
STRATA OF RANDOM MAPPINGS – A COMBINATORIAL APPROACH

MICHAEL DRMOTA AND BERNHARD GITTENBERGER

Abstract. Consider the functional graph of a random mapping from an n–element set into

itself. Then the number of nodes in the strata of this graph can be viewed as stochastic

process. Using a generating function approach it is shown that a suitable normalization of

this process converges weakly to local time of reflecting Brownian bridge.

1. Introduction

Let Fn denote the set of all mappings ϕ : {1, . . . , n} → {1, . . . , n} and assume that this
set is equipped with the uniform distribution. Then a mapping ϕ ∈ Fn is usually called a
random mapping. For our investigations it is convenient to represent random mappings by its
functional graph Gϕ, i.e. the graph consisting of the nodes 1, 2, . . . , n and of the edges (i, ϕ(i)),
i = 1, . . . , n. It is easy to see that each component of such a graph consists of exactly one cycle
of length ≥ 1 each point of which is the root of a labeled tree. Thus for each point x ∈ Gϕ there
exists a unique path connecting x with the next cyclic point. The length of this path is called
the distance of x to the cycle. The set of all points at a fixed distance r from the cycle is often
called the r-th stratum of ϕ.

Let Ln(r) denote the number of nodes in the r-th stratum of a random mapping ϕ ∈ Fn.
The behavior of this random variable for n → ∞ has attracted the interest of many authors.
Harris [14] showed that the number of cyclic points Ln(0)/

√
n weakly converges to a Rayleigh

distribution with mean value
√

πn/2. Mutafchiev [18] proved that this result is still true for
r = o(

√
n ). The corresponding local limit theorem is derived in [8]. In case of r ∼ c

√
n, c > 0,

Mutafchiev’s result is no longer true. Representations for the moments and the density of the
limiting distribution for this case have been established by Proskurin [19]. Finally, it should
be mentioned that a survey of several related random mapping characteristics as well as the
relations to branching processes and random trees are contained in Kolchin’s book [17].

Aldous and Pitman [4] studied the contour of a random mapping, i.e. the polygonal function
obtained by traversing each tree of Gϕ successively. They showed that the suitably rescaled
contour process weakly converges to reflecting Brownian bridge (rBB), i.e. the process identical
in law to (|W (t)−tW (1)|, 0 ≤ t ≤ 1) where W (t) is a one dimensional Brownian motion (BM) or
roughly speaking rBB is a BM of length 1 reflected at 0 and conditioned to have zeros at 0 and
1. In view of the results in [9, 11] this suggests that the process ln(t) = n−1/2Ln(t

√
n), t ≥ 0,

where

Ln(t) = (btc + 1 − t)Ln(btc) + (t − btc)Ln(btc + 1), for non-integral t ≥ 0,

converges weakly to the local time process for rBB. In fact, we will prove

Theorem 1.1. Let B(t) denote reflecting Brownian bridge and l(t) its local time, i.e.

l(t) = lim
ε→0

1

ε

1
∫

0

I[t,t+ε](B(s)) ds
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Then we have

ln(t)
w−→ 1

2
l

(

t

2

)

in C[0,∞), as n → ∞.

What we have to do is to prove the weak convergence of the finite dimensional distributions
(fdd’s) and that the process is tight (see [6, Theorem 12.3] or [16, p. 63]). In order to do this
we will proceed as follows: First we will calculate the limiting distribution of the fdd’s of ln(t)
using a generating function approach which is explained in the next section. Then we proceed
with the computation of the fdd’s of rBB local time by methods of Itô’s excursion theory (see
[15, 21]) and observe that those distributions coincide. We will also briefly indicate how the
generating function approach could be used to obtain the local time distributions. Finally, the
proof of tightness is presented.

Remark . Note that our method also allows us to reprove [4, Theorem 8] in a similar way as
it has been done the analogous problem for random trees (see e.g. [11] where a combinatorial
approach is used to extend a result of [13] and to reprove parts of the results of [1, 2, 3]).

2. Preliminaries

Let bkmn denote the number of all functional graphs in Fn where Ln(k) = m. As we are
considering the uniform probability model, we have

P {Ln(k) = m|T ∈ An} =
bnm,k

nn
. (2.1)

Furthermore the bivariate GF of bnm,k is given by

bk(z, u) =
∑

n,m≥0

bnm,kum zn

n!
=

1

1 − ak(z, u)
with ak(z, u) = yk(z, ua(z))

where

y0(z, u) = u

yi+1(z, u) = zeyi(z,u), i ≥ 0,

and a(z) is the well-known tree function given by its functional equation a(z) = z exp(a(z)).
This follows immediately from the combinatorial setup (details see [9]). Hence the characteristic
function of n−1/2Ln(k) is

φkn(t) =
n!

nn
[zn]

(

1 − yk

(

z, eit/
√

na(z)
))−1

and that of
(

n−1/2Ln(k1), . . . , n
−1/2Ln(kp)

)

is given by

φk1···kpn(t1, . . . , tp) =

n!

nn
[zn]

[

1 − yk1

(

z, eit1/
√

nyk2−k1

(

z, . . . ykp−kp−1

(

z, eitp/
√

na(z)
)

. . .
)]−1

.
(2.2)

Thus in order to prove Theorem 1.1 we have to show

φ̄κ1/2,...,κp/2(t1/2, . . . , tp/2) = φκ1···κp
(t1, . . . , tp) (2.3)

where φ̄κ1,...,κp
(t1, . . . , tp) is the characteristic function of the joint distribution of

(l(κ1), . . . , l(κp)) and φκ1...κp
(t1, . . . , tp) = lim

n→∞
φk1···kpn(t1, . . . , tp). For extracting the coeffi-

cient in (2.2) we will use Cauchy’s integral formula and singularity analysis in the sense of
Flajolet and Odlyzko [10]. Thus we need some information about the local behaviour of the
involved functions:
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Lemma 2.1. Let z = e−1
(

1 + x
n

)

. Furthermore assume that |u − a(z)| = O
(

1√
n

)

and x
n → 0

in such a way that | arg(−x)| < π and
∣

∣

∣

∣

∣

1 −
√

−x

n

∣

∣

∣

∣

∣

≤ 1 +
C√
n

are satisfied. Then yk(z, u) admits the local representation

yk(z, u) = a(z) +
2
√

−x/n(u − a(z))a(z)k

√

−x/n(1 + a(z)k) +
1 − u√

2
(1 − a(z)k) + O (|x|/n)

,

uniformly for k = O (
√

n).

Proof. The proof is immediate by setting ϕ(t) = et, σ = 1 and τ = 1 in [9, Lemma 2.1].

3. Convergence of the Finite Dimensional Distributions

In this section we will show the following two theorems:

Theorem 3.1. Let ki = κi
√

n, i = 1, . . . , k where 0 < κ1 < · · · < κp. Then the charac-

teristic function φκ1...κp
(t1, . . . , tp) = lim

n→∞
φk1···kpn(t1, . . . , tp) of the limiting distribution of

(

1√
n
Ln(k1), . . . ,

1√
n
Ln(kp)

)

satisfies

φκ1...κp
(t1, . . . , tp) =

1

2i
√

π

∫

γ

fκ1,...,κp
(x, t1, . . . , tp)

e−x

√
−x

dx, (3.1)

where

fκ1,...,κp
(x, t1, . . . , tp)

= Ψκ1

(

x,
it1√

2
+ Ψ̃κ2−κ1

(

it2√
2

+ Ψ̃κ3−κ2

(

. . . Ψ̃κp−1−κp−2

(

x,
itp−1√

2
+ Ψ̃κp−κp−1

(

x,
itp√

2

))

· · ·
)

with

Ψκ(x, t) =

√
−xe−κ

√
−x/2 − t sinh

(

κ
√

−x/2
)

√
−xeκ

√
−x/2 − t cosh

(

κ
√

−x/2
)

and

Ψ̃κ(x, t) =
t
√
−xe−κ

√
−x/2

√
−xeκ

√
−x/2 − t sinh

(

κ
√

−x/2
) (3.2)

and γ is the Hankel contour1 γ1 ∪ γ2 ∪ γ3 defined by

γ1 =
{

s
∣

∣|s| = 1 and <s ≤ 0
}

,

γ2 =
{

s
∣

∣=s = 1 and <s ≥ 0
}

,

γ3 = γ2.

(3.3)

Remark . Note that by means of the generating function approach we get only a proof of this
theorem for integral ki and thus a limit theorem for the step function process Ln(bt√nc)/√n.
However, a direct application of the tightness inequality (Theorem 4.1) shows that the difference
Ln(bt√nc)/√n−ln(t) converges to zero in probability and thus the theorem is correct as stated.

1The names ”Hankel contour”, ”Hankel integral”, etc. originate from Hankel’s representation of the Gamma

function,

1

2πi

∫

γ

(−s)−αe−s ds =
1

Γ(α)
,

and have become usual due to the quite frequent occurrence of integration contours similar to γ in asymptotical

problems in combinatorics.
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Theorem 3.2. With the notation of the previous theorem the fdd’s of Brownian bridge local

time are given by

φ̄κ1...κp
(t1, . . . , tp) =

1

2i
√

π

∫

γ

f2κ1,...,2κp
(x, 2t1, . . . , 2tp)

e−x

√
−x

dx. (3.4)

The density of rBB local time. As mentioned in the introduction Proskurin [19] calculated
the limiting distribution of the number of nodes in the r-th stratum for r/

√
n → ρ > 0. His

result implies that the one-dimensional density fρ(x) of the total local time at level ρ has a
representation of the form

fρ(x) =
2

ρ

∞
∑

j=1

(−1)j

(j − 1)!

[

∂j

∂uj
(u − j)j−1e−2ρ2u2

]

u=j+x/2ρ

. (3.5)

Using a random walk approximation Takács [22] obtained a different representation, namely

fρ(x) = 2

∞
∑

l=1

l
∑

j=1

(

l

j

)

(−1)l+jxj−1

(j − 1)!
e−(2lρ+x)2/2Hj(2lρ + x) (3.6)

where Hj(x) are the Hermite polynomials defined by

Hj(x) = j!

bn/2c
∑

i=0

(−1)ixj−2i

2ii!(j − 2i)!
.

Using our approach the density can be determined by the appropriate coefficient in the
generating function (cf. (2.1)) and this yields a third representation given by

fρ(x) =
1

i
√

2π

−1+∞·i
∫

−1−∞·i

e−ρ
√
−2u−u

cosh2
(

ρ
√
−2u

) exp

(

− x√
2

√
−ueρ

√
−2u

cosh
(

ρ
√
−2u

)

)

du.

This one is the analogous form of Cohen and Hooghiemstra’s [7] represention for the Brow-
nian excursion local time density (for a list of further representations, among them the analoga
of (3.6), see [9]) and could be generalized to multi-dimensional densities by evaluating the cor-
responding coefficients in the multivariate generating functions. In case of Brownian excursion
local time this has been done in [12]. However, it seems to be difficult to get multivariate ex-
tensions of (3.5) or (3.6) and the analogous problem for Brownian excursion is also unsolved
up to now.

Proof of Theorem 3.1. In order to prove this theorem we have to calculate the right-hand side
of (2.2). We will use Cauchy’s integral formula with the integration contour Γ = Γ1∪Γ2∪Γ3∪Γ4

defined as follows:

Γ1 =

{

z =
1

e

(

1 +
x

n

)

∣

∣

∣

∣

<x ≤ 0 and |x| = 1

}

Γ2 =

{

z =
1

e

(

1 +
x

n

)

∣

∣

∣

∣

=x = 1 and 0 ≤ <x ≤ log2 n

}

Γ3 = Γ2

Γ4 =

{

z

∣

∣

∣

∣

|z| =
1

e

∣

∣

∣

∣

1 +
log2 n + i

n

∣

∣

∣

∣

and arg

(

1 +
log2 n + i

n

)

≤ | arg(z)| ≤ π

}

.

(3.7)

In order to see how the general scheme of the proof is running it suffices to consider the case
p = 2. Then the proof for p = 1 is merely an obvious simplification of the presented proof and
the remaining part is obtained by induction. Thus we have to calculate the integral

n!

nn

1

2πi

∫

Γ

1

1 − yk(z, uyh(z, va(z)))

dz

zn+1
(3.8)
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where u = eis/
√

n, v = eit/
√

n and k = κ
√

n, h = η
√

n. Set Rk(z, u) = yk(z, u)−a(z). Using the
well-known expansion

a(z) = 1 −
√

2
√

1 − ez + O (1 − ez) , z → 1

e
, z ∈ ∆ (3.9)

where

∆ =

{

z : |z| <
1

e
+ η, | arg(z − z0)| > ϑ

}

,

η > 0 and 0 < ϑ < π/2 arbitrary but fixed, we get the following asymptotic expansions on
γ′ = Γ1 ∪ Γ2 ∪ Γ3:

a(z) = 1 −
√

2

√

−x

n
+ O

( |x|
n

)

a(z)k = exp
(

−κ
√
−2x

)

(

1 + O
(

k|x|
n

))

Applying Lemma 2.1 and these formulae yields

1

1 − yk(z, uyh(z, va(z)))
=

√

− n

2x

√
−x exp

(

κ
√

−x/2
)

− (is/
√

2 +
√

n/2Rh) sinh
(

κ
√

−x/2
)

√
−x exp

(

κ
√

−x/2
)

− (is/
√

2 +
√

n/2Rh) cosh
(

κ
√

−x/2
)

×
(

1 + O
(

log2 n√
n

))

(3.10)

where

Rh = Rh(z, va(z)) =

√

−x

n

it exp
(

−η
√

−x/2
)

√
−x exp

(

−η
√

−x/2
)

− it√
2

sinh
(

−η
√

−x/2
)

×
(

1 + O
(

log2 n√
n

))

(3.11)

Now let us analyze the contribution of Γ4. Observe that
[

∂

∂x2
yh(x1, x2)

]

x1=z,x2=a(z)

= a(z)h.

Expanding the generating function in a Taylor series at (x1, x2) = (z, a(z)) gives

1

1 − yk(z, uyh(z, va(z)))
=

1

1 − a(z)
+

a(z)k

(1 − a(z))2
(uyh(z, va(z)) − a(z))

+ O
(

(uyh(z, va(z)) − a(z))2
)

=
1

1 − a(z)
+

a(z)k+1

(1 − a(z))2
(

u − 1 + u(v − 1)a(z)h + O
(

(v − 1)2
))

+ O
((

u − 1 + u(v − 1)a(z)h + O
(

(v − 1)2
)))

a(z) and 1/(1 − a(z)) have only positive coefficients and hence these functions attain their
maximum on Γ4 if and only if z ∈ Γ4 ∩ γ′, i.e. z = e−1(1 + (log2 n + i)/n). Thus we obtain

max
z∈Γ4

∣

∣

∣

∣

1

1 − a(z)

∣

∣

∣

∣

∼ 1√
2

√
n

log n

max
z∈Γ4

|a(z)|k ∼ exp

(

−κ<
√

− log2 n − i

)

= O (1) .
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Furthermore we have u − 1 = O (1/
√

n) and |z|−n−1 ∼ e− log2 n. Collecting all these estimates
yields finally

n!

nn

1

2π

∣

∣

∣

∣

∣

∣

∫

Γ4

1

1 − yk(z, uyh(z, va(z)))

dz

zn+1

∣

∣

∣

∣

∣

∣

= o(1).

and we are done. (3.8) – (3.11) give

ϕκ,κ+η(s, t) =
1

2i
√

π

∫

γ′

fκ,κ+η(x, s, t)
e−x

√
−x

dx.

It is easy to see that the numerator of fκ,κ+η is bounded by exp(C
√

|x|) for a suitable constant
C. Furthermore for x = y + i the denominator D(t, x) of fκ,κ+η satisfies

D(t, x) ∼ √−yeκ
√

−2(y+i)+η
√

−2(y+(1+t)i), y → ∞.

As the real part of the exponent converges to zero as y → ∞, the denominator is bounded from
below by a positive constant. Thus we may substitute the integration path γ ′ by γ due to the
dominated convergence theorem.

Proof of Theorem 3.2. For brevity, let us use the following notation in the sequel: If X is a
random variable on a probability space (Ω,A, P ) then set

P [X] :=

∫

Ω

X dP.

Furthermore, let W+(s) denote reflecting BM and τs := min{t : lt(0) ≥ s} where lt(a) denotes
the local time at level a of (W+(s), s ≥ 0) up to time t. By P τs we denote the distribution of
(W+(t), t ≥ 0) stopped at time τs and Qu denotes the distribution of rBB of length u. Then
the desired characteristic function is given by

φ̄κ1···κp
(t1, . . . , tp) = Q1

[

ei(t1l1(κ1)+···+tpl1(κp))
]

.

Moreover, note that (3.4) is an inverse Laplace transform and hence ϕ̄κ1···κp
can be obtained

by transforming a proper function of Qu. In fact we have

Proposition 3.1. With the notations above, for <x < 0 the following identity holds:
∫ ∞

0

Qu
[

ei(t1lu(κ1)+···+tplu(κp))
] exu du√

2πu
=

√
2√
−x

f2κ1,...,2κp
(2t1, . . . , 2tp)

This immediately implies Theorem 3.2.

Proof. By [21, Ch. VI, ex. 2.29 or Ch. XII, ex. 4.18] we have
∫ ∞

0

Qu du√
2πu

=

∫ ∞

0

P τs ds.

This implies
∫ ∞

0

Qu
[

ei(t1lu(κ1)+···+tplu(κp))
] exu du√

2πu
=

∫ ∞

0

P τs

[

ei(t1lτs (κ1)+···+tplτs (κp))exτs

]

ds.

Note that under P τs the local time is identical in law to the square of a 0-dimensional Bessel
process (see e.g. [5, p.78]) which we will denote by Xt in the sequel. Decomposing the duration
of the rBM in the form

τs =

∞
∫

0

lτs
(a) da =

κ1
∫

0

lτs
(a) da +

κ2
∫

κ1

lτs
(a) da + · · · +

κp
∫

κp−1

lτs
(a) da +

∞
∫

κp

lτs
(a) da
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gives

P τs

[

ei(t1lτs (κ1)+···+tplτs (κp))exτs

]

= E

[

ei(t1Xκ1
+···+tpXκp ) exp

(

x

∫ κ1

0

Xu du + x

∫ ∞

κ1

Xu du

)]

.

In this form our term is amenable to an application of [20, formula (2.k)] which states that for
κ′ < κ′′

E

[

exp

(

itXκ′′ + x

∫ κ′′

κ′

Xu du

)∣

∣

∣

∣

∣

Xκ′

]

= exp

(

−Xκ′

√

−x

2

1 − it
√

−2/x coth
(

(κ′′ − κ′)
√
−2x

)

coth
(

(κ′′ − κ′)
√
−2x

)

− it
√

−2/x

)

(3.12)

and

E

[

exp

(

x

∫ ∞

κ′′

Xu du

)
∣

∣

∣

∣

Xκ′′

]

= exp

(

−Xκ′′

√

−x

2

)

. (3.13)

Now proceed as in [9, pp. 440] (we will not detail this part): (3.12), (3.13) as well as the Markov
property give

E

[

exp

(

itpXκp
+ x

∫ ∞

κp−1

Xu du

)
∣

∣

∣

∣

∣

Xκp−1

]

= E

[

exp

(

itpXκp
+ x

∫ κp

κp−1

Xu du

)

E

[

exp

(

x

∫ ∞

κp

Xu du

)∣

∣

∣

∣

∣

Xκp

]∣

∣

∣

∣

∣

Xκp−1

]

= E

[

exp

(

(

itp −
√

−x

2

)

Xκp
+ x

∫ κp

κp−1

Xu du

)∣

∣

∣

∣

∣

Xκp−1

]

= exp

(

−Xκp−1

(
√

−x

2
− Ψ̃2(κp−κp−1)

(

x, itp
√

2
)

))

where Ψ̃(x, t) is defined in (3.2). The next step gives

E

[

exp

(

itp−1Xκp−1
+ itpXκp

+ x

∫ ∞

κp−2

Xu du

)∣

∣

∣

∣

∣

Xκp−2

]

= exp

(

−Xκp−2

(
√

−x

2
− Ψ̃2(κp−1−κp−2)

(

x, itp−1

√
2 + Ψ̃2(κp−κp−1)

(

x, itp
√

2
))

))

and proceeding analogously we obtain after all

E

[

exp

(

it2Xκ2
+ · · · + itpXκp

+ x

∫ ∞

κ1

Xu du

)
∣

∣

∣

∣

Xκ1

]

= exp

(

−Xκ1

(
√

−x

2
− f̃κ2···κp

(x, t2, . . . , tp)

))

where

f̃κ2,...,κp
(x, t2, . . . , tp)

= Ψ̃2(κ2−κ1)

(

. . . Ψ̃2(κp−1−κp−2)

(

x, itp−1

√
2 + Ψ̃2(κp−κp−1)

(

x, itp
√

2
))

· · ·
)

.
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Finally, observe that since we stop the BM at τs we have X0 = s. Hence we may apply again
[20, formula (2.k)] with d = 0 and x = s and get
∫ ∞

0

E
[

exp
(

it1Xκ1
+ · · · + itpXκp

+ xτs

)]

ds

=

∫ ∞

0

E

[

exp

(

itXκ1
+ x

∫ κ1

0

Xu du

)

× E

[

exp

(

it2Xκ2
+ · · · + itpXκp

+ x

∫ ∞

κ1

Xu du

)∣

∣

∣

∣

Xκ1

]∣

∣

∣

∣

X0 = s

]

ds

=

∫ ∞

0

E

[

exp

((

it −
√

−x

2
+ f̃κ2···κp

(x, t2, . . . , tp)

)

Xκ1
+ x

∫ κ1

0

Xu du

)∣

∣

∣

∣

X0 = s

]

ds

=

√

− 2

x
f2κ1,...,2κp

(2t1, . . . , 2tp)

as desired.

Remark . We would like to mention that it is also possible to use the generating function
approach for proving Theorem 3.2. But this requires a technically complicated detour via oc-

cupation times, so we will only sketch how this can be done: Let L([a, b]) =
∫ 1

0
I[a,b](B(s)) ds

denote rBB occupation time of the intervall [a, b]. [4, Theorem 8] immediately implies

hn(t) =
1

n

∑

k≤bt√nc
Ln(k)

w−→ L

([

0,
t

2

])

. (3.14)

Hence the problem of determining the local time distributions can be managed by com-
puting the characteristic function Φκ1···κpη(t1, . . . , tp) of the joint distribution of L([κ1, κ1 +
η]), . . . , L([κp, κp + η]) and applying the relation

φ̄κ1···κp
(t1, . . . , tp) = lim

η→0
Φκ1···κpη

(

t1
η

, . . . ,
tp
η

)

.

Let ck1m1k2m2...kpmpn denote the number of all random mappings in Fn with mi nodes between
the ki-th and the (ki + h)-th stratum. Then the corresponding generating function is given by

Ck1···kp
(z, u1, . . . , up) =

∑

m1,...,mp,n≥0

ck1m1k2m2...kpmpnum1

1 · · ·ump

p

zn

n!

= [1 − yk1
(z, yh(u1z, u1yk2−k1

(. . . ,

up−1ykp−kp−1
(z, yh(upz, upa(z))) · · · )

]−1
.

Setting kj = bκj
√

nc and h = bη√nc we obtain by (3.14)

Φκ1/2,...,κp/2,η/2(t1, . . . , tp) = lim
n→∞

n!

nn
[zn]Ck1···kp

(z, eit1/n, . . . , eitp/n). (3.15)

Using the techniques in the proof of Theorem 3.1 we can prove

Theorem 3.3. The characteristic function of the joint distribution of L([κ1, κ1 + η]), . . . ,
L([κp, κp + η]) satisfies

Φκ1...κpη(t1, . . . , tp) =
1

2i
√

π

∫

γ

Fκ1,...,κp,η(x, t1, . . . , tp)
e−x

√
−x

dx,

where

Fκ1,...,κp,η(x, t1, . . . , tp) =

Ξκ1,η(x, t1,Ξκ2−κ1,η(. . . Ξκp−1−κp−2,η(x, tp−1,Ξκp−κp−1,η(x, tp, 0)) · · · )
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with

Ξκ(x, t, y) =
(

√

−x(−x − it)eκ
√
−2x cosh

(

η
√

−2(x + it)
)

− xeκ
√
−2x sinh

(

η
√

−2(x + it)
)

− it sinh
(

κ
√
−2x

)

sinh
(

η
√

−2(x + it)
)

− y
(√

−x cosh
(

κ
√
−2x

)

sinh
(

η
√

−2(x + it)
)

+
√
−x − it sinh

(

κ
√
−2x

)

cosh
(

η
√

−2(x + it)
)))

×
[

√

−x(−x − it)eκ
√
−2x cosh

(

η
√

−2(x + it)
)

− xeκ
√
−2x sinh

(

η
√

−2(x + it)
)

− it cosh
(

κ
√
−2x

)

sinh
(

η
√

−2(x + it)
)

− y
(√

−x sinh
(

κ
√
−2x

)

sinh
(

η
√

−2(x + it)
)

+
√
−x − it cosh

(

κ
√
−2x

)

cosh
(

η
√

−2(x + it)
))]−1

This theorem in conjunction with (3.15) and the relations

sinh

(

η
√

2

√

−x − it

η

)

∼ η
√

2

√

−x − it

η
, η → 0,

and cosh

(

η
√

2

√

−x − it

η

)

∼ 1, η → 0.

immediately yields (2.3) after performing the substitutions t → t/2 and κ → κ/2.

4. Tightness

In this section we will show that the sequence of random variables ln(t) = n−1/2Ln(t
√

n),
t ≥ 0, is tight in C[0,∞). Since a sequence of stochastic processes Xn(t), t ≥ 0, is tight in
C[0,∞) if and only if Xn(t), 0 ≤ t ≤ T , is tight in C[0, T ] for all T > 0 (see [16, p. 63]) we may
restrict ourselves to finite intervals, i.e. it suffices to consider Ln(t), 0 ≤ t ≤ A

√
n, where A > 0

is an arbitrary real constant.
By [6, Theorem 12.3] tightness of ln(t), 0 ≤ t ≤ A, follows from tightness of ln(0) (which is

obvioulsy satisfied) and from an estimate of the form

P
{

|Ln(ρ
√

n) − Ln((ρ + η)
√

n)| ≥ ε
√

n
}

≤ C
ηα

εβ
(4.1)

for some α > 1, β ≥ 0, and C > 0 uniformly for 0 ≤ ρ ≤ ρ + η ≤ A. We will derive (4.1) from
the following property:

Theorem 4.1. There exists a constant C > 0 such that

E (Ln(r) − Ln(r + h))
4 ≤ C h2n (4.2)

holds for all non-negative integers n, r, h.

Obviously Theorem 4.1 proves (4.1) for α = 2 and β = 4 if ρ
√

n and η
√

n are non-negative
integers. However, in the case of linear interpolation it is an easy exercise (see [13] or [11]) to
extend (4.1) to arbitrary ρ, η ≥ 0 (probably with a different constant C).

It remains to prove Theorem 4.1. Since the coefficient

bnkl,rh = n![znukvl]
1

1 − yr(z, uyh(z, va(z)))

is the number of random mappings of size n with k nodes in layer r and l nodes in layer r + h,
i.e.

P {Ln(r) = k, Ln(r + h) = l} =
bnkl,rh

nn
,
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we obtain

P {Ln(r) − Ln(r + h) = m} =
n!

nn
[znum]

1

1 − yr(z, uyh(z, u−1a(z)))

and consequently

E (Ln(r) − Ln(r + h))
4

=
n!

nn
[zn]Hrh(z), (4.3)

in which

Hrh(z) =

(

∂

∂u
+ 7

∂2

∂u2
+ 6

∂3

∂u3
+

∂4

∂u4

)

1

1 − yr(z, uyh(z, u−1a(z)))

∣

∣

∣

∣

u=1

=
1

(1 − a(z))2
(h1,rh(z) + 7h2,rh(z) + 6h3,rh(z) + h4,rh(z))

+
2

(1 − a(z))3
(

7h1,rh(z)2 + 18h1,rh(z)h2,rh(z) + 3h2,rh(z)2 + 4h1,rh(z)h3,rh(z)
)

+
36

(1 − a(z))4
(

h1,rh(z)3 + h1,rh(z)2h2,rh(z)
)

+
24

(1 − a(z))5
h1,rh(z)4,

and

hj,rh(z) =
∂j

∂uj
yr(z, uyh(z, u−1a(z)))

∣

∣

∣

∣

u=1

, (1 ≤ j ≤ 4).

In [9] these functions have been calculated (in a little bit more general setting) in terms of a(z).

Lemma 4.1. Set a = a(z). Then we have

h1,rh(z) = ar+1(1 − ah),

h2,rh(z) = ar+2 1 − ar

1 − a
(1 − ah)2 + ar+h+2 1 − ah

1 − a
,

h3,rh(z) = ar+3 1 − a2r

1 − a2
+ 3ar+4 (1 − ar)(1 − ar−1)

(1 − a)(1 − a2)
(1 − ah)3

+ 3ar+h+3 (1 − ar)(1 − ah)2

(1 − a)2
− 3ar+h+2 1 − ah

1 − a

− ar+3

(

ah 1 − a2h

1 − a2
+ 3ah+1 (1 − ah)(1 − ah−1)

(1 − a)(1 − a2)

)

,
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and

h4,rh(z) = ar+4

(

1 − a3r

1 − a3
+ a2(7 + 10a + 10r + 6ar+1)

(1 − ar)(1 − ar−1)

(1 − a2)(1 − a3)

+ 3(1 + 5a)a3 (1 − ar)(1 − ar−1)(1 − ar−2)

(1 − a)(1 − a2)(1 − a3)

)

(1 − ah)4

+ 7ar+4

(

1 − a2r

1 − a2
+ 3a

(1 − ar)(1 − ar−1)

(1 − a)(1 − a2)

)

ah (1 − ah)3

1 − a

− 12ar+h+4 (1 − ar)(1 − ah)2

(1 − a)2
+ 3ar+2h+4 (1 − ar)(1 − ah)2

(1 − a)3

− 4ar+4 1 − ar

1 − a

(

ah (1 − ah)(1 − a2h)

1 − a2
+ 3ah+1 (1 − ah)2(1 − ah−1)

(1 − a)(1 − a2)

)

+ 12ar+h+2 1 − ah

1 − a
+ 8ar+h+3

(

1 − a2h

1 − a2
+ 3a

(1 − ah)(1 − ah−1)

(1 − a)(1 − a2)

)

+ ar+h+4

(

1 − a3h

1 − a3
+ a2(7 + 10a + 10ah + 6ah+1)

(1 − ah)(1 − ah−1)

(1 − a2)(1 − a3)

+ 3a3(1 + 5a)
(1 − ah)(1 − ah−1)(1 − ah−2)

(1 − a)(1 − a2)(1 − a3)

)

,

In a final step we will estimate the coefficients of Hrh(z). Since n!n−n ∼ e−n
√

2πn Theo-
rem 4.1 is equivalent to

[zn]Hrh(z) = O
(

enh2
√

n
)

uniformly for all r, h ≥ 0. (4.4)

Essentially (4.4) follows from a lemma from singularity analysis [10]:

Lemma 4.2. Let F (z) be analytic in a region

∆ = {z : |z| < z0 + η, | arg(z − z0)| > ϑ},
in which z0 and η are positive real numbers and 0 < ϑ < π/2. Furthermore suppose that there

exists a real number α 6∈ {0,−1,−2, . . . } such that

F (z) = O
(

(1 − z/z0)
−α
)

(z ∈ ∆).

Then

[zn]F (z) = O
(

z−n
0 nα−1

)

.

Corollary. Suppose that G(z) is a bounded analytic function in ∆. Then

[zn]G(z)
a(z)k

(1 − a(z))3
= O

(

enn1/2
)

uniformly for all k ≥ 0.

Proof. (3.9) implies

sup
z∈∆

|a(z)| = 1 (4.5)

and
1

(1 − a(z))3
= O

(

(1 − ez)−3/2
)

.

Hence we can apply Lemma 4.2 with α = 3/2.
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By Lemma 4.1 and (4.5) it follows that Hrh(z) can be represented as

Hrh(z) = G1,rh(z)
(1 − a(z)h)2

(1 − a(z))5
+ G2,rh(z)

1 − a(z)h

(1 − a(z))4
+ G3,rh(z)

1

(1 − a(z))3
,

in which Gj,rh(z), 1 ≤ j ≤ 3, are uniformly bounded in ∆. Note that Hr0(z) ≡ 0. So we may
assume that h ≥ 1. The coefficient of the first term of Hrh(z) can be estimated by

[zn]G1,rh(z)
(1 − a(z)h)2

(1 − a(z))5
= [zn]G1,rh(z)

1

(1 − a(z))3

h−1
∑

i=0

a(z)i
h−1
∑

j=0

a(z)j

=
h−1
∑

i,j=0

G1,rh(z)
a(z)i+j

(1 − a(z))3

= O
(

enh2n1/2
)

.

The coefficient of the second term is even smaller:

[zn]G2,rh(z)
(1 − a(z)h)

(1 − a(z))4
= [zn]G2,rh(z)

1

(1 − a(z))3

h−1
∑

i=0

a(z)i

=

h−1
∑

i=0

G2,rh(z)
a(z)i

(1 − a(z))3

= O
(

enhn1/2
)

= O
(

enh2n1/2
)

.

Similarly we can treat the remaining term

[zn]G3,rh(z)
1

(1 − a(z))3
= O

(

enn1/2
)

= O
(

enh2n1/2
)

.

Thus we have proved (4.4) which is equivalent to (4.2). This completes the proof of tightness
of the sequence ln(t) and consequently the proof of Theorem 1.1.

Acknowledgment. We wish to thank the referee for indicating a shorter and direct proof of
Theorem 3.2.
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