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Quantitative logic has been the subject of an increasing interest since a seminal paper by Chauvin et al. in 2004,
which presented the first Analytic Combinatorics approach of the subject. Since then, the understanding of random
Boolean trees has been deeply widened, even if the question of Shannon effect remains open for the majority of the
models. We focus in this paper on the original case of Catalan And/Or trees and propose a new specification of those
objects that implies easier ways to describe large families of trees. Equipped with this specification, we prove that
the model of Catalan And/Or binary trees do not exhibit Shannon effect, i.e. there exists a family of functions with
small complexities, that have a positive probability.
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1 Introduction
Pick up at random a Boolean formula of a given size: what is the distribution of the random Boolean func-
tion it represents? Defining models in which this question has a meaning and answering it in these models
is the domain of quantitative logic. To our knowledge, the first attempts in this direction go back to the
90’s, by Paris et al. [PVW94] and later Lefmann and Savický [LS97]. The framework they propose is to
use the representation of Boolean formulas by plane binary trees and then rely on the good combinatorial
properties of these trees. The domain has then strongly developed after the seminal contribution of Chau-
vin et al. [CFGG04], proposing the first Analytic Combinatorics approach of the question. Since 2004,
many different models have been studied via Analytic Combinatorics, leading to a better understanding
of random Boolean trees.

The first approaches [PVW94, LS97, CFGG04] focused on the And/Or logical system, i.e. on Boolean
formulas built with the connectives AND and OR and with the negation. They pick up a binary plane
Boolean tree uniformly at random among all trees with m leaves, and then let m tend to infinity: the
induced distribution on the set of Boolean functions is called the Catalan tree distribution. Their initial
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results have been deeply improved by Kozik [Koz08], via Analytic Combinatorics and a very powerful
ad hoc machinery called the pattern theory. Equivalent results have been shown for the implicational
system by Fournier et al. [FGGG12], but there a different approach was required. The theory has then
been extended to many directions: for example by considering non plane and non binary trees in order
to take into account the logical properties of the logical connectives (for example the commutativity and
associativity of AND and OR) [GGKM12, GGKM]; or by considering different distributions on Boolean
trees [CFGG04, CGM11].

In this paper, however, we aim at revisiting the original And/Or Catalan tree distribution in order
to prove that this model does not exhibit the Shannon effect. Riordan and Shannon have proved, in the
paper [RS42], that a uniformly distributed random Boolean function on n variables is almost surely of
exponential complexity: we say that the uniform distribution on Boolean functions of fixed size exhibits
the Shannon effect. We prove in the present paper that the Catalan tree distribution does not. To prove
this new result, we needed to develop a new framework: a new way to specify And/Or trees and thus a
new way to count them.

We would like to point out, that the study of the Shannon effect in random Boolean tree models is
only done in very few models [GG10, GGKM12], both models based on the connective of IMPLICATION,
in the case of plane or non-plane trees. There is thus a need to progress in this direction. Moreover,
we think that it is important to find universal methods to study those models, i.e. methods that could
be used for both the And/Or and the implicational logical systems (note that Kozik’s pattern theory
does not apply for implicational trees). This was successfully done in the case of branching processes
as underlying tree model [GG10]. The new proof happens to be very similar to the ones used in the
implicational system [GG10, GGKM12]. The method we use has some common base with the expansion
tools, developped for example in [FGGG12], but it is very different in the way the tools are used.

This paper is organised in two sections. The first one, Section 2, is devoted to the definition of the
Catalan tree model and to the introduction of our new point of view on And/Or trees. The second one,
Section 3, states and prove our main result on Shannon effect in the Catalan tree model and its proof.

2 Description of the model and specifications
2.1 Context
Definition 1 A Catalan tree is a rooted full binary plane tree (meaning that each node has either 0 or
2 children). We define the size of a Catalan tree as the number of its leaves. The combinatorial class of
Catalan trees is denoted by C. The corresponding ordinary generating function is C(z) =

∑
m>0 Cmzm,

where Cm is the number of Catalan trees of size m.

It is well known that C(z) =
1−

√
1− 4z

2
and Cm =

1
m
·
(

2m− 2
m− 1

)
.

Definition 2 An And/Or tree on n variables is a Catalan tree whose internal nodes are labelled by
a connective from the set {∧,∨} (resp. AND and OR) and whose leaves are labelled by a literal from
{x1, x̄1, . . . , xn, x̄n}, where x̄i denotes the negation of xi. The combinatorial class of And/Or trees on
n variables is denoted by Tn, the number of such trees of size m by Tm,n.

Each And/Or tree is equivalent to a Boolean expression and thus represents, or computes, a Boolean
function with n variables, i.e. a function from {0, 1}n into {0, 1}. An example is given in Fig. 1. We will
from now denote the set of Boolean functions with n variables by Fn.
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Definition 3 The complexity L(f) of a non constant Boolean function f ∈ Fn is the size of the smallest
trees calculating it. We call the trees realizing this complexity the minimal trees of f . The complexity of
the constant functions true : (x1, . . . , xn) 7→ 1 and false : (x1, . . . , xn) 7→ 0 is defined to be 0.

∨

∨

∨
x1 ∨

x̄1 x2

x3

∧
x4 x1

Fig. 1: The above tree is equivalent to the Boolean formula ([x1 ∨ (x̄1 ∨ x2)] ∨ x3) ∨(x4 ∧ x1) and represents the
constant Boolean function true : (x1, . . . , xn) 7→ 1.

The idea of quantitative logic is historically the following: Equip the set of And/Or trees of size m
with the uniform distribution and denote by µm,n the induced distribution on the set of Boolean functions
in n variables. Can we prove that the sequence (µm,n)m≥1 converges? And what are the properties of the
limiting distribution (if it exists)?

Since this model has already been studied in the literature, where it is sometimes called the Catalan
model, we already know the following result:

Theorem 4 ([LS97, CFGG04]) The sequence of distributions (µm,n)m≥1 converges to a limiting distri-
bution on the set of Boolean function with n variables. This distribution is denoted by µn and called the
Catalan distribution.

Moreover, we have the following inequalities: for all Boolean functions f ∈ Fn,

1
4

(
1
8n

)L(f)+1

≤ µn(f) ≤ (1 + O(1/n))e−c
L(f)+1

n2 ,

asymptotically when n tends to +∞.

This is the best result, in full generality, up to now. Kozik [Koz08] has proven the following more
precise result:

Theorem 5 ([Koz08]) Let f = f(x1, . . . , xn0) be a Boolean function and µn(f) denote the proportion
of all And/Or trees on n which represent f (cf. Definition 8). Then there exists a constant λf > 0 such
that, for n tending to infinity,

µn(f) =
λf

nL(f)+1
+ O

(
1

nL(f)+2

)
.

This result suggests that the Catalan distribution gives more weight to low complexity functions, but this
result is too weak to claim that the Catalan distribution does not exhibit the Shannon effect. One has to
consider sequences of functions indexed on n.
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Definition 6 We say that a sequence of distributions (νn)n≥1, respectively defined on the sets (Fn)n≥1,
exhibit the Shannon effect if, for all ε > 0,

νn

({
f such that L(f) ≥ 2n(1− ε)

log2 n

})
→ 1

when n tends to +∞.

Remark: It is shown (see [Lup62] that the maximal complexity of a Boolean function with n variables
is less than 2n

log2 n (1 + o(1)). Thus, the sequence (νn)n≥1 exhibit the Shannon effect if, asymptotically
when n tends to +∞, almost all Boolean functions (under νn) have almost maximal complexity.

To prove that a sequence of distributions (νn)n≥1 does not exhibit the Shannon effect, it is enough to
find a sub-exponential function g(n) and a constant α > 0 such that, for all n ≥ 1,

νn ({f such that L(f) ≤ g(n)}) ≥ α > 0.

The approach is thus very different from the proof of Theorem 5 since one has to consider a set of Boolean
functions, among them functions whose complexity does depend on n. This explains why the Shannon
effect has only been studied in a few models: the implicational model [GG10], the general implicational
model [GGKM12], and the models based on branching processes [GG10]. The successful approach in
those two articles is based on a very careful Analytic Combinatorics study.

Corollary 7 (of Theorem 5) If K is some constant which is independent of n. Then the set of all Boolean
functions up to complexity K is not sufficiently large to refute the Shannon effect.

Proof: The number of functions of complexity k is bounded by α · nk (where α is a constant), and
therefore, by using Theorem 5, the probability of functions of complexity smaller or equal to k is O(1/n).
Thus, we need a class of functions of complexity up to some bound Kn tending to infinity as n tends to
infinity to have a chance to prove that there is no Shannon effect. 2

Our aim in the present paper is to introduce a new specification for And/Or trees which simplifies
the Analytic Combinatorics involved in their study and therefore allows us to tackle the Shannon effect
question in this context.

2.2 New specification of And/Or trees
The historical specification of And/Or trees is the following [CFGG04]: there are 2n different trees of
size one (one for each literal {x1, x̄1, . . . , xn, x̄n}), and an And/Or tree is either a tree of size one (2n·Z)
or an internal node (two choices) with two subtrees from T . Namely,

T = 2 · (T × T ) + 2n · Z.

We propose here another point of view that simplifies the descriptions of the subfamilies of trees needed
later on and therefore the technical calculations. Maybe, with this new description we could rederive the
results of [Koz08] while circumventing the pattern theory but keeping the key ideas of the proofs.

Let us denote by A the family of And/Or trees that are rooted by an ∧ label, and by O the family of
trees that are rooted by an ∨ label. We have T = 2nZ + A + O, and we describe the ∧-rooted trees
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as follows: it is a Catalan tree of ∧-labels (of size at least two), whose leaves are substituted either by
(Boolean decorated) leaves (2nZ) or by ∨-rooted trees. Namely,

A = (C \ Z) ◦ (2n · Z +O).

Thus, in terms of generating functions, we have via the symbolic method (see [FS09] for an introduction
to this method)

A(z) = K(O(z) + 2nz), (1)

where K(z) = C(z) − z is the generating function of Catalan trees of size at least 2, A(z) (resp. O(z))
is the generating function of ∧-rooted trees (resp. ∨-rooted trees). By symmetry A(z) = O(z), thus

A(z) =
1− 8nz −

√
1− 16nz

8
.

Obviously, we again obtain the classical generating enumerating all trees,

T (z) = 2nz + 2A(z) =
1−

√
1− 16nz

4
,

which is directly translated from the classical specification: T = 2n · Z + 2 · (T × T ).

Observe that an And/Or tree can be seen in the following way: Instead of looking at it node by node,
we partition the set of internal nodes into clusters of nodes carrying the same label. For example, if
the root is labelled by ∨, then we take all nodes labelled by ∨ and connected to the root by an ∨-only
path into a super-∨-node. Repeat this procedure recursively. Then, we arrive at a tree consisting of such
supernodes, which we will call ∧- and ∨-clusters in the sequel, and leaves. This tree is not binary any
more, and on each path the labels of the clusters are alternating. We will refer to this viewpoint as the
cluster tree of a given And/Or tree. Equation (1) corresponds to this way of looking at an And/Or tree.

2.3 Distribution on And/Or trees in details
Let us recall the notions and notations which have become common in quantitative logics (cf. [FGGG12]
for example).

Definition 8 Let X be a subfamily of T , we define its limiting ratio [X ]n as the following limit, if it
exists:

[X ]n := lim
m→+∞

Xm,n

Tm,n
,

where Tm,n is the number of And/Or trees of size m and Xm,n is the number of elements of X of size m.

Remark: Let f be a Boolean function in Fn, and let X (f) be the family of And/Or trees that compute
f . Then [X (f)]n exists and we set µn(f) = [X (f)]n.

Fact 9 Let X be a subfamily of T . If the dominant singularity of the generating function X(z) =∑
m≥0 Xm,nzm of X is ρ = 1/16n and if this singularity is a square-root singularity, then

[X ]n = lim
z→ρ

X ′(z)
T ′(z)

.
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3 No Shannon effect in And/Or trees
Theorem 10 The Catalan distribution does not exhibit the Shannon effect.

Let us mention here a difference in the approach that we will use in this paper than the one used
in [GG10]. The generating functions that appear there are not as intricate as the one we get in the
And/Or tree model. So, in the implicational model the authors have tried to obtain the best possible
lower bound for the probability of a well-chosen family of functions. In this paper, our goal is to prove
that there is no Shannon effect. We will not care for the final value for the probability of a suitably chosen
family of functions, but only prove that it is positive.

Definition 11 Let t be an And/Or tree and να be a leaf labelled by the literal α in t. Denote by η the
root of the cluster containing να. The subtree rooted by η is denoted u.
Let ν be a node of u, and v the subtree with root ν.

• If να belongs to an ∨-cluster, then replace v by (v ∨ te) or (te ∨ v) in t, where te is a tree with a
root labelled by ∧ and such that at least one of the leaves that are attached to the topmost ∧-cluster
is labelled by α.

• If να belongs to an ∧-cluster, then replace v by (v ∧ te) or (te ∧ v) in t, where te is a tree with a
root labelled by ∨ and such that at least one of the leaves that are attached to the topmost ∨-cluster
is labelled by α.

The obtained tree t̃ is called an α-expansion of t.

Remark: In every node of u we can do an expansion according to the label of να.

Lemma 12 If t is a tree computing a Boolean function f , then for all literals α, all α-expansions of t are
trees computing f .

Proof: A proof by case is relatively straightforward. Assume that να belongs to an ∨-cluster. Then
u computes a function of the form α ∨ f . If α = True, then the value of f is irrelevant and thus an
expansion can do no harm. If α = False, then observe that te is rooted by an ∧-cluster which has a leaf
α. Thus te attains the value False and replacing v by v ∨ te has no effect, either. The other cases are
analogous. 2

To prove Theorem 10, we will enumerate a subfamily of the expansions of all trees of size at most g(n),
for all literals α. We will constrain the expansion-structures in order to be able to retrieve the node in an
expansion where the grafting has been done. This avoids double counting. We constrain the shapes in the
following way: the grafted tree te has a shape α ∨ (t1 ∨ t2) (resp. α ∧ (t1 ∧ t2)) where t1 and t2 are two
subtrees of size at least g(n) (we denote by G(z) the generating function of such trees). Thus, given an
expansion, find the topmost node that has two subtrees of size at least g(n); its parent is the root of the
grafted subtree te, denoted by ν in Fig. 2.

Fix a literal α. Let N̂(z, u) (resp. Ň(z, u)) be the generating function of ∧-rooted (resp. ∨-rooted)
And/Or trees, where z marks the size and u marks the number of nodes allowing an α-expansion. It is
given by

Ň(z, u) = K((2n− 1)z + N̂(z, u)) +
∑
p≥1

u2p−1zp

p!
K(p)(A(u2z) + u2(2n− 1)z),
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Fig. 2: On the right, the And/Or tree is an expansion from the tree represented on the left.

where

• the first term K((2n − 1)z + N̂(z, u)) stands for the case where there is no leaf of the topmost
∨-cluster that is labelled by α;

• the term u2p−1zpK(p)(A(u2z)+u2(2n−1)z)/p! stands for the case, where exactly p leaves of the
topmost ∨-cluster are labelled by α: in this case, the choice of those p leaves yields the derivative
and an expansion is possible at every node in the tree. Thus, a tree having k leaves contributes
zku2k−1 to the generating function Ň(z, u).

By symmetry, we have an analogous equation for N̂(z, u), thus let us define N(z, u) := Ň(z, u) =
N̂(z, u). Consequently we obtain:

N(z, u) = K((2n− 1)z + N(z, u)) +
∑
p≥1

u2p−1zp

p!
K(p)(A(u2z) + u2(2n− 1)z), (2)

Since we have avoided multiple-counting, we get the following inequality:

µn({f such that L(f) ≤ g(n)}) ≥ lim
m→+∞

4n ·
g(n)∑
r=1

[zr]∂uN(z, 1)
[zm−r]G(z)
[zm]T (z)

. (3)

The factor 4n represents the choice of the literal α (with respect to which the expansions are done) and
the label of the root of the tree; the sum is over all r from 1 to g(n), where r represents the size of the
original trees that are then expanded); the factor [zr]∂uN(z, 1) counts the sum over all trees of size r of
the different places where an α-expansion is possible; and the factor [zm−r]G(z) represents the number
of different grafts that can be realized at each node.

Let us first focus on the generating function G(z):

G(z) = z

 ∑
m≥g(n)

Tm,nzm

2

.
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Lemma 13 The generating function G(z) satisfies:

lim
m→+∞

[zm]G(z)
[zm]T (z)

≥ 1
2
√

πg(n)
1

16n
.

Proof: Let P (z) be the polynomial such that G(z) = z · (T (z)−P (z))2. Since P (z) is a polynomial, the
generating functions T (z) and G(z) have the same dominant singularity ρ = 1

16n , and both singularities
are of squareroot type. Therefore, using a transfer lemma, one can prove that

lim
m→+∞

[zm]G(z)
[zm]T (z)

= lim
z→ρ

G′(z)
T ′(z)

= 2ρ (T (ρ)− P (ρ)) .

Let us find a lower bound for T (ρ)− P (ρ):

T (ρ)− P (ρ) =
∑

m≥g(n)

(4n)m

2
Cmρm.

Since Cm ≥ 4m−1
√

πm3 , for all m > 0, we get T (ρ)− P (ρ) ≥
∑

m≥g(n)
1

8
√

πm3 . The function m 7→ m−3/2

is decreasing. Using a Riemann approximation, we get

T (ρ)− P (ρ) ≥ 1
8
√

π

∫ ∞

g(n)−1

du√
u3

≥ 1
4
√

πg(n)
,

which concludes the proof. 2

Now, let us come back to N(z, u) by differentiating Equation (2) according to u and then by taking
u = 1. We get:

Nu(z, 1) =
∑
p≥1

(2p− 1)zpK(p)(A(z) + (2n− 1)z)

+
∑
p≥1

zp(2zA′(z) + 2(2n− 1)z)K(p+1)(A(z) + (2n− 1)z)

+ Nu(z, 1)K ′(N(z, 1) + (2n− 1)z).

Observing that N(z, 1) = A(z) and isolating Nu(z, 1), we obtain

Nu(z, 1) =
zK′((2n− 1)z + A(z)) +

P
p≥2[(2p− 1)zp + zp−1(2zA′(z) + 2(2n− 1)z)]K(p)((2n− 1)z + A(z))

1−K′((2n− 1)z + A(z))
.

All generating functions in the numerator of Nu(z, 1) have non-negative coefficients, therefore,

[zm]Nu(z, 1) ≥ [zm]
[2z2 + z(2zA′(z) + 2(2n− 1)z)]K ′′((2n− 1)z + A(z))

1−K ′((2n− 1)z + A(z))
.
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Note that the generating function K ′′((2n − 1)z + A(z)) has only non negative integer coefficients.
Therefore, omitting it causes a further decrease of the coefficients of the generating function. So, after all
these reductions we can conclude that

[zm]Nu(z, 1) ≥ [zm]
4z2A′(z)

1−K ′((2n− 1)z + A(z))
=: [zm]F (z). (4)

Recall that:

A(z) =
1− 8nz −

√
1− 16nz

8
, A′(z) = n

(
1√

1− 16nz
− 1

)
, and K ′(z) =

1√
1− 4z

− 1.

Thus,

F (z) = 4nz2

(
1√

1− 16nz
− 1

)
1

2− 1√
1
2−4(n−1)z+ 1

2

√
1−16nz

.

Thus, for all r ≥ 0, substituting z by z/16n yields

[zr]F (z) = 2n (16n)r−2 [zr]z2

(
1√

1− z
− 1

)
2

2− 1q
1
2−

1
4 (1− 1

n )z+ 1
2

√
1−z

. (5)

Let us first focus on the last factor: Set

H(z) :=
2

2− 1q
1
2−

1
4 (1− 1

n )z+ 1
2

√
1−z

=
1

1− 1q
2−(1− 1

n )z+2
√

1−z

and observe that the shape of H(z) implies that all its coefficients are non-negative and thus its dominant
singularity must lie on the positive real axis. For 0 ≤ z ≤ 1, the radicand R := 2−

(
1− 1

n

)
z +2

√
1− z

is obviously always positive and strictly larger than 1. Thus, the denominator of H(z) never vanishes and
hence the dominant singularity of H(z) is z = 1, originating from the term

√
1− z of R. Hence, H(z)

admits a Puiseux expansion

H(z) = c0 + c1

√
1− z + c2(1− z) + c3(1− z)3/2 + . . . (6)

around z = 1, and all the coefficients ck depend on n.

Lemma 14 For all k ≥ 0, ck ∼ (−1)k(2n)k+1, as n tends to infinity.

Proof: Let X =
√

1− z, we have

H(z) =
1

1− 1
(1+1/n)+2X+(1−1/n)X2

=
1

1− 1√
1+1/n

∑
k≥0

(−1/2

k

) (
2X+(1−1/n)X2

1+1/n

)k

=
∑
p≥0

 1
1− 1√

1+1/n

p+1 ∑
k≥1

(
−1/2

k

)
Xk

(1 + 1/n)k

(
2 + (1− 1/n)X

1 + 1/n

)k
p

.
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Observing that
1

1− 1√
1+1/n

∼ 2n when n → +∞

completes the proof. 2

Now, let us turn to (3) and prove the desired lower bound. The following lemma immediately implies
Theorem 10.

Lemma 15 Let ε > 0. If g(n) = Ω(n2+ε), then there is a constant C > 0 such that

µn({f such that L(f) ≤ g(n)}) ≥ C (7)

for sufficiently large n.

Proof: First observe that

[zm−r]G(z)
[zm]T (z)

=
[zm−r]G(z)
[zm−r]T (z)

[zm−r]T (z)
[zm]T (z)

=
[zm−r]G(z)
[zm−r]T (z)

(16n)−r.

Starting from (3), then applying Lemma 13, (4), and (5), we arrive at

µn({f such that L(f) ≤ g(n)}) ≥ lim
m→+∞

4n ·
g(n)∑
r=1

[zr]∂uN(z, 1)
[zm−r]G(z)
[zm]T (z)

≥ 2n√
πg(n)

·
g(n)∑
r=1

[zr]∂uN(z, 1)
1

(16n)r+1

≥ 1
1024n

√
πg(n)

·
g(n)−2∑

r=0

[zr]
(

1√
1− z

− 1
)

H(z)

∼ 1
1024n

√
πg(n)

[zg(n)−2]
1

(1− z)3/2
H(z)

Using the Puiseux expansion (6) then the classical transfer lemma yielding [zm](1− z)−α ∼ mα−1
/Γ(α),

we obtain

[zm]
H(z)

(1− z)3/2
= c0

2
√

m√
π

+ c2
1√

πg(n)
+ O(g(n)−3/2).

The constant hidden in the error term depends on n, but using the knowledge on the growth rate of the ck

in (6), we conclude that

µn({f such that L(f) ≤ g(n)}) ≥ 1
256π

+
n2

128πg(n)
+ Rn

with |Rn| = O
(
n4

/g(n)2
)
; and here the O-constant is independent of n. 2
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4 Conclusion
The new specification for And/Or trees presented in the present paper has permitted us to count precisely
valid expansions of trees of size at most n2. We have shown by precise analytic combinatorics that the
asymptotic proportion of such expanded trees is positive, implying that the And/Or tree distribution do
not exhibit Shannon effect.

It is interesting to note that, as in the implicational systems, we need a subset of functions of quadratic
complexity in order to disprove the presence of the Shannon effect.

Note that we have shown that the asymptotic probability of functions of quadratic complexity is pos-
itive, but we have not proven that it is equal to one. In view of the absence of the Shannon effect and
Kozik’s result on the limiting distributions it seems reasonable that asymptotically almost all functions
have polynomial complexity. It appears reasonable to conjecture that the asymptotic proportion of the
class we used to prove our result is one, but proving this conjecture would need further arguments.

To be more precise, it would be interesting to extend Lemma 15 in two directions: showing that it still
holds if ε is 0; and proving that C = 1.
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