & w^{2}+w\left(1+\frac{2 s}{3}\right)+\frac{s}{3}-\frac{s^{2}}{12}+\mathcal{O}\left(s^{3}\right)=0
\end{aligned}
$$

Solving the quadratic equation yields

$$
w=-\frac{s}{3}+\frac{7}{36} s^{2}+\mathcal{O}\left(s^{3}\right)
$$

and consequently

$$
\begin{align*}
x & =\frac{1}{\sqrt[3]{4 q}}\left(1-\frac{1}{3} \sqrt[3]{\frac{q}{2}}+\frac{7}{36} \sqrt[3]{\frac{q^{2}}{4}}+\mathcal{O}(q)\right) \\
& =\frac{1}{\sqrt[3]{4 q}}\left(1-\frac{1}{3} \sqrt[3]{\frac{q}{2}}+\mathcal{O}\left(q^{2 / 3}\right)\right), \quad \text { as } q \rightarrow 0 \tag{5}
\end{align*}
$$

Since

$$
A=\frac{1-x^{2} p q A}{2 x^{2} p^{2} A^{2}}
$$

we get

$$
\begin{align*}
A & =\frac{1-\frac{q^{1 / 3}}{2 \sqrt[3]{2}}\left(1-\frac{q^{1 / 3}}{3 \sqrt[3]{2}}+\mathcal{O}\left(q^{2 / 3}\right)\right)}{\frac{q^{-2 / 3}}{\sqrt[3]{2}}\left(1-\frac{2 q^{1 / 3}}{3 \sqrt[3]{2}}+\mathcal{O}\left(q^{2 / 3}\right)\right)} \\
& =\sqrt[3]{2 q^{2}}\left(1+\frac{1}{6 \sqrt[3]{2}} q^{1 / 3}+\mathcal{O}\left(q^{2 / 3}\right)\right), \quad \text { as } q \rightarrow 0 \tag{6}
\end{align*}
$$

The mean value $\mu(1)$ we are searching for is given by

$$
\mu(1)=\left[\frac{u F_{u}}{x F_{x}}\right](A(x(1), 1), x(1), 1)=\frac{A}{x q+2 x^{2} p q A+2 x^{2} p^{2} A^{2}}
$$

Using the asymptotic expansions for x and A we get

$$
\mu(1)=\frac{2}{3}\left(1+\frac{1}{2} q^{1 / 3}+\mathcal{O}\left(q^{2 / 3}\right)\right) .
$$

The second statement is an immediate consequence of (2): Note that

$$
\begin{aligned}
g(1) & =\left(\left[\frac{x F_{x}}{F_{A A}}\right]\left(f_{1}(1), f_{2}(1), 1\right)\right)^{1 / 2} \\
& =\sqrt{\frac{q+x A+x A^{2}}{2 x}}(1+\mathcal{O}(q))
\end{aligned}
$$

and thus inserting (5) and (6) we obtain (3).

3. The dying Fibonacci tree and branching processes

This section is devoted to the connection between the dying Fibonacci tree and branching processes. We will first present a few basic facts of the theory of branching processes. The reader who is interested in detail may e.g. consult [3].

Consider a particle that produces ξ children after one time unit and assume that ξ is a random variable on the natural numbers. Denote by Z_{i} the number of particles of the i-th generation (thus $Z_{0}=1$). The stochastic process $\left(Z_{n} ; n \geq 0\right)$ is called branching process if the following conditions are fulfilled:

1. The value of Z_{n+1} only depends on Z_{n}, i.e. $\left(Z_{n} ; n \geq 0\right)$ is a Markov chain.
2. The numbers of children of the particles are independent and identically distributed with the distribution of ξ.

Let $\xi_{k}=P\{\xi=k\}=P\left\{Z_{1}=k\right\}$. Then the probability generating function associated to the branching process is

$$
f(z)=\sum_{k \geq 0} \xi_{k} z^{k}
$$

and $E Z_{1}=f^{\prime}(1)$. Depending on the value of $f^{\prime}(1)$ three classes of branching processes can be distinguished: If $f^{\prime}(1)<1$ then the process is called subcritical, for $f^{\prime}(1)>1$ it is called supercritical and for $f^{\prime}(1)=1$ it is called critical. For subcritical processes we have $E Z_{n} \rightarrow 0$, in the supercritical case $E Z_{n} \rightarrow \infty$ holds and in the critical case we have $E Z_{n}=1$. The total number of particles that is produced is called the total progeny. It can be shown that $P\{$ total progeny $=n\}$ tends to zero polynomially if the process is critical and exponentially otherwise.

If a branching process consists of several types of particles then a similar situation occurs. Let $a_{i j}$ be the expectation of the number of particles of type j produced by a particle of type i. Then the indicator for criticality is the largest positive eigenvalue ρ of the matrix $\left(a_{i j}\right)$. If $\rho<1$ the process is subcritical and the expected generation sizes tend to zero. For $\rho>1$ the process is supercritical and for $\rho=1$ it is critical. $P\{$ total progeny $=n\}$ behaves in the same way as for single type branching processes.

The dying Fibonacci tree may obviously be regarded as a branching process with two types of particles. Now let us examine for which p the dying Fibonacci tree is a critical branching process. The matrix of the expectations $a_{i j}$ is given by

$$
\left(\begin{array}{ll}
p & p \\
p & 0
\end{array}\right)
$$

and the eigenvalues are the solutions of

$$
\lambda^{2}-p \lambda-p^{2}=0
$$

Thus the largest positive eigenvalue is $p(1+\sqrt{5}) / 2$. This implies that the dying Fibonacci tree yields a critical branching process if and only if p equals the golden ratio. This fits also with the behaviour of the total progeny: We have by Lemma 2.1

$$
P\{\text { total progeny }=n\}=\varphi_{n}(1)=\frac{1}{\sqrt{2 \pi}} x(1)^{-n} n^{-3 / 2}
$$

and $p=(\sqrt{5}-1) / 2$ is the only value for which $x(1)=1$ as can easily be seen by setting $x=1$ and $u=1$ in (4).

Let us investigate the expected number of type A particles if p is the golden ratio. It is easy to see that $A(x(1), 1)=1$ and $x F_{x}=1-p+2 p(1-p)+2 p^{2}=1+p$ and thus we get

Theorem 3.1. The dying Fibonacci tree yields a critical branching process if and only if p equals the golden ratio and in this case the ratio of the number of type A nodes and the total number of nodes conditioned on the total progeny tends to the golden ratio.

References

[1] N. G. de Bruijn, Asymptotic Methods in Analysis, North Holland, 1958.
[2] M. Drmota, Asymptotic distributions and a multivariate Darboux method in enumeration problems, J. Comb. Theory, Ser. A, 67, 2 (1994), 169-184.
[3] B.A. Sevastyanov, Verzweigungsprozesse, Akademie-Verlag, Berlin, 1974.

[^0]: 1991 Mathematics Subject Classification. 05C05.
 Institut für Algebra und Diskrete Mathematik, TU Wien, Wiedner Hauptstraße 8-10/118, A-1040 Wien, AUSTRIA.

