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We consider the number of nodes in the levels of unlabeled rooted random trees and show that the joint distribution
of several level sizes (where the level number is scaled by

√
n) weakly converges to the distribution of the local time

of a Brownian excursion evaluated at the times corresponding to the level numbers. This extends existing results for
simply generated trees and forests to the case of unlabeled rooted trees.
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1 Introduction
We consider the profile of unlabeled rooted random trees, sometimes called Pólya trees, because the
enumeration theory of Pólya (1937) allows an analytical treatment of this class of trees by means of
generating functions. The profile is defined as the stochastic process built of the level sizes of a random
tree, where a level is a set of nodes at a fixed distance from the root. The distance from the root, scaled by√

n serves as time index of this process.
The first investigations of the profile of random trees seem to go back to Stepanov (1969) who derived

explicit formulas for the distribution of the size of one level. Further papers deal mainly with simply
generated trees as defined by Meir and Moon (1978). Kolchin (see Kolchin (1977, 1986)) related the level
size distributions to distributions occurring in particle allocation schemes. Later Takács (1991) derived
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another expression for the level sizes by means of generating functions. Aldous (1991) conjectured two
functional limit theorems for the profile in two different ranges which were proved in Drmota and Git-
tenberger (1997); Gittenberger (1998). Drmota (1997) studied restrictions of the profile to nodes of fixed
degree. An extension to random forests of simply generated trees is given by Gittenberger (2002).

Later other tree classes have been considered as well. The profile of random binary search trees has
been first studied by Chauvin et al. (2001) and later by Drmota (2004) and Drmota and Hwang (a).
Random recursive trees have been investigated recently by Drmota and Hwang (b) and van der Hofstad
et al. (2002).

The plan of the proof is as follows. We will first set up the generating functions of the trees where
nodes in certain levels are marked. This function is given as solution of a recurrence relation which has
to be analyzed in detail. Then we are able to show that the finite dimensional distributions (fdd’s) of the
profile, i.e., the distributions of the sizes of several levels considered simultaneously, converge to the fdd’s
of Brownian excursion local time.

We want to remark that for a functional limit theorem, as it is available for the other tree classes men-
tioned above, the convergence of the fdd’s is not sufficient. Therefore it would be necessary to establish
tightness (see Billingsley (1968) of the process. This requires to estimate certain moments of the dif-
ferences of the sizes of two given levels and could be done by the same approach. But the generating
functions appearing here are very involved and hence we are not able to solve this problem at the moment.

2 Preliminaries and Results
First we collect some results for unlabeled unrooted trees. Let Yn denote the set of unlabeled rooted trees
of size n and yn be the cardinality of this set. Pólya (1937) already discussed the generating function

y(z) = ∑
n≥1

ynzn

and showed that the radius of convergence ρ satisfies 0 < ρ < 1 and that z = ρ is the only singularity on
the circle of convergence |z| = ρ. He also showed that y(z) satisfies the functional equation

y(z) = zexp

(

∑
i≥1

y(zi)

i

)

.

Later Otter (1948) showed that y(ρ) = 1 as well as the asymptotic expansion

y(z) = 1−b(ρ− z)1/2 + c(ρ− z)+d(ρ− z)3/2+ · · · (1)

which he used to deduce that

yn ∼
b
√ρ

2
√

π
n−3/2ρ−n.

Furthermore he calculated the first constants appearing in this expansion: ρ ≈ 0.3383219, b ≈ 2.6811266,
and c = b2/3 ≈ 2.3961466.

Let Ln(t) denote the number of nodes at distance t from the root of a unlabeled rooted tree of size n. If
t is not an integer, then define Ln(t) by linear interpolation:

Ln(t) = (btc+1− t)Ln(btc)+(t −btc)Ln(btc+1), t ≥ 0.

We will show the following theorem.
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Theorem 1 Let

ln(t) =
1√
n

Ln
(

t
√

n
)

and l(t) denote the local time of a standard scaled Brownian excursion. Then we have for any d and any
choice of fixed numbers t1, . . . , td the following limit theorem:

(ln(t1), . . . , ln(td))
w−→ 1

b
√ρ

((

b
2
√

2
· t1
)

, . . . ,

(

b
2
√

2
· td
))

,

as n → ∞, where b is the constant of Equation (1).

3 Combinatorial Setup
In order to compute the distribution of the number of nodes in some given levels in a tree of size n we have
to calculate the number Y (k1m1k2m2 · · ·kdmdn) of trees of size n with mi nodes in level ki, i = 1, . . . ,d and
normalize by yn.

Therefore we introduce the functions y(k|z,u,s), where s may depend on z and u, be given by the
recurrence relation

y(0|z,u,s) = us

y(k +1|z,u,s) = zexp

(

∑
i≥1

y(k|zi,ui,s)
i

)

, k ≥ 0. (2)

Then we have

y(k1, . . . ,kd |z,u1, . . . ,ud) = ∑
m1,...,md ,n≥0

y(k1m1k2m2 · · ·kdmdn)um1
1 · · ·umd

d zn

= y(k1|(z,u1,y(k2 − k1|(z,u2, . . .y(kd − kd−1|(z,ud ,y(z)) . . . )

Note that for d = 1 we have y(k|z,u) = y(k|z,u,y(z)). The characteristic function of the joint distribution
of 1√

n Ln(k1), . . . ,
1√
n Ln(kd) is then given by

φk1···kd n(t1, . . . , td) =
1
yn

[zn]y(k1, . . . ,kd |
(

z,eit1/
√

n, . . .eitd/
√

n
)

.

This coefficient will be calculated by singularity analysis (see Flajolet and Odlyzko (1990)). Hence
the following lemma will be the crucial step of the proof. Note that we will use y(k|z,u,s) as generating
functions for certain tree families consisting of unlabeled trees with some nodes marked (in particular, all
nodes in a certain level). Thus we will make this restriction in the sequel.

Lemma 1 Set w = us− y(z) and z = ρ
(

1+ x
n

)

. Assume that |w| = O
(

1√
n

)

and z−ρ → 0 in such a way

that arg(z−ρ) 6= 0 and

1− C2√
n
≤
∣

∣

∣

∣

1−
√

1− z
ρ

∣

∣

∣

∣

≤ 1+
C√

n
.
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Furthermore, assume that s is either y(z) or y(k1, . . . ,kd |z,u1, . . . ,ud) for some d. Then y(k|z,u,s) admits
the local representation

y(k|z,u,s) = y(z)+
y(z)kw

1− 1−y(z)k

2(1−y(z))w+O
(∣

∣

∣

1−y(z)2k

1−y(z)2

∣

∣

∣
|w|2

) (3)

uniformly for k = O (
√

n).

The proof is presented in the next section.

4 The Local Behaviour of y(k|·)
Note that for all choices of the initial condition s in (2) which are relevant in this context, the sequence
y(k|z,u,s) tends to y(z), as k tends to infinity. (Of course we have to make precise the allowed range of z
and u.) Hence we will first derive a-priori estimates for the differences

wk(z,u) = y(k|z,u,s)− y(z)

and then proceed by bootstrapping.
First observe that if s = y(z) (the other cases behave similarly) we have

|wk(z,u)| =
∣

∣

∣

∣

∣

∑
n

∑
m<n

Ykmn(um −1)zn

∣

∣

∣

∣

∣

≤ 2∑
n

∑
m<n

Ykmn|zu|n −2∑
n

Yk0n|z|n

= 2y(≥ k| |zu|) (4)

where y(≥ k|z) denote the generating function enumerating trees with height at least k.

Lemma 2 Consider the space Ω of all functions u(z), which are analytic in B := {z ∈ C : |z| ≤ ρ2 + ε}
and satisfy u(0) = 0, equipped with the norm

‖u‖= max
z∈B

∣

∣

∣

∣

u(z)
z

∣

∣

∣

∣

.

Then the operator T defined by

Tu = zexp

(

∑
i≥1

u(zi)

i

)

is a contraction for functions in the set {u ∈ Ω : ‖u‖< 3}.

Remark Note that since y(z)/z has only positive coefficients, we have ‖y(z)‖ ≤ y(ρ)/ρ < 3 and hence it
will be sufficient that T is a contraction for functions with norm bounded by (1+ ε)‖y‖.
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Proof: We have
∣

∣

∣

∣

Tu−Tv
z

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

exp

(

∑
i≥1

u(zi)

i

)

− exp

(

∑
i≥1

v(zi)

i

)∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑
i≥1

u(zi)− v(zi)

i

∣

∣

∣

∣

∣

exp

(

max

(∣

∣

∣

∣

∣

∑
i≥1

u(zi)

i

∣

∣

∣

∣

∣

,∑
i≥1

∣

∣

∣

∣

v(zi)

i

∣

∣

∣

∣

))

≤ ‖u− v‖∑
i≥1

∣

∣

∣

∣

zi

i

∣

∣

∣

∣

exp

(

∑
i≥1

∣

∣

∣

∣

zi

i

∣

∣

∣

∣

max(‖u‖,‖v‖)
)

≤ L‖u− v‖
where L can be chosen less than 1, since max(‖u‖,‖v‖) < 3 and

∑
i≥1

∣

∣

∣

∣

zi

i

∣

∣

∣

∣

≤ log
1

1− (ρ2 + ε)
< 0.13

for sufficiently small ε. 2

Note that
y(≥ k|z) = y(z)− y(< k|z) = T k−1y(z)−T k−1z.

Hence ‖y(≥ k|·)‖ ≤ Lk−1‖y(z)− z‖ and thus we get the bound

|wk(zi,ui)| ≤CLk|zu|i (5)

where C can be chosen less than 1/2. This gives rise to the next a priori estimate.

Lemma 3 Suppose that w0 = O (1/
√

n), |y| = 1+Θ(1/
√

n), and k = O
(

|w0|−1). Then

wi = O
(

w0yi) .

Proof: The proof runs by induction. Assume wk ≤ (1+C0|w0|) and note that since we have in the range
for z and u which is given by the assumptions of the lemma |y(k|z,u)| ≤ y(|z|(1 + ε), we immediately
get that zey+θkwk and zexp

(

y(zi)+θkiwk(zi,ui)
i

)

are uniformly bounded if θk and θki lie in the unit interval.
Therefore the Taylor expansion

y(k +1|z,u) = zexp

(

y(z)+wk(z,u)+ ∑
i≥2

y(zi)+wk(zi,ui)

i

)

= y(z)exp

(

wk(z,u)+ ∑
i≥2

wk(zi,ui)

i

)

(6)

yields

|wk+1(z,u)| =
∣

∣

∣

∣

∣

y(z)wk(z,u)+
y(z)

2
+O

(

w3
k
)

+O

(

∑
i≥2

wk(zi,ui)

i

)∣

∣

∣

∣

∣

(1+C1|w0|+C2|wk|) |wk|

≤
(

1+C1|w0|+C2(1+C0|w0|)k|w0|
)

(1+C0|w0|)k|w0|
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Hence |wk| ≤ (1+C0|w0|)k|w0| = O
(

w0yi
)

and the proof is complete. 2

Now we continue with bootstrapping. By expanding (6) into a Taylor series and using (5) we get

wk+1 = ywi +
y
2

w2
k +O

(

|wk|3
)

+O
(

Lk
)

.

This recursion can be solved asymptotically by setting qk = yk

wk
which yields

qk+1 = qk −
y
2

yk−1 +O
(

|wk||y|k
)

+O
(

Lk|y|k
|wk|2

)

Since Lk = O
(

|wk|3
)

, this implies

qk =
1

w0
− 1

2
1− yk

1− y
+O

(

|w0|
∣

∣

∣

∣

1− y2k

1− y2

∣

∣

∣

∣

)

and this implies (3).

5 Finite Dimensional Distributions
For d = 1 we have

φk,n(t) =
1
yn

[zn]y(k|
(

z,eit/
√

n,y(z)
)

=
1

2πiyn

Z

Γ
y(k|

(

z,eis/
√

n,y(z)
) dz

zn+1 (7)

where the contour Γ = γ∪Γ4 consists of a truncated Hankel contour γ = Γ1∪Γ2∪Γ3 around the singularity
(at distance 1/

√
n closed by a circular arc Γ4).

The contribution of Γ4 turns out to be small and if z ∈ γ, then the local expansion (3) is valid. Further-
more we have with z = ρ

(

1+ x
n

)

and k = κ
√

n the following expansions:

(

eit/
√

n −1
)

y(z) ∼ it√
n

1− y(z)∼ b
√

− x
n

y(z)k ∼ exp
(

−bκ
√
−x
)

and hence
y(k|

(

z,eit/
√

n,y(z)
)

= y(z)+wk

(

z,eit/
√

n
)

where

wk =
1√
n

it
√−xexp

(

− bκ
2
√−x

)

√
−xexp

(

− bκ
2
√
−x
)

− it
b
√ρ sinh

( bκ
2
√
−x
) .

Insertion into (7) yields the characteristic function of the distribution of l(bκ/2
√

2)/b
√ρ as desired.
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Now we can proceed by induction. We have for d = 2

φk,k+h,n(t1, t2) =
1
yn

[zn]y(k|
(

z,eit1/
√

n,y(h|
(

z,eit2/
√

n,y(z)
))

and
y(k|

(

z,eit1/
√

n,y(h|
(

z,eit2/
√

n,y(z)
))

= y(z)+ w̃k

where w̃k can be estimated similarly by application of Lemma 1. This step can be repeated easily for
d > 2 and in this way we get the characteristic functions of the fdd’s of l((b/2

√
2) · t)/b

√ρ as desired.
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