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We develop a combinatorial structure to serve as model of random real world networks. Starting with plane oriented
recursive trees we substitute the nodes by more complex graphs. In such a way we obtain graphs having a global
tree-like structure while locally looking clustered. Thisfits with observations obtained from real-world networks. In
particular we show that the resulting graphs are scale-free, that is, the degree distribution has an asymptotic power
law.
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1 Introduction
There has been substantial interest in random graph models where vertices are added to the graph suc-
cessively and are connected to several already existing nodes according to some given law. The so-called
Albert-Barabási model (see Albert and Barabási (2002)) joins a new node to an existing one with proba-
bility proportional to the degree. The idea behind is to model variousreal-word graphslike the internet
or social networks.
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It turns out that the Albert-Barabási model is not unambiguously defined. One rigorous approach is
due to Bollobás and Riordan (2004) They introduced a random(multi)graphGn

m. For example,Gn
1 is

described in the following way. One starts with an initial node 1 with a loop. (This means that1 has
degree2). Then at stepk we add one node that is connected toj ≤ k with probability

degGk−1
1

(j)

2k − 1
if j < k,

1

2k − 1
if j = k.

Of course, aftern steps we have produced a random (multi)graph with vertex set{1, 2, . . . , n} andn
edges. Now the random graphGn

m can be constructed fromGmn
1 by identifying the nodes{(ℓ − 1)m +

1, (ℓ − 1)m + 2, . . . , ℓm} (1 ≤ ℓ ≤ n) of Gmn
1 to a new nodeℓ (and all edges within the nodes{(ℓ −

1)m + 1, (ℓ− 1)m + 2, . . . , ℓm} are now loops of the new nodeℓ). Of course, this procedure results in a
random (multi)graph with vertex set{1, 2, . . . , n} andmn edges.

It turns out that the degree distribution ofGn
m satisfies apower law. The probability that a randomly

chosen node ofGn
m has degreed is asymptotically2/d3 (see Bollobás et al. (2001)). Graphs with this

property are calledscale-free.
We now use a slightly modified evolution process that always leads to a labelled recursive tree. The

process starts with the root that is labeled with1. Then inductively at stepj a new node (with labelj) is
attached to any previous node of out-degreek with probability proportional tok + 1. These kinds of trees
are also calledplane oriented recursive trees(PORT’s).

This evolution process is quite similar to the process that produces (usual) recursive trees. A (usual)
recursive tree is a rooted tree (withn nodes) where the nodes are labeled with1, 2, . . . , n such that all
successors of each node have a larger label. In particular, the root has label1, and every path from the
root to a leaf has strictly increasing labels. As above, we can consider a recursive tree as the result of an
evolution process. Theprocessstarts (as above) with the root (that gets label1). Next, another node is
attached to the root (that gets label2) and in every step a new node is attached to an already existing node
(and gets the next label). The labels are thehistoryof the tree evolution.

The PORT-model, where we attach a new node according to the degree-distribution of the already
existing tree, can be also seen as a planar version of the recursive trees. Namely, if a node of a planar
(rooted) tree has out-degreek, that is, it has degreed = k + 1, then there are preciselyd ways to attach
there a new node in order to get different planar trees. This explains the nameplane oriented recursive
trees.

We will indicate in the next section that the degree distribution of these random trees is scale-free as in
the case ofGn

m. In fact, we have

lim
n→∞

pn(d) =
4

d(d + 1)(d + 2)
,

wherepn(d) denotes the probability that a random node in random PORT of sizen has degreed.
We now introduce a substitution process that creates randomgraphs that have a global tree structure

that is governed by plane oriented recursive trees.
For everyk ≥ 0 let Tk denote a non-empty set of labelled graphs withk + 1 additional orderedhalf

edges. Now consider the following random process. For every tree PORT T we substitute every node
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v (of out-degreek) by a randomly chosen graph ofTk where thek + 1 half edges aregluedto the edge
coming from the predecessor ofv resp. thek successors ofv corresponding to the given order of the
half-edges. Further we relabel all nodes in the new graphG = G(T ) in a way that is consistent with the
original labelling. We denote the graphs that are obtained by this processthickened treesor more precisely
thickened PORT’s.

The idea behind this model is to simulate real networks that are produced by an evolution process
(following, for example, the Albert-Barabási principle)and have aglobal tree structurewith local clusters.
Of course, we make a strong simplification. Our model relies on a two-step-procedure. We first let a
tree network evolve (following the Albert-Barabási principle) and then replace the tree nodes by random
clusters. Hence, the clusters are not produced by an evolution process. Nevertheless we think that our
model has several advantages and can be used to explain several properties that are observed in practice:

• There is large flexibility in choosing the structure of localclusters and, thus, can be adapted to the
situation.

• The model is feasible for an analytic treatment.

• It can be used to study (analytically) the influence of local changes of the network to the global
behaviour.

The main focus of our paper is the degree distribution. We show that under natural conditions the
resulting network is scale-free and that the number of nodesof given degree satisfy a central limit theorem.

2 The degree distribution of PORT’s
In this section we shortly present a proof that PORT’s are scale-free. In particular we show the following
property that is due to Mahmoud et al. (1993), see also Bergeron et al. (1992) for similar results and
Kuba and Panholzer (2007) for generalizations. The reason for presenting a proof is that the proof of a
corresponding property for thickened PORT’s will work along similar lines.

Theorem 1 Letpn(d) denote the probability that a random node in a random PORT of sizen has degree
d. Then

lim
n→∞

pn(d) =
4

d(d + 1)(d + 2)
.

Furthermore, for everyd ≥ 1 let X(d)
n denote the number of nodes of degreed in random PORT’s of size

n. ThenX
(d)
n satisfies a central limit theorem

X
(d)
n − E X

(d)
n

V X
(d)
n

d−→ N(0, 1),

whereE X
(d)
n ∼ 2B(3, d)n = 4n/(d(d + 1)(d + 2)) andV X

(d)
n ∼ (2B(3, d)+4B(3, d)2−4B(4, 2d−

1))n andB(a, b) denotes the Beta-function.

Proof: The proof of Theorem 1 is based on a generating function approach. It is well known that the
generating function

y(z) =
∑

n≥1

yn
zn

n!
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of PORT’s satisfies the differential equation

y′(z) = 1 + y(z) + y(z)2 + · · · =
1

1 − y(z)
,

that reflects the recursive structure of PORT’s. The solution is

y(z) = 1 −
√

1 − 2z =
∑

n≥1

1

2n−1

(2(n − 1))!

(n − 1)!

zn

n!

and, thus, one has

yn =
1

2n−1

(2(n − 1))!

(n − 1)!
.

We now turn to the degree distribution. By obvious reasoningwe have

pn(d) =
E X

(d)
n

n
.

Thus, we can get the degree distribution with help of the distribution ofX(d)
n .

Let y
(d)
n,k denote the number of PORTS’s of sizen with exactly k nodes with degreed. Then the

probability generating functionE uX(d)
n is given by

E uX(d)
n =

1

yn

∑

k≥0

y
(d)
n,k uk

and the double generating function

y(z, u) =
∑

n,k

y
(d)
n,k uk zn

n!
=
∑

n≥1

yn

(

E uX(d)
n

) zn

n!

satisfies the differential equation

∂y

∂z
=

1

1 − y
+ (u − 1)yd−1 =

1 + yd−1(1 − y)(u − 1)

1 − y
(1)

Equivalently we have
∫ y

0

1 − t

1 + td−1(1 − t)(u − 1)
dt = z (2)

We first determine the expected valueE X
(d)
n . For this purpose we set

S(z) =
∂y(z, u)

∂u

∣

∣

∣

∣

u=1

∑

n≥1

yn · E Nd,n · zn

n!
.

From (2) we get that this function satisfies the differentialequation

S′(z) =
S(z)

(1 − y(z))2
+ y(z)d−1
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and has solution

S(z) =
1

1 − y(z)

∫ y(z)

0

(1 − t)2td−1 dt.

Recall thaty(z) = 1 −
√

1 − 2z. Thus, it follows that
∫ y(z)

0

(1 − t)2td−1 dt =

∫ 1

0

(1 − t)2td−1 dt −
∫ 1

y(z)

(1 − t)2td−1 dt

= B(3, d + 1) + O
(

(1 − 2z)3/2
)

.

Consequently, we have

S(z) =
B(3, d + 1)√

1 − 2z
+ O(1) =

2

d(d + 1)(d + 2)

1√
1 − 2z

+ O(1)

which implies (with help of the transfer-lemma of Flajolet and Odlyzko Flajolet and Odlyzko (1990)) that

E X(d)
n = n

4

d(d + 1)(d + 2)
+ O(

√
n).

Consequently, we get the degree distribution

lim
n→∞

pn(d) = lim
n→∞

E X
(d)
n

n
=

4

d(d + 1)(d + 2)
.

In order to prove the central limit theorem we go back to (2) and similarly expand the integral
∫ y

0

1 − t

1 + td−1(1 − t)(u − 1)
dt =

∫ 1

0

1 − t

1 + td−1(1 − t)(u − 1)
dt −

∫ 1

y

1 − t

1 + td−1(1 − t)(u − 1)
dt

=: C(u) − D(y, u)

Observe thatD(y, u) is asymptotically given by

D(y, u) =
(1 − y)2

2
(1 + O(|y − 1| · |u − 1|)) .

Hence (2) translates to
√

2C(u)

√

1 − z

C(u)
= (1 − y) (1 + O (|y − 1| · |u − 1|))

which can be inverted to

y(z, u) = 1 −
√

2C(u)

√

1 − z

C(u)
+ O

(∣

∣

∣

∣

1 − z

C(u)

∣

∣

∣

∣

)

.

Consequently it follows (compare with Flajolet and Soria (1993)) thatX(d)
n satisfies a central limit theo-

rem with mean and variance

E X(d)
n = −C′(1)

C(1)
n + O(

√
n) and V X(d)

n =

(

−C′′(1)

C(1)
− C′(1)

C(1)
+

C′(1)2

C(1)2

)

n + O(
√

n).

It is an easy exercise to computeC(1) = 1/2, C′(1) = B(3, d), andC′′(1) = 2B(4, 2d− 1). 2
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3 The degree distribution of thickened PORT’s
We now deal with a substitution process that creates random graphs that have a global tree structure that
is governed by plane oriented recursive trees.

Let us consider the formal solutiony = y(z, x0, x1, x2, . . .) of the differential equation

y′ =
∑

k≥0

xkyk,

where′ denotes differentiation with respect toz. It is clear thaty = y(z, x0, x1, x2, . . .) can be considered
as a power series inz, x0, x1, . . . By construction the coefficient

[znxk0
0 xk1

1 . . .] y(z, x0, x1, x2, . . .)

is exactly the number of PORT’sT of sizen andkj nodes of out-degreej (j ≥ 0).
For everyk ≥ 0 let Tk denote a non-empty set of labelled graphs withk + 1 additionalhalf edges

ẽ0, ẽ1, . . . , ẽk. Further, let

tk(z) =
∑

G∈Tk

z|G|

|G|!

denote the exponential generating function of these graphs.
We recall that we consider the following random process. Forevery PORTT we substitute every node

v (of out-degreek) by a randomly chosen graph ofTk where the half edges̃e0, ẽ1, . . . , ẽk aregluedto the
edge coming from the predecessor ofv resp. thek successors ofv corresponding to the left-to-right order.
Further we relabel all nodes in the new graphG = G(T ) in a way that is consistent with the original
labelling. Thus, the generating function of the numberg(z) =

∑

n≥1 gn
zn

n! of the numbersgn of graphs
that are produced in this way is given by

g(z) = y(z, t0(z)/z, t1(z)/z, . . .).

The graphs that are obtained by this process are denoted hereby thickened treesor thickened PORT’s.

Lemma 1 Set

F (z, y) =

∫ y

0

dt
∑

k≥0 tk(z)/z tk
.

Theng(z) satisfies the functional equation

F (z, g) = z.

Proof: We recall thaty = y(z, x0, x1, . . .) satisfies the differential equationy′ =
∑

k≥0 xkyk. Hence,

∫ y

0

dt
∑

k≥0 xkyk
= z + c

for some constantc. Of course, if we substitutexk by tk(z)/z then we immediately get the result. Note
further thatg(0) = 0 andF (0, 0) = 0. Thus, we can fixc = 0. 2
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Fig. 1: The substitution setT3

In a similar way we can deal with parameters. For example, fix adegreed and let

t
(d)
k (z, u) =

∑

G∈Tk

z|G|

|G|!u
Nd(G),

whereNd(G) denotes the number of nodes inG of degreed including the half-edges̃e0, . . . , ẽk. Then
the generating function

g(z, u) = y(z, t
(d)
0 (z, u)/z, t

(d)
1 (z, u)/z, . . .)

encodes the distribution of nodes of degreed of thickened trees. Of course, the above lemma extends to
this case. It is now convenient to introduce the notation

Td(z, y, u) =
1

z

∑

k≥0

t
(d)
k (z, u)yk.

Of course, for alld we haveTd(z, y, 1) =
∑

k≥0 tk(z)/z yk.

Lemma 2 Set

Gd(z, y, u) =

∫ y

0

dt

Td(z, t, u)
.

Theng(z, u) satisfies the functional equation

Gd(z, g, u) = z.

Example We just give a simple example. Suppose thatTk consists for everyk ≥ 0 of exactly two graphs,
the first one with one node and the second with two nodes, whereall half-edges̃e1, . . . , ẽk that will be
linked to thek subgraphs are on the second node. Figure 1 depicts the setT3.

In this example we have ford ≥ 3

t
(d)
k (z, u) =

{

z + z2

2 if k 6= d − 1

uz + u z2

2 else,
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and consequently

Td(z, y, u) =
(

1 +
z

2

)

(

1

1 − y
+ (u − 1)yd−1

)

.

The casesd = 1 andd = 2 are similar.

Our main result is the following theorem:

Theorem 2 LetTk be substitution sets (as described above) so that the equation

ρ =

∫ 1

0

dt

Td(ρ, t, 1)

has a unique positive solution in the region of convergence of Td(z, y, u) and that theTd(z, y, u) can be
represented as

Td(z, y, u) =
C0(z, y) + C1(z, y)(1 − y)r′

yd+α(u − 1) + O
(

(1 − y)r′

(u − 1)2
)

(1 − y)r
,

wherer′ andr are real numbers with0 < r′ ≤ r, α in an integer,C0(z, y) andC1(z, y) are power series
that containz = ρ andy = 1 in their regions of convergence and that satisfyCi(ρ, 1) 6= 0 for i = 0, 1,
and theO (·)-term is uniform in a neighbourhood ofz = ρ andy = 1.

Letpn(d) denote the probability that a random node in a thickened PORTof sizen has degreed. Then
the limits

lim
n→∞

pn(d) =: p(d)

exist and we have, asd → ∞,

p(d) ∼ C

dr+r′+1
.

Furthermore, for everyd ≥ 0 let X
(d)
n denote the number of nodes of degreed in random thickened

PORT’s of sizen. ThenX
(d)
n satisfies a central limit theorem

X
(d)
n − E X

(d)
n

V X
(d)
n

d−→ N(0, 1),

whereE X
(d)
n andV X

(d)
n are both asymptotically proportional ton.

Remark. The conditions on the generating functionT (z, y, u) can be (more of less) interpreted in the
following way. If we setu = 1 then the singularity1/(1−y)r in T (z, y, 1) essentially says that the setTk

consists≈ kr−1 graphs. Furthermore fork ≥ d + α there are≈ kr−r′−1 graphs with a vertex of degree
d, compare also with the examples given in Section 4.

Proof: The proof runs along similar lines as that of Theorem 1. We start by inspecting the generating
functiong(z) of all thickened PORT’s. For simplicity we assume that the substitution setsTk are of a
form thatgn > 0 for sufficiently largen ≥ n0, that is, we exclude, for example, the case that the number
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of nodes of graphs inTk are all congruent to1 modulo some integerm > 1.(i) Then it follows that
|g(z)| < g(|z|) if z is not contained in the positive real line.

We first observe thatρ > 0 is the only singularity on the circle of convergence|z| ≤ ρ and that
g(ρ) = 1, that is,g(z) is convergent atz = ρ. First it is clear thatg(z) can be analytically continued
starting withg(0) = 0 and the functional equationF (z, g) = z. However, ifg(z0) 6= 1 for somez0

contained in the region of convergence ofg(z) then we have

Fg(z0, g(z0)) =
1

Td(z0, g(z0), 1)
=

(1 − g(z0))
r

C0(z0, g(z0))
6= 0.

Thus, we can continue analytically with help of the implicitfunction theorem. Thus, ifg(z) has a singu-
larity ρ and if g(ρ) is convergent theng(ρ) = 1. Sinceg(z) is monotone and analytic it certainly reaches
a value withg(ρ) = 1 where it has to be singular. Further,ρ is characterized by the equationF (ρ, 1) = ρ.

Next we characterize the kind of singularity ofg(z) atz = ρ. By Lemma 1 we have

z =

∫ g

0

(1 − t)r

C0(z, t)
dt =

∫ 1

0

(1 − t)r

C0(z, t)
dt −

∫ 1

g

(1 − t)r

C0(z, t)
dt =: G(z) − H(z, g)

Hence, by expanding1/C0(z, t) locally aroundt = 1 we thus get

G(z) − z = c0(z)(1 − g)r+1 (1 + O (|1 − g|))

or
(

G(z) − z

c0(z)

)1/(r+1)

= (1 − g) (1 + O (|1 − g|)) . (3)

SinceG(ρ) = ρ andC0(z, y) is increasing inz we can represent(G(z) − z)/c0(z) = K(z)(1 − z/ρ).
Furthermore, we can invert the relation (3) and obtain

g(z) = 1 − K(z)1/(r+1)

(

1 − z

ρ

)1/(r+1)

+ O
(

∣

∣

∣

∣

1 − z

ρ

∣

∣

∣

∣

2/(r+1)
)

.

Since there are no other singularities on the circle|z| ≤ ρ andg(z) can be analytically continued to a
larger range (despite at the pointz = ρ) it follows from Flajolet and Odlyzko (1990) that

gn ∼ K(ρ)1/(r+1) ρ−nn− r+2
r+1

−Γ
(

− 1
r+1

) .

Next we determine asymptotics on the average valueE X
(d)
n . SetS(z) = ∂

∂ug(z, 1). Then it follows
from Lemma 2 that

S(z) =
1

(1 − g(z))r

∫ g(z)

0

C1(z, t)(1 − t)r+r′

td+α dt.

(i) We call this the aperiodic case. In the periodic case we have to deal withm singularities on the boundary of the circle of
convergence ofg(z) which are all of the same kind.



10 Michael Drmota, Bernhard Gittenberger, and Alois Panholzer

As in the proof of Theorem 1 it follows that

S(z) =
1

K(z)
r

r+1 (1 − z/ρ)
r

r+1

∫ 1

0

C1(z, t)(1 − t)r+r′

td+α dt + O (1)

which proves that

E X(d)
n ∼ n · r + 1

K(ρ)

∫ 1

0

C1(ρ, t)(1 − t)r+r′

td+α dt.

Thus, the limitp(d) = limn→∞ E X
(d)
n /n exists and is asymptotically given by

p(d) =
r + 1

K(ρ)

∫ 1

0

C1(ρ, t)(1 − t)r+r′

td+α dt ∼ C

dr+r′+1

for some constantC > 0.
Finally the proof that the limiting distribution is normal is very similar to the corresponding proof of

Theorem 1. We skip the details. 2

4 Examples
4.1 Substituting by one or two nodes

Let us continue the example preceding Theorem 2. Here we have(for d ≥ 3):

Td(z, y, u) =
(

1 +
z

2

) 1 + (1 − y)(u − 1)yd−1

1 − y
.

Thus, Theorem 2 applies withr = r′ = 1 andα = −1. The degree distributionp(d) is scale-free with
tail p(d) ∼ C/d3. A detailed computation (including the instancesd < 3 also) shows that the degree
distribution is given as follows:

p(d) =
2 +

√
2

d(d + 1)(d + 2)
, for d ≥ 3, p(1) =

2 +
√

2

6
, p(2) =

14 − 5
√

2

24
.

4.2 Thickening with triangles 1

We consider two examples where we substitute each node of theoriginal node by a triangle. More pre-
cisely, each node of out-degreek is then substituted by a triangle withk+1 half-edges̃e0, . . . , ẽk attached
to it. Theẽ0 is glued to the predecessor of the original nodes and the other half-edges to the successors of
the original nodes according to their naturally given order(e.g. left to right in the case of plane trees). Let
the parameter of interest be the number of nodes of degreed. Then we have

tk(z, u) = (a0,k + a1,ku + a2,ku2 + a3,ku3)
z3

3!

whereai,k is the number of configurations (triangles withk half-edges) containingi nodes of degreed
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We first consider the special case where the ingoing edge of each triangle is separated from the outgoing
edges. That means thatẽ0 connects the predecessor of the triangle to a vertex of degree3 (the edges are
then ẽ0 and two edges of the triangle) whilẽe1, . . . , ẽk are connected to the other two vertices of the
triangle. Clearly we have then

tk(z) = (k + 1)
z3

3!
.

When focusing on the number of nodes of degreed, then it is easy to see that (ford ≥ 4) we have

a0,k =











k + 1 if k < d − 2

k if k = 2d − 4

k − 1 else.

This holds because of the following argument. Let us label the nodes of the triangle by0, 1, 2 whereẽ0 is
attached to 0. Thenℓ1 of the edges̃e1, . . . , ẽk are attached to1 andℓ2 = k − ℓ1 to 2. The configuration
contains at least one node of degreed if and only if ℓ1 = d − 2 or ℓ2 = d − 2. Exactly these cases do not
contribute toa0,k. Moreover we geta3,k = 0,

a1,k =

{

0 if k = 2d − 4 or k < d − 2

2 else,
and a2,k =

{

0 if k 6= 2d − 4

1 if k = 2d − 4.

This implies (ford ≥ 4):

T (z, y, u) =
z2

6





∑

k≥0

(k − 1 + 2u)yk +

d−3
∑

k=0

2(1 − u)yk + (1 − u)2y2d−4





=
z2

6

1 + 2(1 − y)yd−2(u − 1) + (1 − y)2y2d−4(u − 1)2

(1 − y)2
.

Here Theorem 2 applies withr′ = 1, r = 2 andα = −2. Hence the degree distributionp(d) is scale-
free with tailp(d) ∼ C/d4. A detailed computation (including the instancesd < 4 also) shows that the
degree distribution is given as follows:

p(d) =
12

(d − 1)d(d + 1)(d + 2)
, for d ≥ 4, p(1) = 0, p(2) =

1

2
, p(3) =

13

30
.

4.3 Thickening with triangles 2

In the case of general triangles the edgesẽ0, . . . , ẽk can be attached to all the vertices of the triangles.
This gives, after somewhat tedious considerations, the following result fort(d)

k (z, u).

Lemma 3 Letd > 3. Then we have

t
(d)
k (z, u) =

z3

6
a
(d)
k (u),
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with

a
(d)
k (u) =































(

k+3
3

)

if k ≤ d − 4
(

k+3
3

)

− (k + 1)(k − d + 4) + (k + 1)(k − d + 4)u if d − 3 ≤ k ≤ 2d − 6
(

k+3
3

)

− (k+1)2

2 + (k−1)(k+1)
2 u + (k + 1)u2 if k = 2d − 5

(

k+3
3

)

− (k + 1)(k − d + 3) + (k + 1)(k − d + 2)u + (k + 1)u2 if k ≥ 2d − 4 andk 6= 3d − 7
(

k+3
3

)

− (k+1)(2k+3)
3 + 2(k+1)2

3 u + k+1
3 u3 if k = 3d − 7.

This implies (ford ≥ 4):

Td(z, u, v) =
z2

6

1

(1 − y)4

[

1 + (1 − y)yd−3((4 − d)y + d − 2)(u − 1)

− (1 − y)2y2d−5((2d − 5)y − 2d + 4)(u − 1)2 + (d − 2)(1 − y)4y3d−7(u − 1)3
]

.

Now Theorem 2 applies withr′ = 1, r = 4 andα = −3. Hence the degree distributionp(d) is scale-
free with tailp(d) ∼ C/d6. A detailed computation (including the instancesd < 4 also) shows that the
degree distribution is given as follows:

p(d) =
1600

(d − 1)d(d + 1)(d + 2)(d + 3)(d + 4)
, for d ≥ 4, p(1) = 0, p(2) =

5

9
, p(3) =

20

63
.
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