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Abstract. We consider random mappings from an n–element set into itself with constraints

on coalescence as introduced by Arney and Bender. A local limit theorem for the distribution

of the number of predecessors of a random point in such a mapping is presented by using a

generating function approach and singularity analysis.

1. Introduction

For Mn = {1, 2, . . . , n} let Fn denote the set of all functions from Mn into itself equipped with
the uniform distribution. Then an element of Fn is called a random mapping. Each random
mapping f can be represented by a functional graph, i.e. the graph consisting of the nodes
1, 2, . . . , n, and of the edges (i, f(i)), i = 1, . . . , n. Various characteristics of random mappings
have been studied. See e.g. [1, 3, 4, 6, 8, 9, 10, 12].

Arney and Bender [1] examined a more general model: They considered mappings such
that the number of preimages of every point lies in a given set D of nonnegative integers (with
0 ∈ D) or, equivalently, the degrees of the nodes of the functional graph have to be in D. Let F D

n

denote the set of those mappings on Mn. Arney and Bender derived the distributions of many
random mapping characteristics for F D

n mainly by means of combinatorial counting arguments.
In this paper we will study the distribution of a further random mapping characteristic using
a generating function approach.

Let x ∈ Mn and f ∈ F D
n . y ∈ Mn is called a predecessor of x if there exists a j > 0 such that

the j-th iterate of f applied on y yields x. Denote the number of predecessors of x by ω(x).
Then we will show

Theorem 1. Let φ(x) =
∑

k∈D xk/k! and β be the positive root of βφ′(β) = φ(β). Furthermore

define λ := β2φ′′(β)/φ(β) and d := gcd{k : k ∈ D}. Then for a randomly chosen point of a

mapping of F D
n the expected number of predecessors equals ∼

√

πn
2λ and moreover a local limit

theorem holds: If d|r then

P[ω = r] =
d

√

2πλr3
(

1 − r
n

)

(1 + o(1))

for r → ∞ and n − r → ∞. Otherwise P[ω = r] = 0

Remark . For the special cases D = {0, 1, 2, ...} and D = {0, k} the above result was obtained
by Rubin and Sitgreaves [11].

2. Combinatorial Background

The basic concept which our method relies on is that of combinatorial constructions described
e.g. in [13]: Let A be a set of combinatorial objects where each object σ ∈ A has a size |σ|. If
an denotes the number of objects in A having size n, then

Â(z) =
∑

n≥0

an
zn

n!
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is called the (exponential) generating function (GF) of A.
The advantage of the generating function approach is the fact that there is a direct cor-

respondence between operations on combinatorial constructions and on GFs (see [13]). Using
the graph representation of random mappings it is easy to see that they may be regarded as
multisets of cycles of Cayley trees, i.e. labelled rooted trees. Let A denote the set of Cayley
trees. Then A can be defined recursively by the symbolic equation

A = ◦ ∗ mset(A),

where ◦ represents a node. Analogously, we get for the set of random mappings, F :

F = mset(cycle(A))

This implies the following equations for the corresponding GFs: The GF of Cayley trees is given
by

a(z) = zea(z)

and the GF of random mappings

f(z) =
1

1 − a(z)
.

As we want to study the random mappings with constraints on coalescence, we have to modify
a(z) properly and obtain

a(z) = zφ(a(z)) where φ(z) =
∑

k∈D

zk

k!
.

and the GF of constrained random mappings is given by

f(z) =
1

1 − b(z)
where b(z) = zφ′(ā(z))

since the root of each tree has an additional predecessor coming from the cycle.

Let c
(r)
nk denote the number of mappings in F D

n which have exactly k points x satisfying
ω(x) = r, where ω(x) is the number of predecessors of the point x. The number of all points in

all mappings of F D
n that satisfy this equation is denoted by b

(r)
n . Hence we have

1

|FD
n |nb(r)

n = P{ω = r}.

Thus for establishing the local limit theorem we have to compute b
(r)
n . Obviously the relation

b(r)
n =

∑

k≥1

kc
(r)
nk

holds. Therefore b
(r)
n can be calculated by

b(r)
n =

[

zn

n!

]

(cr)u(z, 1) (1)

where [zn]f denotes the coefficient of zn in the power series of f and (cr)u denotes the partial
derivative with respect to u. cr(z, u) is defined by

cr(z, u) =
∑

n,k≥0

c
(r)
nk

zn

n!
uk

and can be obtained by marking the nodes we are keeping track of in the functional graphs
which corresponds to introducing a further variable in the GF. Further examples of these
marking techniques in combinatorial constructions can be found in [3, 4].

(1) shows that in order to get the asymptotic behaviour of b
(r)
n we have to evaluate the

coefficients of certain power series. In order to do this we will use the following theorem by
Flajolet and Odlyzko [7].
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Theorem 2. Let f(z) be analytic in the domain

∆ = {z/|z| ≤ s + η, |arg(z − s)| ≥ φ},

where s, η are positive real numbers and 0 < φ < π
2 . Furthermore let σ(u) = uα logβ u, α /∈

{0,−1,−2, . . . }. Then the Taylor coefficients of f satisfy

f(z) ∼ σ

(

1

1 − z/s

)

for z → s in ∆ =⇒ [zn]f(z) ∼ σ(n)

snnΓ(α)
.

Analogous formulas hold for O and o instead of ∼.

3. Proof of Theorem 1

For convenience, define ar = [zr]a(z), bmr = [zr]b(z)m and assume that d = 1. bn = [zn]1/(1−
b(z)). First of all, let us set up the GF cr(z, u). Therefore we have to mark all nodes that are
roots of a tree with size r. This leads to the following modification of a(z):

tr(z, u) = zφ(tr(z, u)) + (u − 1)arz
r.

Moreover we have to take into account that the set of predecessors of a node which belongs to
a cycle consists of all nodes in the component. Hence in a component of size r all nodes in the
cycle have to be marked. For components containing a cycle of length m this yields the GF

(zφ′(tr(z, u)))m

m
+

1

m
(um − 1)zrbmr.

Thus we have

cr(z, u) =
1

1 − zφ′(tr(z, u))
exp

(

zr
r
∑

m=1

um − 1

m
bmr

)

and consequently

(cr)u(z, 1) =
arz

r+1φ′′(a(z))

(1 − b(z))3
+

zr
∑r

m=1 bmr

1 − b(z)
. (2)

Note that bmr = 0 if m = 0 or m > r and thus

r
∑

m=1

bmr =
∞
∑

m=0

bmr = [zr]
1

1 − b(z)
= br.

Hence the functions a(z) and b(z) contain the information we need. a(z) has a singularity ρ
on the circle of convergence which is determined by

a(ρ) = ρφ(a(ρ))

1 = ρφ′(a(ρ)).

To proceed we will need the following lemma which is an immediate consequence of [5, Theorem
7.1]:

Lemma 1. Let F (z, y) be continuous in {(x, y) : |z − z0| < r1, |y − y0| < r2}. Furthermore

assume that if one variable is fixed, then F is analytic in the other variable. If F (z0, y0) =
Fy(z0, y0) = 0, Fz(z0, y0) 6= 0 and Fyy(z0, y0), then there exists a function y(z) which admits

the local representation

y(z) ∼ y0 −
√

2Fz(z0, y0)

Fyy(z0, y0)

√
z0 − z

for z → z0.
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Thus in the vicinity of ρ a(z) admits the following local expansion:

a(z) ∼ β −
√

2φ(β)

φ′′(β)

√

1 − z

ρ
= β − β

√
2√

λ

√

1 − z

ρ
, as z → ρ

where β = a(ρ) and λ = β2φ′′(β)/φ(β). By expanding φ(z) we immediately obtain

b(z) ∼ 1 − ρ
√

2φ(β)φ′′(β)

√

1 − z

ρ
= 1 −

√
2λ

√

1 − z

ρ
as z → ρ

and thus

1

1 − b(z)
∼ 1√

2λ

(

1

1 − z/ρ

)1/2

as z → ρ. (3)

Now we are able to apply Theorem 2 and get

ar ∼ β

ρr
√

2πλr3
and br ∼ 1

ρr
√

2πλr
as r → ∞. (4)

Using this we finally get

b
(r)
n

|FD
n |n =

1

nbn
[zn](cr)u(z, 1)

∼ ρn
√

2πλn

n

(

arλ

β
[zn−r]

1

(1 − b(z))3
+ [zn−r]

1

1 − b(z)
[zr]

1

1 − b(z)

)

∼ ρn
√

2πλn

n

(

λ

ρr
√

2πλr3

√
n − r

ρn−r
√

2πλ3
+

1

ρr
√

2πλr

1

ρn−r
√

2πλ(n − r)

)

=
1

√

2πλr3(1 − r/n)

What remains to do is the calculation of the mean value µn: By (2) we have

µn =
1

nbn
[zn]

∑

r≥0

r(cr)u(z, 1)

=
1

nbn
[zn]

(

φ′′(a(z))

(1 − b(z))3
z2a′(z) +

1

1 − b(z)
z

(

1

1 − b(z)

)′
)

Using the functional equation of a(z) we immediately get

a′(z) =
a(z)

z(1 − b(z))
.

This implies

µn =
1

nbn
[zn]

(

2zφ′′(a(z))a(z)

(1 − b(z))4
+

zφ′(a(z))

(1 − b(z))3

)

Now observe that for z → ρ we have zφ′′(a(z))a(z) ∼ λ. Thus we get by using (3) and (4) and
applying Theorem 2

µn =

√

πn

2λ

(

1 + O
(

1√
n

))

and the proof is complete.

Remark 1. In an analogous way it is possible to reobtain Arney and Bender’s [1] results by the
method presented here or to derive local limit theorems for other random mapping character-
istics. Note, for instance, that recently Baron, Drmota and Mutafchief [2] derived the missing
distribution of [1, Table II] by using a generating function approach.
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Remark 2. It should be mentioned that the coefficient of coalescence λ which occurs in the dis-
tributions of several random mapping characteristics has a simple probabilistic interpretation,
as Aldous pointed out: If we consider the trees which build up the random mappings as repre-
sentations of Galton-Watson branching processes, then the offspring distribution is determined
by the tree function φ(z) and λ is equal to its variance.
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