
HAYMAN ADMISSIBLE FUNCTIONS IN SEVERAL VARIABLES

BERNHARD GITTENBERGER∗ AND JOHANNES MANDLBURGER∗

Abstract. An alternative generalisation of Hayman’s admissible functions ([17]) to functions
in several variables is developed and a multivariate asymptotic expansion for the coefficients is
proved. In contrast to existing generalisations of Hayman admissibility ([7]), most of the closure
properties which are satisfied by Hayman’s admissible functions can be shown to hold for this
class of functions as well.

1. Introduction

1.1. General Remarks and History. Hayman [17] defined a class of analytic functions
∑

ynxn

for which their coefficients yn can be computed asymptotically by applying the saddle point method
in a rather uniform fashion. Moreover those functions satisfy nice algebraic closure properties which
makes checking a function for admissibility amenable to a computer.

Many extensions of this concept can be found in the literature. E.g., Harris and Schoenfeld
[16] introduced an admissibility imposing much stronger technical requirements on the functions.
The consequence is that they obtain a full asymptotic expansion for the coefficients and not only
the main term. The disadvantage is the loss of the closure properties. Moreover, it can be shown
that if y(x) is H-admissible, then ey(x) is HS-admissible and the error term is bounded. There are
numerous applications of H-admissible or HS-admissible functions in various fields, see for instance
[1, 2, 3, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

Roughly speaking, the coefficients of an H-admissible function satisfy a normal limit law (cf.
Theorem 1 in the next section). This has been generalised by Mutafchiev [25] to different limit
laws.

Other investigations of limit laws for coefficients of power series can be found in [4, 5, 13, 11, 12].

1.2. Generalisation to Functions in Several Variables. Of course, it is a natural problem
to generalise Hayman’s concept to the multivariate case. Two definitions have been presented
by Bender and Richmond [6, 7] which we do not state in this paper due to their complexity.
The advantage of BR-admissibility and the even more general BR-superadmissibility is a wide
applicability. There is an impressing list of examples in [7]. However, one loses some of the closure
properties of the univariate case. Moreover, the closure properties fulfilled by BR-admissible and
BR-superadmissible functions do not seem to be well suitable for an automatic treatment by a
computer (in contrary to Hayman’s closure properties, see e.g. [34] for H-admissibility or [10] for
a generalisation).

The intention of this paper is to define an alternative generalisation of Hayman’s admissibil-
ity which preserves (most of) the closure properties of the univariate case. The importance of
the closure properties is that they enable us to construct new classes of H-admissible functions
by applying algebraic rules on a basic class of functions known to be H-admissible. Conversely,
it is possible to try to decompose a given function into H-admissible atoms and use such a de-
composition for an admissibility check which can be done automatically by a computer. A first
investigation in this direction was done recently in [10] for bivariate functions whose coefficients
are related to combinatorial random variables. The univariate case was treated in [34].
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In order to achieve our goal we will stay as close as possible to Hayman’s definition. This
allows us to prove multivariate generalisations of most of his technical auxiliary results for the
multivariate case. Then we can use essentially Hayman’s proof to show the closure properties.
We will require some technical side conditions which Hayman did not need. However, verifying
these needs asymptotic evaluation of functions which can be done automatically using the tools
developped by Salvy et al. (see [33, 35, 36]).

1.3. Comparison with BR-admissibility.

Advantages. The advantage of H-admissibility is that the closure properties are more similar to
those of univariate H-admissibility which are more amenable to computer algebra systems. Indeed,
for H-admissible functions as well as a special class of multivariate function admissibility check
have successfully been implemented in Maple (see [10, 34] and remarks above).

Drawbacks. H-admissibility seems to be a narrower concept than BR-admissibility. For an impor-
tant closure property, the product, we have to be more restrictive than Bender and Richmond
[7]. And the only (nonobvious) combinatorial example known not to be BR-admissible which was
presented by Bender and Richmond themselves is neither H-admissible.

Other remarks. If we consider functions in only one variable, then our concept of multivariate
H-admissible functions coincides with Hayman’s. This is not true for BR-admissible functions:
Any (univariate) H-admissible function is BR-admissible as well, but the converse is not true.

1.4. Plan of the paper. In the next section we recall Hayman’s admissibility. Then we present
the definition and some basic properties of H-admissible functions in several variables. Afterwards,
asymptotic properties for H-admissible functions and their derivatives are shown. In Section 5, we
characterise the polynomials P (z1, . . . , zd) in d variables with real coefficients such that eP is an H-
admissible function. This provides a basic class of H-admissible functions as a starting point. The
closure properties are shown in Section 6. The final section lists some combinatorial applications.

2. Univariate Admissible Functions

Our starting point is Hayman’s [17] definition of functions whose coefficients can be computed
by application of the saddle point method in a rather uniform fashion.

Definition 1. A function
y(x) =

∑

n≥0

ynxn (1)

is called admissible in the sense of Hayman (H-admissible) if it is analytic in |x| < R where
0 < R ≤ ∞ and positive for R0 < x < R with some R0 < R and satisfies the following conditions:

(1) There exists a function δ(z) : (R0, R) → (0, π) such that for R0 < r < R we have

y
(

reiθ
)

∼ y(r) exp

(

iθa(r) − θ2

2
b(r)

)

, as r → R,

uniformly for |θ| ≤ δ(r), where

a(r) = r
y′(r)

y(r)

and

b(r) = ra′(r) = r
y′(r)

y(r)
+ r2 y′′(r)

y(r)
− r2

(

y′(r)

y(r)

)2

.

(2) For R0 < r < R we have

y
(

reiθ
)

= o

(

y(r)
√

b(r)

)

, as r → R,

uniformly for δ(r) ≤ |θ| ≤ π.
(3) b(r) → ∞ as r → R.
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For H-admissible functions Hayman [17] proved the following basic result:

Theorem 1. Let y(x) be a function defined in (1) which is H-admissible. Then as r → R we have

yn =
y(r)

rn
√

2πb(r)

(

exp

(

− (a(r) − n)2

2b(r)

)

+ o(1)

)

, as n → ∞,

uniformly in n.

Corollary 1. The function a(r) is positive and increasing for sufficiently large r, and

b(r) = o(a(r)2), as r → R.

If we choose r = ρn to be the (uniquely determined) solution of a(ρn) = n, then we get a
simpler estimate:

Corollary 2. Let y(x) be an H-admissible function. Then we have as n → ∞

yn ∼ y(ρn)

ρn
n

√

2πb(ρn)
,

where ρn is uniquely defined for sufficiently large n.

The proof of the theorem is an application of the saddle point method.
By means of several technical lemmas, which we do not state here, Hayman [17] proved H-

admissibility for some basic function classes. One of them is given in the following theorem.

Theorem 2. Suppose that p(x) is a polynomial with real coefficients and that all but finitely many
coefficients in the power series expansion of ep(x) are positive, then ep(x) is H-admissible in the
whole complex plane.

Furthermore he showed some simple closure properties which are satisfied by H-admissible
functions:

Theorem 3. (1) If y(x) is H-admissible, then ey(x) is H-admissible, too.
(2) If y1(x), y2(x) are H-admissible, then so is y1(x)y2(x).
(3) If y(x) is H-admissible in |x| < R and p(x) is a polynomial with real coefficients and

p(R) > 0 if R < ∞ and positive leading coefficient if R = ∞, then y(x)p(x) is H-admissible
in |x| < R.

(4) Let y(x) be H-admissible in |x| < R and f(x) an analytic function in this region. Assume
that f(x) is real if x is real and that there exists a δ > 0 such that

max
|x|=r

|f(x)| = O
(

y(r)1−δ
)

, as r → R.

Then y(x) + f(x) is H-admissible in |x| < R.
(5) If y(x) is H-admissible in |x| < R and p(x) is a polynomial with real coefficients, then

y(x) + p(x) is H-admissible in |x| < R. If p(x) has a positive leading coefficient, then
p(y(x)) is also H-admissible.

3. Multivariate Admissible Functions: Definition and Behaviour of Coefficients

In this section we will extend Hayman’s results to functions in several variables. In particular,
we will consider functions which are admissible in some range R ⊂ Rd. We will for technical
simplicity assume that R is a simply connected set which contains the origin and has (∞, . . . ,∞)
as a boundary point.

3.1. Notations used throughout the paper. In the sequel we will use bold letters x =
(x1, . . . , xd) to denote vector valued variables (d-dimensional row vectors) and the notation
xn = xn1

1 · · ·xnd

d . Moreover, inequalities x < y between vectors are to be understood compo-
nentwise, i.e., x < y ⇐⇒ xi < yi for i = 1, . . . , d. r → ∞ means that all components of r tend to
infinity in such a way that r ∈ R. xt denotes the transpose of a vector or matrix x. Subscripts xj ,
etc. denote partial derivatives w.r.t. xj , etc.
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For a function y(x), x ∈ Cd, a(x) = (aj(x))j=1,...,d denotes the vector of the logarithmic
(partial) derivatives of y(x), i.e.,

aj(x) =
xjyxj

(x)

y(x)
,

and B(x) = (Bjk(x))j,k=1,...,d denotes the matrix of the second logarithmic (partial) derivatives
of y(x), i.e.,

Bjk(x) =
xjxkyxjxk

(x) + δjkxjyxj
(x)

y(x)
− xjxkyxj

(x)yxk
(x)

y(x)2
,

where δjk denotes Kronecker’s δ defined by

δjk =

{

1 if j = k
0 if j 6= k

3.2. Definition and basic results. Like in the univariate case where we required asymptotic
relations depending on whether θ ∈ ∆(r) = (−δ(r), δ(r))d we will need a suitable domain ∆(r) for
distinguishing the behaviour of the function locally around the R (that means all arguments close
to a real number) from the behaviour far away from R. The geometry of multivariate functions

Figure 1. Typical shape of |y(reiϕ, seiθ)|

is much more complicated than that of univariate ones. For instance, for d = 2 dimensions the
typical shape of |y(reiϕ, seiθ)| for admissible functions is depicted in Figure 1. As the figure shows,
choosing straightforwardly ∆(r) = (−δ(r), δ(r))d will in general lead to technical difficulties, for
instance if maxθ∈∂∆(r)

∣

∣y
(

reiθ
)∣

∣ has to be estimated. So in order to avoid this, we have to adapt
∆(r) to the geometry of the function. This leads to the following definition.

Definition 2. We will call a function

y(x) =
∑

n1,...,nd≥0

yn1···nd
xn1

1 · · ·xnd

d (2)

with real coefficients yn1···nd
H-admissible in R if y(x) is entire and positive for x ∈ R and xj ≥ R0

for all j = 1, . . . , d (for some fixed R0 > 0) and has the following properties:

(I) B(r) is positive definite and for an orthonormal basis v1(r), . . . ,vd(r) of eigenvectors of
B(r), there exists a function δ : Rd → [−π, π]d such that

y
(

reiθ
)

∼ y(r) exp

(

iθa(r)t − θB(r)θt

2

)

, as r → ∞, (3)

uniformly for θ ∈ ∆(r) := {∑d
j=1 µjvj(r) such that |µj | ≤ δj(r), for j = 1, . . . , d}.

That means the asymptotic formula holds uniformly for θ inside a cuboid spanned by the
eigenvectors v1, . . . ,vd of B, the size of which is determined by δ.
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(II) The asymptotic relation

y
(

reiθ
)

= o

(

y(r)
√

det B(r)

)

, as r → ∞, (4)

holds uniformly for θ /∈ ∆(r).
(III) The eigenvalues λ1(r), . . . , λd(r) of B(r) satisfy

λi(r) → ∞, as r → ∞, for all i = 1, . . . , d.

(IV) We have Bii(r) = o
(

ai(r)
2
)

, as r → ∞.

(V) For r sufficiently large and θ ∈ [−π, π]d \ {0} we have

|y(reiθ)| < y(r).

Remark 1. Condition (IV) of the definition is a multivariate analog of Corollary 1. We want to
mention that without requiring condition (IV), one can prove a weaker analog of Corollary 1,
namely ‖B(r)‖ = o(‖a

(

r)‖2
)

, as r → ∞, where ‖ · ‖ denotes the spectral norm on the left-hand
side and the Euclidean norm on the right-hand side. It turns out that this condition is too weak
for our purposes.

Remark 2. Note that for d = 1 (V) follows from the other conditions. We conjecture that this is true
for d > 1, too. However, we are only able to show that in the domains ‖θ‖ = o

(√
λmin/‖a(r)‖2

)

and

1/‖θ‖ = O
(√

λmin

)

the inequality (V) is certainly true1. But since
√

λmin/‖a(r)‖2 = o
(

1/
√

λmin

)

there is a gap which we are not able to close.

Note that since B is a positive definite and symmetric matrix, there exists an orthogonal matrix
A and a regular diagonal matrix D such that

B = AtDA. (5)

We will refer to these matrices several times throughout the paper.

Lemma 1. Let y(x) be a function as defined in (2) which is H-admissible. Then, as r → ∞,
δj(r)

2λj(r) → ∞ for j = 1, . . . , d.

Proof. If we take θ = δj(r)vj (r) then we are at a point where (3) and (4) are both valid. Taking
absolute values in (3) we get

∣

∣y
(

reiθ
)∣

∣ ∼ y(r) exp

(

−δj(r)
2λj(r)

2

)

.

On the other hand (4) gives

y
(

reiθ
)

= o

(

y(r)
√

det B(r)

)

.

Since det B(r) =
∏d

j=1 λj(r) → ∞ we must have δj(r)
2λj(r) → ∞. �

Remark 3. The above lemma shows that δ cannot be too small. On the other hand, since the
third order terms in (I) vanish asymptotically, ‖δ‖ must tend to zero.

Theorem 4. Let y(x) be a function as defined in (2) which is H-admissible. Then as r → ∞ we
have

yn =
y(r)

rn(2π)d/2
√

det B(r)

(

exp

(

−1

2
(a(r) − n)B(r)−1(a(r) − n)t

)

+ o(1)

)

, (6)

uniformly for all n ∈ Zd.

1
λmin denotes the smallest eigenvalue of B(r)
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Proof. Let E =
{

∑

j µjvj | |µj | ≤ δj

}

. Then we have ynr
n = I1 + I2 with

I1 =
1

(2π)d

∫

· · ·
∫

E

y
(

reiθ
)

einθt dθ1 · · · dθd

and

I2 =
1

(2π)d

∫

· · ·
∫

[−π,π]d\E

y
(

reiθ
)

einθt dθ1 · · · dθd = o

(

y(r)
√

det B(r)

)

as can be easily seen from the definition of H-admissibility (cf. (4)).

By (3) and the substitution z = θ
√

(det B(r))/2 we have

I1 ∼ y(r)

(2π)d

∫

· · ·
∫

E

exp

(

i(a(r) − n)θt − 1

2
θB(r)θt

)

dθ1 · · · dθd

=
y(r)

(π
√

2 · det B(r))d

∫

· · ·
∫

√
det B

2 ·E

exp

(

iczt − zB(r)zt

det B(r)

)

dz1 · · · dzd,

where c = (a − n)
√

2/ detB. Let A and D be the matrices of (5) Substituting z = wA and ex-
tending the integration domain to infinity (which causes an exponentially small error by Lemma 1)
gives

I1 ∼ y(r)

(π
√

2 · det B(r))d

∞
∫

−∞

· · ·
∞
∫

−∞

exp



icAtwt − 1

det B(r)

d
∑

j=1

λjw
2
j



 dw1 · · · dwd,

where λj are of course the diagonal elements of D. Now observe that

∞
∫

−∞

exp

(

−
λjw

2
j

det B(r)
+ i(cAt)jwj

)

dwj =

√

π det B(r)
√

λj

exp

(

(cAt)2j det B(r)

4λj

)

and λ1 · · ·λd = det B and thus

I1 ∼ y(r)

(2π)d/2
√

det B(r)
exp

(

−1

4

d
∑

k=1

(det B(r)) · (cAt)2k
λk

)

.

With

(cAt)2k =
2

det B(r)





d
∑

j=1

(aj(r) − nj)Akj





2

we get

1

4

d
∑

k=1

(det B(r)) · (cAt)2k
λk

=
1

2

d
∑

k=1





1√
λk

d
∑

j=1

(aj(r) − nj)Akj





2

=
(a(r) − n)AtD−1A(a(r) − n)t

2
=

(a(r) − n)B(r)−1(a(r) − n)t

2

as desired. �

If we choose r = ρn to be the solution of a(ρn) = n, then we get a simpler estimate:

Corollary 3. Let y(x) be an H-admissible function. If n1, . . . , nd → ∞ in such a way that all
components of the solution ρn of a(ρn) = n likewise tend to infinity, then we have

yn ∼ y(ρn)

ρn
n

√

(2π)d det B(ρn)
,

where ρn is uniquely defined for sufficiently large n, i.e., minj nj > N0 for some N0 > 0.
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Remark 4. Note that in contrary to the univariate case, the equation a(ρn) = n has not necessarily
a solution. There may occur dependencies between the variables which force all coefficients to be
zero if the index n lies outside a cone. Thus for those n the expression on the right-hand side of
(6) must, however, tend to zero and a(ρn) = n cannot have a solution.

Even if there is a solution, some components may remain bounded.

4. Properties of H-admissible functions and their derivatives

Lemma 2. H-admissible functions y(x) satisfy

a
(

reh
)

∼ a(r), as r → ∞,

uniformly for |hj | = O (1/aj(r)).

Proof. Without loss of generality assume that d = 2. Since B is positive definite, we have

B11B22 − B2
12 ≥ 0 and thus |B12| ≤

√

B11B22 = o(a1(r)a2(r))

by condition (IV) of the definition. Note that for positive definite matrices, every 2 × 2-
subdeterminant is nonnegative. Therefore considering only d = 2 is really no restriction.

Now define ϕ1(x1, x2) = a1 (ex1 , ex2) and ϕ2(x1, x2) = a2 (ex1 , ex2). Obviously ∂
∂x1

ϕ1(x) =

B11(x) = o(a1(x)2) and ∂
∂x2

ϕ1(x) = B12(x) = o(a1(x)a2(x)). Analogously, we have ∂
∂x1

ϕ2(x) =

o(a1(x)a2(x)) and ∂
∂x1

ϕ1(x) = o(a2(x)2). Let |x′
1−x′′

1 | = O (1/a1(x
′)) and |x′

2−x′′
2 | = O (1/a2(x

′)).

Then

1

ϕ2(x′
1, x

′
2)

− 1

ϕ2(x′
1, x

′′
2 )

=

x′′

2
∫

x′

2

∂
∂x2

ϕ2(x
′
1, x)

ϕ2(x′
1, x)2

dx = o (x′
2 − x′′

2 ) = o

(

1

ϕ2(x′
1, x

′
2)

)

, as x′
1, x

′
2 → ∞,

which implies ϕ2(x
′
1, x

′
2) ∼ ϕ2(x

′
1, x

′′
2 ) or, equivalently,

a2(x
′
1, x

′
2) ∼ a2(x

′
1, x

′′
2 ) as x′

1, x
′
2 → ∞. (7)

Now assume x′′
2 > x′

2 and note that by Corollary 3 almost all coefficients yn of y(x) for which
minj nj is sufficiently large are nonnegative. Hence a1(x) and a2(x) must be monotone in both
variables for sufficiently large x1, x2. Therefore we get

1

ϕ1(x′)
− 1

ϕ1(x′′)
=

x′′

2
∫

x′

2

∂
∂x2

ϕ1(x
′
1, x)

ϕ1(x′
1, x)2

dx +

x′′

1
∫

x′

1

∂
∂x1

ϕ1(x, x′′
2 )

ϕ1(x, x′′
2 )2

dx

= o

(

a2(x
′
1, x

′′
2 )

a1(x′
1, x

′
2)a2(x′

1, x
′
2)

)

+ o (x′
1 − x′′

1 )

Using (7) we finally obtain

1

ϕ1(x′)
− 1

ϕ1(x′′)
= o

(

1

a1(x′
1, x

′
2)

)

= o

(

1

ϕ1(x′)

)

which implies a1(x
′) ∼ a1(x

′′). The asymptotic relation for a2 is proved analogously and completes
the proof. �

Lemma 3. If y(x) is an H-admissible function then for nj > 0, j = 1, . . . , d, we have

y(r)

rn
→ ∞ as r → ∞.

Moreover, for any given ε > 0 we have

‖a(r)‖ = O (y(r)ε) and ‖B(r)‖ = O (y(r)ε)

as r → ∞.
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Proof. The first relation is a trivial consequence of Theorem 4. So let us turn to the other equations.
Assume that there exists R̄ such that for all r ≥ R̄ we have

‖a(r)‖max ≥ y(r)ε.

This implies that for arbitrary h ∈ Rd with only nonzero components, we have

∑

j

aj(R̄ + th) =
∑

j

yj(R̄ + th)

y(R̄ + th)
(R̄j + thj) ≥ y(R̄ + th)ε · K

for t ≥ 0 and hence

∑

j

yj(R̄ + th)hj

(

R̄j

hj
+ t
)

y(R̄ + th)1+ε
≥ K.

Let k such that

max
j

R̄j + thj

hj
=

R̄k

hk
+ t.

Then
∑

j

yj(R̄ + th)hj

y(R̄ + th)1+ε
≥ K

R̄k

hk
+ t

.

Set g(t) = y(R̄ + th). Therefore we have

g′(t)

g(t)1+ε
≥ K

R̄k

hk
+ t

and thus
ρ
∫

0

g′(t)

g(t)1+ε
dt ≥ K

(

log

(

R̄k

hk
+ ρ

)

− log
R̄k

hk

)

= K log
R̄k + ρhk

R̄k
(8)

Now let ρ → ∞ and note that (8) is unbounded. On the other hand, the above integral evaluates
to

ρ
∫

0

g′(t)

g(t)1+ε
dt =

y(R̄)−ε − y(R̄ + ρh)−ε

ε
(9)

which is bounded for ρ → ∞ and we arrive at a contradiction. �

Corollary 4. For any ε > 0 we have, as r → ∞, det B(r) = O (y(r)ε).

Proof. Since ‖B‖ is the largest eigenvalue of B, we have det B ≤ ‖B‖d. Hence the assertion
immediately follows from Lemma 3. �

Lemma 4. Let k be fixed. Then an H-admissible function y(x) satisfies

y

(

r1 +
kr1

a1(r)
, . . . , rd +

krd

ad(r)

)

∼ ekdy(r1, . . . , rd)

for r1, . . . , rd → ∞ (r → ∞)

Proof. For given h1, . . . , hd we have for some 0 < θ < 1

log y(r1 + h1, . . . , rd + hd) − log y(r1, . . . , rd) =

d
∑

j=1

yzj
(r1 + θh1, . . . , rd + θhd)hj

y(r1 + θh1, . . . , rd + θhd)

=

d
∑

j=1

hj

rj + θhj
aj(r1 + θh1, . . . , rd + θhd)

=
d
∑

j=1

kaj(r1 + θh1, . . . , rd + θhd)
(

1 + O
(

1
aj(r)

))

aj(r1 + θh1, . . . , rd + θhd)
∼ kd



HAYMAN ADMISSIBLE FUNCTIONS IN SEVERAL VARIABLES 9

where we substituted hj = krj/aj(r) and rj/(rj + θhj) = 1 + O (1/aj(r)) in the penultimate step
and used Lemma 2 in the last step. �

The next theorem shows that the coefficients of H-admissible functions satisfy a multivariate
normal limit law.

Theorem 5. Let y(x) =
∑

n≥0 ynx
n be an H-admissible function. Moreover, let ñ = nAt, where

A is the orthogonal matrix defined in (5), and let ã(r) = (ã1(r), . . . , ãd(r)) = a ·At be the vector of
the logarithmic derivatives of y(x) w.r.t. the orthonormal eigenbasis of B(r) given in the definition.
Then we have, as r → ∞,

∑

n s. t. ∀j: ñj≤ãj(r)+ωj

√
λj (r)

ynr
n ∼ y(r)

(2π)d/2

ωd
∫

−∞

· · ·
ω1
∫

−∞

exp



−1

2

d
∑

j=1

t2j



 dt1 · · · dtd

Proof. Define Nj = bãj(r)c, and

N j =
⌊

ãj(r) + ωj

√

2 det B(r)
⌋

, N j =
⌊

ãj(r) + ωj

√

2 detB(r)
⌋

for some ωj < 0 < ωj . Let furthermore Nj + 2 ≤ nj ≤ N j and D be the diagonal matrix of (5).
Then

n1+1
∫

n1

· · ·
nd+1
∫

nd

exp

(

− (x − ã)D(r)−1(x − ã)t

2

)

dx1 · · · dxd

≤ exp

(

− (n − ã)D(r)−1(n − ã)t

2

)

≤
n
∫

n−1

exp

(

− (x − ã)D(r)−1(x − ã)t

2

)

dx1 · · · dxd

This implies

N1+1
∫

N1+2

· · ·
Nd+1
∫

Nd+2

exp

(

− (x − ã)D(r)−1(x − ã)t

2

)

dx1 · · · dxd

≤
N1+1
∑

n1=N1+2

· · ·
Nd+1
∑

nd=Nd+2

exp

(

− (n− ã)D(r)−1(n − ã)t

2

)

≤
N1
∫

N1+1

· · ·
Nd
∫

Nd+1

exp

(

− (x− ã)D(r)−1(x − ã)t

2

)

dx1 · · · dxd

By substituting xj = ãj(r) + tj
√

λj(r), dx =
√

det B(r) dt, the integral becomes

√

det B(r)

t1
∫

t1

· · ·
td
∫

t
d

exp



−1

2

d
∑

j=1

t2j



 dt1 · · · dtd

with tj → 0 and tj → ωj .
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Now set Ñ :=
{

n ∈ Nd such that for all j we have N j ≤ ñj ≤ Nj

}

. Then an application of
Theorem 4 gives

∑

n∈Ñ

ynr
n ∼ y(r)

(2π)d/2
√

det B

∑

n∈Ñ

exp

(

− (n− a)B−1(n − a)t

2

)

=
y(r)

(2π)d/2
√

det B

N
∑

ñ=N

exp

(

− (ñ − ã)D−1(ñ− ã)t

2

)

∼ 1

(2π)d/2

ω1
∫

ω1

· · ·
ωd
∫

ωd

exp



−1

2

d
∑

j=1

t2j



 dt1 · · · dtd

where in the last step the considerations above were applied. On the other hand the sum
∑

∃j:nj<Nj

ynr
n < εy(r) if all ωj are small enough. �

Theorem 6. Let k ∈ Rd be fixed. Then, as r → ∞,

∂k1

∂xk1
1

· · · ∂kd

∂xkd

d

y(r) ∼ y(r)

(

a1(r)

r1

)k1

· · ·
(

ad(r)

rd

)kd

Proof. Set R̄j = rj

(

1 + 1
aj(r)

)

. Then, if |zj | < R̄j for all j, we have by Lemma 4

|y(z)| =

∣

∣

∣

∣

∣

∑

n

ynz
n

∣

∣

∣

∣

∣

≤
∑

ynR̄
n = y(R̄) = O (y(r)) .

Let h = R̄ − r =
(

r1

a1(r) , . . . ,
rd

ad(r)

)

. Then we have

y(z) =
∑ 1

k1! · · · kd!

∂k1

∂xk1
1

· · · ∂kd

∂xkd

d

y(r)(z − r)k

and hence by Cauchy’s inequality we get
∣

∣

∣

∣

∣

∂k1

∂xk1
1

· · · ∂kd

∂xkd

d

y(r)

∣

∣

∣

∣

∣

≤ k1! · · · kd!

hk1
1 · · ·hkd

d

y(R̄)

O

(

y(r)

(

a1(r)

r1

)k1

· · ·
(

ad(r)

rd

)kd

)

Now define (n)k := n(n − 1) · · · (n − k + 1) and observe that

rk1
1 · · · rkd

d

∂k1

∂xk1
1

· · · ∂kd

∂xkd

d

y(r) =
∑

n

(n1)k1 · · · (nd)kd
ynr

n

=
∑

1
+
∑

2

with
∑

1
=

∑

n such that ∀j: |aj(r)−nj |≤ω
√

Bjj (r)

(n1)k1 · · · (nd)kd
ynr

n

and
∑

2 =
∑−∑1. In the range of summation we have (n1)k1 · · · (nd)kd

∼ a(r)k. Let ñ as in
Theorem 5 and set sj = nj − aj and s̃j = ñj − ãj . Since A is orthogonal, we have

‖s̃‖2 = ‖s‖2 = ω2
d
∑

j=1

Bjj
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Hence the range of summation covers the set {n : ∀j : |ãj(r) − ñj | ≤ ω
√

λj(r)}. Therefore we

obtain by means of Theorem 5
∑

1 ∼ C(ω)y(r)a(r)k with

1

πd/2

ω
∫

−ω

· · ·
ω
∫

−ω

exp



−1

2

d
∑

j=1

t2j



 dt1 · · · dtd < C(ω) < 1.

On the other hand define
∑′

:=
∑

n:∃j:|aj−nj |>ω
√

Bjj (r)

.

Then we have
∣

∣

∣

∑

2

∣

∣

∣ ≤
∑′

(n1)k1 · · · (nd)kd
ynr

n ≤
∑′

nkynr
n

≤
(

∑′
n2kynr

n
)1/2 (∑′

ynr
n
)1/2

= O









r2k ∂2k1

∂x2k1
1

· · · ∂2kd

∂x2kd

d

y(r)

∫

· · ·
∫

E

exp



−1

2

d
∑

j=1

t2j



 dt1 · · · dtd





1/2





,

with the integration domain E = (R+)
d \ [0, ω]d. Therefore, since

r2k ∂2k1

∂x2k1
1

· · · ∂2kd

∂x2kd

d

y(r) = O
(

y(r)a(r)2k
)

,

we have for sufficiently large ω
∣

∣

∣

∑

1
+
∑

2
−y(r)a(r)k

∣

∣

∣ < εy(r)a(r)k

which completes the proof. �

Lemma 5. Assume that there exist constants η > 0 and C > 0 such that for |zj − rj | < ηrj

(j = 1, . . . , d) the matrix B satisfies |hB (z) ht| ≤ ChB(r)ht for all h ∈ Rd. Furthermore, assume
regularity of y(z) in this region and that y(z) 6= 0. Then

log y
(

r1e
iθ1 , . . . , rde

iθd
)

= log y(r) + iθa(r)t − 1

2
θB(r)θt + ε(r, θ)

where

|ε(r, θ)| ≤ C‖θ‖ · θB(r)θt

η
. (10)

Proof. Set g(t) = log y
(

ex1+ith1 , . . . , exd+ithd
)

for |t| ≤ η and some h with ‖h‖ = 1. Then

g′′(t) = hB
(

ex1+ith1 , . . . , exd+ithd
)

ht =
∑

n≥0

cntn

with

|cn| ≤
C ′g′′(|t|)

ηn
≤ Cg′′(0)

ηn
,

with a positive constant C ′. Since

g′(0) = i
∑

j

yzj
(r)rjhj

y(r)
= a(r)ht,

we obtain by setting th = θ the expansion

log y
(

r1e
iθ1 , . . . , rde

iθd
)

= g(t) = g(0) + itg′(0) − t2

2
g′′(0) + ε(r, θ)

which is of the required shape. Finally, observe that

ε(r, θ) =
∑ cn

(n + 1)(n + 2)
tn+2
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and

|cn| · |t|n+2 ≤ Cg′′(0)

ηn
|t|n+2 ≤ Cg′′(0)|t|3

η
=

C‖θ‖ · θB(r)θt

η

which immediately implies (10). �

Lemma 6. An H-admissible function y(x) satisfies

y
(

r1e
iθ1 , . . . , rde

iθd
)

= y(r) + iθã(r)t − 1

2
θB̃(r)θt + O

(

y(r) · ‖θ‖3 · ‖a(r)‖3
)

uniformly for |θj | ≤ 1/aj(r), for j = 1, . . . , d, where

ã(r) = ∇y (es1 , . . . , esd)|s1=log r1,...,sd=log rd
= (rjyxj

(r))j=1,...,d

B̃(r) =

(

∂2y (es1 , . . . , esd)

∂sj∂sk

∣

∣

∣

∣

s1=log r1,...,sd=log rd

)

j,k=1,...,d

Proof. We have B̃(z) =
(

yzjzk
(z)zjzk + δjkyzj

(z)zj

)

j,k=1,...,d
. Theorem 6 yields yzjzk

(r)rjrk ∼
y(r)aj(r)ak(r) which implies ‖B̃(r)‖ = O

(

y(r)‖a(r)‖2
)

. Setting ηj = 1/aj(r), j = 1, . . . , d, and
applying Theorem 6 again and Lemmas 2 and 4 afterwards yields the following asymptotic equiv-
alence for the entries of B̃.

B̃jk(r1(1 + η1), . . . , rd(1 + ηd))

∼ y(r1(1 + η1), . . . , rd(1 + ηd))aj(r1(1 + η1), . . . , rd(1 + ηd))ak(r1(1 + η1), . . . , rd(1 + ηd))

∼ edy(r)aj(r)ak(r). (11)

Furthermore, observe that all entries of B̃(z) are analytic functions and thus we have

B̃(z) =
∑

n

Bnz
n =

∑

n

yn · (ninj)i,j=1,...,dz
n

Clearly, all matrices (ninj)i,j=1,...,d are positive definite and hence by (V) we get

max
|zj |=rj ,j=1,...,d

|hB̃(z)ht| ≤ hB̃(r)ht.

Hence (11) implies that we have |hB̃(z)ht| ≤ ChB̃(r)ht for |zj − rj | ≤ ηjrj , j = 1, . . . , d. Conse-

quently, we can apply Lemma 5 to ey(z) and get

y
(

r1e
iθ1 , . . . , rde

iθd
)

= y(r) + iθã(r)t − 1

2
θB̃(r)θt + ε(r, θ)

with

|ε(r, θ)| ≤ C‖B̃(r)‖ · ‖θ‖3

2 minj ηj
≤ C‖B̃(r)‖ · ‖θ‖3 · ‖a(r)‖

2
= O

(

y(r) · ‖θ‖3 · ‖a(r)‖3
)

as desired. �

Likewise we will need a more precise estimate for “large” θ.

Lemma 7. Let ε > 0. If y(x) is H-admissible and ‖θ‖max ≥ y(r)−1/2+ε then
∣

∣y
(

r1e
iθ1 , . . . , rde

iθd
)∣

∣ ≤ y(r) − y(r)η .

with some constant 0 < η < 2ε.

Proof. Assume θ` ≥ y(r)−2/5−ε. Set kj = baj(r)c and ` = (k1 + 1, k2 + 1, . . . , k` +
1, k`+1, k`+2, . . . , kd). Then define υ` := y`z

` and α` := |υ`| In the same manner as in [17, Lemma 6]
one proves

|υ`−1 + υ`| ≤ α`−1 + α` −
1

10

y(r)2ε

√

(2π)d det B(r)
.

Then Corollary 4 implies |υ`−1 + υ`| ≤ α`−1 + α` − y(r)η with 0 < η < 2ε. Hence
∣

∣y
(

reiθ
)∣

∣ ≤ |ỹ(z)| + |υ`−1 + υ`| ≤ ỹ(r) + α`−1 + α` − y(r)η = y(r) − y(r)η

where ỹ(z) = y(z) − υ`−1(z) − υ`(z) The inequality follows from (V). �



HAYMAN ADMISSIBLE FUNCTIONS IN SEVERAL VARIABLES 13

5. A Class of H-admissible Functions

In this section we want to present conditions under which exponentials of multivariate polyno-
mials are H-admissible. Let σ > 1 be some constant and set

Rσ :=
{

r ∈
(

R+
)d

: (rmin)
σ > rmax

}

.

Furthermore let Eσ := {e ∈ Rd : ej ∈ [1, σ), for 1 ≤ j ≤ d, and there is an 1 ≤ i ≤ d such that
ei = 1}. Thus r ∈ Rσ is equivalent to the existence of some τ ≥ 1 and some e ∈ Eσ such that
r = τe := (τe1 , . . . , τed ). Obviously, r → ∞ in Rσ is equivalent to rmin → ∞ for r ∈ Rσ as well
as to t → ∞ for r = τe with e ∈ Eσ . We start with some basic auxiliary results on multivariate
polynomials.

Lemma 8. Let P (r) =
∑

p βpr
p and Q(r) =

∑

p βpr
p be polynomials in r satisfying

P (r)

Q(r)
→ ∞, for rmin → ∞ ( with r ∈ Rσ).

Then there exists e > 0 such that

P (r)

Q(r)
> re

min, for sufficiently large rmin ( with r ∈ Rσ).

Proof. Let e ∈ Eσ and r = τe. Then there exist positive numbers cP (e), cQ(e), dP (e), and dQ(e)
such that

P (τe)

Q(τe)
=

∑

p βpτp·et

∑

p βpτp·et ∼ cP (e)τdP (e)

cQ(e)τdQ(e)
=

cP (e)

cQ(e)
· τdP (e)−dQ(e) → ∞, fr τ → ∞.

Thus dP (e) > dQ(e). If we set e := mine∈Eσ

dP (e)−dQ(e)
2 , then for all e ∈ Eσ we obtain

P (τe)

Q(τe)
> re

min, for sufficiently large rmin (r ∈ Rσ),

as desired. �

Corollary. Let P (r) =
∑

p βpr
p be a polynomial satisfying P (r) → ∞ as rmin → ∞. Then for

sufficiently large rmin we have P (r) >
√

rmin.

Now we are able to characterize the admissible functions which are exponentials of a polynomial.

Theorem 7. Let P (z) =
∑

m∈M bmzm be a polynomial with real coefficients bm 6= 0 for m ∈ M .

Moreover, let y(z) = eP (z). Then the following statements are equivalent.

(i) ∀θ ∈ [−π, π]d \ {0} :
∣

∣y(reiθ)
∣

∣ < y(r) if r ∈ Rσ sufficiently large

(ii) ∀θ ∈ [−π, π]d \ {0} : y(reiθ) = o (y(r)) , as r → ∞ in Rσ

(iii) ∀θ ∈ [−π, π]d \ {0} : y(reiθ) = o

(

y(r)√
det(B(r))

)

, as r → ∞ in Rσ

(iv) y(z) is H-admissible in Rσ.

Proof. Let Lj denote the highest exponent of zj appearing in P (z) and L = max1≤j≤d Lj .
(i) =⇒ (ii): By assumption we have for sufficiently large r ∈ Rσ and some θ ∈ [−π, π]d \ {0}

∣

∣

∣
eP (reiθ)

∣

∣

∣

eP (r)
= e<(P (reiθ))−P (r) < 1

and hence

Q(r) := <(P (reiθ)) − P (r)

= <
(

∑

m∈M

bmrmeimθ
t

)

− P (r)

=
∑

m∈M

bmrm
(

cos
(

mθt
)

− 1
)

< log(1) = 0.
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Since Q(r) is a polynomial attaining only negative values for r ∈ Rσ . Thus limr→∞ Q(r) = −∞
and this is equivalent to (ii).

(ii) =⇒ (iii): The assumption implies by Corollary Q(r) = <(P (reiθ)) − P (r) < −√
rmin

for sufficiently large r ∈ Rσ . The entries of B(r) are Bjk(r) := xjxk
∂2

∂xj∂xk
P (x) and therefore

obviously

log(det(B(r))) = log (λ1(r) · · · λd(r)) = O (log (B11(r) · · ·Bdd(r))) .

Since the largest exponent of P (x) is L, we obtain Bjj(r) = O
(

rdL+1
max

)

and therefore

log(det(B(r))) = O
(

log
(

rd(dL+1)
max

))

= O
(

log
(

r
σd(dL+1)
min

))

= O (log rmin)

and this implies

log

(
∣

∣y(reiθ)
∣

∣

y(r)

√

det(B(r))

)

= <(P (reiθ)) − P (r) +
1

2
log(det(B(r))

= −√
rmin + O (log rmin) → −∞

which shows (iii).
(iii) =⇒ (i): This implication is trivial.
(iii) =⇒ (iv): We have to show the conditions (I)–(V) of the definition. (IV) and (V) are obvious.

In the sequel we will first show (III), then (I) and (II) at the end. Let λ1 ≤ . . . ≤ λd denote the
eigenvalues of B.

(III): The assumption implies that B(r) must be positive definite. Therefore, for any fixed h ∈
Rd the function Q(r) := hB(r)ht is a polynomial which is positive on Rσ and hence limr→∞ Q(r) =
∞. Now choose h = vj , an eigenvector of B(r) with eigenvalue λj , and (III) follows.

(I): Consider B−1(r). The eigenvalues are 1
λd

≤ · · · ≤ 1
λ1

and their sum, i.e., the trace of B−1(r)

can be expressed in terms of the cofactors of B(r). We have

1

λ1
≤ 1

λ1
+ · · · + 1

λd
=

B̂11(r) + · · · + B̂dd(r)

det(B(r))
→ 0.

Thus

λ1 ≥ det(B(r))

B̂11(r) + · · · + B̂dd(r)
→ ∞ as r → ∞

The determinant as well as the cofactors are polynomials in r. Thus applying Lemma 8 we obtain

λ1(r) ≥ re
min, for rmin sufficiently large

and suitable e.

Now let δj := λ
− 1

2+ ε
2

j with ε < min
{

e
6σd(Ld+1) ,

1
3

}

. Then for θ ∈ ∆(r) =
{

∑d
j=1 µjvj(r) : |µj | ≤ δj(r), 1 ≤ j ≤ d

}

we get

‖θ‖ ≤
√

λ−1+ε
1 + · · · + λ−1+ε

d ≤
√

dλ
− 1

2+ ε
2

1 ≤
√

dr
e(− 1

2+ ε
2 )

min < r
− e

3

min

for r sufficiently large.
Set Q(z) := hB(z)ht. Since Q(z) is a polynomial we have for e ∈ Eσ Q(τe) ∼ c̃(e) · τΛ for

a suitable constant Λ as well as Q (τe(1 + 2η)) ≤ C · Q(τe) for sufficiently large τ . Therefore
the conditions of Lemma 5 are fulfilled and we get for the third order term ε(r, θ) in the Taylor
expansion of P (z) the estimate

max
θ∈∆(r)

|ε(r, θ)| = max
θ∈∆(r)

θB(r)θt · ‖θ‖
2η

= O

(

(λε
1 + · · · + λε

d) · λ
− 1

2+ ε
2

1

η

)

= O

(

λε
d · λ− 1

2+ ε
2

1

η

)

.



HAYMAN ADMISSIBLE FUNCTIONS IN SEVERAL VARIABLES 15

Since λε
dλ

ε
2
1 ≤ (λ1 · · ·λd)

ε
= det B(r)ε, we obtain det B(r) = O

(

r
σd(dL+1)
min

)

. On setting η = r
− e

3

min

this implies

max
θ∈∆(r)

|ε(r, θ)| = O

(

r
σd(Ld+1)ε
min · r−

e
2

min

r
− e

3

min

)

→ 0 fr rmin → ∞

because of ε < e
6σd(Ld+1) .

(II): We have for r large enough

√

det (B(r)) ≤ (rmin)
σd(Ld+1)

2 ≤ exp

(

1

2
(re

min)ε

)

≤ exp

(

1

2
λε

1

)

and therefore on the boundary of ∆(r)

max
θ∈∂∆(r)

∣

∣y
(

reiθ
)∣

∣

y(r)
∼ max

θ∈∂∆(r)
exp

(

−1

2
θB(r)θt

)

= exp

(

−1

2
δ2
1(r)λ1(r)

)

= exp

(

−1

2
λε

1

)

= O

(

1
√

det (B(r))

)

. (12)

The estimate |ε(r, θ)| ≤ θB(r)θt · ‖θ‖/2η from above is valid for fixed η. This combined with
assumption (i) guarantees that (12) is valid outside ∆(r) as well.

(iv) =⇒ (i): This is an obvious consequence of admissibility. �

For polynomials with positive coefficients a – from a computational viewpoint – much simpler
criterion can be stated. This criterion is also satisfied by admissible functions in the sense of [6].

Corollary. Let P (z) =
∑L

j=1 ajz
k
j be a multivariate polynomial with positive coefficients aj > 0

and σ > 0 an arbitrary constant. Then a necessary and sufficient condition for eP (z) to be H-
admissible is that the system of the equations

kjθ
t ≡ 0 mod 2π, j = 1 . . . , L, (13)

has only the trivial solution θ ≡ 0 mod 2π. Equivalently, this means that the span of the vectors
kj over Z equals Zd.

Proof. This is an immediate consequence of the previous theorem. We have to show (i). Observe

y
(

r1e
iθ1 , . . . , rde

iθd
)

= exp
(

P
(

r1e
iθ1 , . . . , rde

iθd
))

= y(r) exp



−2

L
∑

`=1

a`r
k1`

1 · · · rkd`

d sin2





d
∑

j=1

kj`θj

2







 (14)

Condition (i) is satisfied if and only if the exponent in (14) vanishes only for θ1 = · · · = θd = 0.
But this is obviously equivalent to (13). �

6. Closure Properties

Theorem 8. If y(x) is H-admissible in R, then ey(x) is H-admissible in R, too.

Proof. Let δ(r) = (y(r)−2/5, . . . , y(r)−2/5) and Y (x) = ey(x). Let ā and B̄ denote the the vector
of the first and the matrix of the second logarithmic derivatives of ey(x), respectively. Then by
Lemma 6

log Y
(

r1e
iθ1 , . . . , rde

iθd
)

= log Y (r) + iθā(r)t − 1

2
θB̄(r)θt + O

(

y(r)−1/5‖a(r)‖3
)

for ‖θ‖ < δ(r). Hence we have y(r)−1/5‖a(r)‖3 → 0 as r → ∞ which guarantees (I) for θ inside
the cube K defined by our choice of δ. Hence (I) is also true for the cube E spanned by the
eigenvectors of B(r) and inscribed in K.
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If ‖θ‖max > y(r)−2/5−ε, which is (for sufficiently large r) equivalent to θ /∈ K′ = y(r)−εK, then
Lemma 7 in conjunction with B̄jk ∼ y(r)aj(r)ak(r) yields

|Y
(

r1e
iθ1 , . . . , rde

iθd
)

| ≤ Y (r) exp
(

−y(r)−1/7
)

≤ Y (r) exp

(

−
(

det B̃(r)
)1/(7d)

)

.

This implies (II) outside K′ and therefore in particular outside E .
Condition (V) is obvious. Therefore it remains to show that the eigenvalues of B̄(r) tend to

infinity and condition (IV). Note that B̄ = y · (B + ata) and that ata is a positive semidefinite
matrix of rank 1 with eigenvalues 0 and ‖a‖2. Then the smallest eigenvalue λmin

(

B̄
)

of B̄ satisfies

λmin

(

B̄
)

= min
x:‖x‖=1

xB̄xt ≥ min
x:‖x‖=1

xBxt + min
x:‖x‖=1

xataxt ≥ min
x:‖x‖=1

xBxt = λmin(B) → ∞.

and (III) follows. In order to show (IV) observe that

B̄jj = y · (Bjj + a2
j ) ∼ y · a2

j = o
(

y2a2
j

)

= o
(

ā2
j

)

as desired. �

Theorem 9. If y1(x) and y2(x) are H-admissible in R and there exists a constant and C such
that det(B1 + B2) ≤ C min (det B1, det B2). Assume furthermore that the eigenvectors of B1 and
B2 are the same. Then y1(x)y2(x) is H-admissible in R, too.

Proof. The logarithmic derivatives of y1(x)y2(x) are a = a1 + a2 and B = B1 + B2, respectively.
This immediately implies (III) and (IV). (V) is obvious.

Note furthermore that, if C1 and C2 are the cuboids inside of which (I) is valid for y1(x) and
y2(x), respectively, then inside the domain C1 ∩ C2 the function y1(x)y2(x) obviously satisfies (I).
The condition on the determinant of B = B1 +B2 implies that outside this domain (II) holds. �

Remark 5. Note that powers of H-admissible functions are always H-admissible, since the assump-
tions of the theorem are obviously true in the case y1(x) = y2(x).

Theorem 10. Let y(x) be H-admissible in R and p(x) =
∑

n∈M pnz
n be a polynomial with real

coefficients. Assume that for each coefficient pn with pn < 0 there exists an m ∈ M with n � m

and pm > 0. Then y(x)p(x) is H-admissible in R.

Proof. Let ā and B̄ denote the vector of the first and the matrix of the second logarithmic deriva-
tives of y(x)p(x), respectively. Then

āj(r) = aj(r) + rj

pxj
(r)

p(r)
,

B̄jj(r) = Bjj(r) + rj

pxj
(r)

p(r)
+ r2

j

(

pxjxj
(r)

p(r)
− pxj

(r)2

p(r)2

)

,

B̄jk(r) = Bjk(r) + rjrk

(

pxjxk
(r)

p(r)
− pxj

(r)pxk
(r)

p(r)2

)

.

Clearly, the contributions coming from the polynomial remain bounded when r → ∞. Moreover,

p
(

r1e
iθ1 , . . . , rde

iθd
)

p(r)
= O (1) .

Furthermore, note the condition on the eigenvalues of B(r) ensures that we can choose δ such

that ‖δ(r)‖ → 0, because in this case c(r) :=
√

2 log(det B(r))/λmin(r) → 0. If θ fulfils ‖θ‖ > c(r)
then (II) holds, since

∣

∣

∣

∣

∣

y
(

reiθ
)

y(r)

∣

∣

∣

∣

∣

∼ exp

(

−θB(r)θt

2

)

≤ exp

(

−λmin

2
‖θ‖2

)

<
1

det B(r)
= o

(

1
√

det B(r)

)

.

Therefore it is an easy exercise to show (I)–(V). �
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Theorem 11. Let y(x) be H-admissible in R and f(x) an analytic function in this region. Assume
that f(x) is real if x ∈ Rd and that there exists a δ > 0 such that

max
xi=ri,i=1,...,d

|f(x)| = O
(

y(r)1−δ
)

, as r → ∞.

Then y(x) + f(x) is H-admissible in R.

Proof. Let again ā and B̄ denote the vector of the first and the matrix of the second logarithmic
derivatives of y(x) + f(x), respectively. Then obviously, āj(r) ∼ aj(r) and B̄jk(r) ∼ Bjk(r) and
with these relations H-admissibility of y(x) + f(x) is easily proved. �

Corollary . If y(x) is H-admissible in R and p(x) is a polynomial with real coefficients, then
y(x) + p(x) is H-admissible in R. If p(x) is a polynomial in one variable with real coefficients and
a positive leading coefficient, then p(y(x)) is also H-admissible.

Proof. This is an immediate consequence of Theorems 9 and 11 (cf. remark after Theorem 9). �

Theorem 12. If y(z) is univariate H-admissible, then Y (x, z) = exy(z) is H-admissible in {(r, s) :
y(s)ε−1 ≤ r ≤ y(s)c} where ε, c are arbitrary positive constants.

Remark 6. This closure property is true for BR-admissible functions as well.

Remark 7. We think that the same holds also for multivariate H-admissible functions, but we did
not succeed in proving that all eigenvalues tend to infinity (condition (III) of the definition).

Proof. The first logarithmic derivatives of Y are given by a1(x, z) = xYx/Y = xy(z) and a2(x, z) =
zYz/Y = xzy′(z). The matrix of the second logarithmic derivatives is

B(x, z) =

(

xy(z) xzy′(z)
xzy′(z) xz2y′′(z) + xzy′(z)

)

.

If ay and by denote the first and second logarithmic derivative of y(x), respectively, then a straight-
forward computation shows det B(x, z) = x2y(z)2by(z) → ∞. The smaller eigenvalue is

xy(z) + xz2y′′(z) + xzy′(z)

2

(

1 −
√

1 − 4 detB

(xy(z) + xz2y′′(z) + xzy′(z))2

)

∼ det B

xy(z) + xz2y′′(z) + xzy′(z)
∼ x2y(z)2by

xy(z)a2
y

→ ∞

which proves (III). (IV) and (V) are obvious.
Now we turn to (II). Let x = reiθ and z = seiϕ. Then we have |Y (x, z)| = | exp(<reiθy(seiϕ))|.

We know from [7, Lemma 2] that for |ϕ| ≥ f(s)−ν (ν > 0 then there is a positive constant κ with
|y(seiϕ)| ≤ y(s) − y(s)1−κ. Thus for |ϕ| ≤ (ry(s))−1/3−ε and r ≤ y(s)ε−1 this implies

∣

∣reiθy
(

seiϕ
)∣

∣ = o

(

ry(s)
√

by(s)

)

and this yields

∣

∣exp
(

reiθy
(

seiϕ
))∣

∣ ≤ ery(s)/2 = o

(

e2ry(s)/3

√

by(s)

)

= o

(

ery(s)

√

det B(r, s)

)

and we get (II) for this case.
Now let |θ| ≥ (ry(s))−1/3−ε/2 and |ϕ| ≤ (ry(s))−1/3−ε. Then [17, Lemma 5] implies

<reiθy(seiϕ) ≤ r

(

1 − θ2

5

)(

y(s) − ϕ2

2
(sy′(s) + s2y′′(s)

)

− r sin θ · ϕsy′(s) = o(ry(s))

where the last equation follows from applying the constraint on ϕ and θ as well as r ≤ y(s)c. This
shows (II).

If |θ| ≤ (ry(s))−1/3−ε/4 and |ϕ| ≤ (ry(s))−1/3−ε/2 then a routine calculation shows the estimate
of (I) in this range. Thus we can inscribe a cuboid ∆(r, s) spanned by an orthonormal basis of
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eigenvectors of B(r, s) into this domain and have (I) inside ∆(r, s) whereas outside we are in the
range where showed above the validity of (II). �

Theorem 13. If y(z) is H-admissible in R. Let λmin λmax denote the smallest and the largest
eigenvalue of the matrix B(r) of the second logarithmic derivatives of ey(z1)y(z2). Then ey(z1)y(z2)

is H-admissible in S = {(r1, r2) ∈ R×R | log λmax = o
(

(y(r1)y(r2))
−2/3+ρλmin

)

} for any ρ > 0.

Proof. Using Lemma 6 it is easy to show (I) for ∆ = [−A, A]2d with A = (y(r1)y(r2))
−1/3+ρ/2.

Moreover, we have on the boundary of ∆

<
(

log y(reiθ) − log y(r) +
1

2
log det B(r)

)

∼ −1

2
λmin +

1

2
log det B(r)

which tends to −∞ in S and thus proves (II).
To show (III) let ay and By denote the first and second logarithmic derivatives of y, respectively.

Note that B can be written in block matrix form

B(r) = y(r1)y(r2)

(

By(r1) + a(r1)
ta(r1) a(r1)

ta(r2)
a(r1)

ta(r2) By(r2) + a(r2)
ta(r2)

)

.

This allows a decomposition into a sum of a positive definite and a positive semidefinite matrix.
So arguing as in the proof of Theorem 8 we obtain (III). (IV) and (V) are obvious. �

7. Examples of H-admissible functions

7.1. Stirling numbers of the second kind. The generating function of the Stirling numbers
of the second kind is y(z, u) = eu(ez−1) and satisfies the conditions of Theorem 12. Therefore the
coefficients satisfy the assertion of Theorem 4 which was already proved in [7]. It follows that
the number of blocks in a random partition of size n is asymptotically normally distributed, as
n → ∞. This is a classical result of Harper (see [15]).

7.2. Permutations with bounded cycle length. Consider the set of permutations with no
cycle longer than ` =⇒ counted by length and number of cycles. The generating function is then

y(z, u) = exp

(

u
∑̀

i=1

zi

i

)

.

The exponent is a polynomial satisfying the conditions of Corollary and is therefore H-admissible.
So the assertion of Theorem 4 for the coefficients follows. This slightly generalises a result in
[10], where only the asymptotic normal distribution of the number of cycles (this means, roughly
speaking, that the marginal distribution is asymptotically normal) was established for ` ≥ 3.

7.3. Partitions of a set of partitions. The generating function of the set of partitions of the set
of block of a given partition counted by number of blocks (v counting the blocks of the inner and
u counting blocks of the outer partition) is y(z, u) = exp

(

u
(

ev(ez−1) − 1
))

. A bivariate normal
distribution of these two block numbers follows now from Theorem 4. For mean and variance of
the number of blocks of the outer partition were computed by Salvy and Shackell [36].

7.4. Set partitions with bounded block size. Set partitions with bounded block size can be
counted by the generating function

y(z, u) = exp

(

u
∑̀

i=1

zi

i!

)

.

This generalises a result in [10] where under the assumption ` ≥ 3 it was shown that the number
of blocks in such

7.5. Covering complete bipartite graphs. The number of coverings of a complete bipartite
graph with complete bipartite graphs with at least one vertex in each part of the bipartition (see
[14, Example 3.3.8]) can be described by the generating function y(z, u) = exp ((ez − 1)(eu − 1))
which is H-admissible in R2 by Theorem 13.
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7.6. Set partitions with coloured elements. Consider partitions of a set where each element
is assigned to one of d colours. Moreover let S ⊆ Zd be a finite set and let for each block B of the
partition bj denote the number of elements of B having colour j. Then partitions such that for
each block we have (b1, . . . , bd) ∈ S can be counted by the generating function

y(z) = exp

(

∑

n∈S

zn

n1! · · ·nd!

)

which is H-admissible.
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[11] Philippe Flajolet and Michèle Soria. Gaussian limiting distributions for the number of components in combi-
natorial structures. J. Combin. Theory Ser. A, 53(2):165–182, 1990.
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[34] Bruno Salvy. Examples of automatic asymptotic expansions. SIGSAM Bulletin, 25(2):4–17, April 1991.
[35] Bruno Salvy. Fast computation of some asymptotic functional inverses. J. Symbolic Comput., 17(3):227–236,

1994.
[36] Bruno Salvy and John Shackell. Symbolic asymptotics: multiseries of inverse functions. J. Symbolic Comput.,

27(6):543–563, 1999.


