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Abstract. We study the asymptotic behaviour of the number Nk,n of nodes of given degree
k in unlabeled random trees, when the tree size n and the node degree k both tend to infinity.
It is shown that Nk,n is asymptotically normal if ENk,n → ∞ and asymptotically Poisson
distributed if ENk,n → C > 0. If ENk,n → 0, then the distribution degenerates. The same
holds for rooted, unlabeled trees and forests.

1. Introduction

1.1. Statement of the Problem. Consider the sequence of discrete probability spaces
(Tn,P(Tn), Pn), where Tn denotes the set of unrooted, unlabeled trees with n nodes, P(A) the
power set of A, and Pn the uniform probability measure on Tn. We are interested in the numbers
Nk,n of nodes of degree k in a random tree in Tn.

It is well known that the number of nodes of fixed degree k (see [25]) is almost proportional to
the size of the tree (to be precise: as n → ∞ we have for k fixed ENk,n ∼ ckn for some ck > 0).
Moreover, it is known (see [8]) that Nk,n is asymptotically normally distributed.

A natural question is to ask for the behavior of the limiting distribution if we let k grow to
infinity as well. When looking at some random mapping parameters (see [2] and [9]), one could
expect that there is an order of magnitude for k where the asymptotic normality is no longer
valid, but replaced by a Poisson limit law. The limiting behaviour depends on the behaviour of
ENk,n. The asymptotic normal limit law still holds as long as ENk,n → ∞. Note that ENk,n is
decreasing in k. This determines the allowed growth rate for k to preserve the normal limit law.
If ENk,n → C > 0, then the limiting distribution is Poisson. In the case where ENk,n → 0 the
distribution clearly degenerates. A precise formulation of these three cases will be given in the
next section (Theorem 2) after presenting the definitions needed.

If we consider the set T (r)
n of unlabeled, rooted trees instead of Tn, then the behaviour of the

analogous random variable satisfies the same limit theorems. The same is true for forests.

1.2. Historical Remarks. Earliest references considering the node degree in random trees seem
to go back to Otter [22] where among other things trees with certain restrictions on their degree
sequence are counted. Later Riordan [24] enumerated trees with given degree sequence. Moon
considered nodes of degree one (see [19]) and the maximum degree (see [20]).

The maximum degree has been further studied by Carr, Goh, and Schmutz [4, 11, 10] for
various tree classes. The degree distribution for Pólya trees has been investigated by Robinson
and Schwenk [25, 26] and Bailey [1]. Simply generated trees have been studied in this respect
by Meir and Moon [14, 15, 16, 17, 18] and in a different context by Drmota [6] and Moon and
Prodinger [21]. The distribution of the number of nodes of large degree in simply generated trees
has been studied in [17]. Multivariate distributions for several tree classes can be found in [8]. For
a survey of results for random trees and connections to other random structures (e.g. mappings)
as well, see [12].
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1.3. Plan of the Paper. In the next section we state some auxiliary results, namely functional
equations for the generating functions associated to the various tree classes under consideration.
After this we are able to state the main result (Theorem 2).

The final section is devoted to the proof of Theorem 2. We first present an outline of the
proof which relies on an appropriate representation of the probability generating function of
ψk,n(u) = EuNk,n . This representation of ψk,n(u) which is given in Proposition 1 is used to
establish Theorem 2 by means of characteristic functions.

In order to be able to do this, this representation has to be analysed in detail. In fact, we need
expressions for the local behaviour of the associated generating functions near their singularities
which are uniform in k. This task is done in the second part of the last section. The section closes
with the proof of Proposition 1

Remark. We would like to mention that our method is applicable to simply generated trees and
forests as well, since the generating functions of these classes satisfy simpler functional equations
than those for unlabeled trees. In fact, the uniformity of the expansions near the singularity can
be easier established by means of Banach’s fixed point theorem. The corresponding results have
already been obtained by Meir and Moon [17] using different methods.

2. The Generating Functions Related to the Problem

2.1. Univariate Functions. Let tn and t
(r)
n denote the cardinalities of the sets Tn and T (r)

n ,
respectively. Pólya [23] already discussed the generating function

t(r)(x) =
∑

n≥1

t(r)
n xn

and showed that the radius of convergence ρ satisfies 0 < ρ < 1 and that x = ρ is the only
singularity on the circle of convergence |x| = ρ. Refinements are due to Otter [22] who showed
t(r)(ρ) = 1 and used the expansion

t(r)(x) = 1 − b(ρ− x)1/2 + c(ρ− x) + d(ρ− x)3/2 + · · · (1)

to deduce that

t(r)
n ∼ b

√
ρ

2
√
π
n−3/2ρ−n. (2)

He also calculated c = b2/3 ≈ 2.3961466, ρ ≈ 0.3383219, and b ≈ 2.6811266. Moreover, he related
the generating functions of rooted and unrooted trees:

t(x) =
∑

n≥1

tnx
n = t(r)(x) − 1

2
t(r)(x)2 +

1

2
t(r)(x2).

Hence t(x) has a similar expansion, namely

t(x) =
1 + t(r)(ρ2)

2
+
b2 − ρ(t(r))′(ρ2)

2
(ρ− x) + bc(ρ− x)3/2 + · · · ,

and it follows that

tn ∼ b3ρ3/2

4
√
π
n−5/2ρ−n.

Robinson and Schwenk [25] extended Pólya’s and Otter’s method to obtain ENk,n ∼ µkn
(n→ ∞, k fixed). The asymptotic behavior of µk is given by

µk ∼ Kρk

where K ≈ 6.380045, see [26].
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2.2. Multivariate Functions. It proves convenient to introduce the class of so-called planted
trees, where an additional edge without node is attached to the root of a rooted tree. This increases
the node degree of the root by one and simplifies the setting up of the functional equations for the

generating functions. Let t
(·)
nmk denote the number of trees with n vertices m of which have degree

k. The superscripts u, r, and f indicate unrooted, rooted trees, and forests (of unrooted trees),
respectively. No superscript stands for planted trees. Accordingly, define the generating functions

t
(ξ)
k (x, u) =

∑

n,m

t
(ξ)
nmkx

num, for ξ ∈ {u, r, f} and tk(x, u) =
∑

n,m

tnmkx
num.

It is well known from Pólya’s enumeration theory (cf. [25] and [8] as well) that these generating
functions satisfy the following functional equations:

Let Zk(x1, . . . , xk) denote cycle index of the symmetric group Sk of k elements. Then we have

tk(x, u) = x exp





∑

i≥1

tk(xi, ui)

i



+ x(u− 1)Zk−1(tk(x, u), tk(x2, u2), . . . , tk(xk−1, uk−1)), (3)

t
(r)
k (x, u) = x exp





∑

i≥1

tk(xi, ui)

i



+ x(u− 1)Zk(tk(x, u), tk(x2, u2), . . . , tk(xk, uk)), (4)

t
(u)
k (x, u) = t

(r)
k (x, u) − 1

2
tk(x, u)2 +

1

2
tk(x2, u2), (5)

t
(f)
k (x, u) = exp





∑

i≥1

t
(u)
k (xi, ui)

i



 . (6)

The distribution ofNk,n has been determined in [8] with the help of these multivariate functions.
They showed

Theorem 1. Let Nk,n denote the number of nodes in an unrooted or rooted unlabeled random tree
or forest of n nodes that have degree k. Set

F (x, u, y) = xey exp





∑

i≥2

tk(xi, ui)

i



+ x(u− 1)Zk−1(y, tk(x2, u2), . . . , tk(xk−1, uk−1)).

Furthermore, let

f1 = − Fu

Fx
(ρ, 1, 1),

f2 =

[

1

FyyFx

(

FuFxy

Fx
− Fxy

)2

− 1

Fx

(

F 2
uFxx

F 2
x

− 2FuFux

Fx
+ Fuu

)

]

(ρ, 1, 1),

and

µk = −f1
ρ
, σ2

k =

(

f1
ρ

)2

− f2
ρ
. (7)

Then, as n → ∞, Nk,n is asymptotically normally distributed with mean value ∼ µkn and
variance ∼ σ2

kn. Moreover for large k:

µk ∼ 2C

b2ρ
ρk, σ2

k ∼ 2C

b2ρ
ρk where C = exp

(

1

l

(

tk(ρl, 1)

ρl
− 1

))

≈ 7.7581604. (8)

Remark 1. The theorem in [8] is more general: Actually, choosing a finite number of fixed degrees
k1, . . . , kd gives convergence to a multivariate normal distribution. For brevity, we stated only the
univariate version.

Remark 2. Similar limit theorems hold for other tree classes as well. For instance, in [8] analogous
theorems for plane trees as well as labeled trees are given.
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Theorem 2. Let Nk,n denote the number of nodes of degree k in an unrooted or rooted, unlabeled
random tree or forest with n nodes, and let k = k(n) be a sequence depending on n. Then the
following implications are valid:

• If lim
n→∞

ENk,n = ∞, then the assertion of Theorem 1 is still true, i.e., Nk,n is asymptoti-

cally normally distributed with mean and variance given by (7).
• If there exists a subsequence ni such that lim

i→∞
ENni,k(ni) = β > 0, then Nk(ni),ni

has a

Poisson limiting distribution, precisely, for any ` ≥ 0

lim
i→∞

P
{

Nk(ni),ni
= `
}

= e−β β
`

`!

• If lim
n→∞

ENn,k = 0, then Nk,n degenerates, i.e., lim
n→∞

P {Nk,n = 0} = 1.

Remark. The second assertion has to be restricted to a subsequence ni, because k = k(n) cannot
be chosen integer valued such that ENk,n ∼ Cnρk is bounded away from zero and infinity and the
limit exists.

3. Proof of Theorem 2

3.1. Outline of the Proof. The proof of Theorem 2 relies on the asymptotic representation of
the probability generating function of Nk,n, given by EuNk,n, as a power of a function. Moreover,
we need this representation to be uniform in k. In fact, with the help of this proposition Theorem 2
is easily proved.

Proposition 1. Let ρ be as above and ρk(u) be the singularity of the function x 7→ tk(x, u) on its
circle of convergence, where we assume |u−1| < ε for some sufficiently small ε > 0. (This implies
ρk(1) = ρ, of course.) Then the probability generating function ψk,n(u) = EuNk,n has a uniform
asymptotic representation

ψk,n(u) = ρnρk(u)−n
(

1 +O
(

k−1/2
))

, as n→ ∞, (9)

uniformly for |u− 1| < ε and sufficiently large k. Furthermore, ρk(u) satisfies

ρk(u) = ρ− f1(k)(u− 1) + f2(k)(u− 1)2 +O
(

k2ρ3k|u− 1|3
)

(10)

with
f1(k) = Θ(ρk), f2(k) = o(ρk) as k → ∞. (11)

From (9) we have, as n→ ∞ and uniformly for sufficiently large k

ψk,n(u) ∼ ρnρk(u)−n =

(

1 +
ρ′k(1)

ρk(1)
(u− 1) +

ρ′′k(1)

ρk(1)
(u− 1)2 +O

(

ρ′′′k (1 + ϑ(u− 1))(u− 1)3
)

)−n

for some 0 < ϑ < 1. Thus setting u = eit and using (10) we obtain

ψk,n

(

eit
)

=

(

1 + it
ρ′k(1)

ρk(1)
− t2

2

(

ρ′k(1)

ρk(1)
− ρ′′k(1)

ρk(1)

)

+O
(

ρkt3
)

)−n

Now using (11), the characteristic function of

Nk,n + nρ′k(1)/ρk(1)
√

−nρ′k(1)/ρk(1)

is given by

exp

(

−it
√

−nρ
′
k(1)

ρk(1)

)

ψk,n

(

exp

(

it

/
√

−nρ
′
k(1)

ρk(1)

))

= exp

(

− t
2

2
+O

(

t3(nρk)−1/2
)

)

which tends to e−t2/2 if nρk → ∞. Thus we have asymptotic normality in this case.
If ENk,n → β (here k = k(ni)), then

ψk,ni

(

eit
)

=

(

1 +
ρ′k(1)

ρk(1)
(eit − 1) +O

(

kρ2kt2
)

)−ni

→ exp
(

β(eit − 1)
)
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which is the characteristic function of the Poisson distribution with parameter β, if β > 0. If β = 0
then we have obviously almost sure convergence to 0.

In order to prove Proposition 1 two main ingredients are needed. First, we need to know the
local behaviour of tk(x, u) near its singularity in terms of an asymptotic expansion which is uniform
in k. This will be provided in Lemma 3. tk(x, u) is determined by a functional equation which
is closely related to the easier one for Cayley trees. The difference is the perturbation, i.e., the
term involving the cycle index. Hence control over this term is needed. Lemmas 1 and 2 provide
estimates for the cycle index of the symmetric group which enables us to prove Lemma 3.

Second, we need estimates for the derivates of ρk(u) and related functions which can be obtained
by implicit differentiation of suitable functional equations (see Lemma 4).

After working out these two tasks, we will present the proof of Proposition 1 to complete the
proof of Theorem 2.

3.2. Actual Proof of Theorem 2. We start with a short analysis of the cycle index Zk. The
first estimate has been shown by Schwenk [26].

Lemma 1. If there exists an x with 0 < x < 1 such that Ai − 1 ≤ λxi for i = 1, . . . , k then

Zk(A1, . . . , Ak) ∼ exp

(

k
∑

i=1

Ai − 1

i

)

, as k → ∞.

Proof. Inspection of the proof of Theorem 3.1 in [26] immediately yields the result. �

Lemma 2. There exists an ε > 0 such that for |x − ρ| < ε, |u − 1| < ε, a = ρ + 2ε, and for all
complex y we have

∣

∣Zk

(

y, tk(x2, u2), . . . , tk(xk , uk)
)∣

∣ ≤ Zk

(

|y|, t(r)(a2), . . . , t(r)(ak)
)

. (12)

Let ρk(u) be as in (14). Then, with x, u, a as above with the restriction arg
(

x
ρk(u) − 1

)

6= 0, we

have

Zk(|tk(x, u)|, t(r)(a2), . . . , t(r)(ak)) = akZk

( |tk(x, u)|
a

,
t(r)(a2)

a2
, . . . ,

t(r)(ak)

ak

)

∼ ak exp

(

|tk(x, u)|
a

− 1 +

k
∑

i=2

1

i

(

t(r)(ai)

ai
− 1

)

)

, (13)

as k → ∞.

Proof. First observe that the exponents of u in tk(x, u) are always less than those of x, since
there cannot be any node of degree larger or equal the tree size. Hence |u| ≤ 1 + ε implies
|tk(x, u)| ≤ t(r)(|x|(1 + ε)). The fact ρ < 1 guarantees that a2, . . . , ak are inside the circle of
convergence of t(r)(x) provided that ε is sufficiently small. Consequently, if |u − 1| < ε and
|x− ρ| < ε, then the cycle index Zk can be estimated by (12).

To show (13) set

A1 =
|y|
a
, Ai =

t(r)(ai)

ai
for i = 1, . . . , k.

tk(x, u) satisfies the functional equation (3). Thus there exists a neighborhood of (ρ, 1) such that
tk(x, u) is uniformly bounded for (x, u) as stated above. Besides, (3) implies t(r)(0) = tk(0, u) = 0.
Thus the assumptions of Lemma 1 are fulfilled. Hence (13) follows from the fact that Zk is
homogeneous of degree k and from Lemma 1. �

Next we cite a proposition which yields a first expansion of the function tk(x, u) (compare with
[5] for special cases and [7, 13, 27] for a general formulation). Here and in the sequel the subscripts
u, x, and y will denote partial derivatives.
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Proposition 2. Suppose that F (x, u, y) is an analytic function around (x0, u0, y0) such that

F (x0, u0, y0) = y0,

Fy(x0, u0, y0) = 1,

Fyy(x0, u0, y0) 6= 0,

Fx(x0, u0, y0) 6= 0.

Then there exist a neighborhood U of (x0, u0), a neighborhood V of y0 and analytic functions
a(x, u), b(x, u), and c(x, u) = c(u) (i.e., c(x, u) is a function which is independent of x) which are
defined on U , such that the only solutions y ∈ V with y = F (x, u, y) ((x, u) ∈ U) are given by

y = a(x, u) ± b(x, u)

√

1 − x

c(u)

Furthermore a(x0, u0) = y0 and b(x0, u0) =
√

2c(u0)Fx(x0, u0, y0)/Fyy(x0, u0, y0).

Proof. See [7]. �

An immediate consequence (which was used in [8]) is that for fixed k, there exist analytic
functions ak(x, u), bk(x, u) and ρk(u) such that

tk(x, u) = ak(x, u) − bk(x, u)

√

1 − x

ρk(u)
(14)

This representation has two (technical) disadvantages. First, k is fixed and it is not obvious
what happens if k grows large. Second, ak and bk depend on x whereas ψk,n in Proposition 1 does
not (of course). The next lemma gives a representation for tk without those disadvantages.

Lemma 3. Let ρk as in (14). Then there exist analytic functions gk and hk and constants ε > 0
and k0 > 0 such that

tk(x, u) = gk(u) − hk(u)

√

1 − x

ρk(u)
+O

(∣

∣

∣

∣

1 − x

ρk(u)

∣

∣

∣

∣

)

(15)

for |u− 1| < ε, |x− ρk(u)| < ε, such that arg
(

x
ρk(u) − 1

)

6= 0, and uniformly for sufficiently large

k.

Remark. Note that Lemma 3 together with the results in [3] guarantees that the equation ENn,k =
µkn+O (1) holds uniformly in k.

Proof. Taylor expansion of ak and bk of (14) w.r.t. x at x = ρk(u) yields (15) with gk(u) =
ak(ρk(u), u), and hk(u) = bk(ρk(u), u).

What remains to be done is showing that the error term in (15) is uniform in k. Therefore let

F (x, u, y) = xeyQ(x, u) + x · (u− 1)Zk−1(y, tk(x2, u2), . . . , tk(xk−1, uk−1)) − y. (16)

where Q(x, u) = exp
(

∑

i≥2 tk(xi, ui)/i
)

.

We first show that y = gk(u) and x = ρk(u) are the unique solutions of the system of functional
equations

F (x, u, y) ≡ 0, (17)

Fy(x, u, y) ≡ 0. (18)

Observe that (17) coincides with (3) and hence by (14) y = gk(u) and x = ρk(u) are solutions of
(17).

Note that since 0 < ρ < 1 and (x, u) is close to (ρ, 1), (x2, u2) is inside the domain of convergence
of tk(x, u). Therefore Q(x, u) as well as tk(xi, ui) are analytic functions. Thus the cycle index on
the right-hand side of (16) is a polynomial in y with analytic functions as coefficients
tk is the solution of (17) in a neighborhood U of (ρ, 1). Set (x0, u0) = (ρk(u), u) for some u

sufficiently close to 1, in particular such that (x0, u0) ∈ U . By analyticity the other assumptions
of Proposition 2 are still satisfied. Then (17) has a unique solution, say ỹ, satisfying (15) (using
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the Taylor argument above). Since tk is the solution of (17) in U, it must coincide with ỹ. By the
implicit function theorem (18) characterizes the singular points (ρk(u), u) of tk(x, u). Therefore
(18) is fulfilled by (ρk(u), u, tk(ρk(u), u)). But by (15) this is equal to (ρk(u), u, gk(u)) and thus
the assertion above is proved.

Now we turn to the uniformity of the error term in (15). Expand F in a Taylor series at
(ρk(u), u, gk(u)). Using F (ρk(u), u, gk(u)) ≡ 0 and Fy(ρk(u), u, gk(u)) ≡ 0 we get (omitting the
argument u in ρk and gk)

F (x, u, y) = Fx(ρk, u, gk)(x− ρk) +
1

2
Fyy(ρk, u, gk)(y − gk)2 + Fxy(ρk, u, gk)(x − ρk)(y − gk)

+ Fxx(ρk , u, gk)(x − ρk)2 +O
(

|x− ρk|3 + |y − gk|3
)

.

Since F (x, u, tk(x, u)) ≡ 0, setting y = tk yields

(tk − gk)2 =
2ρkFx(ρk, u, gk)

Fyy(ρk, u, gk)

(

1 − x

ρk

)

+O
(

Fxy(ρk, u, gk)|x− ρk| · |tk − gk| + Fxx(ρk, u, gk)|x− ρk|2
)

. (19)

To proceed we need uniform estimates for ρk, Fx, Fyy , Fxy and Fxx.
Next fix ε2 > 0 and k. Then by the analyticity of ρk(u) there exists an ε1 > 0 such that

|ρk(u)−ρ| < ε2 for |u−1| < ε1. Now observe that t(r)(x) satisfies the functional equation t(r)(x) =

xet(r)(x)Q(x, 1) and has the only singularity ρ on the circle of convergence. The functional equation
for tk(x, u) is obtained from the one for t(r)(x) by adding the cycle index as perturbation. But by
Lemma 2 the cycle index decreases exponentially for |u − 1| < η := min(ε1, ε2) and |x − ρ| < η
(provided that ε2 was chosen sufficiently small). Hence |ρk(u) − ρ| < η for sufficiently large k.
Finally, combining the continuity of ak(x, u) with equations (17) and (18) shows |gk(u) − 1| < ε3
for sufficiently large k.

These estimates in conjunction with (12) and (13) can be applied to bound the partial derivatives
of F (x, u, y) which on their part can be calculated from (17) by implicit differentiation. By Lemma 2
we get uniform upper bounds for the expressions obtained in this way, in particular for Fx, Fxy,
and Fxx.

Moreover, for |u − 1| ≤ ε with sufficiently small ε > 0 we have uniformly for k large enough
|Fyy(ρk, u, gk)| ≥ η > 0. Thus we finally get from (19)

(tk − gk)2 = Θ(1)

(

1 − x

ρk

)

+O
(

|x− ρk| · |tk − gk| + |x− ρk|2
)

, (20)

uniformly in k. This implies tk − gk = O
(
√

1 − x
ρk

)

and, inserted into (20) again, yields (15)

after all. �

Lemma 4. The functions ρk, gk, and hk satisfy, as u→ 1,

ρk(u) = ρ− f1(k)(u− 1) + f2(k)(u− 1)2 +O
(

k2ρ3k|u− 1|3
)

(21)

gk(u) = 1 − f3(k)(u− 1) +O
(

kρ2k|u− 1|2
)

(22)

hk(u) = b
√
ρ+O

(

ρk|u− 1|
)

(23)

uniformly in k, where f1, f2, and f3 are functions of k. Moreover, the functions fi(k) satisfy the
asymptotic relations

f1(k) ∼
2C

b2
ρk, f2(k) ∼

C2

b4
kρ2k, f3(k) ∼

(

C +
2C

b2

)

ρk,

where b and C are defined in (1) and (8), respectively.

Proof. Let F (x, u, y) as in (16). Note that F (ρk(u), u, gk(u)) ≡ 0. Hence implicit differentiation
yields ρ′k, ρ

′′
k , and ρ′′′k as well as g′k and g′′k in terms of partial derivatives of F up to order 3.
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Now from [26, Corollary 4.1] and its generalizations in [8, pp.248] we know that at (x, u, y) =
(ρ, 1, 1) the following relations hold:

Fy = Fyy = Fyyy = 1, Fx = Fxy = Fxyy =
b2

2
, Fu ∼ Fuy ∼ Fuyy ∼ Cρk ,

Fux ∼ Fuxy ∼ Ckρk, Fuu = o
(

ρ2k
)

, Fuuy = o
(

ρ2k
)

Fxx and Fxxx are independent of k. Similarly, it can be shown that Fuxx = O
(

k2ρk
)

, Fuux =

o
(

kρ2k
)

, and Fuuu = o
(

ρ3k
)

. This implies

ρ′k(1) ∼ −2C

b2
ρk, ρ′′k(1) ∼ 2C2

b4
kρ2k, g′k(1) ∼ −

(

C +
2C

b2

)

ρk

and ρ′′′k = O
(

k2ρ3k
)

, g′′k = O
(

kρ2k
)

. Thus (21) and (22) are proved.

By Proposition 2 we have hk(u) =
√

2ρk(u)Fx(ρk(u), u, gk(u))/Fyy(ρk(u), u, gk(u)). Thus, in-
serting the expansions for ρk and gk finally proves (23). �

Proof of Proposition 1. To prove this we can follow closely [2]. We use (15) and Cauchy’s
formula and obtain

ψk,n(u) =
1

t
(r)
n

[xn]tk(x, u) =
1

2πit
(r)
n

∫

Γ

tk(x, u)
dx

xn+1
,

with the integration contour Γ = Γ1 ∪ Γ2 with

Γ1 =
{

x = ρk(u)
(

1 +
s

n

)

: s ∈ γ′
}

,

Γ2 =

{

x = Rei(ϑ−arg(u)) : R = |ρk(u)|
∣

∣

∣

∣

1 +
log2 n+ i

n

∣

∣

∣

∣

,

arg

(

1 +
log2 n+ i

n

)

≤ |ϑ| ≤ π

}

.

where γ′ = {s : |s| = 1,<s ≤ 0} ∪ {s : 0 < <s < log2 n,=s = ±1} is a truncated Hankel contour
γ = {s : |s| = 1,<s ≤ 0} ∪ {s : 0 < <s <∞,=s = ±1}.

Note that tk is uniformly bounded on Γ2 by virtue of |tk(x, u)| ≤ t(r)(|x|). Moreover, we have

|x|−n = O
(

ρk(u)−ne− log2 n
)

for x ∈ Γ2. Hence we get

1

2πit
(r)
n

∫

Γ2

tk(x, u)
dx

xn+1
= O

(

ρnρk(u)−nn3/2e− log2 n
)

and therefore this part is of no importance.
On Γ1 we have (substituting x = ρk(u)(1 + s/n) and using Lemma 3)

1

2πi

∫

Γ1

tk(x, u) =
1

2πi

∫

Γ1

[

−hk(u)

√

1 − x

ρk(u)
+O

(∣

∣

∣

∣

1 − x

ρk(u)

∣

∣

∣

∣

)]

dx

xn+1

=
ρk(u)−n

n

1

2πi

∫

γ′

−hk(u)

√

− s

n
e−s

(

1 +O

(
√

|s|
n

))

ds

=
hk(u)ρk(u)−n

2
√
πn3/2

(

1 +O

(

1√
k

))

(24)

where the last equation follows from k ≤ n and

1

2πi

∫

γ′

e−s
√
−s
(

1 +O
(

|s|1/2k−1/2
))

ds = − 1

2
√
π

+O
(

k−1/2
)

.

Now divide (24) by t
(r)
n , then an application of (2) and Lemma 4 completes the proof after all. �

In order to complete the proof of Theorem 2 we have to consider the other tree classes and
forests as well. But since the proof totally relies on the structure of the singularity (Proposition 2)
and the uniform estimates in Lemma 3, the other cases can easily be treated using the relations
(4)–(6).
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