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Hervé Fournier† Danièle Gardy† Antoine Genitrini‡

Bernhard Gittenberger§

March 18, 2011

Abstract

We consider the logical system of Boolean expressions built on the single connector of

implication and on positive literals. Assuming all expressions of a given size to be equally

likely, we prove that we can define a probability distribution on the set of Boolean functions

expressible in this system. Then we show how to approximate the probability of a function f

when the number of variables grows to infinity, and that this asymptotic probability has

a simple expression in terms of the complexity of f . We also prove that most expressions

computing any given function in this system are “simple”, in a sense that we make precise.

The probability of all read-once functions of a given complexity is also evaluated in this

model. At last, using the same techniques, the relation between the probability of a function

and its complexity is also obtained when random expressions are drawn according to a critical

branching process.
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ity distribution; Analytic combinatorics; Read-once functions; Branching processes.

1 Introduction

Write at random a Boolean expression on given sets of Boolean variables and of connectors: we
obtain a Boolean function. How random is this Boolean function? E.g., what is the probability
that we obtain a tautology? A literal? Any specified function? Is the probability of obtaining a
given function related to the complexity of the function? Does the Shannon effect, i.e. the fact
that “almost all” functions have maximal complexity, still hold for this probability distribution?
These and some others are questions that we would like to investigate for general logical systems.

We present here a first step in this direction, with an in-depth study of the simple system
obtained from the single connector of implication and positive literals. A former result was ob-
tained in [12], where the probability of tautologies was precisely quantified. One motivation for
considering this system came from its relation to intuitionistic logic, which was explored in [35, 21].
It was shown in [12] that asymptotically almost every tautology of classical logic is intuitionistic
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as well. This comparison between cassical and intuitionistic logic was later extended to the full
propositional system [15].

Note that not every Boolean function is expressible in the system of implication. Indeed, it
is easily seen that a function can be obtained if and only if it can be written as x ∨ g for some
Boolean variable x and function g – this set of functions corresponds to the Post class S0 [29].
We remark that the set of expressible Boolean functions is only a small fragment of the set of all
Boolean functions. (The quotient of the number of expressible functions and the number of all
functions actually tends to zero when the number of variables tends to infinity.) Note, however,
that this ostensible restriction of the implicational system is not really relevant here. In fact, both
from a qualitative and a quantitative point of view, the implicational system captures all Boolean
functions since there is a canonical inclusion from the set of all Boolean functions on k variables
into the set of Boolean functions over implication on k + 1 variables, namely f 7→ (f → z).

Furthermore, the implicational fragment plays an important rôle in logics in general. In fact,
with respect to validity, almost every logical system relies on the modus ponens and therefore
the implicational fragment is the minimal axiomatizable fragment. From the satisfiability point
of view the implicational fragment is closely related to Horn formulas (first defined in [17], see
[31] for an introduction). In fact, the Boolean formulas of the implicational system are precisely
the definite Horn clauses. Horn formulas are important in the theory of programming since their
satisfiability can be decided algorithmically in linear time (see [5]). Moreover, in the programming
language Prolog programs are stated as Horn clauses.

Consider the ratio of the number of formulas of size ℓ that compute a fixed Boolean function f ,
among all formulas of size ℓ, and let the size grow to infinity. It is possible to show that the limit of
this ratio exists for a wide variety of logical systems [14], and that we can thus define a probability
distribution on the set of Boolean functions.

It was shown that the tautologies in the implication system have the simple shape (..., a, ...) → a
with high probability, and that, if the number k of Boolean variables grows large enough, the
probability of a tautology is asymptotically 1/k [12]. The next natural step is then to try and
compute the probability that a random expression computes a literal, a function xi ∨xj , etc., and
to check if the “average” expression computing, e.g., a literal, has a simple form. When studying
the random expressions that compute a given Boolean function f , one major parameter is the
complexity L(f), i.e. the size of the smallest expressions that represent f . We shall prove in the
present paper that the probability of any given function f depends exponentially on its complexity;
in passing we are also able to characterize the shape of a random expression computing f , and to
show that these expressions are obtained quite simply from minimal trees.

The efforts to define non uniform probability distributions, induced by random Boolean ex-
pressions, or formulas, on the set of Boolean functions, date back several years. The starting point
is generally the description of formulas as trees of a suitable shape and suitably labelled. The
first efforts in this direction were by Paris et al. [27] on And/Or trees (i.e. expressions built on
the two connectors ∧ and ∨); the underlying model was that of binary Catalan trees, suitably
labelled. The study of these trees was further pursued by Lefman and Savický [24], who proved
by a pruning argument the existence of a probability distribution induced by random expressions,
and established important lower and upper bounds for the probability of any Boolean function
in terms of its complexity. At the same time, Woods [34] proved independently the existence of
a limiting distribution for general formulas. Some of the authors of the present paper then gave
an alternative construction of the probability distribution for And/Or trees, together with an im-
provement on the upper bound [4]. The survey paper [14] presents an overview of the probability
distributions induced by random Boolean expressions on Boolean functions, and of the way we
can obtain them using the tools of analytic combinatorics: enumeration of formulas/trees by gen-
erating functions, the Drmota-Lalley-Woods theorem for solving an algebraic system of equations,
and asymptotics.

We should also mention that several researchers have concentrated on the probability of tau-
tologies, i.e. on the probability of the single constant function True. Let us mention the Polish
school around Zaionc, who began a systematic investigation of the probability of a tautology in
various logical frameworks [26, 18, 36, 19]. The case of implication with negative literals was
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considered in [13]. See also [25, 20] for the expressions built on the single equivalence connector.
For And/Or trees, we refer the reader to Woods’s result that the tautologies have asymptotic
probability 3/4k, and that almost all of them have the simple form ℓ ∨ · · · ∨ ℓ̄ ∨ . . . [33], and to
Kozik [22] for a different, later proof. This last work also considers the probability of all Boolean
functions over And/Or trees; as in the present paper, it is shown that this system exhibits an
exponential dependence between the probability of a function and its complexity.

Significant results have also been established for a different family of formulas/trees, namely
balanced trees obtained by iteration of a single connector. The first result in this area is due
to Valiant [32], whose aim was to compute a Boolean expression for the function Majority with
high enough probability. Then Boppana [2] and Gupta and Mahajan [16] improved Valiant’s
result for majority; Boppana went on to prove that iteration by a single, well-chosen connector
gives a distribution concentrated on one of the threshold functions. Savický [30] showed that
iterating a nonlinear and monotone connector leads to the uniform distribution on the set of all
Boolean functions. Brodsky and Pippenger [3] presented a systematic study of different classes of
connectors and of the distributions induced on Boolean functions; these distributions are either
uniform on subsets of Boolean functions, or concentrated on a single function. Finally some
of us studied balanced And/Or trees [10] and proved that a limiting distribution exists and is
concentrated on linear threshold functions. Our trees are obtained by iteration too, but with two
distinct connectives and and or, chosen at random.

The present paper is organized as follows. We show in Section 2 how all the trees computing
a specific Boolean function can be derived from a finite set of minimal trees by a few simple
operations. Our main results are also given in this section, namely the asymptotic expression of
the probability of the Boolean function in terms of its complexity, and the (relatively) simple form
of a random expression computing a Boolean function. The four following sections are devoted to
the proof of these results. We first recall in Section 3 basic facts and former results on tautologies,
i.e. on the trees that compute the simplest Boolean function in our system: the constant True.
Next we give technical results on expansions and on the inverse operation of pruning in Section 4,
before considering irreducible trees and their expansions in Section 5. Section 6 is devoted to
analyze the specific class of read-once functions, because we can give a more detailed result for
such functions. Next we introduce a second probability distribution, based on branching processes,
and we give the new version of the theorem depending on this distribution in Section 7. Finally
we present possible extensions in Section 8.

2 Limiting ratio of trees computing a given function

We begin by a brief presentation of the formulas we consider, then give a couple of definitions in
order to state our main result concerning the limiting ratio of trees computing a given function.

Trees over implication

In this paper we consider Boolean formulas and their representations as trees which are built with
the single connector of implication (denoted by →) and positive literals.

Definition 1 A tree over implication is a full binary tree whose internal nodes are all labelled by →
and leaves by literals chosen from the set {x1, . . . , xk}. Since each such tree can be interpreted as
a Boolean formula, we use the terms formula and tree synonymously. We denote the set of all
formulas by Fk.

Each formula, or tree, is associated to a specific Boolean function: We say that a tree is
computing a specific Boolean function f if the Boolean formula given by the tree is a representation
of f . The Boolean function computed by a tree A is denoted by [A]. A tautology is a tree A such
that [A] = True.

Definition 2 Every tree A ∈ Fk can be written in a unique way as

A = A1 → (A2 → (. . . → (Ap → r(A)) . . .))
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where Ai ∈ Fk and r(A) ∈ {x1, . . . , xk} – see Figure 1. Such a tree will also be denoted by

→

A1 →

A2 →

Ap r(A)

Figure 1: Decomposition of a tree along its right branch.

A1, . . . , Ap → r(A). The subtrees A1, . . . , Ap are called the premises of A, and the rightmost
leaf r(A) is called the goal of A. Analogously, premises and goal of any subtree of A is defined.
The goals of the premises of A are called the subgoals of A (the subgoals of A are r(A1), . . . , r(Ap)).

Limiting ratio

We define the size |A| of a tree A as the number of its leaves. Our goal is to quantify the fraction
of trees which compute a given function f . This leads to the following definition.

Definition 3 The limiting ratio of a subset A ⊆ Fk of trees is defined as

µk(A) = lim
n→∞

|{A ∈ A : |A| = n}|
|{A ∈ Fk : |A| = n}|

if this limit exists.
We denote by Fk(f) the set of all trees from Fk computing f so Fk(f) = {A ∈ Fk, [A] = f}

and now we define the limiting ratio of a function f as the limiting ratio of Fk(f).

Introducing the generating functions
∑

n |{A ∈ Fk : |A| = n, [A] = f}|zn, the results of
Drmota [6], Lalley [23] and Woods [34] give us an easy way to prove that the limiting ratio of each
Boolean function is defined in the system Fk – i.e. for all Boolean functions f , the limit defining
µk(Fk(f)) exists. These theorems are nicely described in Flajolet and Sedgewick [8, 9]. For the sake
of self-containedness we will state the theorem in Section 3. The proof which appears in Section 3
justifies that the Drmota-Lalley-Woods conditions are satisfied in the system of implication. In
the following, µk(Fk(f)) is abbreviated with µk(f).

Valid expansions of a tree

Now we define three rules, called expansion rules, that allow, starting from a tree A, to obtain
larger trees computing the same function as A.

Definition 4 Let A be a tree and B one of its subtrees and let the root of B be denoted by ν.
Valid expansion by a “tautology”: A tree A′ is called a valid expansion of A by a tautology at

node ν, if A′ is obtained by replacing the subtree B with the subtree C → B in A, where C is a
tautology. Of course A′ computes the same function as A since [C → B] = [B].

Valid expansion by “goal α”: Let α ∈ {x1, . . . , xk}. If substituting B with C → B yields a tree
A′ computing the same function as A for any tree C with goal α, we say that any of these trees
A′ is obtained from A by a valid expansion of type “goal α” at node ν.

The third expansion of A is called
Valid expansion by “premise α”: Let again α ∈ {x1, . . . , xk}. If substituting B with C → B

yields a tree A′ computing the same function as A for any tree C with a premise equal to α, we say
that any of these trees A′ is obtained from A by a valid expansion of type “premise α” at node ν.
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→

B

→

→

C B

Figure 2: Valid expansion with the subtree C in the root of B.

Figure 2 represents the shape of the tree obtained after a valid expansion at the root of B.

Definition 5 Given a tree A, we define E(A) to be the set of all trees obtained from A by a
single valid expansion of any of the three types defined above. We naturally extend E to any
set of trees A ⊆ Fk by letting E(A) =

⋃

A∈A E(A). In the same way we define E0(A) = A,
Ei(A) = E(Ei−1(A)) and E∗(A) =

⋃

i∈N
Ei(A). As shortcuts, we define E+(A) =

⋃

i>0 Ei(A)
and for any integer p, E>p(A) =

⋃

i>p Ei(A).

Note that all trees in E(A) (and thus in E∗({A}) as well) compute the same function as A.

The number of valid expansions of a tree

Given a tree A, we define λ(A) as the number of types of valid expansions of A; more precisely,
this is the number of pairs (ν, α), where ν is a node of A (either an internal node or a leaf) and
α ∈ {x1, . . . , xk}, such that an expansion of type “goal α” is valid in the node ν, plus the number
of pairs (ν, α) such that an expansion of type “premise α” is valid in the node ν, plus 2|A| − 1
(this is counting the tautology expansions in every of the 2|A| − 1 nodes of A).

Definition 6 For a Boolean function f depending on a finite number of variables of {xi | i > 0}
and that can be computed with implication, we define its complexity L(f) to be the size of a
smallest tree (over implication) computing f .

Note that in general there is no unique smallest tree but rather several smallest trees computing a
given function. Trees of size L(f) computing f are called minimal trees of f ; their set is denoted
by Mf . Given a Boolean function f , we define

λ(f) =
∑

M∈Mf

λ(M).

It will be proved that λ(f) does not depend on the number k of ambient variables. We can state
the main result of this paper now.

Theorem 7 Let f be a Boolean function different from True. Almost all trees computing f are
obtained by a single expansion of a minimal tree of f :

µk(f) ∼ µk(E(Mf )).

As a consequence, the limiting ratio of f is asymptotically (as k → ∞) equal to:

µk(f) =
λ(f)

4L(f) kL(f)+1
+ O

(

1

kL(f)+2

)

.

A proof of this theorem is given at the end of Section 5, where bounds on λ(f) are also provided –
see Proposition 41. A rough outline is as follows: When manipulating trees by means of expansions
and its inverse, pruning (defined in Section 4), we will encounter trees which are irreducible (see
Section 4) but not minimal trees. Therefore we will study the set of irreducible trees, decompose
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it into the set of minimal trees and its complement and eventually show that the complement as
well as the set of trees obtained by iterated expansion do not contribute to the limiting ratio.

Remark. Note that so far, we proved neither that the family of all trees computing f nor that the
family E(Mf ) has a limiting ratio. In order to do this, some work has to be done. The existence
of µk(f) is addressed in the next section in Proposition 10, that of µk(E(Mf )) in Lemma 32.

3 Drmota-Lalley-Woods conditions and tautologies

In this section, we first introduce the generating function fk(z) =
∑∞

n=1 |{A ∈ Fk : |A| = n}|zn

that enumerates all trees Fk by their size – we recall that the size of a tree is defined as its number
of leaves. The function fk(z) satisfies the following equation: fk(z) = kz + fk(z)2, obtained by
using the recursive building of the trees, and as fk(0) = 0, we get

fk(z) =
1 −

√
1 − 4kz

2
.

Moreover its nth coefficient is related to the (n − 1)th Catalan number: [zn]fk(z) = Cn−1k
n =

1
n

(

2n−2
n−1

)

kn.
Notice that the set of subsets A ⊆ Fk having a limiting ratio µk(A) is closed under (relative)

complement and finite disjoint union. Moreover, if A,B are disjoint and have a limiting ratio,
then µk(A ∪ B) = µk(A) + µk(B).

In order to show that every Boolean function has a limiting ratio, we will employ the Drmota-
Lalley-Woods Theorem. This theorem deals with systems of the form

yj = Φj(z, y1, . . . , ym), j = 1, . . . , m, (1)

of functional equations for the functions yj(z). For our purpose it is enough to assume that the
functions Φj are real polynomials. To be able to state the theorem for polynomial systems, we
have to introduce some concepts where we follow the presentation given in [9, Chapter VII]:

Definition 8 The valuation of a power series y(z) =
∑

ynzn is defined by val(y) = min{j |
yj 6= 0}; and for a vector y of power series as the minimal valuation of all its components. The
distance of two power series y1(z) and y2(z) is defined by d(y1, y2) = 2−val(y1−y2); and for vectors
analogously.

For a power series y(z) let Sy = {n | yn 6= 0}. The power series y(z) is called algebraicly
aperiodic if max{d | ∃r ∈ N : Sy ⊆ r + dN} = 1.

A (polynomial) system of functional equations of the form (1), or written in vector notation
as y = Φ(z,y), is called

• algebraicly positive if all the component polynomials Φj have non-negative coefficients;

• algebraicly proper if it satisfies a Lipschitz condition d(Φ(z,y), Φ(z, ỹ)) < Kd(y, ỹ) for some
positive constant K < 1;

• algebraicly irreducible if its dependency graph is strongly connected;

• algebraicly aperiodic if all of its component solutions yj(z) are algebraicly aperiodic.

Theorem 9 (Drmota-Lalley-Woods, [6, 23, 34]) Let y = Φ(z,y) be a nonlinear polynomial
system which is algebraicly positive, proper, irreducible, and aperiodic. Then all component solu-
tions yj(z) have the same radius of convergence R < ∞ and there exist functions hj(z) which are

analytic at the origin such that in a neighbourhood of R we have yj(z) = hj(
√

1 − z/R ).

Proposition 10 If f is a Boolean function on the variables {x1, . . . , xk}, its limiting ratio µk(f)
exists.

6



Proof: The aim of this proof is to show the existence of a limiting ratio µk(f) for the set of
trees Fk(f) = {A ∈ Fk | [A] = f} computing a given function f . For technical reasons, the
size of a tree in this section is defined as the number of internal nodes (since it differs by one
from the number of leaves considered in the rest of the paper, the existence and value of µk(f)
are not affected by this change). Let {f1, . . . , fp} be the set of Boolean functions which can be
computed by formulas of Fk. We denote by φi the generating function of trees computing fi;
that is, φi(z) =

∑∞
n=0 αi,nzi where αi,n is the number of trees of size n computing fi. Let Φ be

the polynomial system obtained by considering the inductive structure of expressions. Consider
one variable yi ∈ C[[z]] for each 1 6 i 6 p. For 1 6 ℓ 6 p, the ith equation of the system Φ is
yi = 1{fi literal} + z

∑

fj ,fk; fj→fk=fi
yjyk, where 1{fi literal} = 1 if fi is a literal and 0 otherwise.

Obviously (φ1, . . . , φp) is a solution of the polynomial system Φ (the unique one).
To show the existence of µk(fi) for all i, it is enough to check that the polynomial system

Φ satisfies the conditions of the Drmota-Lalley-Woods Theorem. Obviously the system Φ is
nonlinear (it is quadratic) and algebraicly positive. Let us check it is algebraicly proper. For this,
we have to show that for a, b ∈ C[[z]]p, val(Φ(a) − Φ(b)) > val(a − b). For ℓ ∈ {1, . . . , p}, we have
Φℓ(a)−Φℓ(b) = z

∑

i,j(aiaj−bibj) where the sum is over all i, j such that fi → fj = fℓ. Notice that

aiaj−bibj = 1
2 ((ai+bi)(aj−bj)+(aj+bj)(ai−bi)). It follows that val(Φℓ(a)−Φℓ(b)) > 1+val(a−b).

This gives val(Φ(a) − Φ(b)) > val(a − b).
Now we show that the system Φ is algebraicly irreducible. For this, it is enough to check that

there is a “path” from any fi to True and a path from True to any fj in the system. The first part
comes from the fact that fi → fi computes True, and the second from the fact that True → fj

computes fj .
At last, let us check that Φ is algebraicly aperiodic. Let E be an expression computing a

function fi. Both expressions (x1 → x1) → E and (x1 → (x1 → x1)) → E compute fi. Since
these expressions are of size |E| + 2 and |E| + 3 and (2, 3) = 1, this shows there is at least one
expression of size ℓ computing fi when ℓ is large enough. This ensures aperiodicity.

As we know that all Boolean functions admit a limiting ratio, we can refer to the limiting ratio
of tautologies now.

Definition 11 A simple tautology is a formula such that one premise is equal to the goal of the
formula.

It is obvious that a simple tautology is indeed a tautology.
We recall some results from [12] on trees computing the constant function True. It was proved

there that the limiting ratio of all tautologies is equivalent to the limiting ratio of the family of
simple tautologies. The limiting ratio of the set Sk of simple tautologies is equal to:

µk(Sk) =
4k + 1

(2k + 1)2
=

1

k
+ O

(

1

k2

)

.

Moreover, the limiting ratio of all tautologies (denoted by Tk) was given for k tending to infinity:

µk(Tk) =
1

k
+ O

(

1

k2

)

.

Finally we recall two facts on the structure of tautologies.

Definition 12 For a node ν of a tree A, we define the left depth of the node ν as the number of
edges going left which are needed to reach ν from the root of A. We define in the same way the
left depth of a subtree B of A as the left depth of its root.

Let A be a tree and B one of its subtrees; B is called a left subtree of A if the root of B is the
left son of its first ancestor. A left subtree of size one is called a left leaf.

In the following, f̄ denotes the negation of the Boolean function f . As a special case, ᾱ denotes
the Boolean function which is true if and only if α is false.
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Lemma 13 Let A be a tree which is a tautology. Then there is a premise A′ of A which has the
same goal as A.

Proof: Assume that A has the premises A1, . . . , Ap and goal α. Let fi = [Ai] and βi = r(Ai) for
i = 1, . . . , p. Then [A] = α ∨ f̄1 ∨ · · · ∨ f̄p is a tautology and therefore α ∨ β̄1 ∨ · · · ∨ β̄p as well.
Thus one of the βi must be equal to α.

The next fact is [12, Lemma 1]. For the sake of self-containedness we also present the proof.

Lemma 14 If A is a non-simple tautology, then among the leaves of left depth at most 3 there
are either three occurrences of the same variable or there are two distinct variables each of which
appears twice.

Proof: Assume that A has the premises A1, . . . , Ap and goal α. If two premises have goal α, then
α appears three times and we are done. So, by the previous lemma we have to consider only the
case where exactly one premise has goal α. Without lost of generality assume that r(Ai) = αi 6= α
for i = 1, . . . , p − 1 and r(Ap) = α. Furthermore set fi = [Ai] for i = 1, . . . , p. Certainly, Ap

cannot be reduced to a literal, otherwise A would be a simple tautology. Thus there are functions
g1, . . . , gm such that [Ap] = α ∨ ḡ1 ∨ · · · ∨ ḡm. Since α ∨ f̄1 ∨ · · · ∨ f̄p is a tautology, we must have

α ∨ ᾱ1 ∨ · · · ∨ ᾱp−1 ∨ ḡj = True (2)

for any j = 1, . . . , m. Therefore, let us consider functions of the form α ∨ ᾱ1 ∨ · · · ∨ ᾱp−1 ∨ g
which are tautologies. If g is a literal x, then x ∈ {α1, . . . , αp−1, α}. Otherwise g is of the form
γ ∨ h̄1 ∨ · · · ∨ h̄s and assume that hi is represented by a tree with goal γi. Then

γ̄1 ∨ · · · ∨ γ̄s ∨ γ ∨ ᾱ1 ∨ · · · ∨ ᾱp−1 ∨ α = True

and hence we must have either α ∈ {γ1, . . . , γs} and thus three occurrences of α or γ ∈ {γ1, . . . , γs,
α1, . . . , αp−1}, which means that α and γ appear twice. Since γ has left depth 2 and the γi have
left depth 3, the proof is complete.

4 Expansion, extension, and pruning

Now we study some of the properties of the expansion rules defined in Section 2. First, we define a
cutting process which will eventually be used to define the inversion of expansions which we refer
to as pruning.

Definition 15 (Cutting subtrees) Given a tree A and a left subtree B of A, we denote by A\B
the tree obtained by removing B from A. More precisely, since B is a left subtree of A, it is the
left son of a subtree of the form B → C in A; the tree A \B is obtained by substituting the subtree
B → C by C in A – see Figure 3.

Consider trees B1, B2, . . . , Bℓ which are disjoint subtrees of A, i.e., no node of A is in more
than one tree Bi. Then we write A\ {B1, B2, . . . , Bℓ} for (· · · ((A\B1)\B2)\ . . . Bℓ−1)\Bℓ. Note
that the actual order of B1, B2, . . . , Bℓ does not affect the resulting tree.

The following three lemmas give (necessary and) sufficient conditions for a tree to be a single
expansion of a certain type of a smaller tree.

Lemma 16 Let A be a tree and B be a left subtree of A. If B is a tautology, then A is obtained
by a single valid expansion of type “tautology” of A \ B.

Proof: This is obvious from the definition of expansions by tautologies.
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→

Bi →

B →

Bi+1

→

Bi →

Bi+1

Figure 3: Cutting a left subtree B.

Remark. In the following, substituting B by a Boolean function f in the tree A means that we
replace the subtree B of A by a leaf labelled with f . Strictly speaking, the resulting tree does no
more belong to the set of trees over implication according to Definition 1 (except if f is a positive
literal), but it still represents a Boolean function and so the notion of the function computed by
this tree still makes sense.

Lemma 17 Let A be a tree and B be a left subtree of A. Let β be the goal of B. If substituting
B by 1 or β in A yields a tree computing [A] in both cases, then A is obtained by a single valid
expansion of type “goal β” of A \ B.

Proof: Let A1 be the tree A where B is replaced with β, and A2 be the tree A where B is replaced
with 1. Let B′ be any tree with “goal β”, and A′ be the tree obtained from A by replacing B
with B′. Of course β 6 [B′] 6 1. Then by induction on the size of the formula, we obtain
[A] = [A1] 6 [A′] 6 [A2] = [A] or [A] = [A1] > [A′] > [A2] = [A], depending whether the left
depth of the root of B is even or odd. In any case, [A′] = [A]. Moreover, [A \ B] = [A] since
[A \ B] = [A2].

Recall that β̄ denotes the negation of the variable β.

Lemma 18 Let A be a tree and B be a left subtree of A. Suppose that B has a premise of size one
β. If substituting B with 1 or β̄ in A gives a tree computing [A] in both cases, then A is obtained
by a single valid expansion of type “premise β” of A \ B.

Proof: The proof is similar to the previous one.

Definition 19 (Pruning) When going from A to A \B such that we are in the situation of one
of the three lemmas above, we shall say A \ B is obtained by pruning the left subtree B in A.

Note the difference between pruning a subtree and cutting a subtree: if A is a tree and B
one of its left subtrees, then the term “cutting the subtree B” means that we remove B from A
without any condition on B, whereas the term “pruning the subtree B” means that we remove B
from A in such a way that A is a valid expansion of A \ B. However, both final trees are denoted
by A \ B.

Definition 20 A tree which cannot be pruned is called an irreducible tree.

Of course all minimal trees computing a function f are irreducible. However, the converse is
not true; indeed consider the function f = x1 ∨ (x̄2 ∧ x̄3) ∨ (x̄2 ∧ x4). It can be checked that
(x4 → x2) → (((x2 → x3) → x3) → x1) computes f , is irreducible, but not minimal since
((x3 → x4) → x2) → x1 is smaller and also computes f . We also remark that the system of
pruning rules is not confluent.
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Now we define a new way of getting large trees from a smaller one. But this time, it does not
preserve the function computed by the initial tree; its purpose is to establish some upper bounds
on the limiting ratio of expansions. This new mapping X is called extension (it is different from
expansion). The relation between extensions and expansions is given below.

Definition 21 An extension X of a tree T is defined recursively as follows: if T consists of a
single leaf α, X(α) is the set of all trees whose goal is labelled by α. If T = L → R, we let

X(L → R) = {A1 → (. . . → (Ap → (L̃ → R̃)) . . . ) | p > 0, A1, . . . , Ap ∈ Fk, L̃ ∈ X(L), R̃ ∈ X(R)}.

We naturally extend X to a set of trees A ⊆ Fk by letting X(A) =
⋃

A∈A X(A).

Notice that X(X(A)) = X(A) for any A ⊆ Fk. Figure 4 shows a graphical representation of the

→
L R

X(L) X(R)

Figure 4: The recursive definition of the extension mapping.

recursive definition of this mapping. A single leaf α is extended to a tree having the original leaf α
as its goal. According to the canonical representation of the tree (cf. Figure 1) it can be seen
as a decomposition of a comb-like structure and the goal (omitting the left subtrees of the main
branch). Figure 5 shows the general shape of extensions of a given tree: again we omit the left
subtrees of the comb-like substructures for the sake of clearness. The omitted trees are arbitrary
trees.

Figure 5: A tree A on the left and the set X(A) it defines, on the right.

Lemma 22 For any tree A, E∗(A) ⊆ X(A).

Proof: Let A be a tree. Since X(X(A)) = X(A), all is needed is to prove that E(A) ⊆ X(A).
Recall that any tree A′ ∈ E(A) is obtained by substituting a subtree B of A with a tree of the
form C → B. It is clear from the definition of extensions that C → B ∈ X(B), and it follows that
A′ ∈ X(A).

We would like to prove now that a set of trees that contains “too many” repetitions of some
variables before a fixed left depth has a small limiting ratio. However, since we are not sure about
the existence of the limiting ratio of the considered family, we shall use the limit superior

µ̄k(A) = lim sup
n→∞

|{A ∈ A : |A| = n}|
|{A ∈ Fk : |A| = n}|

to state an upper bound.
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Let V be a fixed finite subset of the variables {xi | i > 0}, independent of the number of
variables k we consider. Let p and q be two integers. Let Ap

q(V) be the set of trees of Fk which
contain at least p leaves labelled in V , all of them being of left depth at most q. The rest of this
section is dedicated to an upper bound on µ̄k((Ap

q(V))).
To this aim, we introduce a second family of trees. Let Bp

q(V) the set of trees B ∈ Fk such
that p 6 |B| 6 pq +1 and which contain at least p leaves labelled in V . Notice that Bp

q (V) is finite
– as opposed to Ap

q(V). The sets of trees Ap
q(V) and Bp

q (V) are linked by the following lemma.

Lemma 23 For a fixed set of variables V and two integers p and q we have Ap
q(V) ⊆ X(Bp

q(V))
and consequently E∗(Ap

q(V)) ⊆ X(Bp
q(V)).

Proof: Let A ∈ Ap
q(V). Let ν1, . . . , νp be p leaves of A labelled with variables from V , all with left

depth at most q. Let C1, . . . , Cr be the set of maximal (with respect to the subtree relation) left
subtrees of A not containing any of the nodes νi. Let B be the tree obtained from A by removing
all Ci, i.e. B = A \ {C1, . . . , Cr}. Of course A ∈ X(B), and it can be checked that B ∈ Bp

q (V):
indeed the largest tree B that can be obtained is when all nodes νi have a left depth q and belong
to distinct premises of A, and |B| = pq + 1 in this case. Thus A ∈ X(Bp

q(V)). The second part of
the lemma follows from Lemma 22 and the fact that X(X(Bp

q (V))) = X(Bp
q(V)).

Lemma 24 For a fixed set of variables V and two integers p and q we have µ̄k(X(Bp
q (V))) =

O(1/kp).

Proof: For two generating functions f, g ∈ R[[z1, z2, . . . , zℓ]], we write f ≺ g if [zn1

1 · · · znℓ

ℓ ]f 6

[zn1

1 · · · znℓ

ℓ ]g for all n1, . . . , nℓ ∈ N. Let γ = |V|. Let φBp
q (V)(z, t) be the bivariate generating

function enumerating trees of Bp
q (V), z is marking the leaves and t all the nodes. It satisfies:

φBp
q (V)(z, t) ≺

pq+1
∑

ℓ=p

Cℓ−1

(

ℓ

p

)

γpkℓ−pzℓt2ℓ−1.

Then we get:

φX(Bp
q (V))(z) ≺

pq+1
∑

ℓ=p

Cℓ−1

(

ℓ

p

)

γpk1−ℓ−pz1−ℓfk(z)2ℓ−1.

Using Lagrange inversion [7, Chapter 3] we obtain:

[zn]φX(Bp
q (V))(z) 6

pq+1
∑

ℓ=p

Cℓ−1

(

ℓ

p

)

γpk1−ℓ−p[zn+ℓ−1]fk(z)2ℓ−1

6

pq+1
∑

ℓ=p

Cℓ−1

(

ℓ

p

)

γpkn−p 2ℓ − 1

n + ℓ − 1

(

2n − 2

n + ℓ − 1

)

.

Since [zn]fk(z) = knCn−1, we have

[zn]φX(Bp
q (V))(z)

[zn]fk(z)
6

pq+1
∑

ℓ=p

Cℓ−1

(

ℓ

p

)

γpk−p(2ℓ − 1)
1

Cn−1

1

n + ℓ − 1

(

2n − 2

n + ℓ − 1

)

.

Now notice that for any ℓ > 0,

1

Cn−1

1

n + ℓ − 1

(

2n− 2

n + ℓ − 1

)

=
n

n + ℓ − 1

(

2n−2
n+ℓ−1

)

(

2n−2
n−1

) 6 2.

Thus

µ̄k(X(Bp
q(V))) 6

2γp

kp

pq+1
∑

ℓ=p

Cℓ−1

(

ℓ

p

)

(2ℓ − 1).

This gives µ̄k(X(Bp
q(V))) = O(1/kp).
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Corollary 25 For a fixed set of variables V and two integers p and q, µ̄k(E∗(Ap
q(V))) = O(1/kp).

Proof: Immediate from Lemmas 23 and 24.

5 Irreducible trees and their expansions

In this section we study the limiting ratios of expansions of minimal trees of a function f . We
will identify those classes of trees which will be relevant for the asymptotical value of the limiting
ratio of f and show that the other are of negligible size.

Definition 26 Let f be a Boolean function different from True. The variable x is called an
essential variable of f if the two functions obtained by evaluating x to 0 and to 1 are two distinct
functions. Otherwise, x is called an inessential variable of f .

Definition 27 Let A be a tree and ν one of its nodes (either an internal node or a leaf). We
define ∆(ν) to be the smallest left subtree of A (cf. Definition 12) containing ν, if there exists
one, and to be the whole tree A itself, if there is no such left subtree. Hence, ∆(ν) is the whole
tree if ν is at left depth 0, whereas it is a left subtree if ν has a positive left depth.

In the same way, for a node ν of positive left depth, we define ∆2(ν) to be the smallest left
subtree strictly containing ∆(ν) as a subtree, if such a tree exists, to be the whole tree if ∆(ν) is
a proper subtree of A. Otherwise (if ν is at left depth 0), ∆2(ν) is undefined. See Figure 6.

We shall also write ∆(B) for a subtree B as a shortcut for ∆(ν), where ν is the root of B (and
in the same way ∆2(B) for ∆2(ν)).

∆(ν)

ν

∆2(ν)

Figure 6: The left subtrees ∆(ν) and ∆2(ν) associated to a node ν of a tree.

Lemma 28 Any tree A computing a function f 6= True contains at least L(f) occurrences of
essential variables of f .

Proof: Let A be a tree computing f 6= True. First remark that the goal of A is an essential
variable; otherwise A would compute the constant True function.

Now consider the set D = {∆(ν) | ν is labelled with an inessential variable}. Note that for
two inessential variables ν1 and ν2 the two trees ∆(ν1) and ∆(ν2) have no common vertices unless
one of these trees is a subtree of the other. Therefore there exist maximal trees with respect to
the subtree relation. Let {∆1, . . . , ∆p} be the set of maximal trees in D. Of course all ∆i are
disjoint and all of them are left subtrees, since the goal of A is an essential variable.

We claim that the tree A′ = A\{∆1, . . . , ∆p} (cf. Definition 15) computes f . Assign the value
1 to all inessential variables. Then all ∆i evaluate to 1, since their goals are inessential variables.
Since the ∆i are left subtrees, each ∆i has a right brother Ti and ∆i → Ti is a subtree of A.
Clearly, [∆i → Ti] = [Ti] and therefore A′ computes indeed f .

Since A′ contains only essential variables, we have |A| > |A′| > L(f) and it follows that there
are at least L(f) essential variables.

12



The size of a tree A computing f 6= True can be written as |A| = L(f)+ η + θ, where L(f)+ η
is the number of leaves labelled with essential variables and θ is the number of leaves labelled with
inessential variables; notice that η > 0 by Lemma 28. Given a function f different from True, we
decompose the set of irreducible trees computing f into the following disjoint sets:

• Mf is the set of all minimal trees, i.e. trees of size L(f) (case η = θ = 0);

• Pf,1 is the set of irreducible trees of size greater than L(f), with exactly L(f) occurrences of
essential variables and at least one occurrence of an inessential variable (case η = 0, θ > 0);

• Pf,2 is the set of irreducible trees of size L(f) + 1, without any occurrence of inessential
variables (case η = 1, θ = 0);

• Pf,3 is the set of irreducible trees of size greater than L(f) + 1, with exactly L(f) + 1
occurrences of essential variables and θ > 0 occurrences of all distinct inessential variables
(case η = 1, θ > 0, first part);

• Pf,4 is the set of irreducible trees of size greater than L(f) + 2, with exactly L(f) + 1
occurrences of essential variables and θ > 0 occurrences of inessential variables such that at
least one inessential variable is repeated (case η = 1, θ > 0, second part);

• Pf,5 is the set of irreducible trees containing at least L(f)+2 occurrences of essential variables
(case η > 2, θ > 0).

Of course any tree computing f falls in an iterated expansion of an irreducible tree computing f
(obtained by repeated pruning). Theorem 7 relies on evaluating the limiting ratios of E∗(C) for
each of the classes C defined above.

Let f be a Boolean function different from True, and Γ the set of its essential variables. Let
us define

N = AL(f)+2
L(f)+2(Γ) ∪

⋃

α∈{x1,...,xk}
α 6∈Γ

AL(f)+3
L(f)+2(Γ ∪ {α}) ∪

⋃

α,β∈{x1,...,xk}
α,β 6∈Γ, α 6=β

AL(f)+4
L(f)+2(Γ ∪ {α, β}).

Note that N implicitly depends on the considered function f . We shall make constant use of the
following:

Proposition 29 For any function f different from True, µ̄k(E∗(N )) = O(1/kL(f)+2).

Remark. Note that in view of Theorem 7 this means that all trees which are either elements of
N or obtained by (iterated) expansion of a tree in N form a set of asymptotically negligible size.

Proof: By Corollary 25, it holds that µ̄k(AL(f)+2
L(f)+2(Γ)) = O(1/kL(f)+2). Using the same corollary,

we obtain that for any variable α 6∈ Γ:

µ̄k(E∗(AL(f)+3
L(f)+2(Γ ∪ {α}))) = O

(

1

kL(f)+3

)

.

In the same way, for any distinct variables α 6∈ Γ and β 6∈ Γ:

µ̄k(E∗(AL(f)+4
L(f)+2(Γ ∪ {α, β}))) = O

(

1

kL(f)+4

)

.

The result follows.
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5.1 Expansions of minimal trees

We first need to establish some restrictions on the possible types of expansions in Mf (these
restrictions also hold for the family Pf,2: this will be used later).

Definition 30 An assignment (partial evaluation) is the substitution of some (or all) of the vari-
ables x1, . . . , xk by values True or False (denoted by 1 and 0). Given an assignment b and a tree T ,
the expression [T|b] denotes the function computed by the tree T under the assignment b, i.e., the
function we obtain, if we replace the variables which are affected by b by their values as given in b.

For example, the tree T = (x → y) → ((z → z) → w) computes the function [T ] = (x → y) →
w. Under various assignments we may get different functions: [T|z=1] = [T ], [T|x=1] = y → w,
[T|y=1] = w, [T|x=1,y=0] = 1.

Likewise, we use the notation f|b if we partially evaluate a function instead of a tree.

Lemma 31 Let f be a Boolean function different from True, and A ∈ Mf ∪ Pf,2. No valid
expansion of type “goal α” or “premise α” with respect to an inessential variable α is possible
in A.

Proof: Assume by contradiction that it is possible to perform a valid expansion of type “goal α”
or “premise α” with respect to an inessential variable α in some node ν of A ∈ Mf ∪Pf,2. Notice
that the left depth of ν is at least 1; otherwise f would be equal to True. We shall first prove that
|∆(ν)| = 1.

Suppose the valid expansion in ν is of type “goal α”. Let A′ be the tree obtained by expanding A
in ν with the left subtree equal to a leaf α. Then we have [A′

|α=0] = [A \ ∆(ν)] = f . We

conclude that |∆(ν)| = 1 and |A| = L(f) + 1 (otherwise we would have a tree smaller than L(f)
computing f).

Suppose now the valid expansion in ν is of type “premise α”. Let x be the goal of A, and
let A′ be the tree obtained by expanding A in ν with the left subtree α → x. Then we have
[A′

|α=1, x=0] = [A\∆(ν)|x=0] = f|x=0 and of course [A\∆(ν)|x=1] = 1 = f|x=1. Again we conclude

that [A \ ∆(ν)] = f ; it follows that |∆(ν)| = 1 and |A| = L(f) + 1 in this case too.
So, no matter what type of valid expansion we apply, we know that ∆(ν) is a leaf, say, with

label y. In the tree A, the left subtree ∆(ν) computes y. Moreover, for both types of expansion,
we have shown that A \ ∆(ν) still computes f ; in other words: substituting ∆(ν) by 1 or its goal
y in A does not change the computed function. It follows by Lemma 17 that A is reducible, which
is absurd.

Notice that Lemma 31 shows that λ(f) defined in Section 2 does not depend on the number
of variables k we consider.

Lemma 32 Let f be a Boolean function different from True. Then the tree class obtained by
applying a single expansion to any minimal tree of f , E(Mf ), has a limiting ratio. Moreover, we
get:

µk(E(Mf )) =
λ(f)

4L(f) kL(f)+1
+ O

(

1

kL(f)+2

)

.

Proof: Let f be a Boolean function different from True. We will compute the formula given in
the assertion which in particular implies the existence of the limiting ratio. Given A ∈ Mf and
ν a node of A, let λν(A) the number of valid expansion types in the node ν of A, and Eν(A) the
set of trees obtained by a single valid expansion in ν.

Notice that, given a tree B obtained from A ∈ Mf by adding one left subtree of size at least
L(f), it is possible to determine A; this is because B has only one left subtree of size |B| − L(f).
Hence for n > 2L(f), it holds that

|{T ∈ E(Mf ) : |T | = n}| =
∑

A∈Mf ,ν∈A

|{T ∈ Eν(A) : |T | = n}|.
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It follows that:
µk(E(Mf )) =

∑

A∈Mf ,ν∈A

µk(Eν(A)). (3)

For A ∈ Mf and ν a node of A, we want to estimate µk(Eν(A)) now. Let us first consider the
limiting ratio of trees obtained by an expansion of a given type in a node ν of a tree A ∈ Mf .
For t a type of expansion (“tautology”, “goal α”, or “premise α”), we denote by Et

ν(A) the set of
all trees obtained from A by expanding it in ν with respect to the valid expansion of type t. The
generating function of Etaut

ν (A) is equal to φTk
(z) · zL(f) and it can be computed that its limiting

ratio is µk(Etaut
ν (A)) = 1/4L(f)kL(f)+1 + O(1/kL(f)+2). The generating function of Egoal α

ν (A) is
equal to (1/k)fk(z)zL(f) and has limiting ratio µk(Egoal α

ν (A)) = 1/4L(f)kL(f)+1 + O(1/kL(f)+2).
In the same way, the generating function of Eprem α

ν (A) is equal to (z/(1 − fk(z) + z))fk(z)zL(f)

and has limiting ratio µk(Eprem α
ν (A)) = 1/4L(f)kL(f)+1 + O(1/kL(f)+2).

Let I = Et1
ν (A)∩Et2

ν (A) where t1 6= t2 are two distinct valid types of expansions in the node ν
of A. From the structure of tautologies recalled in Section 3, it follows that I ⊆ N . Proposition 29
gives µ̄k(I) = O(1/kL(f)+2) and by inclusion-exclusion principle, we obtain:

µk(Eν(A)) =
λν(A)

4L(f) kL(f)+1
+ O

(

1

kL(f)+2

)

. (4)

Together Equations (3) and (4) yield the result.

The last step towards the proof of Theorem 7 is to study the limiting ratio of expansions of the
minimal trees computing a given function. Recall that N is a set of negligible size (Proposition 29).
The next lemma shows that by applying several consecutive expansions we do not gain significantly
more trees than by applying just one expansion on minimal trees.

Lemma 33 For a Boolean function f different from True, E>2(Mf ) \ E(Mf ) ⊆ N .

Proof: Let A2 ∈ E2(Mf )\E(Mf ). There exist A0 ∈ Mf and A1 ∈ E(Mf ) such that A1 ∈ E(A0)
and A2 ∈ E(A1). Let B1 be the left subtree which has been added to A0 to get A1, and B2 be
the left subtree which has been added to A1 to get A2.

By Lemma 31 we know that A1 is not obtained after an expansion of type “goal α” or “premise

α” with respect to an inessential variable α; hence A1 ∈ AL(f)+1
L(f)+1(Γ) ∪⋃α6∈Γ AL(f)+2

L(f)+1(Γ ∪ {α}) –

A1 belongs to the second part if it is obtained after an expansion of type tautology whose goal is
an inessential variable. Observe that A1 ∈ N if B1 is a tautology which is not a simple tautology.
Indeed, by Lemma 14 there exist either three occurrences of the same variable or two distinct
variables appearing twice among the leaves of the four first left levels of the tautology. Thus, if
B1 is a tautology which is not simple, A1 ∈ N and consequently A2 belongs to the same set.

Now, we assume that if B1 is a tautology, then it is a simple tautology. Let S1 be the set of the
leaves of B1, whose left depth (with respect to B1) is smaller or equal to 2. If there exist two nodes
in S1 such that their labels are essential variables, or three nodes such that their labels are one
essential variable and two occurrences of an inessential variable, or three nodes labelled with the
same inessential variable, or four nodes such that their labels are two repetitions of two distinct
inessential variables, then A1 ∈ N and consequently A2 belongs to the same set. Now suppose this
is not the case. We consider two cases, depending on the location of the second expansion with

respect to the first one. We recall that in both cases, A1 ∈ AL(f)+1
L(f)+1(Γ) ∪⋃α6∈Γ AL(f)+2

L(f)+1(Γ ∪ {α}).
First case: The node in which the second expansion B2 has been done does not belong to B1.

If B2 is a tautology then we conclude that A2 ∈ N .
If B2 is added after an expansion of type “goal α” or “premise α” with respect to an essential

variable α then A2 ∈ N . Now, we assume that B2 is added after an expansion of type “goal α”
or “premise α” with respect to an inessential variable.

Let S2 be the set of the leaves of B2 whose left depth (with respect to B2) is smaller or equal
to 1. If S2 contains an essential variable, then A2 ∈ N and we are done. For the same reason, if
there is a repetition of an inessential variable in S1∪S2, then A2 ∈ N . In the following we assume
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this is not the case. Thus there exists a partial assignment of the inessential variables such that
B2 computes 0 and no variable of S1 is valuated. Then, by evaluating the inessential variables of
B1, it is not possible to find an assignment such that B1 computes 1 – otherwise A\ {B1, ∆

2(B2)}
would compute f with size at most L(f)− 1. Since it is not possible to evaluate B1 to 1, its goal
must be an essential variable. But no other essential variable does label a node of S1 and there
exists no repetition in the labels of S1. If B1 was not reduced to a leaf, we could evaluate B1 to 1.
But it is not the case, so B1 is reduced to a leaf, necessarily labelled by an essential variable. We
conclude that the tree A′ := A2 \ ∆2(B2) computes f and its size is L(f), so it is a minimal tree.
There exists an assignment of the inessential variables such that B2 computes 0 and another one
such that it computes 1 (because r(B2) is inessential). So ∆2(B2) computes respectively 1 and
r(∆2(B2)) under these assignments. Using Lemma 17, we conclude that A2 is obtained after one
valid expansion of the minimal tree A′, this is absurd since we assumed A2 6∈ E(Mf ).

Second case: The node in which the second expansion B2 has been done belongs to B1. If the
first expansion of A0 is of type “goal α”, then A2 can be obtained by a single expansion of A0:
this is absurd because A2 6∈ E(Mf ). If the first expansion of A0 is of type “premise x”, then
the only case such that A2 6∈ E(Mf ), is that B2 is an expansion of the premise reduced to x
in B1. Furthermore, we can assume no element of S2 is labelled in the same way as those from S1

(otherwise A2 ∈ N and we are done). So there exists an assignment of the inessential variables
such that B1 (which contains B2) computes 0. Then A2 \ ∆2(B1) computes f with size at most
L(f) − 1; this is absurd. Finally it remains to consider the case where the first expansion is a
tautology. If it is a simple tautology (the other case has been studied before), then the only case
such that A2 6∈ E(Mf ) is that B2 is an expansion of the special premise which is equal to the goal
of tautology. For the same reason as in the previous case, this is not possible.

5.2 Expansions of other irreducible trees

We first prove that the two sets Pf,1 and Pf,3 are empty.

Lemma 34 For any Boolean function f different from True, the set Pf,1 is empty.

Proof: Suppose that Pf,1 is not empty, and let A ∈ Pf,1. The size of A is L(f) + θ, with exactly
L(f) occurrences of essential variables and θ > 0 occurrences of inessential ones. Let {∆1, . . . , ∆p}
be the set of maximal ∆(ν) (with respect to the subtree relation) when ν runs over all the leaves
of A labelled by an inessential variable. If we assign the value 1 to all inessential variables, all
∆i attain the value 1, because their goals are inessential variables. Moreover, since they are left
subtrees, the tree A′ := A \ {∆1, . . . , ∆p} computes f . Since A contains L(f) occurrences of
essential variables, no ∆i contains an essential variable.

Suppose now that there is no assignment of the inessential variables such that ∆1 attain
the value 0: then ∆1 is a tautology and A is reducible, this is absurd. Hence there exists an
assignment a of all inessential variables such that ∆1 attains the value 0 under the assignment a.
Notice that ∆1 cannot be a premise of A because f 6= True, so ∆2

1 := ∆2(∆1) is really a left
subtree (not the whole tree itself) and attains the value 1 under the assignment a (because its
premise ∆1 computes 0). Let S = {∆i | [∆i|a] = 1} ∪ {∆2

i | [∆i|a] = 0}. The set S is composed
of left subtrees, all evaluating to 1 under a. Moreover S contains ∆2

1 which contains at least one
essential variable (its goal) – otherwise ∆1 would not be maximal. Thus A′′ := A \ S is of size at
most L(f) − 1 and computes f , this is absurd.

Lemma 35 For any Boolean function f different from True, the set Pf,3 is empty.

Proof: Let us suppose that Pf,3 is not empty, and let A ∈ Pf,3. Let |A| = L(f) + 1 + θ, A
containing θ occurrences of all distinct inessential variables. We define {∆1, . . . , ∆p} as in proof
of Lemma 34. Since [A] = [A \ {∆1, . . . , ∆p}], the set

⋃

i ∆i contains at most one occurrence of
an essential variable.
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Suppose first that
⋃

i ∆i contains only inessential variables. Notice that in this case, there
exists an assignment of the inessential variables such that all ∆i evaluate to 0 (such an assignment
exists since there is no repetition of inessential variables). It follows that A \ {∆2

1, . . . , ∆
2
p} is a

tree computing f . Hence all ∆2
i are equal to the same left subtree of A. It follows that the ∆i

are all (and the only) premises of a single left subtree of A whose goal is an essential variable α.
We claim that in this case, A is obtained from A \ ∆2

1 by a single valid expansion of the type
“goal α”. Indeed, put all inessential variables to 1. Then ∆2

1 attains the value α and A computes
f under this assignment. Now choose a (complete) assignment of the inessential variables such
that ∆1 evaluates to 0 (it exists). Then ∆2

1 evaluates to 1 and the tree A computes f under this
assignment. By Lemma 17, A is reducible. This is absurd.

Now, let us suppose that
⋃

i ∆i contains exactly one essential variable – say, it lies in ∆1.
There exists an assignment of the inessential variables such that ∆1 attains the value 1 and all
other ∆i attain 0. Thus A \ {∆1, ∆

2
2, . . . , ∆

2
p} computes f . But its size is strictly smaller than

L(f) if p > 1. Thus necessarily p = 1. By definition of ∆1, α cannot be its goal. So α lies in a
premise of ∆1.

Case 1: this premise is of size 1 (i.e. it is reduced to α). We claim that in this case, A
is obtained from A \ ∆1 by a single valid expansion of the type “premise α”. Indeed, put all
inessential variables to 1. Then ∆1 evaluates to 1 and the obtained tree computes f . Now choose
an assignment of the inessential variables such that ∆1 evaluates to ᾱ (it exists). The obtained
tree computes f . By Lemma 18, A is reducible. This is a contradiction.

Case 2: this premise is of size at least 2. In this case, we can find an assignment of the
inessential variables such that ∆1 evaluates to 0 (write ∆1 as an and/or tree and notice that α
lies in the scope of a conjunction). Hence, cutting ∆2

1 from A yields a tree strictly smaller than
L(f) computing f . This is absurd.

We shall study expansions of Pf,2 now. Note that Pf,2 may be empty or not, depending on f :
Pf,2 is empty for f = x1 while P2(g) is not empty for g = x1 ∨ (x̄2 ∧ x3 ∧ x4) ∨ (x̄2 ∧ x̄5). Indeed,
it can be checked that L(g) = 6 and (x3 → (x4 → x2)) → (((x5 → x2) → x2) → x1) belongs
to P2(g).

Lemma 36 For any Boolean function f different from True, E+(Pf,2) ⊆ N .

Proof: This is trivial if Pf,2 is empty. Assume Pf,2 6= ∅, and let A ∈ E(Pf,2). We have A ∈ E(I)
for some irreducible tree I ∈ Pf,2. We will prove that A satisfies one of the following conditions:

• A contains at least L(f)+2 occurrences of essential variables with left depth at most L(f)+2;

• A contains L(f) + 1 occurrences of essential variables and two occurrences of the same
inessential variable, all with a left depth at most L(f) + 2.

This will prove that A ∈ N .
If A is obtained from I by an expansion of type goal or premise, then this expansion must be

done with respect to an essential variable by Lemma 31. Now remark that I is of size L(f) + 1,
so all its nodes are of left depth at most L(f) (there is at least a node per left depth). Since
expansions preserve left depth of nodes present in the initial tree, we conclude that A satisfies the
first condition above.

Suppose now that A is obtained from I by an expansion of type tautology. From the results
recalled in Section 3, we know that this tautology contains two occurrences of some variable x in
its nodes of left depth at most 1. If x is an essential variable of f , then A satisfies the first condition
above. Otherwise, if x is an inessential variable of f , then A satisfies the second condition above.

We turn our attention towards Pf,4 and Pf,5 now – it is easily checked that both Pf,4 and Pf,5

are non empty for any function f 6= True.

Proposition 37 For any Boolean function f different from True, Pf,4 ∪ Pf,5 ⊆ N .
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Proof: Let A ∈ Pf,4∪Pf,5. Let |A| = L(f)+η+θ be the size of A, where L(f)+η corresponds to
the number of occurrences of essential variables, and θ is the number of occurrences of inessential
variables. Either η > 2 and θ > 0 or η = 1 and θ > 2 with at least two occurrences of the same
inessential variable. In the same way as before, let

{∆1, . . . , ∆p} = {∆(ν) | ν inessential and ∆(ν) maximal} (5)

where, as usual, maximality is meant with respect to the subtree relation. Let a be the partial
evaluation where all inessential variables are equal to 1. Then we have

[A \ {∆1, . . . ∆p}] = [A|a] = [A]. (6)

In the subsequent lemmas we will prove that A must lie in N by showing that enough variables
repeat before a fixed left depth in A.

In order to complete the previous proof, we will decompose the set Pf,4∪Pf,5 into the following
disjoint subsets:

• Qf,0 = {t ∈ Pf,4 ∪ Pf,5 such that there are no inessential variables in t}. This corresponds
to the case p = 0 of (5).

• Qf,1 = {t ∈ Pf,4 ∪Pf,5 such that all inessential variables are contained in the same maximal
∆(ν)}. Here we have only one maximal subtree ∆1 and thus we are in the case p = 1 of (5).

• Qf,2 = (Pf,4 ∪ Pf,5) \ (Qf,0 ∪ Qf,1). This corresponds to the case p > 2 of (5).

Lemma 38 For f different from True we have Qf,0 ⊆ N .

Proof: In this case we have θ = 0 and η > 2 and hence A ∈ AL(f)+2
L(f)+1(Γ) ⊆ N .

Lemma 39 For f different from True we have Qf,1 ⊆ N .

Proof: In this case (6) reduces to [A \ ∆1] = [A|a] = [A]. By definition of ∆1 the tree A \ ∆1

contains only essential variables and has size at least L(f). We subdivide this case according to
the size of A \ ∆1.

• A \ ∆1 has size at least L(f) + 2. In the same way as in the case p = 0, we obtain that

A ∈ AL(f)+2
L(f)+1(Γ) ⊆ N .

• A\∆1 has size L(f)+1. We denote the premises of ∆1 by Bi and its goal by β. We consider
two different cases:

1. There exists i such that r(Bi) ∈ Γ∪{β}. Then we have L(f)+3 occurrences of variables

of Γ∪{β} whose left depths are all smaller than L(f)+2. Thus A ∈ AL(f)+3
L(f)+2(Γ∪{β}) ⊆

N .

2. For all i, r(Bi) is not an essential variable and different from β. Let b be an assignment of
the inessential variables such that β = 0 and all other inessential variables are valuated
to 1. Then [∆1|b] = 0 and it follows that [∆2

1|b] = 1 (∆2
1 exists because otherwise

∆1 would be a premise of the whole tree and under b, the whole tree would compute
1). Thus [∆2

1|b] = 1 and [A|b] = f . Now the goal of ∆2
1 is an essential variable; let

us denote it by x. Remark that ∆2
1 does not contain another essential variable since

[A \ ∆2
1] = f . Consider an assignment b̃ of the inessential variables satisfying β = 1; in

this case [∆2
1|b̃] = x and [A|b̃] = f . Lemma 17 implies that A is reducible to A \ ∆2

1, a
contradiction.

• A \ ∆1 has size L(f). We denote the premises of ∆1 by Bi and its goal by β.
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1. For all i, r(Bi) 6∈ Γ∪{β}. By taking β = 0 and all other inessential variables equal to 1,
∆1 computes 0 and then ∆2

1 computes 1. So A \∆2
1 computes f with at most L(f)− 1

occurrences of essential variables (because the goal of ∆2
1 is an essential variable). This

is absurd.

2. There exist i 6= j such that r(Bi) and r(Bj) are both in Γ ∪ {β}. Then there are
L(f)+3 occurrences of variables of Γ∪{β} in A with left depth at most L(f)+1. Thus

A ∈ AL(f)+3
L(f)+1(Γ ∪ {β}) ⊆ N .

3. There exists a unique i such that r(Bi) ∈ Γ∪{β}. Let us suppose first that Bi is reduced
to a leaf. If Bi = β, then ∆1 is a simple tautology; it follows that A is reducible, absurd.
Thus Bi is an essential variable x. Let b be the assignment of the inessential variables
such that β = 0 and all other inessential variables evaluate to 1. Under b, ∆1 computes
x̄, and A computes f . Now consider another assignment b̃ with β = 1; under b̃, ∆1

computes 1, and A computes f . Using Lemma 18, we conclude that A is a expansion
of A \ ∆1 of type “premise x”; this is a contradiction.

Hence Bi is not reduced to a leaf. Let Bi = C1 . . . , Cℓ → γ with ℓ > 1 and γ ∈ Γ∪{β}.
We consider different subcases now:

– If there exists j such that r(Cj) ∈ Γ ∪ {β}, then A contains L(f) + 3 occurrences
of variables of Γ ∪ {β} with left depth at most L(f) + 2. It follows that A ∈
AL(f)+3

L(f)+2(Γ ∪ {β}) ⊆ N .

– If there exist j 6= j′ such that r(Cj) = r(Bj′ ) or r(Cj) = r(Cj′ ). Let δ = r(Cj).
Then A contains L(f) + 4 occurrences of variables of Γ ∪ {β, δ} with left depth at

most L(f) + 2. It follows that A ∈ AL(f)+4
L(f)+2(Γ ∪ {β, δ}) ⊆ N .

– If all r(Cj) are distinct and for all j, r(Cj) 6∈ Γ∪ {β}⋃j′{r(Bj′ )}. If C1 is reduced
to a leaf, consider the following assignment: C1 = 0, β = 0 and all other inessential
variables equal to 1. Then ∆1 computes 0, so ∆2

1 computes 1, and A\∆2
1 computes

f with at most L(f) − 1 occurrences of essential variables, absurd. Hence C1 is
not reduced to a leaf; let C1 = D1, . . . , Dm → δ, with m > 1 and δ an inessential

variable. If there exists j such that r(Dj) ∈ Γ∪{β, δ}, then A ∈ AL(f)+4
L(f)+3(Γ∪{β}) ⊆

N .
Otherwise, if there exist j 6= j′ such that r(Dj) = r(Bj′ ) or r(Dj) = r(Cj′ ), or
r(Dj) = r(Dj′ ): let ǫ denote this repeated inessential variable. Then A contains
L(f) + 4 occurrences of variables of Γ∪ {β, ǫ} with left depth at most L(f) + 3. It

follows that A ∈ AL(f)+4
L(f)+3(Γ ∪ {β, ǫ}) ⊆ N .

If we are not in the previous cases, every Dj computes 0 by evaluating its goal
to 0 and all its subgoals to 1 (recall that the subgoals of Dj are the goals of its
premises): there is no conflict because all are different. So for this assignment C1

computes 0, Bi evaluates to 1 and at last the whole subtree ∆1 evaluates to 0.
It follows that A \ ∆2

1 computes f with at most L(f) − 1 occurrences of essential
variables, which is absurd.

Lemma 40 For f different from True we have Qf,2 ⊆ N .

Proof: As in the previous lemma our starting point is (6), and we conclude that A \ {∆1, . . . ∆p}
contains only essential variables and has size at least L(f). Again we consider different cases
according to the size of A \ {∆1, . . . ∆p}.

1. A \ {∆1, . . . ∆p} has size at least L(f) + 2. Then A ∈ AL(f)+2
L(f)+1(Γ) ⊆ N .

2. A \ {∆1, . . . ∆p} has size L(f) + 1. Let S be the set of goals and subgoals of the subtrees
{∆1, . . . , ∆p}. If there exists a node of S labelled with an essential variable, then A ∈
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AL(f)+2
L(f)+2(Γ) ⊆ N . Otherwise, if there exist two nodes of S labelled with the same inessential

variable α, then A ∈ AL(f)+3
L(f)+2(Γ∪ {α}) ⊆ N . Finally, if we are not in the previous cases, we

are able to find an assignment a of the inessential variables such that all ∆i are computing
0 under a. Then the tree A \ {∆2

1, . . . , ∆
2
p} computes f ; since it must be of size at least

L(f), it follows that all ∆2
i are equal to the same subtree. Let x = r(∆2

1) (x is necessarily an
essential variable). We shall prove that A is obtained from A\∆2

1 by a single valid expansion
of the type “goal x”. Indeed, put all inessential variables to 1. Then ∆2

1 evaluates to x and
A computes f . Now choose a (complete) assignment of the inessential variables such that
all ∆i evaluate to 0 (it exists, because there are no repetition in the labels of S). Then ∆2

1

evaluates to 1, and the whole tree computes f . By Lemma 17, A is reducible, this case is
not possible.

3. A \ {∆1, . . . ∆p} has size L(f). Again, let S be the set of the goals and the subgoals of
the subtrees {∆1, . . . , ∆p}. If S contains at least two occurrences of essential variables

then A belongs to AL(f)+2
L(f)+1(Γ) ⊆ N . Else if there exists one occurrence of an essential

variable and two occurrences of the same inessential variables α in S then A belongs to

AL(f)+3
L(f)+1(Γ∪ {α}) ⊆ N . Else if there exist three occurrences of the same inessential variable

α or four occurrences of two different inessential variables α and β in S then A belongs to

AL(f)+3
L(f)+1(Γ ∪ {α}) ⊆ N or AL(f)+4

L(f)+1(Γ ∪ {α, β}) ⊆ N . There are three other cases. First

case: S contains a single essential variable and no repetition among the inessential variables.
Let ∆1 be the subtree containing a subgoal labelled with an essential variable. There exists
an assignment of the inessential variables such that ∆1 computes 1 and all the other ∆i

compute 0. So we conclude that the tree A \ {∆1, ∆
2
2, . . . , ∆

2
p} computes f with at most

L(f) − 1 occurrences of essential variables (since p > 2). This is absurd. Second case:
there exists no essential variable among S but there are exactly two occurrences of the same
inessential variable. Then there exists an assignment of the inessential variables such that
all the ∆i compute 0 or a single ∆j computes 1 and all the other compute 0. So we conclude
that the tree A \ {∆2

1, . . . , ∆
2
p} (or A \ {∆2

1, . . . , ∆
2
j−1, ∆j , ∆

2
j+1, . . . , ∆

2
p} in the other case)

computes f , with at most L(f)− 1 occurrences of essential variables. This is absurd. Third
case: there exists no essential variable and no repetition among S. Then there exists an
assignment of inessential variables such that all the ∆i compute 0. We conclude that the
tree A \ {∆2

1, . . . , ∆
2
p} computes f with at most L(f) − 1 occurrences of essential variables.

This is absurd.

The previous three lemmas complete the proof of Proposition 37.

Proof of Theorem 7: Of course each tree computing f falls in a set obtained by an arbitrary
number of expansions of an irreducible tree computing f . That is, the set of trees computing f is
exactly Fk(f) = E∗(Mf ∪ Pf,1 ∪ Pf,2 ∪ Pf,3 ∪ Pf,4 ∪ Pf,5).

Because E(Mf ) ⊆ Fk(f), the lower bound on µk(f) is easily obtained from Lemma 32. Let
us show the upper bound on µk(f) now.

Lemmas 34, 35, 36 and Proposition 37 together with Proposition 29 show that µ̄k(E∗(Pf,1 ∪
E(Pf,2) ∪ Pf,3 ∪ Pf,4 ∪ Pf,5)) = O(1/kL(f)+2). Moreover, since |Pf,2| = O(1), it holds that
µk(Pf,2) = 0. Hence µ̄k(E∗(

⋃

16i65 Pf,i)) = O(1/kL(f)+2).

In the same way, E∗(Mf ) = Mf ∪E(Mf )∪(E>2(Mf )\E(Mf )). Since |Mf | = O(1), we have
µk(Mf ) = 0. Moreover, Lemma 33 yields E>2(Mf )\E(Mf ) ⊆ N and it follows by Proposition 29
that µ̄k(E>2(Mf ) \ E(Mf )) = O(1/kL(f)+2). The upper bound on µk(f) is proved.

Let us provide some bounds on the integer λ(f) now.

Proposition 41 Let f be a Boolean function different from True, and let ℓ be its number of
essential variables. It holds that

2(2L(f)− 1)|Mf | 6 λ(f) 6 (1 + 2ℓ)(2L(f)− 1)|Mf |.
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Proof: Let M be a minimal tree computing f and let ν be a node of M . Since M is of size L(f),
the tree M has 2L(f)− 1 nodes in total. Thus all we have to show is that the number λν of types
of valid expansions in the node ν of M satisfies 2 6 λν 6 1 + 2ℓ.

We obtain the upper bound simply by counting all possible types of expansions: 1 for the
tautology type, ℓ of goal type, and ℓ of premise type – recall from Lemma 31 that no expansion
of type “goal α” or “premise α” with respect to an inessential variable α is valid in M .

The lower bound is obtained by remarking that, besides the tautology type of expansion which
is of course valid in ν, the expansion of type “premise x” is also valid in ν, where x is the goal of M .
Indeed, let A be the tree obtained from M by replacing the subtree B rooted at ν by C → B,
where C is any tree with a premise equal to x. Of course [A|x=0] = [M|x=0] because [C|x=0] = 1.
Moreover, [A|x=1] = [M|x=1] = 1 because x is the goal of M . Thus [A] = [M ] and we conclude
that the expansion of type “goal x” is valid in ν.

6 Read-once functions

We consider here the case of read-once functions, i.e., functions f with L(f) essential variables.
An alternative definition is a function whose minimal trees contain no repetition of variables. A
tree in which all leaves are labelled by distinct variables is called a read-once tree. Notice that
read-once trees are exactly minimal trees computing read-once functions.

Let Rc,k be the set of read-once trees of size c over {x1, . . . , xk}. Our aim is to estimate
both the limiting ratio of all read-once functions of a fixed complexity c over {x1, . . . , xk} and the
average limiting ratio of a read-once function of complexity c. A symmetry argument allows to
focus on R(x1, . . . , xc), the set of read-once trees of size c on {x1, . . . , xc}.

We first define the notion of equivalence under recursive permutation of premises, denoted
as ≡. Two trees A and B of left depth 0 are equivalent if and only if they are equal. Two
trees A = (A1, . . . , Ap, α) and B = (B1, . . . , Bq, β) of positive left depth are equivalent if and
only if p = q, α = β and there exists a permutation π of {1, . . . , p} such that Ai ≡ Bπ(i) for all
i ∈ {1, . . . , p}.

Lemma 42 Let A be a read-once tree computing f . The set of all read-once trees computing f
is exactly {B | B ≡ A}; i.e. it is the set of trees obtained from A by recursive permutation of
premises.

Proof: The result is obtained by an induction on the size of the read-once tree. Let A and B
be two minimal trees of f . The initial step is obvious because two trees of size 1 that compute
the same function f are equal, and so they are equivalent. Now suppose that all read-once trees
of size at most r computing the same function are equivalent. Let A = (A1, . . . , Ap, α) and
B = (B1, . . . , Bq, β) be two read-once trees of size r+1 such that both compute the same function
f . Let us first study the goals of A and B. Let a be the assignment such that α = 0 and all other
variables are valuated to 1. For this assignment, A evaluates to 0. Since both trees compute f ,
B evaluates to 0 too. Hence the goal of B must be valuated to 0. Since α is the single variable
valuated to 0, it holds that β = α.

Now we focus on the premises of A and B. Let us denote by αi the goal of Ai and βi the
goal of Bi. Assume that {α1, . . . , αp} 6= {β1, . . . , βq}. By symmetry, we shall assume there exists
βℓ ∈ {β1, . . . , βq} \ {α1, . . . , αp}. Let a be the partial assignment such that α = βℓ = 0 and all
other variables are valuated to 1. Under this assignment, A evaluates to 0 while B evaluates to
1. This is a contradiction. It follows that {α1, . . . , αp} = {β1, . . . , βq}, and of course p = q since
A and B are read-once.

Let π be the permutation of {1, . . . , p} such that αi = βπ(i) for all i. Let j ∈ {1, . . . , p}. Let
a be the assignment such that α = αj = 0 and all other variables are valuated to 1. Under this
assignment, A computes Āj and B computes B̄π(j). These two subtrees must compute the same
function, are read-once and of size smaller than r +1: by induction, we conclude that Aj ≡ Bπ(j).
We have proved that A ≡ B.
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Lemma 42 allows to count the number of read-once functions of complexity c over the variables
{x1, . . . , xc}. Indeed, equivalence classes of read-once trees over {x1, . . . , xc} under recursive per-
mutation of premises are in one-to-one correspondence with labelled Cayley trees with c leaves [9].
Thus there are cc−1 read-once functions over {x1, . . . , xc}.

For an expression A, we define λtaut(A) to be the number of valid expansions by tautologies
in A. In the same way, we define the number of valid expansions of type goal and premise
λgoal(A) and λprem(A). Of course λ(A) = λtaut(A) + λgoal(A) + λprem(A). Then we define
λt(R(x1, . . . , xc)) =

∑

A∈R(x1,...,xc)
λt(A), the number of expansions of type t of all read-once

trees depending on all the variables {x1, . . . , xc}. Note that for a read-once tree A, the three
quantities λt(A) do not depend on the labelling of A but only on its shape – see Lemmas 44
and 43.

Just as in any tree, expansions of type tautology are possible in all (internal or external) nodes
of a read-once tree. It follows that λtaut(R(x1, . . . , xc)) = c!(2c − 1)Cc−1.

In order to evaluate λprem(R(x1, . . . , xc)) and λgoal(R(x1, . . . , xc)), we first need to characterize
valid expansions of type “goal” and “premise” in read-once trees. Notice that a read-once tree
is a minimal tree, so Lemma 31 ensures that a valid expansion in a read-once tree must be with
respect to an essential variable (i.e., a variable that appears in this tree).

Lemma 43 An expansion of type “premise α” is valid in the node ν of a read-once tree A if and
only if ν lies in a left subtree of A with goal α.

Proof: Suppose there exists a leaf τ in A labelled by α, and let ν be a node of ∆(τ). Consider
a tree A′ obtained by an expansion of type “premise α” in ν; we denote by τ ′ the node of A′

corresponding to the node τ after this expansion. If α = 1, since ∆(τ ′) evaluates to 1, it is clear
that [A′

|α=1] = [A|α=1] = 1. If α = 0, the left subtree added in the expansion obviously evaluates

to 1; hence [∆(τ ′)|α=0] = [∆(τ)|α=0] and it follows that [A′
|α=0] = [A|α=0]. We have shown that

the expansion of type “premise α” is valid in ν.
Assume now that the expansion of type “premise α” is valid in a node ν of A. Let τ be the

leaf of A labelled by α. Suppose by contradiction that ν 6∈ ∆(τ). Consider the tree A′ obtained by
replacing ∆(ν) with (α → β) → ∆(ν) in A, for some variable β not appearing in A. The function
[A|α=1] depends on the goal of ∆(ν), while [A|α=1,β=0], which should be equal to [A|α=1], does
not. This is absurd.

Lemma 44 An expansion of type “goal α” is valid in the node ν of a read-once tree A if and only
if ν is not labelled by α, and lies in a left subtree of A with a premise α.

Proof: Assume that there exists a left leaf τ in A, labelled by α and let ν be a node of ∆2(τ)\{τ}.
It is easily checked that the expansion of type “goal α” is valid in ν, by considering both values
α = 0 and α = 1 in turn.

Now suppose that there exists a node ν in A where an expansion of type “goal α” is valid. The
variable α must appear in A by Lemma 31; let τ be the leaf of A labelled by α. Let A′ be the
tree obtained by replacing ν with α → ν in A. Let β = r(∆(ν)). First notice that β 6= α: indeed,
if we had α = β, [A′] = [A] would not depend on α.

Assume now that τ is a right leaf. In this case, [A|α=0] still depends on β while [A′
|α=0] does

not: this is absurd. Hence τ is a left leaf. We have already noticed that (r(∆(ν)) 6= α: this ensures
that ν 6= τ . It remains to prove that ν ∈ ∆2(τ). Assume now that ν 6∈ ∆2(τ). Again, [A′

|α=0]

does not depend on β any more in this case, while [A|α=0] does. This is absurd.

Lemma 45 The number of valid expansions of type premise of all read-once functions depending
on {x1, . . . , xc} is

λprem(R(x1, . . . , xc)) = c! 4c−1.
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Proof: Since the number of valid expansions of type “premise” of a read-once tree does not depend
on its labelling, we define the number λprem(T ) for an unlabelled tree T as λprem(A) where A is
any read-once labelling of T . For an integer n, let pn =

∑

|T |=n λprem(T ).

For every internal or external node ν, we denote by δℓ(ν) its left depth, and δ(ν) its depth.
For a node ν, there are exactly δℓ(ν) + 1 (right) leaves τ such that ν ∈ ∆(τ). Using Lemma 43,
we conclude that there exist exactly δℓ(ν) + 1 valid expansions of type “premise” valid in ν.
Hence pn =

∑

|T |=n

∑

ν∈T (δℓ(ν) + 1) = (2n − 1)Cn−1 + qn, where qn =
∑

|T |=n

∑

ν∈T δℓ(ν).

By a symmetry argument obtained by considering mirror images of trees, qn = (1/2)rn with
rn =

∑

|T |=n

∑

ν∈T δ(ν). This quantity rn is the sum of the depth of all (internal and external)

nodes over all trees of size n. Let us decompose rn = rint
n + rext

n according to the contribution of
internal and external nodes. It is easily obtained by induction on the size that in a tree of size
n, the contribution of external nodes is equal to the contribution of internal nodes plus 2(n − 1).
This gives rext

n = rint
n + 2(n − 1)Cn−1. Hence, rn = 2rint

n + 2(n − 1)Cn−1. It is known that
rint
n = 4n−1 − (3n− 2)Cn−1 – see [7, Theorem 5.3, p. 242]. We have obtained pn = 4n−1. Since a

Catalan tree of size c can be labelled with all {x1, . . . , xc} in c! ways, we get the result.

Lemma 46 The number of valid expansions of type goal of all read-once trees depending on
{x1, . . . , xc} is

λgoal(R(x1, . . . , xc)) = c!

(

4c−1 −
(

2c − 2

c − 1

))

.

Proof: As already noted, the number of valid expansions of type goal of a read-once tree does
not depend on its labelling. For an unlabelled Catalan tree T , we shall denote by λgoal(T ) the
number of expansions of any read-once tree of shape T .

Let gn =
∑

|T |=n λgoal(T ) where the sum is over all (unlabelled) Catalan trees of size n. We
shall first prove that this sequence is defined by the following induction:

{

g1 = 0

gn = Cn−1(2n − 2) +
∑n−1

t=2 Cn−tgt for n > 1

Obviously g1 = 0. Let n > 1. Given a tree T , we denote by p(T ) the number of premises of
T , and by T1, . . . , Tp(T ) its premises. The number of premises of size t of the tree T is denoted by
pt(T ). For each premise of size one labelled by α, expansions of type “goal α” are valid in every
node except in the premise itself (Lemma 44). We have:

λgoal(T ) = p1(T )(2n − 2) +

p(T )
∑

i=1

λgoal(Ti).

Summing over all trees of size n, we get:

gn = (2n − 2)
∑

|T |=n

p1(T ) + g>1
n

where

g>1
n =

∑

|T |=n

p(T )
∑

i=1

λgoal(Ti).

It is a folklore result that the average number of premises of size t in a Catalan tree of size n
is equal to p̄t(n) = Ct−1Cn−t/Cn−1. Hence we get gn = (2n − 2)Cn−1 + g>1

n . Let us evaluate
g>1

n , by regrouping premises by their size (we consider only premises of size greater than one since
λgoal(A) = 0 when |A| = 1):

g>1
n =

∑

|T |=n

p(T )
∑

i=1

λgoal(Ti) =
∑

|T |=n

n−1
∑

t=2

p(T )
∑

i=1

1|Ti|=tλ
goal(Ti) =

n−1
∑

t=2

∑

|T |=n

p(T )
∑

i=1

1|Ti|=tλ
goal(Ti).
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By a symmetry argument, it holds that:

∑

|T |=n

p(T )
∑

i=1

1|Ti=t|λ
goal(Ti) =





∑

|T |=n

pt(T )



 ḡt.

where ḡt = gt/Ct−1. Hence we get g>1
n =

∑n−1
t=2 p̄t(n)Cn−1ḡt. Using the average number of

premises of fixed size in a tree recalled above, we get g>1
n =

∑n−1
t=2 Cn−tgt.

Consider now the generating function g(z) =
∑

n gnzn. Induction equations established above
yield the following functional equation:

g(z) = 2zC′(z) − 2C(z) +
C(z)g(z)

z
− g(z),

where C(z) enumerates Catalan trees. Of course C(z) = (1 −
√

1 − 4z)/2 and we get:

g(z) =
z(1 −

√
1 − 4z)

1 − 4z
.

Finally gc = [zc]g(z) = 4c−1−c·Cc−1. Furthermore we can label the leaves of an (unlabelled) Cata-
lan tree of size c in c! different ways with all variables from {x1, . . . , xc}, so λgoal(R(x1, . . . , xc)) =
c!(4c−1 − c · Cc−1).

Proposition 47 Let c be a fixed integer. The limiting ratio of all read-once functions of complex-
ity c satisfies, when k tends to infinity:

µk(Rc,k) =

(

1

2
+ (1 − c−1)

(

2c−2
c−1

)

4c

)

1

k
+ O

(

1

k2

)

.

The average limiting ratio of a read-once function of complexity c over k variables is equal to:

µk(Rc,k)

|[Rc,k]| =

(

c

2
+ (c − 1)

(

2c−2
c−1

)

4c

)

c!

cc

1

kc+1
+ O

(

1

kc+2

)

.

Proof: Let c be a fixed integer. Let us first compute µk(R(x1, . . . , xc)). We have already noticed
that λtaut(R(x1, . . . , xc)) = c!(2c − 1)Cc−1. Thus the results from Lemma 46 and 45 give us the
number of valid expansions of all read-once trees on all {x1, . . . , xc}:

λ(R(x1, . . . , xc)) = λtaut(R(x1, . . . , xc)) + λgoal(R(x1, . . . , xc)) + λprem(R(x1, . . . , xc)).

Then Theorem 7 gives:

µk(R(x1, . . . , xc)) =
λ(R(x1, . . . , xc))

4c kc+1
+ O

(

1

kc+2

)

=

(

1

2
+ (1 − c−1)

(

2c−2
c−1

)

4c

)

c!
1

kc+1
+ O

(

1

kc+2

)

.

By symmetry, µk(Rc,k) =
(

k
c

)

µk(R(x1, . . . , xc)), which gives the first result of the lemma. Fur-
thermore, since the number of read-once functions of complexity c on {x1, . . . , xc} is cc−1, we
immediately get the average limiting ratio of read-once functions of complexity c on {x1, . . . , xc}.
By symmetry, it is equal to the average limiting ratio of read-once functions of complexity c on
{x1, . . . , xk}, which gives the second equation stated in the lemma.
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7 Branching processes

We shall consider the probability distribution on Boolean functions induced by a distribution on
trees given by a critical Galton Watson process, with nodes uniformly and independently labelled
at random among {x1, . . . , xk}. In this model, the probabilities that a node has 0 or 2 sons are
equal to 1/2 and the labelling of all leaves are chosen uniformly at random among {x1, . . . , xk}
and mutually independent. It is known that a tree is almost surely finite in this model [1].

This probability distribution has been introduced in [4] on And/Or trees and can be obviously
adapted to the case of implication trees (here the labelling of the internal node is not at random
because there is a single label). So for a tree A, we get:

πk(A) = P(structure of A) · P(labelling of A) =
1

22|A|−1 k|A|
.

In this model, notice that the probability πk(A) is well defined for any subset of trees A. We
define the probability of a given function f as πk(f) = πk({A ∈ Fk | [A] = f}) =

∑

[A]=f πk(A).

Proposition 48 The probability of tautologies satisfies:

πk(True) =
1

2k
+ O

(

1

k2

)

.

Proof: We adapt the computations of [12] to the branching process model. Let us recall: the
simple tautologies are trees such that one of their premise is equal to their goal. Let us denote Sk

the set of all simple tautologies. A tree T with goal α is not a simple tautology if and only if all
its premises are different from α. Summing over all α ∈ {x1, . . . , xk}, we obtain:

πk(Fk \ Sk) =
∑

α

∞
∑

p=0

1

2p

(

1 − 1

2k

)p
1

2k

= 1 − 1

2k + 1
.

Hence we conclude:

πk(Sk) =
1

2k
+ O

(

1

k2

)

.

A tree is a simple non tautology if the goals of all its premises are different from the goal α of the
whole tree. Let SNk be the set of all these trees.

πk(SNk) =
∑

α

∞
∑

p=0

1

2p

(

1 − 1

k

)p
1

2k

= 1 − 1

k
+ O

(

1

k2

)

.

This shows the result for k = 1.
Let us assume k > 2 now. We need to define the less simple non tautologies. For α and β two

distinct variables, let us define the set of trees LNα,β
k as the set of trees T = T1, . . . , Tq, . . . , Tp → α

(with all 1 6 q 6 p) satisfying the following properties. The subtree Tq has goal α and contains
at least one premise; the first premise Tq,1 of Tq has goal β, and all premises of Tq,1 (if any) have
a goal different from α and β. At last, for all i ∈ {1, . . . , p} \ {q}, r(Ti) 6∈ {α, β}. The set of less

simple non tautologies is defined as LNk =
⋃

α6=β LNα,β
k .

Given a tree T ∈ LNα,β
k , let us denote by q(T ) the integer such that Tq(T ) is the only premise

of T with goal α. Let us first compute the probability of all possible Tq(T ),1 of trees from LNα,β
k :

πk({Tq(T ),1 | T ∈ LNα,β
k }) =

∞
∑

p=0

1

2p

(

1 − 2

k

)p
1

2k
=

1

k + 2
.
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Now, we compute the probability of all possible Tq(T ):

πk({Tq(T ) | T ∈ LNα,β
k }) =

1

2
πk({Tq(T ),1 | T ∈ LNα,β

k }) 1

k
=

1

2k(k + 2)
.

Finally:

πk(LNk) =
∑

α6=β

(

∞
∑

p=0

1

2p

(

1 − 2

k

)p
)

1

2
πk({Tq(T ) | T ∈ LNα,β

k })
(

∞
∑

p=0

1

2p

(

1 − 2

k

)p
)

1

2k

=
1

2k
+ O

(

1

k2

)

.

See paper [12] to get a proof that all trees from SNk ∪ LNk are not tautologies. We have proved
that πk(True) = 1/2k + O(1/k2).

The fact that iterated expansions of the set of trees with many repetitions of variables at a
small left depth has a small probability still holds in the model of branching processes. This is
proved in the following lemma – recall the definitions of Ap

q(V) and Bp
q (V) from Section 4.

Lemma 49 For a fixed set of variables V and two integers p and q, πk(E∗(Ap
q(V))) = O(1/kp).

Proof: It is sufficient to prove that πk(X(Bp
q (V))) = O(1/kp). Then Lemma 23 gives the result.

Let B ∈ Bp
q(V). We recall that the structure of a tree is obtained by a critical branching

process and the labelling of each leaf is at uniform random among {x1, . . . , xk} and independent.
So we get:

πk(X(B)) = πk(B)

(

∞
∑

i=0

1

2i

)2|B|−1

6 2pq+1πk(B)

since |B| 6 pq + 1. Moreover, B has p variables from the fixed set V , so πk(B) = O(1/kp). At
last, |Bp

q (V)| = O(1) gives πk(X(Bp
q(V))) = O(1/kp).

Now, we can state the result on the asymptotic probability of a function different from True.

Proposition 50 For a Boolean function f different from True,

πk(f) =
|Mf |

22L(f)−1kL(f)
+ O

(

1

kL(f)+1

)

.

Proof: Recall that Fk(f) denotes the set of trees computing f . Obviously it holds that:

Mf ⊆ Fk(f) ⊆ Mf ∪ E∗(E(Mf ) ∪ Pf,1 ∪ . . . ∪ Pf,5)).

Of course πk(Mf ) = |Mf |/(22L(f)−1kL(f)). This provides the lower bound on πk(f).
We focus on E∗(E(Mf )∪Pf,1 ∪ . . .∪Pf,5) now. Recall the definition of N from Section 5. By

Lemma 49, it holds that πk(E∗(N )) = O(1/kL(f)+2). First recall that Pf,1 and Pf,3 are empty
(Lemmas 34 and 35). Then Lemmas 33, 36 and Proposition 37, together with the bound on
πk(E∗(N )), show that

πk((E>2(Mf ) \ E(Mf )) ∪ E+(Pf,2) ∪ E∗(Pf,4 ∪ Pf,5)) = O(1/kL(f)+2).

Now trees of Pf2
are of size L(f) + 1 and without essential variables, so any tree P ∈ Pf2

has
probability πk(P ) = O(1/kL(f)+1). Since |Pf2

| = O(1), this gives πk(Pf2
) = O(1/kL(f)+1). At

last, it is easily shown, along the same lines as in the proof of Lemma 32, that πk(E(Mf )) =
O(1/kL(f)+1). This ends the proof of the upper bound on πk(f).
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8 Conclusion

When considering the limiting ratio of a Boolean function, e.g., in the system of implication, it may
not be enough to know that the limiting ratio exists, and one may naturally wish for some numerical
information. For a fixed, (very) small number of Boolean variables, explicit computation of the
limiting ratios is feasible by writing, then solving, an algebraic system; see [14] for an overview of
the mathematical technology involved and [4] for the application to And/Or trees. However, the
fact that size of the system grows exponentially in k severely restricts hand-made evaluation. For
a moderate number of variables, very recent results on explicit solving of algebraic systems [28]
give us hope to extend the numerical computations a little bit farther. But exact computation will
eventually fail, even for a “reasonable” number of Boolean variables. Then we turn to asymptotic
analysis; this is where our result comes in.

We should also mention that Theorem 1 requires us to specify the Boolean function, and does
not hold uniformly over all Boolean functions; hence we are still unable to compute the average
complexity of a Boolean function chosen according to this probability distribution. Further work
is required before we can either verify or invalidate the Shannon effect for this non-uniform prob-
ability distribution.

Acknowledgments. We are grateful to Jakub Kozik for fruitful discussions about this problem.
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